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Abstract
In this paper measures of interrater absolute agreement for quantitative measure-
ments based on the standard deviation are proposed. Such indices allow (i) to 
overcome the limits affecting the intraclass correlation index; (ii) to measure the 
interrater agreement on single targets. Estimators of the proposed measures are 
introduced and their sampling properties are investigated for normal and non-normal 
data. Simulated data are employed to demonstrate the accuracy and practical utility 
of the new indices for assessing agreement. Finally, an application to assess the con-
sistency of measurements performed by radiologists evaluating tumor size of lung 
cancer is presented.

Keywords Interrater agreement · Intraclass correlation · One-way ANOVA · 
Resampling

1 Introduction

The agreement between ratings or measurements given by two or more raters 
(humans or devices) on a group of targets (subjects or objects) have been considered 
in applications regarding biomedical sciences, education, psychometrics and other 
disciplines (for a review see, for example, Shoukri 2011; Broemeling 2009 and von 
Eye and Mun 2005). For instance, the agreement among clinical diagnoses provided 
by more physicians on a nominal scale is analyzed for identifying the best treatment 
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for the patient, or the agreement among ratings of educators who assess on a new 
ordinal rating scale the language proficiency of a corpus of argumentative (written 
or oral) texts is considered to test reliability of the new scale.

In this paper we focus on the analysis of the agreement among quantitative (dis-
crete or continuous) measurements, like, for instance, those provided by radiolo-
gists measuring the tumor size of lung cancer patients who could be considered in 
a clinical trial (this example is presented in the application of Sect.  5). The main 
interest is to measure by an index the extent raters assign the same (or very simi-
lar) values (absolute agreement) to the targets evaluated, because only in this case 
the scale can be used with confidence. For quantitative discrete scales with a lim-
ited number of levels, extensions of the Cohen’s weighted Kappa index (e.g., Gwet 
2014; Mitani et al. 2017) are available, and interesting inequalities relationships are 
established among some of them (Warrens 2010). These extensions cannot be used 
for quantitative discrete scales with a large number of levels or for continuous scale 
and have some drawbacks: (1) Indices are based on agreement expected by chance, 
that depends on the observed proportions of subjects allocated to the categories of 
the scale by each rater, and this implies that the measure of agreement depends on 
the marginal distributions of the categories of the scale observed for each rater; (2) 
indices are formulated in terms of agreement statistics based on all pairs of raters, 
but some authors argue that simultaneous agreement among three or more raters 
can be alternatively considered (e.g., see Warrens 2012); (3) indices cannot be com-
puted for a single-target (target-specific measure of agreement), because in that case 
the agreement expected by chance is not defined or statistically not relevant (e.g., 
see Bove et al. 2021 for a proposal of a single-target measure of interrater absolute 
agreement for ordinal scales); (4) indices cannot evaluate agreement in a group of 
targets where each target is evaluated by a different group of raters (e.g., when each 
teacher is evaluated by pupils in a different class).

For quantitative discrete scales with any number of levels or for continu-
ous scales, the intraclass correlation coefficient (ICC) is the traditional approach. 
The main interpretation of the ICC is as a measure of the proportion of variance 
(variously defined) that is attributable to the objects of measurement, see Shrout 
and Fleiss (1979). Several versions of the ICC have been proposed, each form is 
appropriate for specific situations defined by the experimental design as discussed 
in Shrout and Fleiss (1979) and McGraw and Wong (1996). Intraclass correlation 
coefficients are affected by the following limitations: (1) the restriction of variance 
problem, that consists in an attenuation of estimates of rating similarity caused by 
an artifact reduction of the between-targets variance in ratings; (2) estimation and 
hypothesis testing procedures for intraclass correlation coefficients are, in general, 
sensitive to the assumption of normality and are subject to unstable variance; (3) 
cannot measure single-target interrater absolute agreement. Such single-target evalu-
ations are particularly useful both in situations where the rating scale is being tested 
and when the agreement on single cases is poor and a specific comparison between 
raters is requested. The restriction of variance problem of the intraclass correlation 
coefficients and the other two limitations can be overcome defining target-specific 
measures of interrater agreement that work separately with each target in the cor-
responding row of ratings in the targets × raters data matrix.



1 3

Measures of interrater agreement for quantitative data  

In the next sections, indices measuring the interrater agreement for quantitative 
measurements on a single-target based on the standard deviation, that are not affected 
by the previous three limitations of the intraclass correlation coefficients, are proposed. 
Furthermore, a global measure of agreement obtained averaging the single-target 
agreement measures is considered.

The paper is organized as follows. In Sect. 2, we provide a brief background about 
the one-way random effects model and define the particular ICC of interest. In Sect. 3, 
we propose alternative measures of interrater agreement based on standard deviation 
whose sampling properties are analyzed in Sects. 3.1 and  3.2, for normal and non-
normal data, respectively. Finally, a simulation study illustrating the theoretical results 
is performed in Sect. 4 and an application to a real dataset concerning the agreement of 
radiologists measuring tumor size is described in Sect. 5.

