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A B S T R A C T   

Purpose: The use of topological metrics to derive quantitative descriptors from structural connectomes is 
receiving increasing attention but deserves specific studies to investigate their reproducibility and variability in 
the clinical context. This work exploits the harmonization of diffusion-weighted acquisition for neuroimaging 
data performed by the Italian Neuroscience and Neurorehabilitation Network initiative to obtain normative 
values of topological metrics and to investigate their reproducibility and variability across centers. 
Methods: Different topological metrics, at global and local level, were calculated on multishell diffusion-weighted 
data acquired at high-field (e.g. 3 T) Magnetic Resonance Imaging scanners in 13 different centers, following the 
harmonization of the acquisition protocol, on young and healthy adults. A “traveling brains” dataset acquired on 
a subgroup of subjects at 3 different centers was also analyzed as reference data. All data were processed 
following a common processing pipeline that includes data pre-processing, tractography, generation of structural 
connectomes and calculation of graph-based metrics. 
The results were evaluated both with statistical analysis of variability and consistency among sites with the 
traveling brains range. In addition, inter-site reproducibility was assessed in terms of intra-class correlation 
variability. 
Results: The results show an inter-center and inter-subject variability of <10%, except for “clustering coefficient” 
(variability of 30%). Statistical analysis identifies significant differences among sites, as expected given the wide 
range of scanners’ hardware. 
Conclusions: The results show low variability of connectivity topological metrics across sites running a 
harmonised protocol.   

1. Introduction 

Structural connectome analysis through graph metrics has demon
strated to be a powerful tool to study, in vivo, the brain organization. 
Indeed, the analysis of topological properties of the structural con
nectome has gained particular attention in clinical neurosciences due to 
its ability to reveal hidden brain alterations related to different brain 
disorders [1,2] or brain injuries [3]. However, the entire process to 
derive structural connectomes and graph metrics may be strongly 
influenced by different factors related to acquisition strategies, coil 
systems, scanners, and pipelines for tractography reconstruction and 
connectome generation [4–6]. In this context, efforts have been made to 
standardize acquisition protocols and processing pipelines for data 
harmonization purposes [7–11]. However, the reliability of graph-based 
connectome analysis, as revealed by diffusion tractography, has been 
under-investigated in terms of across sites normative values. To this end, 
in recent years, national and international multicentre initiatives for the 
standardization and harmonization of protocols have been pursued, 
which are releasing valuable datasets to be suitably analyzed [12–14]. 

The Neuroscience and Neurorehabilitation Network (RIN), the Ital
ian largest research network in the neuroscience field, was funded in 
2017 by the Italian Ministry of Health. The RIN drives the collaboration 
among several Scientific Institutes of Hospitalization and Care (IRCCSs), 
i.e. Italian Research Hospitals, to pursue the shared goal of identifying 
disease and subject-specific in-vivo neuroimaging biomarkers for 
different neurological and neuropsychiatric conditions [15]. The main 
activities of the RIN, during its early phases, were essentially: i) defi
nition of protocols and procedures for the harmonization of high-field 
MRI scanners in centres belonging to the network; ii) acquisition of a 

normative population sample to study multi-centric reproducibility of 
harmonized protocols; iii) apply the harmonized protocol to clinical 
research. As a result, these activities returned a fundamental data 
resource for probing the reliability of advanced MR examinations and 
processing pipelines [16,17]. The aim of this work consists precisely in 
exploiting the normative data of the RIN network to demonstrate the 
degree of multi-centric reproducibility of topological descriptors of the 
healthy connectome and, therefore, to evaluate their use as normative 
values of a young population. 

To the best of our knowledge, there are no studies investigating 
multicenter reproducibility of human connectome’s graph metrics on 
harmonized protocols. In fact, although the issue of reliability of topo
logical metrics has been extensively addressed in numerous studies in 
terms of test–retest reproducibility [18–24], multicentric reproduc
ibility is still under investigated. 

