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Abstract—Performing bimanual tasks with dual robotic
setups can drastically increase the impact on industrial
and daily life applications. However, performing a bimanual
task brings many challenges, such as synchronization and
coordination of the single-arm policies. This article pro-
poses the safe, interactive movement primitives learning
(SIMPLe) algorithm, to teach and correct single or dual
arm impedance policies directly from human kinesthetic
demonstrations. Moreover, it proposes a novel graph en-
coding of the policy based on Gaussian process regression
where the single-arm motion is guaranteed to converge
close to the trajectory and then toward the demonstrated
goal. Regulation of the robot stiffness according to the
epistemic uncertainty of the policy allows for easily re-
shaping the motion with human feedback and/or adapting
to external perturbations. We tested the SIMPLe algorithm
on a real dual-arm setup where the teacher gave separate
single-arm demonstrations and then successfully synchro-
nized them only using kinesthetic feedback or where the
original bimanual demonstration was locally reshaped to
pick a box at a different height.

Index Terms—Bimanual manipulation, impedance con-
trol, interactive imitation learning (IIL), movement primi-
tives (MPs).

I. INTRODUCTION

MODERN society is faced with the lack of workforce
in various repetitive jobs, such as reshelving products

in supermarkets or handling heavy luggage in airports. Robots
appear to be the most promising solution to mitigate the negative
effects of the declining workforce and perform these various
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Fig. 1. Example of possible application of bimanual manipulation: per-
forming stacking of crates.

complex tasks [1]. To work in variable and unstructured environ-
ments, robots must be dexterous and intelligent to quickly learn
the job while interacting safely with other robots, objects, and
humans. However, traditional task-specific robot programming
by experts fails to achieve such dexterity and intelligence due
to the time-consuming process and poor adaptability of tailored
solutions.

Recent advances in machine learning, namely in learning from
demonstration (LfD), have enabled robots to learn directly from
(nonexpert) human demonstrations without needing complex
task-specific programming or long and dangerous exploration.
Branching from LfD, interactive imitation learning (IIL) ap-
proaches [2] allow human teachers to provide interactive demon-
strations and corrections to the robot, exploring the advantage
that the latter is much more sample efficient than the former,
thus reducing the burden on the human teacher. IIL methods
cover many feedback modalities (e.g., correction, evaluative,
and qualitative), can be used to learn different models (e.g.,
policies and objective functions), and leverage several function
approximators [e.g., neural networks (NNs), dynamic movement
primitives (DMPs), hidden Markov models (HMMs), and Gaus-
sian process (GPs)].

While tasks that require only one arm have been explored
extensively in the literature, more complex tasks, which require
a bimanual setup have only recently been targeted. Among
such tasks, picking large objects in unstructured environments
(Fig. 1) [1], assisting the elderly [3], [4], surgery tasks [5],
or complex assembly tasks [6] are shown to require dexterous
bimanual setups. Factory assembly, logistics, and household ap-
plications of bimanual robots have been known for decades [7],
[8].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://orcid.org/0000-0002-9863-0291
https://orcid.org/0000-0003-3457-9164
https://orcid.org/0000-0002-3931-3173
https://orcid.org/0000-0002-8696-3689
https://orcid.org/0000-0001-7257-5434
mailto:g.franzese@tudelft.nl
mailto:l.desouzarosa@tudelft.nl
mailto:t.verburg-1@penalty -@M student.tudelft.nl
mailto:t.verburg-1@penalty -@M student.tudelft.nl
mailto:l.peternel@tudelft.nl
mailto:j.kober@tudelft.nl
https://doi.org/10.1109/TMECH.2023.3295249


2 IEEE/ASME TRANSACTIONS ON MECHATRONICS

However, the increased number of degrees of freedom
(DoFs) (the curse of dimensionality) implies an increased
teaching complexity and the necessity of skilled human teach-
ers who knows how to interface with the bimanual robotic
platform.

In this article, we contribute with the safe interactive move-
ment primitive learning (SIMPLe) algorithm and propose the
following.

1) The design of a bimanual impedance controller with
variable Cartesian stiffness; safety constraints on the max-
imum applicable force and execution velocity are also
formulated.

2) A novel movement primitive (MP) formulation that al-
lows efficiently learning long horizon tasks from a single
demonstration and executes the motion in a reactive way.

3) Efficient corrections of the robot’s policy directly from
kinesthetic feedback, allowing for fine-tuning the demon-
strations. Thanks to this, the user can show single arms’
trajectories and fine-tune them when transferring the poli-
cies onto a bimanual task.

To validate the proposed method, we conducted a series of
experiments. The first three are technical experiments related
to the main contributions that highlight and test different func-
tionalities of the method. The last two are supplementary user
studies to evaluate the type of data input for the proposed by
comparing two human demonstration approaches and to evalu-
ate giving corrections compared to giving new demonstrations.
These additional insights can provide a better understanding of
the input data generation method and adjustments of the robot’s
skill for bimanual cases.

II. RELATED WORKS

A. Bimanual Teaching Frameworks

Like with single-arms, preplanning, and manual coding of
multiarm manipulation is a tedious process. An alternative is
learning from human demonstrations, where a user can guide the
robot on how to execute the desired tasks. However, when the
user controls the dual (or multiple) robot setup, the physical and
cognitive load increases drastically. Using priors, shared control,
or task scaffolding, i.e., dividing the teaching into smaller parts,
can substantially decrease the demonstrator workload and make
the teaching easier and the learning faster.