2  ICC in the one‑way random effects ANOVA model

In our framework we assume a one-way random effects model, then the nT targets 
being rated are randomly drawn from the population of targets. Each target is rated by 
a set of nR raters (not necessarily the same raters in each set) randomly drawn from the 
population of raters. In the one-way random model the only random effect is due to the 
target since the effects due to raters and due to interaction cannot be separated from 
random error. See McGraw and Wong (1996) and Elfving et al. (1999) for examples of 
this setting. More specifically, in McGraw and Wong (1996) behavioral genetics data 
are used to assess familial resemblance. In Elfving et al. (1999) a reliability study of a 
method using electromyography on back muscles is described.

Denote by xij the measurement made on the ith target by the jth rater, for i = 1,… , nT 
and j = 1,… , nR . In the one-way ANOVA model it is specifically assumed that each 
experimental value xij may be regarded as the sum of three contributions,

where � is the grand mean of all measurements, ai is the target effect and �ij is the 
random error. The target effect ai and the random error �ij are assumed to be inde-
pendent and normally distributed with mean 0 and variances �2

T
 and �2

�
 , respectively. 

Notice that �ij is a residual component equal to the sum of inseparable effects of the 
rater, the rater-and-target interaction and the error term. The intraclass correlation � 
in a one-way ANOVA model is given by,

defined as the proportion of between-target variation relative to the total varia-
tion, for details see Shoukri et al. (2016) and reference therein. From (2), � varies 
between 0 and 1. More specifically, � ≤ 0.5 denotes poor reliability, 0.5 < 𝜌 ≤ 0.75 
denotes good reliability, 𝜌 > 0.75 excellent reliability, as suggested in Koo Terry and 
Li Mae (2016). It can be shown that � given by (2) is the correlation between two 

(1)xij = � + ai + �ij

(2)� =
�2
T

�2
T
+ �2

�

,
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measurements on the same group (target) i. Thus, larger values of � indicate higher 
coherence among measurements on the same target by different raters. Let ST and S� 
be the between-targets mean square and the residual mean square error, respectively, 
defined as,

where x.. =
∑nT

i=1

∑nR
j=1

xij∕nTnR is the overall mean of {xij} and xi. =
∑nR

j=1
xij∕nR is 

the mean of the measurements provided by the nR raters on ith target. Since 
E[ST ] = nR�

2
T
+ �2

�
 and E[S�] = �2

�
 , the most commonly used estimator for � is given 

by

where �̂2
T
= (ST − S�)∕nR, �̂2

�
= S� , see Liljequist et  al. (2019). Notice that the 

expression for �̂  in terms of the mean squares ST and S� may become negative. This 
may occur by chance, especially if the sample size nT is small. Finally, it should be 
borne in mind that while �̂  is a consistent estimator of � , it is biased. Atenafu et al. 
(2012) investigated the issues related to bias correction of the ANOVA estimator of 
ICC from the one-way layout and the effect of non-normality through Monte-Carlo 
simulations by generating data from known skewed distributions. In Shoukri et al. 
(2016) the first order approximation for the bias and the variance of the ICC for a 
one-way random model are computed.

3  Single‑target and global interrater agreement measures 
for a quantitative scale

A high intraclass correlation means that the points will be spread out along the 
line of equality in a nR-dimensional space. The dispersion of a quantitative con-
tinuous variable assuming nR values (x1,… , xnR ) can be measured computing its 
distance from the straight line X1 = X2 = ⋯ = XnR

 , given by,

where �2
�
 is the variance of the scores (x1, x2,… , xnR ) . Let m and M be the minimum 

and the maximum for the quantitative scale X, respectively, then

ST = nR

nT∑
i=1

(xi. − x..)
2∕(nT − 1),

S� =

nT∑
i=1

nR∑
j=1

(xij − xi.)
2∕[nT (nR − 1)],

(3)�̂ =
�̂2
T

�̂2
T
+ �̂2

�

,

(4)l =

������
�

nR�
j=1

x2
j

�
−

�∑nR
j=1

xj

�2

nR
=

�
nR�

2
�
,
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Hence, it is possible to define a measure of dispersion normalized in the interval 
[0, 1] as follows,

Notice that g = 1 for maximum disagreement and g = 0 for perfect agreement. Max-
imum disagreement occurs when half of the scores are equal to M and half of the 
scores are equal to m. When the minimum and the maximum of X are unknown, a 
relative measure of agreement can be obtained by the coefficient of variation defined 
as,

where � is the overall mean. Notice that high values of CV indicate disagreement. In 
Sects. 3.1 and 3.2 estimators of g and CV indices are proposed and their sampling 
properties are discussed both for the normal and non-normal case.

3.1  Sampling properties of g index

As previously stressed, the dispersion of a quantitative variable can be measured 
by the index (4). With regard to the ith target, the standard deviation �� can be esti-
mated by the sample standard deviation si defined as,

Note that even though the sample variance s2
i
 is an unbiased estimator of the vari-

ance �2
�
 , that is E(s2

i
) = �2

�
 , the standard deviation si is a biased estimator of the 

standard deviation �� . By Jensen’s inequality, since the square root is a concave 

function, we obtain E(si) = E

(√
s2
i

)
≤
√

E(s2
i
) = �� and the sample standard devi-

ation si tends to underestimate �� . Fortunately, the bias is typically minor if the sam-
ple size is reasonably large.