2. Material and Methods 

2.1. Subjects’ characteristics 

As part of the optimization protocol, a technical team of RIN mem
bers was in charge of setting up a shared acquisition protocol, which 
included a multi-shell diffusion sequence. In order to assess the across- 
sites reproducibility, a “traveling brains” test was performed. In de
tails, four volunteers, balanced for gender and with an age range of 
30–35 years, were scanned at three representative sites (i.e. 1, 4 and 6 of 
Table 1) following the finalized protocol detailed in Table 2. 

Once the acquisition protocol was agreed [15], it was installed at 
each centre and a dummy scan acquired to confirm that the standard 

Table 1 
Demographic and MR scanner details of the multi-centric study.  

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 

Age (#) 31.8 ±
1.8 
(3) 

29.6 ±
2.7 
(5) 

29.7 ±
4.3 
(6) 

26.3 ±
5.9 
(6) 

28.0 ± 2.3 
(5) 

30.0 
± 4.4 
(5) 

32.2 ±
3.0 
(5) 

31.8 ±
5.2 
(5) 

25.0 ±
2.0 
(3) 

31.6 ±
6.3 
(5) 

25.1 ±
3.3 
(7) 

29.2 ±
3.0 
(5) 

28.5 ±
5.6 
(4) 

Gender 
(F/M) 

1/2 4/1 5/1 4/2 1/4 3/2 3/2 3/2 1/2 4/1 6/1 2/3 2/2 

MRI 
vendor 

V1 V2 V1 V3 V3 V2 V3 V1 V1 V1 V3 V3 V2 

RF head- 
coil 

SENSE- 
Head-32 

SENSE- 
Head-32 

SENSE- 
Head-32 

Head- 
Neck 64 

HeadMatrix- 
4 

HNS 
(8ch) 

SENSE- 
Head-32 

SENSE- 
Head-32 

SENSE- 
Head-32 

SENSE- 
Head-32 

Head- 
Neck 64 

Head- 
Neck 16 

Head- 
Neck 32  
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operating procedures were clear and followed by all. Each center of the 
RIN network was required to acquire at least three cognitively and 
neurologically healthy subjects aged between 20 and 40 years. Each 
subject underwent a neurocognitive evaluation and the MRI harmonized 
protocol [15], summarized below for simplicity. 

For each site of the RIN network, Table 1. shows the details of both 
the subjects included in the study and the MR hardware available for the 
acquisition. 

A total of 64 healthy subjects (age range: 21–38 years, mean ±
standard deviation: 29.1 ± 4.5 years, median: 29 years, 24 women) were 

enrolled from 2018 to 2020. 

2.2. MRI acquisition 

Table 2 shows the details of the harmonized structural and diffusion- 
weighted imaging protocols setup per MR vendor. 

T1 sequences follow a protocol with isotropic resolution of 1 mm3 

and parallel imaging acceleration factor of 2. Regarding the diffusion- 
weighted imaging sequences, the protocol consists of the acquisition 
of 30 diffusion directions with two diffusion weightings (1000 s / mm2 

and 2000 s / mm2), 7 volumes with zero b-value and an isotropic res
olution of 2.5x2.5x2.5 mm3. An additional diffusion-weighted imaging 

Table 2 
Details of the harmonized imaging protocols for both structural and diffusion-weighted imaging acquisitions.  