Recent works on the control side of bimanual manipulation
leverage shared control strategies for reducing the burden of
teleoperated bimanual tasks. For example, [9] proposes a shared
controller for helping the user to perform bimanual manipu-
lation: it maintains the manipulators’ relative position (or ori-
entation) while the user controls the translations or rotations.
Similarly, [10] classifies human demonstrations in four teaching
modalities: self handover, one-hand fixed, one-hand seeking, and
fixed offset; when performing teleoperation, a trained classifier
detects the most likely modality and adapts the constraints of
the bimanual controller accordingly.

On the side of shared control, [11] extends the Roboturk
platform by having each arm teleoperated by a different teacher,
reducing the cognitive load and enabling teaching tasks with
more than two arms. Moreover, ongoing research [12] presents a

controller that enables inputs from a teleoperating user and local
kinesthetic perturbations. In our work, we focus on teaching
bimanual policies from a single human teacher by teaching
single-arm policies independently and then interactively reshap-
ing them for successful coordination or adaptation to a new
scenario. The goal is to enable nonexpert users to teach complex
bimanual tasks.

B. Bimanual Coordination Policies

During autonomous execution, disturbing one of the arms in
a detached bimanual system can break the synchrony of the
movements, making it necessary to provide both movement
recovery and resynchronization capabilities. The way the policy
is encoded, e.g., time-dependent versus position-dependent, or
the chosen function approximation, e.g., a DMPs, HMM, and
GP [13] can change the disturbance rejection of the robot.

To this end, the method in [14] uses a prior on the relative
position of the two manipulators and a timing dependence in
the HMM formulation to synchronize the movement of arm
manipulators. Other approaches propose to create a “leader
and follower” movement by adding a coupling term [15], a
regulation term [16], or a deterministic encoding of trajectories
with DMPs [17]. Alternatively, the epistemic uncertainty of GPs
can be used for switching the behavior of the arms from follower
to leader (and vice-versa) [18]. This leader–follower learning
paradigm makes the system react differently according to which
arm is perturbed. Alternatively, the task prior symmetry can be
used for easily encoding and synchronizing the task. For exam-
ple, [19] proposes a bimanual policy for picking and throwing
nonstationary objects by learning a symmetric dynamical system
(DS) policy. In this case, perturbing any of the two arms would
always make the other react.

Other approaches focus on achieving synchrony and coordi-
nation by segmenting the trajectories and reproducing them in
sequence or according to a hierarchical representation of the
task. The advantage of such approaches is that the sequencing
provides an implicit synchronization on a higher level, making
the lower level problem easier. A common approach for this
scheme is to learn policies for performing predefined subtasks,
and a higher level policy that creates a sequence from demon-
strations [20], [21]. Alternatively, the task can have a predefined
structure of subtasks based on heuristics, and synchrony is
achieved with a subtask scheduler [22]. Segmentation has also
been used for deep-learning bimanual tasks in [23], where lower
level policies are learned for each segment and higher ones for
sequencing them. In this direction, [24] proposes a framework
for multiarm task-space control with smooth transitions from
independent behaviors, e.g., when reaching goals, to dependent
ones, e.g., when performing a dual-arm manipulation.

Our proposed approach differs from the approaches men-
tioned previously in two ways. First, these approaches fall under
the LfD category while our proposed SIMPLe framework is an
IIL algorithm, and to the best of our knowledge, SIMPLe is the
first framework for learning of bimanual tasks from interactive
corrections. Second, our interactive framework avoids heuristics
for coordinating policies for each arm in a bimanual setup
by using human feedback to regulate each arm’s dynamics
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Fig. 2. Representation of a trajectory as a chain of events. The state
x is the aggregation of the robot pose and time, where xi is ith element
in the reference trajectory. Every element of the trajectory ith has as
element goal the next point on it (i+ 1)th depicted by a forward arrow.
The x gets a unitary correlation with the closest element in the trajectory
mth and then as the goal the location of (m+ 1)th state on the chain
of events. The uncertainty is given by the distance from the x and its
correlated point on the trajectory.

before transferring it to a bimanual policy. Then, when the
bimanual policy is executed, the robot’s reaction to disturbances
depends on the mechanical coupling of the end-effectors (see
Section IV-C), or on chosen input state for the policy (see
Section III).

C. Motion Stability

The stability of the bimanual operation is another key aspect.
When learning from a small amount of data, in particular,
the stability of the learned behavior can be jeopardized when
demonstrations are imperfect. In [25], [26], an LFD approach
is combined with a learned controller that adapts the motion to
keep the learned trajectory stable when facing external forces.
In [19], the motion is divided into one DS for each subgoal with
a hand-designed vector field that brings the robot always close
to the connecting lines of subgoals. Our proposed MPs have the
objective of learning long-horizon MP with only one final goal
and to obtain the stability property as an emerging behavior of
the motion encoding (see Section III-C).

Next, Section III introduces the novel GP-based formulation
used for modeling MPs, Section IV introduces the proposed
SIMPLe algorithm and how we use it for performing inter-
actively learning bimanual MPs, Section V shows different
applications and user-cases. Finally, Section VI concludes this
article with final remarks and future works.

III. MOVEMENT REPRESENTATION

Section III-A presents the proposed graph Gaussian process
(GGP) formulation, Section III-B the proposed trajectory learn-
ing framework and its benefits for safety, Section III-C presents
the stability achieved with the proposed framework, and Sections
III-D and III-E compare learning trajectories using traditional
GPs and the proposed GGP.

A. Movement Learning With GP

To learn the model of the demonstrated trajectories, we chose
GPs because it is a flexible nonparametric regression method
where the kernel choice can be used to increase the inductive bias
on the generalization of unseen points, which is prohibitive using

function approximators, such as DMPs or NNs. Furthermore,
its solid statistical formulation provides both the mean and the
epistemic uncertainty of the prediction [13] that can be used for
disturbance rejection or stiffness regulation [27].