Lemma 1 Under the normality assumption, it can be proved that

(5)lmax = max

��
nR�

2
�

�
≤
�

nR(M − m)2

4
=

(M − m)
√
nR

2
.

(6)g =
l

lmax

=

√
nR�

2
�

lmax

=
2��

M − m
.

(7)CV =
��
�
,

(8)si =

√√√√ 1

nR − 1

nR∑
j=1

(xij − xi.)
2.

(9)E(si) = ��

√
2Γ(nR∕2)√

nR − 1Γ((nR − 1)∕2)
= ��A(nR),
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where A(nR) =
√
2Γ(nR∕2)√

nR−1Γ((nR−1)∕2)
< 1 and Γ(.) is the gamma function.

Proof of Lemma 1 See Appendix.
Then, for each target i (for i = 1,… , nT ) the following estimator of the g index (6) 

can be defined,

which measures the interrater agreement on scores concerning the ith target. The 
bias and the variance of ĝi are computed in Lemma 2.   ◻

Lemma 2 Under the normality assumption, the bias and the variance of ĝi are 
given by,

Proof of Lemma 2 Immediate consequence of Lemma 1.
In order to obtain an agreement estimate on the whole group of targets, the fol-

lowing estimator of g index can be considered,

More specifically, ĝ is an estimator of g obtained averaging the nT estimates 
ĝ1,… , ĝnT . In Proposition 1 both the sampling properties and the asymptotic distri-

bution of ĝ are analyzed under the normality assumption.   ◻

Proposition 1 Under the normality assumption, the bias and the variance of ĝ esti-
mator are given by,

(10)V(si) = �2
�

(
1 −

2Γ(nR∕2)
2

(nR − 1)Γ((nR − 1)∕2)2

)
= �2

�
(1 − A(nR)

2),

(11)ĝi =
l̂i

lmax

=

√
nRs

2
i

lmax

=
2si

M − m
,

(12)B(�gi) =E(�gi) − g =
2𝜎𝜖

M − m
(A(nR) − 1) = g(A(nR) − 1) < 0,

(13)V(ĝi) =
4

(M − m)2
V(si) =

4�2
�

(M − m)2

(
1 − A(nR)

2
)
= g2

(
1 − A(nR)

2
)
.

(14)ĝ =
1

nT

nT∑
i=1

ĝi =
1

nT

nT∑
i=1

2si

M − m
.

(15)B(ĝ) =E(ĝ) − g = g(A(nR) − 1),

(16)V(ĝ) =
g2

nT
(1 − A(nR)

2).
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Furthermore, ĝ has a gamma distribution with shape parameter � = k(nT (nR − 1))∕2 
and scale parameter � = 2∕nT , where k = 2��∕((M − m)

√
nR − 1) . For large � (e.g., 

as nT goes to infinity) the gamma distribution can be approximated by a normal dis-
tribution with mean �� and variance ��2.

Proof of Proposition 1 See Appendix.   ◻

Remark 1 From Proposition 1, an unbiased estimator of g can be defined as 
ĝ
∗

= ĝ∕A(nR).

In Proposition 2 both the sampling properties and the asymptotic distribution 
of ĝ are analyzed for large nT (e.g, nT > 30 ) and moderate nR (e.g, nR = 7 − 10 ) 
when the normality assumption is not satisfied.

Proposition 2 The estimator ĝ is a biased estimator of g with expectation and vari-
ance given by

Furthermore, since ĝ1,… , ĝnT are i.i.d., for the central limit theorem, as nT goes to 

infinity the random variable ĝ tends to a normal distribution with mean and vari-
ance given by (17) and (18), respectively.

The results in Propositions 1 and 2 are useful to construct point and inter-
val estimates for g. They are also useful for testing null hypotheses such as 
H0 ∶ g ≤ g0 , where g0 be a real number in [0,  1]. Consider the hypothesis 
problem,

As a consequence of Propositions 1 and 2, a test with an asymptotic significance 
level � consists in rejecting H0 whenever

where z1−� is the (1 − �)-th quantile of the standard normal distribution and V̂(ĝ) is 
the estimate of variance of ĝ.

(17)E(ĝ) =
1

nT

nT∑
i=1

2E(si)

M − m
≤ g,

(18)V(ĝ) =
1

n2
T

nT∑
i=1

4V(si)

(M − m)2
.

(19)
{

H0 ∶ g ≤ g0
H1 ∶ g > g0

(20)�g > g0 + z1−𝛼

√
�V(�g),
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Finally, when the normality assumption is not satisfied and no exact expres-
sions for (17) and (18) are available, the magnitude of the bias of ĝ as well as its 
standard error can be evaluated by bootstrap method (see Efron 1979; Mashreghi 
et al. 2016 and Conti et al. 2020) according to the following steps: 

Step 1: Generate B simple random samples with replacement of nT targets from the 
original sample (bootstrap samples).

Step 2: For each bootstrap sample b (for b = 1,… ,B ) the estimate of g index (14) 
is computed obtaining ĝ1,… , ĝB.