Parameters T1-weighted DWI 

Vendors Philips Siemens GE Philips Siemens GE 

Sequence type 3D FFE MP-RAGE 3D BRAVO Single shot SE EPI EPI SE 2D 2D SE EPI 
Slice orientation sagittal sagittal sagittal transversal transversal oblique 
FOV [mm] 240 × 240 256 × 256 256 × 256 240 × 240 240 × 240 240 × 240 
Resolution [mm3] 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 2.5 × 2.5 × 2.5 2.5 × 2.5 × 2.5 2.5 × 2.5 × 2.5 
Matrix (Base Resolution) 240 × 240 256 × 256 256 × 256 96 × 96 96 × 96 96 × 96 
Slice thickness 1 1 1 2.5 2.5 2.5 
n. slices 175–180 175–180 175–180 60 60 60 
Phase Encoding direction AP AP PA (non modif) PA PA PA 
Slice order Interleaved Interleaved Interleaved interleaved interleaved interleaved 
TR [ms] shortest 2300 non modif 8400 8400 8400 
TE [ms] shortest 2.96 3.2 85 85 85 
Flip angle 8◦ 9◦ 9◦ 90◦ 90◦ 90◦

Fat suppression No No No yes yes yes 
Acceleration factor SENSE ≤ 2.3 GRAPPA = 2 ARC = 2 SENSE ≤ 2.3 GRAPPA = 2 ASSET = 2 
n. directions/ b0 – – – 32 dir / 7 b0 30 dir / 7 b0 32 dir / 4 b0 
b [s/mm2] – – – 1000/2000 1000/2000 1000/2000 
Bandwidth 191 Hz 240 Hz/Px 31.25 kHz 1040 Hz 1108 Hz/px 250 kHz 
Duration [min] ≈5.30 ≈10  

Fig. 1. Across-subjects mean (a) and coefficient of variation (b) of structural connectomes (fiber count) of the RIN dataset (64 subjects). A base-10 logarithmic scale 
has been used to enhance visualizations. Please refer to Table S1 for the association between node index and gray matter region. 

Table 3 
Normative values and coefficients of variation estimated across all “traveling 
brains” subjects and sites (1,4,6) for the global graph metrics. The last column 
shows ICC coefficients. Median and IQR values correspond to the average me
dian and IQR between each subject in the “traveling brains” experiment. mCoV 
= mean coefficient of variation; IQR = interquartile range; ICC = intraclass 
correlation coefficient.   

Median IQR mCoV ICC 

Betweenness Centrality  55.49  2.23  0.03  0.15 
Clustering Coefficient  7.93 × 10-3  2.49 × 10-3  0.22  0.74 
Degree  5.78 × 104  4.34 × 103  0.05  0.89 
Global Efficiency  2.71 × 103  215.67  0.06  0.71 
Local Efficiency  4.23 × 103  306.26  0.05  0.62 
Path Length  7.49 × 10-5  6.25 × 10-6  0.06  0.70  

Table 4 
Normative values reported as median and interquartile range (IQR) and co
efficients of variation (CoV) estimated across all subjects and sites for the global 
graph metrics.   

Median IQR CoV 

Betweenness centrality  55.30  6.40  0.08 
Clustering Coefficient  8.09 × 10-3  4.00 × 10-3  0.31 
Degree  5.84 × 104  3.69 × 103  0.05 
Global Efficiency  2.72 × 103  213.04  0.06 
Local Efficiency  4.29 × 103  363.59  0.07 
Path Length  7.44 × 10-5  5.94 × 10-6  0.07  
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set of 3 volumes with zero b-value was acquired with the same param
eters only by reversing the phase-encoding direction (i.e. anterior- 
posterior), suitable for the following geometric distortion correction 
routine. 

2.3. Data processing 

For the following processing steps, a combination of commands from 
MRtrix3 (version 3.0.3, [25]) and FMRIB-FSL (version 6.0, [26]) tool
boxes were adopted [27]. 