Given the training data composed by a set of states X and
their respective labels Y, the prediction mean and variance at
the evaluation point x follow, respectively:

μ(x) = 𝓴�
�𝓚−1Y (1)

σ(x) = 𝓴−𝓴�
�𝓚−1𝓴∗ (2)

where, the 𝓴 = 𝓴(x,x) is the variance of a single evaluation
point x /∈ 𝓧, 𝓴� = 𝓴(𝓧,x) is the variance between x and
the training inputs 𝓧, and 𝓚 = 𝓚(𝓧,𝓧) is the covariance
matrix of the training data representing the leaned model [13].
Note that 𝓴, 𝓴�, and 𝓚 are based on the kernel functions and
their hyperparameters, which are used for incorporating prior
knowledge into the process.

In particular, the kernel determines the interpolation and
extrapolation behaviors and when using a distance-based kernel,
e.g., radial basis function, the prediction converges to the mean
of the GP, usually set to zero. Our objective is to have a mean
function that extrapolates, i.e., does not return a vanishing pre-
diction, but without losing the measure of epistemic uncertainty.
For this reason, by correlating with only the closest neighbor, in
the dataset and changing the kernel definition to

�̃�(xi,xj) =

{
1, if 𝓴(xi,xj) = max(𝓴(xi,𝓧))

0, otherwise
∀xj ∈ 𝓧.

(3)
In simple terms, given a point xi, the correlation is 1 only

if that is the maximum obtainable correlation when correlating
xi with all xj ∈ 𝓧. With the new kernel, the prior covariance
matrix becomes

Σprior =

[
�̃� 𝓴�

�̃��
� 𝓴

]
. (4)

Note that, since the last column is for xj /∈ 𝓧, the saturation
is not applied. Thus, the resulting prior covariance matrix is
not symmetric anymore, making the new process a pseudo-GP.
After the conditioning on the data points, the new pseudo-GP
posterior becomes

μ(x) = �̃��
� �̃�

−1
Y= �̃��

�Y (5)

σ(x) = 𝓴− �̃��
�𝓴�. (6)

In simple terms, �̃�� selects as mean the label of the closest
point in the database, computing the uncertainty according to
the relative position between the query and the selected points.

In addition, by saturating the covariance matrix 𝓚, each
trajectory element has its highest correlation with themselves:
the new saturated correlation matrix, �̃�, is the identity ma-
trix, thus eliminating the computationally heavy 𝒪(n3) matrix
inversion. However, with this approximation, we are losing
interpolation/smoothing properties. Meaning that the provided
trajectory data must be without drastic jumps. In practice, record-
ing trajectories with a high enough frequency (> 10Hz) and/or
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smoothing the data makes the use of the proposed approximation
doable. It is worth mentioning that the presented formulation is
tailored for the specific application of movement learning and
does not necessarily substitute general approximation methods,
such as local models [28] or variational approximations [29].
A detailed comparison between GPs and GGPs for trajectory
learning is presented in Section III-D.

B. Representing Trajectories as Graphs

Our goal is to perform safe control during the general or
corrective interactions between robots and humans. To that goal,
we start from a recorded trajectory demonstration, defined as an
array of n end-effector poses ξ = {x0, . . . ,xn−1} ∈ R3 and the
timestamp of each respective pose τ = {t0, . . . , tn−1} ∈ R, and
a final pose and time xn, tn, used to fit a policy π. The trajectory
can be seen as a sequence of events, represented as a graph with
edges representing transitions from the state at time ti to the state
at ti+1. Given the adopted GP approximation, during the policy
execution, the most correlated point is selected on the trajectory,
and its label is selected as the goal, see Fig. 2. We denote the
policy as a GGP.

However, the input type of the policy can completely change
the robot’s behavior. For example, a pose-only “feedback” pol-
icy, πx : x → xg is a fully reactive policy which computes
the next Cartesian pose for the end-effector (xg), based on
the current one (x). Such policies are safer since they make
the robot to wait when its path is obstructed and allow it to
rejoin the trajectory on its closest point under perturbations [27].
However, they cannot deal with movement ambiguities and
time-dependent movements.

Alternatively, a time-only dependent policy, πt : t → xg ,
computes (xg) based on the current time (t). This type of
policy can deal with movement ambiguities, e.g., when the
demonstrated trajectory crosses itself, and with time-dependent
movements, i.e., when the movement has to be temporarily
paused at a specific position. However, such “feed-forward”
policies are not a safe choice since the attractor moves on the
trajectory without considering dangerous interactions with the
human and with the environment.

Instead, we proposed the usage of pose and time-belief depen-
dent policies, πx,tb : x, tb → xg, t

b
g , which computes the pose

goal and a new time belief (xg, t
b
g) based on the current ones

(x, tb). Note that the time-belief is updated with the time of the
selected goal in the trajectory. Encoding both pose and time
belief allows for obtaining safe policies capable of handling
time-dependent movements and ambiguities.

As such, SIMPLe can be used with models fitted as time-
dependent, pose-dependent, or pose and time-dependent policies
by setting the GGP states as x = t, x = x, or x = [x, tb]�,
respectively, and selecting a kernel for fitting the trajectories
w.r.t. time (𝓴(t, τ )), such as in [30], position (𝓴(x, ξ)), such
as in [27], or both of them, as proposed in SIMPLe, which
is obtained by multiplying the time and the pose-dependent
kernels, i.e., 𝓴([x, tb], [ξ, τ ]) = 𝓴(x, ξ) ◦𝓴(t, τ ).