Step 3: Compute the mean and the variance of B bootstrap estimates ĝ1,… , ĝB . 
Formally, 

Then, the bootstrap estimate of bias is given by B̂(ĝ) = ĝ
∗

− t(F̂) where t(F̂) is 
the plug-in estimator of the parameter g. An unbiased estimator of g can then be 
defined by subtracting the bias from the original estimate (bias correction).

Remark 2 In order to homogenize the values assumed by g and � , the index 1 − g 
can be considered.

3.2  Sampling properties of CV index

If the minimum (m) and the maximum (M) of X are unknown, an alternative 
measure of agreement may be the coefficient of variation defined as CV = ��∕� . 
For each target i, an estimator of CV can be defined as ĈVi = si∕x.. where 
x
..
=
∑nT

i=1

∑nR
j=1

xij∕nRnT.
In order to analyze the properties of ĈVi we use the Taylor linearization tech-

nique (or delta method) approximating the nonlinear estimator ĈVi by a pseudo-
estimator, which is a linear function of si and x , thus easy to handle. The technique 
for finding such a pseudo-estimator consists of the first Taylor approximation of 
ĈVi , expanding around the point � = (�, ��) , and neglecting the remainder term. 
Formally,

where R is a remainder of smaller order than the terms in the equation.

Lemma 3 Under the normality assumption, the bias and the variance of CVi are 
given by

(21)ĝ
∗

=
1

B

B∑
b=1

ĝb, s2∗ =
1

B − 1

B∑
b=1

(ĝb − ĝ
∗

)2.

(22)ĈVi =
��
�

+
1

�
(si − ��) −

��

�2
(x.. − �) + R,
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Proof of Lemma 3 See Appendix.   ◻

For each target i, ĈVi measures the interrater agreement on measures concerning 
the ith target. In order to obtain a global interrater agreement estimate, the following 
estimator of CV index is considered,

More specifically, ĈV is an estimator of CV obtained averaging the nT estimates 
ĈV1,… , ĈVnT

 obtained from the nT sample targets.

Lemma 4 Under the normality assumption, the bias and the variance of ĈV esti-
mator are given by

Proof of Lemma 4 Immediate consequence of Lemma 3.

(23)B(ĈVi) ≈ CV(A(nR) − 1),

(24)V(ĈVi) ≈ (CV)2
(
1 − A(nR)

2 +
CV

2

nTnR

)
.

(25)ĈV =
1

nT

nT∑
i=1

ĈVi.

(26)B(ĈV) ≈ CV(A(nR) − 1),

(27)V(ĈV) ≈
CV

2

nT

(
1 − A(nR)

2 +
CV

2

nTnR

)
.

Fig. 1  Plot of A(nR) against the 
values of nR , for nR = 7 − 15
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Notice that both the bias and the variance of ĝ and ĈV decrease as A(nR) 
increases. In Fig.  1 a plot of A(nR) against the values of nR , for nR = 7 − 15 is 
reported.   ◻

Remark 3 From Lemma (4), an unbiased estimator of CV can be defined as 
ĈV∕A(nR).

In Proposition 3 both the sampling properties and the asymptotic distribution of 
ĈV are analyzed for large nT (e.g, nT > 30 ) and moderate nR (e.g, nR = 7 − 10).

Proposition 3 The estimator ĈV has expectation

and variance

Furthermore, since ĈV1,… , ĈVnT
 are i.i.d., for the central limit theorem, as nT goes 

to infinity the random variable ĈV tends to a normal distribution with mean and 
variance given by (28) and (29), respectively.

When the normality assumption is not satisfied, the magnitude of the bias of ĈV 
as well as its variance can be evaluated by resampling methods, as discussed at the 
end of Sect. 3.1. Analogously to g, the results in Proposition  3 are useful to con-
struct point and interval estimates of CV and to perform statistical tests.

4  Simulation study

In order to evaluate the performance of the indices discussed in Sects. 2 and 3, a 
simulation experiment with moderate nR(nR = 7 ) is performed, since in the real 
applications the number of raters is generally limited. As stressed in Koo Terry and 
Li Mae (2016), as a rule of thumb, researchers should try to obtain at least 30 targets 
and involve at least 3 raters.

For normal outcome, data were simulated according to the framework of the one-
way random effects model described in Sect. 2, results are reported in Sect. 4.1. For 
non-normal data, simulation study and its results are illustrated in Sect. 4.2.

We focus on confidence intervals for the aforementioned indices because confi-
dence intervals indicate the range within which the population parameters g, CV and 

(28)E(ĈV) =
1

nT

nT∑
i=1

E
(
ĈVi

) ≤ CV,

(29)V(ĈV) =
1

n2
T

nT∑
i=1

V(ĈVi).
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� (the interrater agreement in the population) are likely to fall, as well as precision 
of these estimates (i.e., the size of the range). That is, confidence intervals show the 
range of plausible values for interrater agreement in the population. The simulation 
study was carried out by R (R Core Team 2022).