Diffusion data were firstly pre-processed to mitigate potential image 
artifacts. In particular, the images were denoised by applying the 
Machenko-Pastur PCA noise removal technique [28] and corrected for 
gibbs-ringing artifacts [29] using mrdegibbs command of MRtrix3 
toolbox. Then, distortion correction was performed by using the data 
with 0 s / mm2 diffusion weighting, acquired with reversed phase- 
encoding direction (anterior-posterior) by means of susceptibility- 
induced off-resonance field estimation [30]. Moreover, eddy current- 
induced distortions and artifacts due to subject movement were miti
gated by running eddy from the FSL software library, which is an inte
grated method of correction, as described in [31]. Finally, diffusion- 
weighted data were corrected for B1 field inhomogeneity [32] 

applying dwibiascorrect routine of MRtrix3 toolbox. 
From the diffusion-weighted pre-processed images, fractional 

anisotropy (FA) parametric map was evaluated from the eigenvalues of 
the diffusion tensor by MRTrix3 toolbox and axonal streamlines were 
reconstructed by applying a probabilistic tractography approach based 
on multi-shell multi-tissue constrained spherical deconvolution [33]. 
For the streamline reconstruction procedure, T1-weighted image was 
registered to diffusion-weighted image space by affine transform with 
12 degree of freedom and “trilinear” interpolation method by means of 
flirt routine of FSL toolbox. Tissue segmentation (i.e. white matter, gray 
matter and cerebrospinal fluid) for the multi-tissue approach was ob
tained with 5ttgen command of MRtrix3 that includes bet, fast and first 
routines of FSL software library for brain extraction, tissue and 
subcortical gray matter segmentation, respectively. The parameters for 
tractography reconstructions were as follows: [2.5–250] mm as range of 
included streamline length, 107 as number of selected streamlines, 60◦

as angle constraint. In the tractography reconstruction procedure, the 
anatomically-constrained method [34] was used to apply biologically 
realistic constraints for streamline termination. 

Gray matter parcellation was obtained by applying the cross- 
sectional RECON-ALL routine from the Freesurfer package (version 
7.2, [35]) to the T1-weighted images in native space. Following the 

Fig. 2. Boxplots of local graph metric distributions. Each panel shows the data distribution across the subjects of a specific local graph metric (betweenness centrality 
(a), clustering coefficient (b), degree (c), global efficiency (d), local efficiency (e) and path length (f)). For each boxplot, the x-axis represents node indices. Please 
refer to Table S1 for the association between node index and related gray matter region. 
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Desikan-Killiany atlas [36], 84 cortical and subcortical gray matter re
gions of interest (ROIs) were extracted (Table S2). 

To obtain structural connectomes, the number of reconstructed 
streamlines connecting each pair of ROIs was evaluated, thus resulting 
in 84x84 symmetric matrices of structural connectivity. In addition to 
streamline count, structural connectomes with edges weighted by FA 
(FA-conn) and scaled by the inverse of corresponding node volumes 
(VOL-conn) were evaluated. The structural connectomes were filtered 
by the spherical-deconvolution informed filtering of the tractogram 
approach, as described in [37], to produce more biologically plausible 
measurements with respect to fiber orientation distributions. 

Graph analysis was performed with the open-source GRETNA 
toolbox [38]. 

The following graph metrics, both at global network and node level, 
were calculated on each structural connectome: betweenness centrality 
(BC), clustering coefficient (CC), degree (D), global efficiency (GL), local 
efficiency (LE) and path length (PL). BC represents the fraction of all 
shortest path, CC is the fraction of node’s neighbors that are neighbors of 
each other, D is the number of the links connecting the nodes, GE and LE 
represent the average inverse shortest path length in the network and 
with respect to the neighborhood of the node respectively, and PL is 
average shortest path length. As already described in [19], the resulting 
graph metrics were normalized by graph metrics derived with 100 
random networks with the same node, edge and degree distribution by 
means of Maslov-Sneppen rewiring algorithm [39]. 