Fig. 3. Comparison of the fitting of a trajectory with the shape of a “B”
with position dependent Gaussian Process (GP) and Graph Gaussian
Process (GGP). The red dots are the recorded demonstrations, and the
stream curves are the learned behavior.

In the context of trajectory learning, the labels are set
as the aggregation states in the demonstration, which fol-
low each state in the demonstration, i.e., Y= [ξd, τ d]� =
[{x1, . . . ,xn}, {t1, . . . , tn}]�.

C. Stability Analysis

From this GGP-based formulation, we can also conclude the
following.

Proposition 1: Using the trajectory graph representation, the
motion always converges on the proximity of the demonstration
and continues toward the end of it.

Proof: Since the vector �̃��
� is correlating the current position

of the end-effector with only one node of the trajectory, and if
there is no overlap on the trajectory, the robot will move toward
the goal of the closest node. Then, node by node, it continues
toward the end of the trajectory. �

A great advantage of the pose and time trajectory encoding is
that overlapping is no longer possible as the demonstrator cannot
show two different robot positions simultaneously, leading to the
absence of overlapping nodes, ambiguities, or undesired loops,
guaranteeing that the hypothesis in the proof of convergence is
satisfied. However, this also means that when only computing
the correlation as a function of position, no physical overlapping
of the trajectory can be demonstrated, such as when drawing an
eight [31].

D. Comparison Between GPs and GGPs for Policy
Learning

Fig. 3 shows the different behavior in learning to draw the
letter “B” (database from [30]) using a GP and a GGP using only
the 2-D position. The first thing to highlight is the effect of the
kernel saturation in a faster convergence closer to the trajectory
of the GGP compared with the GP. As a consequence, when the
robot is perturbed, the motion tends to go closer to the trajectory
and continue from there. Nevertheless, this difference in the
vector fields does not lead to unsafe sudden motions straight
toward the attractor due to the proposed attractor and stiffness
regularization/saturation described in Section IV-C.

The letter “B” shows a clear ambiguity at the overlapping
of the trajectory between the two humps. The robot must first
move in and then move out of the intersection on the same
line in order to continue toward the end of the trajectory. The
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Fig. 4. Attractor vector-field of a GGP when the conditioning of the kernel with different time belief. tb is the time belief normalized by the total
time of the trajectory, i.e., 0 ≤ tb ≤ 1. The corresponding element of the chain for every case is highlighted with a green circle. The red circles are
the collection of points of the trajectory. In this example, the time belief is the time of the next element of the chain.

learned behavior of the two fitting methods is different. The
GP removes the overlapping ambiguity by considering it as
noise. This results in cutting the motion without going down
to the intersection of the curves, losing tracking accuracy. On
the other hand, in the line overlapping, the GGP has a vector
field pointing left when approaching from below and to the right
when approaching from the top. This may lead to an ambiguous
situation that can cause the robot to get stuck locally or, in gen-
eral, not track the motion correctly. This motivates the use of a
position and time-dependent policy, to remove any possible state
overlapping.

E. Movement Disambiguation Using Pose and
Time-Dependent Policy

As explained in Proposition 1, no loops in the chain are
allowed to guarantee good trajectory tracking. Thus, our solution
is to consider also the time belief (tb) in the state. Fig. 4 shows the
evolution of the vector field for different time beliefs. The chain
element of the trajectory for the tb indicated above the figure is
highlighted with a green dot. From the figure, it is possible to
observe how the previously encountered ambiguity is elegantly
solved. In fact, the robot gets into the valley and then out without
getting stuck.

In order to simulate the behaviors of a GGP with or without
a self-update of the time belief, 200 different trajectories are
rolled out starting from the origin of the demonstration. In order
to take into account the inaccuracy of the low-level (impedance)
controller, a Gaussian noise of magnitude 0.01 is added to the
attractor when computing the new position. Fig. 5 depicts the
mean and standard deviation of the trajectories. When the time
dependence is active (left-hand side of the figure), the trajectory
always converges to the end, and the fluctuations are bounded.
When only the position is considered (right-hand side of the
figure), the variability of the sampled trajectories increases, and
the tracking is good on average until the start of the two humps
intersection, from where the performance degrades due to the
ambiguous states.

IV. SIMPLE: SAFE INTERACTIVE MOVEMENT PRIMITIVES

LEARNING

The proposed SIMPLe framework summarized in
Algorithm 1 consists of three main parts. First, the human teacher

Fig. 5. 200 roll-outs of 200 steps. The attractor position is injected with
a Gaussian noise of zero mean and std of 0.01. When the kernel is also
taking into account the time belief, the motion is more robust when en-
countering ambiguity in the intersections of the two curves. Otherwise,
ambiguity can lead to divergent behaviors. Red: original demonstration.
Black: the average and standard deviation of the execution.

provides kinesthetic demonstrations (see Section IV-A), from
which a time and position-dependent model (see Section III)
is learned. Second, the proposed method enables the human to
provide demonstrations and to make interactive corrections (see
Section IV-A), which are leveraged for learning the trajectories
and synchronization of bimanual tasks (see Section IV-B).
And third, the bimanual task can be executed. We employ a
Cartesian impedance control to facilitate physical interactions
during demonstrations, corrections and autonomous execution
(see Section IV-C), safety is ensured thanks to the proposed
stiffness regulation (see Section IV-D) and coupling between
manipulators (see Section IV-E). Our method aims to enhance
the teaching ability of nonexpert users while guaranteeing a safe
interaction while teaching, correcting, and executing bimanual
tasks. To cope with the complexity of teaching bimanual
tasks, SIMPLe provides an interactive kinesthetic teaching
(KT) approach allowing to teach one arm at a time and then
to teach how to synchronize them using touch by leveraging
the time and pose-dependent GGP formulation presented in
Section III. To the best of our knowledge, SIMPLe is the first
framework to employ IIL on bimanual setups. Nevertheless,
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Algorithm 1: SIMPLe.