4.1  Simulation study for normal data

For normal data the simulation study consists of the following steps: 

Step 1 Generate a sample s of nR = 7 raters and nT = 50 targets from a one-way 
random model (1) with parameters � = 8 , �2

T
= 1 and �2

�
 . Different values of 

�2
�
 are considered in order to obtain alternative values for � . More specifically, 

for �2
�
= 2, 0.6, 0.2 we obtain � = 0.33, 0.63, 0.83 corresponding to low, moder-

ate and high agreement, respectively. Analogously, the indices g and CV are 
computed according to (6) and (7), respectively. Then, g = 0.08, 0.12, 0.15 and 
CV = 0.06, 0.10, 0.18 , for �2

�
= 2, 0.6, 0.2 . Notice that, in the computation of g the 

minimum (m) and the maximum (M) in (6) are computed simulating 10,000,000 
observations from the one-way random model for each value of �2

�
 with � = 8 and 

�2
T
= 1.

  Suggestions for interpreting the value of g and CV are in Table 1, where a 
comparison between the indices � , g and CV is reported. More specifically, 
datasets with different level of raters agreement are generated according to the 
aforementioned one-way random model for different values of �� ∈ [0, 3] . As 
Table 1 shows, for � ≤ 0.5 (low agreement) both g and CV are larger than 0.14 
and 0.13, respectively. For moderate agreement � ∈ (0.5−0.75] , the index g is in 
(0.10, 0.14] and CV is in (0.07, 0.13]. For high agreement 𝜌 > 0.75 , g assumes 
values in [0, 0.10) and CV in [0, 0.07).

Step 2 Compute bias and variance of the estimators ĝ and ĈV . Furthermore, confi-
dence intervals for g ( [Ls

g
,Us

g
] ) and CV ( [Ls

CV
,Us

CV
] ) of level 1 − � = 0.95 based on 

the asymptotic normal approximation are computed, see Proposition 1 and Propo-
sition 3.

Step 3 Compute the intraclass correlation coefficient � , its bias and variance. Fur-
thermore, confidence intervals for � ( [Ls

�
,Us

�
] ) are obtained as follows, 

Table 1  Comparison between � , 
g and CV , for � = 8 , �2

T
= 1 and 

�2

�
∈ [0, 3]

� g CV

≤ 0.5 > 0.14 > 0.13

(0.5−0.75] (0.10, 0.14] (0.07, 0.13]
> 0.75 [0, 0.10) [0, 0.07)
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where FL = FO∕F1−�∕2,V2,V1
 , FU = FOF1−�∕2,V1,V2

 and FO = ST∕S� . The degrees 
of freedom (dof, for short) are V1 = nT (nR − 1) and V2 = nT − 1 , see for details 
(Shrout and Fleiss 1979).

Step 4 Steps 1–3 are repeated S = 5000 times.

After having computed the confidence intervals [Ls
t
,Us

t
] for t = g, CV, � for sam-

ple s ( s = 1,… , S = 5000 ), their accuracy has been evaluated by the following 
indicators. 

(1) Estimated coverage probability, in per cent, for the interval, 

(2) Estimated left-tail and right-tail errors (lower and upper error rates) in per cent, 

(3) Estimated average length (AL) of all 5000 simulated intervals given by 

where I(a) = 1 if a is true and I(a) = 0 elsewhere, and t = g, CV, �.
In Table 2 the bias and the standard deviation of the estimates ĝ , ĈV and �̂  over 

the S = 5000 samples are reported. 

(30)Ls
�
=

FL − 1

FL + nR − 1
, Us

�
=

FU − 1

FU + nR − 1

(31)ECP =
100

S

S∑
s=1

I(Ls
t
≤ t ≤ Us

t
).

(32)LE =
100

S

S∑
s=1

I(Ls
t
> t),

(33)RE =
100

S

S∑
s=1

I(Us
t
< t).

(34)AL =

S∑
s=1

Us
t
− Ls

t

S
,

Table 2  Bias and standard deviation of the estimates (ĝ , ĈV , �̂) for normal data and (nR = 7, nT = 50) , 
over the S = 5,000 samples for different (g, CV, �) coefficients. Results in the last six columns are multi-
plied by 100

�2
�

g CV � B(ĝ) B(ĈV)
B(�̂) Sd(ĝ) Sd(ĈV)

Sd(�̂)

2 0.15 0.18 0.33 −0.57 −0.71 −0.45 0.55 0.78 6.25
0.6 0.12 0.10 0.63 −0.47 −0.39 −0.64 0.46 0.42 5.72
0.2 0.08 0.06 0.83 −0.35 −0.23 −0.45 0.33 0.24 3.28
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As results in Table 2 show, all the estimators ĝ , ĈV and �̂  underestimate the cor-
responding parameters (g, CV, �) . Note that as g, CV decrease (high agreement) 
the bias decreases from −0.57% to −0.35% for g and from −0.71% to −0.23% for 
CV , respectively. The same consideration holds for the standard error. Finally, with 
respect to ĝ, ĈV the intraclass correlation estimator �̂  is characterized by larger 
standard errors.

Finally, the confidence intervals for g, CV, � are computed. Results are reported 
in Table 3. More specifically, Table 3 presents the estimated coverage probabilities 
of 95% confidence intervals (CP), the estimated left-tail (LE) and right-tail (RE) 
errors (nominal values is 2.5% for both) and the average length (AL) for the indices 
g, CV and � , when ( nR = 7, nT = 50).