2.4. Statistical analysis 

Regarding the “traveling brains” test, across sites reproducibility was 
evaluated by means of both within-subject coefficient of variation (CoV) 
and intra-class coefficient (ICC) [40]. In particular, the two-ways 
random effects model with absolute agreement ICC was evaluated as: 

ICC =
MSb − MSW

MSb + (k − 1)MSw  

where MSb and MSW respectively represent between- and within-subject 
mean squares and k is the number of repeated measurements. CoV 
values < 0.1 represent low variability between the measurements [41], 
while ICC values above 0.7 reflect highly reproducible measurements 

[41]. 
Across-site differences in demographic variables as gender and age 

were analysed by one-way Kruskal-Wallis test. 
To provide normative values of the analyzed dataset, median and 

interquartile range were evaluated for each graph metric. Moreover, the 
between-subjects CoV was calculated, for each graph metric, as the ratio 
between the standard deviation and the mean value of the entire dataset 
[42]. 

Kruskal-Wallis test was applied to assess the influence of different 
sites on graph metrics with Fisher’s least significant difference as a post- 
hoc test for pairwise comparisons and honestly significant difference test 
was adopted as correction technique for multiple comparison. P < 0.05 
was considered as significant threshold for all the performed statistical 
tests. 

All the statistical analyses were performed using MATLAB r2018a 
(Mathworks, Inc.). 

3. Results 

In Fig. 1 and figure S1 the mean structural connectomes of the entire 
RIN dataset was shown, whereas in table S2 the graph metrics values for 
each subject of the “traveling brains” experiment were reported. 

Regarding subjects’ age, no significant differences across sites were 
found (p = 0.59). On the contrary, the inter-site gender distribution 
significantly differed across sites (p < 0.05). 

Considering the “traveling brains” experiment, the results shown in 
Table 3. were appreciably reproducible on the three sites both in terms 
of CoV (always lower than 0.1) and ICC, with the exception of BC metric 
(ICC = 0.15). This is confirmed also when the analysis was performed by 
considering FA-conn and VOL-conn (table S3). 

Table 4 and Fig. 2 show the normative results for the global and local 
metrics, respectively. Moreover, the corresponding global and local 
metric values arising from FA-conn and VOL-conn were reported in table 
S4 and figure S2. The coefficients of variation, reported in the last col
umn of Table 4, showed a good degree of consistency and uniformity 
across all metrics, considering values under the threshold of 0.1, except 
for the CC metric both for connectomes weighted by streamline count 
and FA-conn (0.31 and 0.20, respectively). On the contrary, CoV values 
of CC, D, GE and LE evaluated from VOL-conn were between 0.15 and 
0.30. The CoV of all local-level metrics was always acceptable, as shown 

Fig. 3. Across-subjects coefficient of variation. The plot shows the coefficient of variation (CoV) of the graph metrics for each node (x-axis) estimated across-subjects. 
Please refer to Table S1 for the association between node index and gray matter region. Different colours of the plotted points are associated with different 
graph metrics. 
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in Fig. 3 and figure S4, as the CoVs of these metrics for each graph node 
were all below 0.1. 

Fig. 4 and figures S5-S6 show the boxplots of graph metrics distri
butions across subjects, reported for each site. The Kruskal-Wallis test 
showed a statistically significant influence of the variable “sites” on the 
distribution of the metrics only when streamline count was adopted for 
connectome weighting (Fig. 4); it is important to note, however, that as 
visually evident and as confirmed by Fisher’s post-hoc test, the results 
from site 6 have a noticeable impact on these differences. 

4. Discussion 

In this paper, we demonstrated the value of a harmonized diffusion 
weighted imaging protocol, adopted for a national multicenter study 
[15], in defining the healthy brain connectome and its normative to
pological values. In particular, the present study focused on the 
computation of topological parameters extracted from structural con
nectomes based on diffusion MR sequences acquired on 13 different 
high-field scanners. 

Overall, the results show good consistency and homogeneity of the 

distribution of normative values in a population of young adults, 
considering all the acquisition sites. 

Specifically, of 6 metrics examined in this study, only the global CC 
shows CoV higher than 0.1, with CoV of 0.31. This variability was also 
partially confirmed in the “traveling brains“ experiment (mCoV of 0.22 
and 0.18 for connectomes weighted by streamline count and VOL-conn, 
respectively). 