SIMPLe does not restrict users from teaching (and correcting)
both arms simultaneously, and it can be applied for single-arm
manipulation tasks without any loss of generality.

A. Teaching From Kinesthetic Demonstrations and
Corrections

LfD allows nonexpert users to program robots to perform
complex tasks without any programming knowledge. Different
interfaces can be used to transfer data to the robot, such as
teleoperation devices, touch screens or physical interaction with
the robot’s embodiment, obtaining a KT approach. When the
user is teaching a task, the stiffness and damping of the Cartesian
impedance controller are set to zero, allowing the user to easily
move the robot. The positions ξ and times τ of the demonstrated
trajectories are recorded, and their respective goals, ξd and τ d

are obtained by shifting ξ and τ forward in time (Algorithm 1,
lines 1 to 3).

After learning the motion from a kinesthetic demonstration,
the user can reshape the trajectory of each arm to achieve,
for example, coordination between the arms in the execu-
tion of the task. Given the Cartesian impedance controller
(see Section IV-C) kinesthetic corrections can be performed by
simply applying an external force. Such a controller allows for
the human to be in full control if the stiffness is set to zero,
or the robot can gradually increase its control by regulating the
stiffness.

Fig. 6. Bimanual impedance controller. For simplicity the spring-
damper system is represented only with a spring.

In addition, given the time and pose-dependent policy (see
Section III), the demonstrator can also drag the robot forward or
backward in time along its trajectory. This property can be used,
for example, to make the execution of the initial demonstration
faster [32], [33], to make the robot throw objects [19], or for
synchronization learning, as proposed in this article.

B. Interactive Learning of Bimanual Tasks

When teaching bimanual tasks, it is not always easy or feasible
to provide kinesthetic demonstrations with both arms simulta-
neously, especially when using large redundant manipulators. In
addition, even when skilled users are able to teach a bimanual
task by moving each end-effector with a single hand, they may
perform a suboptimal trajectory, or an ineffective one, given the
task complexity.

In SIMPLe, the movement of each arm can be executed
independently according to the GGP formulation described in
Section III.

The proposed interactive learning method offers many pos-
sibilities for nonexpert users to teach complex bimanual tasks.
For example, they can demonstrate the movement for picking
up a box one arm at a time and then learn to coordinate the
two independent trajectories and apply enough pressure on the
sides of the box to execute the task successfully. Moreover,
learning repetitive tasks, such as object handover, can also be
initially demonstrated one arm at a time and later use kinesthetic
corrections to learn how to coordinate both arms. Thanks to
the calculation of the model as a function of position and time
(belief), the user can also bring the robot back to the start of
the trajectory and teach (with minimum interaction effort) to
perform the task multiple times.

C. Safe Cartesian Impedance Control

Fig. 6 illustrates the employed Cartesian impedance controller
in each of the two manipulators, which emulates the behavior of
a mass-spring-damper system

Λ(q)ẍ = KΔx−Dẋ+ fext (7)

where, Λ(q) is the Cartesian inertia matrix of the physical
system, K and D are stiffness and damping that symmetric,
positive-definite matrices; fext is the total external force, and
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Δx = xg − x is the distance between the goal and end-effector
poses. The damping matrix can be designed to simulate a critical
damping system [34]. In this framework, after computing the
orthogonal decomposition of K, i.e., K = RK̃RT 1, where

K̃ is a diagonal matrix, then D̃ = 2K̃
1/2

and D = RD̃RT .
Please notice that K̃ is a diagonal matrix; hence, the square root
is applied to every element of the diagonal.

The Cartesian impedance controller takes as input a stiff-
ness matrix and a displacement vector (lines 13 and 24 in
Algorithm 1); in order to enhance safety when interacting with
humans [35], it is necessary to saturate the attractor displace-
ment and the stiffness to a maximum safe value. To help the
definition of the bound, we can compute them as a function
of the desired maximum free-movement velocity (vmax) and
maximum applicable static force of the end-effector(Fmax) (in
absolute values).

First, we compute an upper bound for the maximum displace-
ment. Considering (7), when the robot is in free-movement, i.e.,
fext = 0, the maximum velocity happens for ẍ = 0, that is to
say

D|ẋ| = K|Δx|. (8)

Thus, given the current setted stiffnessK and the desired max
allowed velocity vmax, Δx needs to respect

|Δx| ≤ Δxmax = K−1Dvmax = 2RK̃
− 1

2 RTvmax (9)

obtained after using the definition of damping. Before sending
to the robot, the Δx is saturated in order to respect the upper
bound.

However, if taking into account the maximum static force
(Fmax) when ẋ = 0 and ẍ = 0, an upper bound on the stiffness
can be found, such that

KΔxmax ≤ Fmax (10)

RK̃RTΔxmax ≤ Fmax (11)

2K̃RTRK̃
−1/2

RTvmax ≤ RTFmax (12)

2K̃
1
2 RTvmax ≤ RTFmax. (13)

Hence, since the matrix K̃ is diagonal, we can find the upper
bound of each element in the ith row and column (K̃ii) as

K̃ii ≤
(
(RTFmax)i

2(RTvmax)i

)2

. (14)

So, in every singular component, the value of the principal
stiffness is saturated in order to respect the found inequality.