As reported in Table 3, the confidence intervals for g and CV obtained with the 
normal approximation perform very well. Coverage probabilities are approximately 
equal to 95% nominal value for g and CV indices, respectively, with an average 
length of 0.01 for (g = 0.08, CV = 0.06) , of 0.02 for (g = 0.12, CV = 0.10) and of 
about 0.02 for (g = 0.15, CV = 0.18) . Confidence interval for � performs as well as 
the confidence intervals for g and CV in terms of coverage probability but the inter-
val average length is wider. Analogous results are obtained when nR = 11.

4.2  Simulation study for non‑normal data

In this section the robustness of the estimators ĝ, ĈV and �̂  to deviations from the 
normality is evaluated. According to the framework of the one-way random effects 
model, the simulation study consists of the following steps: 

Step 1: generate �ij from a normal distribution with mean 0 and variance �2
�
 . As in 

Sect. 4.1, different values for �2
�
 (�2

�
= 2, 0.6, 0.2) are considered so to distinguish 

between low, moderate and high value for � ( � = 0.33, 0.63, 0.83).

Table 3  Performance of 
confidence intervals for g, 
CV and � for normal data and 
( nR = 7,nT = 50)

(�2
�
, g, CV, �) Indicators g CV �

(2, 0.15, 0.18, 0.33) CP 95.18 95.02 95.02
LE 2.76 2.56 2.36
RE 2.06 2.42 2.62
AL 0.02 0.03 0.24

(0.6, 0.12, 0.10, 0.63) CP 95.14 95.12 94.62
LE 2.58 2.66 2.62
RE 2.28 2.22 2.76
AL 0.02 0.02 0.21

(0.2, 0.08, 0.06, 0.83) CP 94.90 94.96 94.84
LE 2.72 2.80 2.50
RE 2.38 2.24 2.66
AL 0.01 0.01 0.12
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Step 2: Generate ai from a gamma distribution with shape parameter � = 1∕2 and 
scale parameter � =

√
2 . The mean and variance are E(ai) = �� =

√
2∕2 and 

V(ai) = ��2 = 1 , respectively. The skewness of the distribution is 2∕
√
� = 2.8 

and the kurtosis coefficient is 6∕� = 12 . Recall that, the skewness and kurtosis 
coefficients for a normally distributed random variable are 0 and 3, respectively.

Step 3: Steps 1–2 are repeated S = 5000 times.

As in Sect. 4.1, bias and variance of the estimators ĝ, ĈV and �̂  as well as confidence 
intervals for g, CV and � are computed. Notice that, according to the model (1) the 
measurements xij have mean equal to 8 and variance �2

T
+ �2

�
 with �2

T
= ��2 = 1.

Figure  2 shows the kernel density of g and CV indices estimated from the 
S = 5000 original samples for nT = 50, nR = 7 and �2

�
= 0.2 . The true values for g 

and CV indices are 0.07 and 0.06, respectively. The bandwidth selection rule is as 
proposed by Sheather and Jones (1991). Notice that both the estimators follow a 
normal distribution.

In Table 4 the bias and the standard deviation of the estimates ĝ , ĈV and �̂  over 
the S = 5000 samples are reported. 

Fig. 2  Kernel density estimate 
of g and CV indices from the 
S = 5000 original samples, true 
values are g = 0.07 , CV = 0.06

Table 4  Bias and standard deviation of the estimates (ĝ, ĈV, �̂) for non-normal data and 
(nR = 7, nT = 50) , over the S = 5000 samples for different (g, CV, �) coefficients. Results in the last six 
columns are multiplied by 100

�2
�

g CV � B(ĝ) B(ĈV)
B(�̂) Sd(ĝ) Sd(ĈV)

Sd(�̂)

2 0.13 0.18 0.33 −0.53 −0.72 −2.06 0.51 0.77 11.21
0.6 0.09 0.10 0.63 −0.37 −0.39 −3.40 0.35 0.42 12.01
0.2 0.07 0.06 0.83 −0.28 −0.23 −3.02 0.23 0.24 7.90



1 3

Measures of interrater agreement for quantitative data  

The conclusions of Table 4 are similar to those drawn from Table 2 for ĝ and 

ĈV both in terms of bias and standard error. As expected, the worst performance is 

shown by �̂  with larger bias and standard error. Finally, the confidence intervals for 
g, CV and � are computed. Results are reported in Table 5. The confidence intervals 
for g and CV are robust to deviations from the normality assumption with coverage 
probability of about 95% . The same result does not hold for � with a coverage prob-
ability approximately equal to 69.64% for � = 0.33 , 62.58% for � = 0.63 and 61.48% 
for � = 0.83 . Furthermore, the interval average length for � is wider than g and CV . 
Notice that the average length of the confidence intervals for � is approximately the 
same as in the case of normal data. Analogous results are obtained when nR = 11.

The same simulation has been performed assuming a marked deviation from nor-
mality, that is � = 1∕9 and � = 3 . The results for ĝ are approximately the same. With 
regard to CV the coverage probability shows a slight decrease to 93% . Same con-
sideration holds for � which coverage probability decreases to 43% for � = 0.33 and 
35% for � = 0.63, 0.83 , respectively.