Similarly, the BC metric also shows the worst test–retest reproduc
ibility value for all the analyzed connectome weightings. These results 
are in line with what is already evident in the literature: in [19], using 
the same processing pipeline as us (iFOD2 with a multishell diffusion- 
weighted acquisition scheme), BC metric results in worst reproduc
ibility performance while [23] showed excellent single site reproduc
ibility of graph metrics with the exception of the BC itself. It is important 
to underline that BC considers nodes along the shortest geodesic paths to 
be the most central in the network; although it is widely used as a to
pological measure of brain organization, it is not ideal for a system that 
processes information via unrestricted walks such as the human brain 
[43]. Brain dynamics, indeed, imply a certain independency of infor
mation flow efficiency from the shortest paths, which may be an 

Fig. 4. Boxplots of graph metric distributions. The reported p-values are related to Kruskal-Wallis test to assess the influence of the sites on graph metrics. Each panel 
shows, for each site, the data distribution across the subjects of a specific global graph metric (betweenness centrality (a), clustering coefficient (b), degree (c), global 
efficiency (d), local efficiency (e) and path length (f)). Lines with asterisks indicate statistically significant differences (post-hoc test). Different colors of the boxplots 
are associated to different MR vendors (red: V1; green: V2; blue: V3). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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explanation of the variability found in the BC metric. 
Regarding the CC metric, the huge variability found in the normative 

values of our multicentre study does not seem to be affected by appre
ciable differences at the level of sites. Hence, the variability of the CC 
metric is more sensitive to subjective variations than to instrumental 
differences. Moreover, it should be considered that the CC metric, as 
confirmed by our traveling brains results, is highly reproducible when 
reconstruction techniques that produce poorly sparse connectomes are 
considered, as in the case of this work. In fact, CC, which estimates the 
degree to which nodes in a graph tend to cluster together, is highly 
robust with respect to a possible path loss between test and retest [44]. 

This study is subject to some considerations. First, as shown by the 
statistical analysis of independence, there is no gender balance among 
data from different centers; considering that gender is reported to be 
affecting graph-based metrics for intrinsic differences in inter- 
hemispheric communication between males and females [45], such 
differences should be taken into account in the interpretation of our 
across-sites results. Furthermore, we should also consider that some of 
the centers acquired a different number of subjects, which in turn may 
have influenced the site results. It is worth mentioning, also that, due to 
the limited number of subjects per site, the influence of different tech
nical setup (e.g. MR scanner model, software version and RF head-coil) 
among sites was not considered, hence requiring further studies to assess 
their impact on the variability of normative graph metric values. It is 
important to note that dedicated post-acquisition procedures can be 
used to mitigate the inter-scanner variability in case of harmonised 
acquisition protocols, as recently proved as a solution to possibly 
improve reproducibility [9]. 

In the present work the choice of brain network metrics, related to 
network integration and segregation properties [46], was motivated 
since they were demonstrated to be relevant for studies focused on 
neurodegenerative and neurodevelopmental diseases [1]. However, the 
description of structural brain connectivity properties by means of path- 
and cluster-based graph metrics should be used with caution due to the 
potentially missing relationship between network topology measure
ments and the underlying neurobiology [47]. 

In conclusion, the study of the variability of the topological param
eters calculated from data acquired at different sites is fundamental to 
assess reliability and to favor the use of these descriptors as markers of a 
pathological, neuropsychological or behavioral condition. With this 
study, normative values of topological metrics were shared by providing 
an indication of the “real-world” variability, considering 13 different 
acquisition sites with different MR scanners produced by three different 
vendors and with different setups. The results, overall, show acceptable 
reproducibility of graph metrics across centres who are running a 
harmonised protocol, with CoVs mostly within 10%. Graph theory 
metrics could therefore be used in multicentre clinical trials as imaging 
biomarkers of brain connectivity. 
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