D. Stiffness Regulation

Regulating the stiffness can be used to incrementally increase
the stiffness after each demonstration, reducing human control as
the learned movement is interactively refined [36]. Alternatively,
the stiffness can be regulated when perceiving strong external

1R is an orthogonal matrix, hence RT = R−1

forces, as a disagreement detection [37]. Similarly, [32] pro-
posed a variation of a DMP where the robot variable stiffness and
the regressor phase are modulated to adapt to human kinesthetic
demonstrations.

When more demonstrations are provided, the measure
of aleatoric uncertainty, i.e., variability in the demonstra-
tion, can be used to regulate the tracking stiffness of the
robot [38]. Differently, we propose to exploit the epis-
temic uncertainty quantification of the policy (σ), enabling
for automatically regulating the Cartesian impedance con-
troller’s stiffness, hence switching control between robot and
human.

Mathematically

K̂ = saturate(K)
1 − σ(x)

1 − σtr
, whenσ(x) > σtr (15)

where, the σtr is the uncertainty threshold that is used to detect
the disagreement. Note that σ(x) goes from 0 when close to the
trajectory, to 1 when at infinite distance from it. Thanks to this
stiffness regulation, when the robot is dragged in regions of high
uncertainties, it mitigates the external force applied to the user
perturbing the trajectory. This behavior can be conceptualized
as the robot’s nonverbal teaching request or repositioning into
regions closer to the demonstration.

E. Dual Cartesian Impedance Control

Differently from the execution of a single-arm, when a two-
arms policy execution is performed, extra attention is required
regarding the mechanical coupling of the movement. For ex-
ample, when picking up a box with two hands and executing a
reshelving operation, in case of a perturbation of one arm, the
other arm must also follow the perturbed movement. In this case,
both arms must be mechanically coupled, meaning that in the
impedance control of each arm, we would add an extra coupling
force defined as

F l
c = Kc

(
xr − xl −Δxdes

rel

)
+Dc (ẋr − ẋl) (16)

F r
c = Kc

(
xl − xr +Δxdes

rel

)
+Dc (ẋl − ẋr) (17)

where,Δxdes
rel = xdes

r − xdes
l is the desired distance from the two

end-effectors controlled by the SIMPLe algorithm. A simple
schematic visualization of the proposed bimanual impedance
control is displayed in Fig. 6 where each end-effector is coupled
with a stiffness (and damper) with respect to their goal but also
with a relative stiffness (and damper) between them.

Note that the proposed safety saturation and regulation pro-
cess described, respectively, in Section IV-C and (15) are applied
on a per-arm basis, thus being applied to single-arm setups. For a
bimanual setup, the displacement and stiffness for the coupling
forces [F c, defined in (16) and (17)] are saturated and regulated
similarly to (9), (14), and (15).

V. REAL ROBOT VALIDATION

We performed the experiments with two 7-DoF Franka–
Emika Panda placed vertically on a table and with the same
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orientation. The impedance control was implemented,2 as de-
scribed in Section IV. Each manipulator had a shared memory of
their Cartesian poses, allowing the calculation of the mechanical
coupling force. The experiments presented in Sections V-D,
V-A, and V-B were performed using a custom 3-D-printed plate
end-effector depicted in Fig. 10, which features a layer of soft
form for reducing the interaction forces during impacts with
objects as in [39]; the experiment presented in Section V-C
was performed using the Franka gripper. The impedance control
framework, written in C++ makes use of robot operating system
to interface with Algorithm 1, written in Python.

We perform five experiments with the real robot setup as
follows.

1) The interactive synchronization of the picking motion
of a bottle crate when the demonstration is provided
separately for each robot, showing how SIMPLe is used
to learn a bimanual synchronization.

2) The interactive correction in picking a different crate com-
pared to the one of the original demonstration, showing
how to use the GGP formulation to modify the motion
locally.

3) A handover task, where one robot picks and places an
object and the other robot picks it from the other’s goal
location and places it at another position, showing the
ability to restart the execution of a trajectory simply
dragging the robot at the starting location.

4) A supplementary user study to compare teleoperation
and KT, the two most common types of demonstration
approaches.

5) A supplementary user study to compare giving interactive
corrections to giving new demonstrations.

The first three are technical experiments to highlight and
validate different functionalities of the proposed method. Each
experiment was conducted in five trials, and for each of them,
the final learned motion was performed five times after demon-
stration and correction(s). This approach allowed for the as-
sessment of the reliability of the learned skill. The last two are
supplementary user studies to evaluate the type of data input
for the proposed by comparing two human demonstration ap-
proaches and to evaluate giving corrections compared to giving
new demonstrations. These additional insights can provide a
better understanding of the input data generation method and
adjustments of the robot’s skill for bimanual cases. For all the
experiments, we used a position-time kernel for the GGP that
computes the correlations and updates the time beliefs online.
We use a negative exponential kernel, i.e., k = exp(−|xi−xj |

λ
),

with a length scale of 0.05m for the space correlation and 0.05 s
for the time correlation. The sigma threshold is set toσ(λ)which
is the uncertainty when the closest point is at distance λ. The
Cartesian stiffness is kept to 600N/m for linear stiffness and
30Nm/rad for rotational. The attractor distance is saturated at
0.05m, implying that the expected maximum applicable force
is 30N in every linear Cartesian direction and the maximum
expected linear velocity is ≈ 0.6m/s in every linear direction.