Table 5  Performance of 
confidence intervals for g, CV 
and � for non-normal data and 
( nR = 7,nT = 50)

(�2
�
, g, CV, �) Indicators g CV �

(2,0.13,0.18,0.33) CP 94.96 95.16 69.64
LE 2.74 2.58 12.18
RE 2.30 2.26 18.18
AL 0.02 0.03 0.23

(0.6,0.09,0.10,0.63) CP 95.30 94.92 62.58
LE 2.64 2.66 14.82
RE 2.06 2.42 22.60
AL 0.01 0.02 0.21

(0.2,0.07,0.06,0.83) CP 94.88 95.04 61.48
LE 2.48 2.56 14.66
RE 2.64 2.40 23.86
AL 0.01 0.01 0.13

Table 6  Descriptive statistics 
of tumor measurements 
(centimeters) of five radiologists 
on 40 lung lesions

Radiologist Mean Median Range Sd

1 3.92 3.80 1.5–8.0 1.57
2 3.71 3.80 1.2–7.8 1.48
3 4.42 4.20 1.5–9.0 1.52
4 4.37 4.10 1.5–9.0 1.58
5 4.14 3.95 1.7–9.0 1.52
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5  An application to tumor size of lung cancer

In Erasmus et al. (2003) a study to assess the agreement between radiologists evalu-
ating lung tumors is considered. Notice that, this is a critical component of many 
cancer trials because measurements can be used to justify additional testing of an 
agent or to decide whether or not to continue the therapy.

Patients were selected with non-small-cell lung cancer and with 40 lung lesions 
whose size exceeded at least 1.5 cm. Measurements were performed independently 
by five thoracic radiologists using printed film by computed tomography. Each 
radiologist reads each of 40 images performing unidimensional and bidimensional 
measures. More specifically, a) the longest diameter and b) the longest diameter and 
the perpendicular longest diameter of each lesion.

Measurements were repeated after 5–7 days, then each radiologist looked at the 
same image twice. Table 6.18 in Broemeling (2009) contains the data of the two rep-
lications of the unidimensional measurements. In order to ascertain how to improve 
measurement consistency, in Erasmus et  al. (2003) variations between and within 
the two replications of the five radiologists are estimated by statistical modeling.

We proceed to analyze agreement computing the proposed indices g and CV to 
the unidimensional measurements of the five radiologists. With this regard, some 
descriptive statistics regarding the first replication of the unidimensional meas-
urement are provided in Table 6. The similarity of the means in Table 6 reflects 
a pretty good level of agreement, with radiologist 2 reporting the smallest mean 
tumor size and the smallest standard deviation.

Table 7  Descriptive statistics of 
the ĈVi and ĝi

ĈVmin ĈVmax ĈVi ≤ 0.15 0.15 < �CVi ≤ 0.30 �CVi > 0.30

0.01 0.42 28 (70%) 10 (25%) 2 (5%)
gmin gmax gi ≤ 0.15 0.15 < gi ≤ 0.30 gi > 0.30

0.01 0.44 25 (62.5%) 13 (32.5%) 2 (5%)

Table 8  Comparison between 
� , g and CV , for � = 4.11 , 
�2

T
= 2.12 and �2

�
∈ [0, 3]

� g CV

≤ 0.5 > 0.38 > 0.35

(0.5−0.75] (0.22, 0.38] (0.20, 0.35]
> 0.75 [0, 0.22) [0, 0.21)

Table 9  Bias and standard 
deviation of ĝ and ĈV 
indices. Bias values are 
multiplied by 100

ĝ ĈV Bias(ĝ) Bias(ĈV) Sd(ĝ) Sd(ĈV)

0.14 0.13 −0.03 −0.04 0.01 0.01
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In Table 7 some descriptive statistics regarding ĈVi and ĝi are reported. Per-
centages are reported in round brackets. In order to compute g the minimum and 
the maximum value of the measurements in the dataset are considered.

As results in Table 7 show, the 70% and 62.5% of the forty lung lesions show 
ĈVi and ĝi values less than or equal to 0.15. On the other hand, some high ĈVi 
and ĝi values are present (e.g., images 16, 37), these images could be selected 
for a comparison between radiologists and to detect particular types of lesions 
(irregular edge and/or irregular contour) difficult to measure. More specifically, 
for the image 16 (ĝi = 0.38, ĈVi = 0.36) , for the image 37 (ĝi = 0.44, ĈVi = 0.42).

The dataset was previously analyzed in Bove (2022), showing an high level of 
agreement with an intraclass correlation coefficient equal to 0.83. The normality 
assumption tested by the Shapiro–Wilk test is not rejected at 1% level of signifi-
cance. However, as shown in the simulation study of Sect. 4.2 the measures g and 
CVare both robust to violation of normality assumption.

Notice that the estimates of the one-way random model parameters are 
�̂ = 4.11 , �̂2

T
= 2.12 and �̂2

�
= 0.42 , respectively. In order to interpret the val-

ues of g and CV , datasets with 10,000,000 observations are generated from the 
estimated one-way random model for different values of �2

�
∈ [0, 3] . Results are 

reported in Table 8.
Finally, in Table 9 the values of ĝ and ĈV given by (6) and (7) respectively, 

their bias and standard deviation are reported. The values of ĝ and ĈV are 0.14 
and 0.13 showing as � = 0.83 an high agreement between measurements. The 
magnitude of the bias and standard deviation (Sd) of ĝ and ĈV are evaluated by 
bootstrap method, B = 5000 bootstrap samples are drawn from the initial sample. 
Results are reported in Table 9.

Figure 3 shows the kernel density of the g and CV indices estimated from the 
B = 5000 bootstrap samples. The bandwidth selection rule is as proposed by 
Sheather and Jones (1991).

Fig. 3  Kernel density estimate 
of g and CV indices from the 
5000 bootstrap samples
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The (1 − �) = 0.95 confidence intervals using the normal approximation are 
[0.12, 0.16] and [0.11, 0.15] for g and CV , respectively, and the error is at most 
0.02.

6  Concluding remarks

In order to analyze the agreement between quantitative measurements provided 
by a set of raters for a group of targets several versions of the intraclass correla-
tion coefficient have been proposed. Such versions are affected by the restriction 
of variance problem, cannot measure target-specific agreement and are sensitive 
to the assumption of normality. In this paper, indices that allow to evaluate the 
agreement between two or more raters for each single-target have been proposed, 
and a global measure of agreement obtained averaging the single-target agree-
ment measures is considered. Sampling properties for the global measures were 
analyzed both under normal and non-normal data. A quite extensive simulation 
study and an application to a real data set illustrated the good performance of the 
proposed indices and their robustness to deviations from normality assumptions.

Appendix A: Appendix

Proof Lemma 1 The expectation of si can be written as follows,

Under the normality assumption (nR − 1)s2
i
∕�2

�
 follows a Chi-square distribution 

with nR − 1 dof. Then, the expectation in (A1) regards the square root of a Chi-
square distributed variable. Thus,

(A1)E(si) =

�
�2
�

nR − 1
E

⎛⎜⎜⎝

�
(nR − 1)s2

i

�2
�

⎞⎟⎟⎠
.

(A2)

E(si) =

�
�2
�

nR − 1 ∫
∞

0

√
x
(1∕2)(nR−1)∕2x((nR−1)∕2)−1 exp {−x∕2}

Γ((nR − 1)∕2)
dx

=

�
2�2

�

nR − 1

Γ(nR∕2)

Γ((nR − 1)∕2) ∫
∞

0

(1∕2)(nR)∕2x(nR∕2−1) exp {−x∕2}

Γ(nR∕2)
dx

=

�
2�2

�

nR − 1

Γ(nR∕2)

Γ((nR − 1)∕2)

= ��

√
2Γ(nR∕2)√

nR − 1Γ((nR − 1)∕2)
= ��A(nR),
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where A(nR) =
√
2Γ(nR∕2)√

nR−1Γ((nR−1)∕2)
< 1 and Γ(.) is the gamma function. Notice that the 

integral in the second equality regards the density of a Chi-square distribution with 
nR dof.

With regard to the variance of si , we obtain,

Proof of  Proposition 1 The bias and the variance of ĝ follow from Lemma 2. 
Formally,

Finally,

where k = 2��

(M−m)
√
nR−1

 and G =
1

nT

∑nT
i=1

�
(nR−1)s

2
i

�2
�

 . Notice that, 

1. G is the sample mean of nT independent and identically distributed Chi-squared 
variables with (nR − 1) dof, then G is distributed as a gamma distribution with 
shape parameter nT (nR − 1)∕2 and scale parameter 2∕nT.

2. The gamma distribution has the scaling property. That is, if G follows a gamma 
distribution of parameters (nT (nR − 1)∕2, 2∕nT ) then Y = kG also has a gamma 
distribution with parameters (�, �) where � = knT (nR − 1)∕2 and � = 2∕nT.

From 1 and 2 follows the result. Clearly, for large � the gamma distribution can be 
approximated by a normal distribution with mean �� and variance ��2 .   ◻
Proof of Lemma 3 The bias and the variance follow from Lemma 1. Formally, from 
the first Taylor approximation of CVi around the point � = (�, ��) we obtain,

(A3)
V(si) = E(s2

i
) − [E(si)]

2 = �2
�

(
1 −

2Γ(nR∕2)
2

(nR − 1)Γ((nR − 1)∕2)2

)

= �2
�
(1 − A(nR)

2)

(A4)B(ĝ) =E(ĝ) − g =
1

nT

nT∑
i=1

E(ĝi) − g = g(A(nR) − 1),

(A5)V(ĝ) =
1

n2
T

nT∑
i=1

V(ĝi) =
g2

nT
(1 − A(nR)

2).

(A6)

ĝ =
1

nT

nT�
i=1

ĝi

=
2��

(M − m)
√
nR − 1

1

nT

nT�
i=1

�
(nR − 1)s2

i

�2
�

= kG
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where R is a remainder of smaller order than the terms in the equation. Then, 
neglecting R the bias is

where E(si) = ��A(nR) and E(x) = � . The variance is

where V(si) = �2
�
(1 − A(nR)

2 , V(x) = �2
�

nTnR
 and Cov(si, x) = 0 since Cov(si, xi) = 0 .  
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