2[Online]. Available: https://github.com/franzesegiovanni/franka_bimanual_
controllers

The rotation delta is saturated at 0.15 rad, implying a maximum
torque of 4.5 Nm in every rotational component and a maximum
velocity of≈ 0.4 rad/s. The coupling stiffness is set to 800N/m
in the linear components and 0 for the rotational ones. The rela-
tive error is also saturated at 0.05m. A video of the experiments
can be found at.3

A. Asynchronous Crate Picking

When a pianist approaches studying a new piece, they do it one
hand at a time. After mastering the movement with each hand,
they start learning how to successfully coordinate the combined
execution. Inspired by this idea, in this validation experiment,
the user is asked to demonstrate how to best pick a crate, first with
the right and then with the left manipulator. However, when the
independently learned behaviors were executed with SIMPLe
the coordination was off, and the handling of the crate was not
stable. In Section IV-B, we highlighted how user feedback can be
used to reshape the trajectory and that the reactive formulation
of SIMPLe makes the trajectory to “virtually” stop: this feature
can be used to learn a bimanual task while simply coordinating
the separately recorded policies, see Fig. 7.

The effect of the human input can be appreciated in Fig. 7.
The original demonstrations are represented by dashed lines.
Even if the movement of the two demonstrations looks correctly
symmetric with respect to the y-plane, the right arm is slower.
However, it can be noticed how, after only one correction round,
the motion of the two demonstrations is synchronized, as de-
picted with a solid line. Given the perfect obtained synchro-
nization, in the next round, the user focused on increasing the
applied pressure on the side of the crate to increase the grasp
reliability. In the five experiment repetitions, the user consis-
tently provided necessary synchronization corrections. One trial
had an additional correction round, and two trials had two extra
correction rounds. After the interactive correction rounds, the
robot always placed the crate correctly. The Cartesian error of the
final crate position with respect to the final round of correction,
considering 25 repetitions (five executions × five trials), has a
mean of 0.021m and a standard deviation of 0.009m.

B. Synchronous Crate Picking

In this experiment, we focused on successfully teaching the
same task of picking a box but giving bimanual demonstrations
and corrections. In particular, we showed that even giving only
one bimanual demonstration with a few rounds of corrections,
the task execution was successful. We also tested the possibility
of locally modifying the original policy to pick a different box
placed at a higher level. Fig. 8 highlights how the robot can be
dragged higher sooner, at around 10 s, and how, after picking the
crate, the robots follow the original policy, being able to place
the crate and go to resting position autonomously. In the five
experiment repetitions, in the first two trials, the user provided
two rounds of correction, but only one in the last three. The final
position error of the box has a mean of 0.005m and a standard
deviation of 0.004m.

3[Online]. Available: https://youtu.be/GasxgbJZHdQ
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Fig. 7. Interactive synchronization of a bimanual picking task. The dashed lines are the demonstrations recorded in the independent demonstration
phase (a) and (b). Since they are not perfectly synchronized, the autonomous execution would fail, hence, the human feedback in (c) allows a
successful synchronization, depicted with solid lines.

Fig. 8. Use interactive learning to teach the robot how to modify the original trajectory so the robot can learn how to pick a crate that is at a
different height.

It is important to notice that even knowing the box’s position,
the motion’s generalization in a task-parameterized approach is
not trivial. In fact, the policy would have to move with respect to
the picking frame and then, after a successful pick, switch with
respect to the goal crate. This logic has shown to be successfully
implemented in [33] but also to be a source of generalization
ambiguities [40]. In general, performing a shared controlled
teaching, with the user only taking control locally, can drastically
reduce the burden of giving new complete demonstrations.

C. Object Handover

Another example of a tedious task is repetitive demonstra-
tions: being able to demonstrate the task only once and then
interactively assemble a long trajectory allows the teaching of
complex bimanual coordination tasks, such as stirring a coffee
mug [41] or learning a handover task. To validate SIMPLe in
this circumstance, we taught the right arm to pick up a box and
place it on the central separation line between the two robots.
Then, the left arm would pick up the box and place it in its front.
The goal is to show how dragging the robot around can be used
for resynchronization or local trajectory reshaping and also as a
movement “reset.”

The original demonstrations are displayed with a dashed line
in Fig. 9. When executing the motion with SIMPLe, the human
can safely apply a force on the robot to stop its execution or
drag it around to another desired position of the motion. At the
beginning of Fig. 9, a force is applied to the left manipulator
(highlighted by a red circle) to temporally stop it from moving,
allowing the right arm to successfully pick a box and place it

on the center line. At the moment that the user releases the
robot, it is free to move and can pick up the box and reach its
goal. To allow the repetition of the motion, the user applies a
larger external force (observable with peaks), causing a drop in
stiffness since the robot is probably dragged into a region of
space with a lower correlation according to (15). Every time the
robot finishes its pick and place task, if the user is willing to
repeat it, they only have to drag the robot to the desired position
of the trajectory. The user is teaching the motion multiple times,
as reported with colored patches in the figure. We measure the
final error in placing the box after the handover, executed five
times in five different demonstration trials. The mean error and
standard deviation are 0.011 and 0.008m, respectively.

D. User Study: Teleoperation Versus Kinesthetic
Teaching

The algorithm itself works with different data from different
types of demonstrations. However, since obtained input data
depends on the type of demonstration, the demonstration method
is an essential part of the whole framework. Therefore, we
conduct a supplementary user study to provide additional insight
into the effects of the demonstration method to compare the
two most common demonstration approaches: teleoperation and
kinesthetic guidance. There are studies comparing both teaching
approaches, but they were conducted for a single arm [42], [43].
The study in this article looks into this subject from a bimanual
perspective.
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Fig. 9. Object handover. For both the left and the right arm, the Cartesian position (x,y,z) is depicted as a function of time, the Cartesian linear
stiffness, and the norm of the Cartesian external force. The red circle indicates the region where an external force was applied to the left manipulator
to correct the trajectories.

Section II highlighted how different works focus on en-
hancing the teleoperation ability of nonexpert users using as-
sistive techniques, such as shared autonomy [9], [10], [11].
Since SIMPLe works with both teleoperated and kinesthetic
demonstrations/corrections, we wanted to study which is more
user-friendly. Although, getting the true answer is not easy:
the teleoperation device can have a strong influence, as well
as the dimension of the robot or the requested task. For the
conducted user study, we asked seven nonexpert users to perform
a relatively simple task: pick a box and stack it on top of another.
These seven users were all male ranging from 23 to 40 years old.

In order to mitigate the learning bias from the results, partici-
pants had a familiarization phase for each teaching modality, in
which they could restart the teaching session up to five times. For
every new participant, the first teaching modality was alternated
between teleoperated and kinesthetic, to remove the bias due to
their familiarization with the task.

For metrics, we measured the success rate in solving the task
and the total teaching time for each method. For subjective
analysis, we asked the participants to complete a NASA TLX
questionnaire. We conducted a paired samples t-test to verify if
the time to do KT is significantly shorter than for teleoperation

with the 6-D mice. However, three people out of seven failed to
perform successful teleoperation, because they did not manage
to coordinate well, making the robot self-collide or reach a joint
limit. Therefore, we set as failure time the maximum time of
the nonfailing ones. The test showed that KT requires less time
compared to the teleoperation with the given hardware with the
difference being statistically significant (p < 0.05).

Fig. 10 illustrates the average NASA TLX scores among the
different users. We can observe that teleoperation resulted in
being more mentally demanding and frustrating to perform. In
general, we could observe that users tend to focus on teleoper-
ating one arm at a time, making handling the box impossible.
When providing KT, the physical contact with the robot helps
them to understand the best trajectory better and to accomplish
the task successfully.

E. User Study: Corrections Versus New Demonstration

Besides the input data generation method, another key fac-
tor related to bimanual manipulation teaching is how humans
correct existing skills and what is their preference between cor-
recting or giving a new demonstration. To test this, 12 nonexpert
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Fig. 10. User study to compare the performance of nonexpert users in
performing bimanual teleoperation with two 6-D mice versus bimanual
kinesthetic teaching (KT). On the left are scores of the NASA-TLX ques-
tionnaire, and on the right are the setups of teleoperating and performing
KT.

users participated in an experiment structured as follows. The
user was asked to demonstrate the task of placing a box on the
crate. The demonstration was then shown to the user after an
offset was applied to the initial position of the box. The user was
then tasked with kinesthetically correcting the initial policy to
account for the change in the initial position. This was repeated
two times for different initial positions of the box. The user now
should have a sufficient understanding of what it means to give
a demonstration or correction.

The second part of the experiment was designed to find the
user preference for increasing lengths of the demonstration. The
user was tasked with first demonstrating the task of placing
the box on the crate. After the demonstration, an offset was
applied to the box and the user was given the choice to either
correct or redemonstrate given the new initial condition. For the
second iteration, the task remained the same with the additional
requirement that after picking up the box, before placing it on
the crate, the user has to move the box through a different
location as a waypoint. This was done to artificially lengthen the
demonstration. Once again an offset was applied to the initial
position of the box and the user was given the choice between
correcting or redemonstrating. This was done one last time with
two waypoints.

Given the choice, out of the 12 participants, 11, 8, and 10 chose
to adjust the policy with the interactive corrections for the experi-
ment with zero, one, and two waypoints, respectively, rather than
providing new demonstrations. Thus, only in seven out of the
36 trials, a new demonstration was preferred, which indicates
a strong preference for interactive corrections. Afterward, to
evaluate their experience they were asked to answer several
Likert scale questions related to user perception of corrected skill
and their physical/mental load. The results can be seen in Table I,
where the number in each cell represents the number of partic-
ipants that choose a particular agreement on the Likert scale.

The users found that both new demonstrations and corrections
were effective at improving the robot’s task. The users were
split on whether the bimanual demonstrations are tedious. In
general, they found interactive corrections more physically de-
manding than providing new demonstrations, probably because
the robots were already performing movements rather than being
completely compliant during new demonstrations. During the
experiments, it was observed that people that were shorter,

TABLE I
LIKERT SCALE: CORRECTIONS VERSUS NEW DEMONSTRATIONS

had smaller hands, or were less muscular, tended to struggle
more with correcting a policy. Those participants thus might
have preferred giving a new demonstration over a correction.
However, the users perceived interactive corrections as slightly
less mentally demanding, probably because they needed to pay
attention only to specific segments as opposed to the whole task.

VI. CONCLUSION

This article contributes to the field of bimanual manipulation
with an interactive kinesthetic learning framework named SIM-
PLe. It uses a novel formulation of GP, named GGP, that is com-
putationally efficient and ensures local and global stability of the
motion while retaining an estimation of epistemic uncertainties.
Thanks to the kernel formulation, the policy encoding can go
from purely time-dependent to purely position-dependent or to
a combination of both. At the same time, the graph representation
of it allows an online update of the time belief that, differently
from the robot position, cannot be directly measured. The study
reports a comparison of a GP with the novel GGP, see Fig. 3
and an ablation study when the time dependence is considered
or not, see Fig. 5. We conclude that considering the time and
properly updating its beliefs allows dealing with more complex
and possibly ambiguous demonstrations.

Various technical validation experiments were performed on
a real bimanual setup to demonstrate the key functionalities and
capabilities of the proposed method. The supplementary user
studies gave interesting insights into how humans feel when
teaching and correcting a robot with different modalities. Our
study reported that users are faster and less stressed when per-
forming KT compared to teleoperation. Furthermore, most users
prefer giving corrections to completely new demonstrations.
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