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Abstract
In this work we propose a batch multimarginal
version of the Greenkhorn algorithm for the
entropic-regularized optimal transport problem.
This framework is general enough to cover, as par-
ticular cases, existing Sinkhorn and Greenkhorn
algorithms for the bi-marginal setting, and greedy
MultiSinkhorn for the general multimarginal case.
We provide a comprehensive convergence analy-
sis based on the properties of the iterative Breg-
man projections method with greedy control. Lin-
ear rate of convergence as well as explicit bounds
on the iteration complexity are obtained. When
specialized to the above mentioned algorithms,
our results give new convergence rates or provide
key improvements over the state-of-the-art rates.
We present numerical experiments showing that
the flexibility of the batch can be exploited to im-
prove performance of Sinkhorn algorithm both in
bi-marginal and multimarginal settings.

1. Introduction
Over the recent years the field of optimal transport (OT) (Vil-
lani, 2008) has received significant attention in machine
learning and data science, as it provides natural and power-
ful tools to compare probability distributions. In this paper
we study a general class of OT problems known as multi-
marginal optimal transport (MOT), whereby several proba-
bility distributions are coupled together in order to compute
a measure of their association, see e.g. (Pass, 2015; Ben-
amou et al., 2016). While bi-marginal OT is well established
in the scientific community, and machine learning in partic-
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ular, only recently MOT is receiving increasing interest due
to its applications, ranging from density functional theory
in quantum chemistry, to fluid dynamics, to economics, to
image processing, among others, see (Peyré & Cuturi, 2019)
and references therein. Particularly in machine learning,
MOT is gaining relevance for generative adversarial net-
works (GANs) (Cao et al., 2019), domain adaptation (He
et al., 2019), Wasserstein barycenters (Agueh & Carlier,
2011), clustering (Bento & Mi, 2021), Bayesian inference
of joint distributions (Frogner & Poggio, 2019) and multi-
dynamics reinforcement learning (Cohen et al., 2021).

In this paper, we focus on the discrete formulation of MOT,
which consists in minimizing a linear cost function over all
the joint distributions with m ≥ 2 prescribed finitely sup-
ported marginals. It is well known that addressing directly
the MOT problem is computationally expensive. Further-
more, unlike the bi-marginal case, MOT is NP-Hard for cer-
tain costs, even approximately (Altschuler & Boix-Adserà,
2021). To overcome this issue, regularization techniques
have been widely considered. The key insight is to add a
strongly convex regularizer to the MOT objective. In this
respect, a popular choice is entropic-regularization, which,
in the bi-marginal case, leads to the well-known Sinkhorn al-
gorithm (Cuturi, 2013). While the convergence properties of
Sinkhorn have been studied in detail (Peyré & Cuturi, 2019),
computational solutions for regularized multimarginal op-
timal transport (RMOT) are less developed. The principal
objective of this work is to propose a new and flexible al-
gorithmic framework with strong convergence guarantees
which can be effective for both ROT and RMOT problems.

Related work. Two popular frameworks for analyzing al-
gorithmic solutions for entropic-regularized OT problems
are iterative Bregman projections (IBP) and alternating
dual minimization (ADM). The multimarginal version of
Sinkhorn algorithm was first proposed by (Benamou et al.,
2015) in finite dimension and its convergence was estab-
lished by viewing it as a special case of cyclic IBP, whose
global convergence is well-known (Bregman, 1967). How-
ever, this approach does not ensure any rate of convergence.
More recently, using the alternating minimization frame-
work, this result was extended to infinite dimension (Di-
Marino & Gerolin, 2020) and even a global linear rate of
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convergence was obtained (Carlier, 2021).
The ADM approach was exploited also to obtain explicit
computational complexity bounds. Specifically, in the bi-
marginal setting state-of-the-art complexity bounds were
proved by Dvurechensky et al. (2018) for the Sinkhorn algo-
rithm and by Lin et al. (2021) for the Greenkhorn algorithm
of Altschuler et al. (2017). In the multi-marginal setting, Lin
et al. (2020) proposed two solutions for approaching RMOT:
the (greedy) multimarginal Sinkhorn algorithm, which itera-
tively projects on a greedly selected marginal, and the accel-
erated multimarginal Sinkhorn algorithm, which improves
the convergence by incorporating Nesterov’s estimate se-
quences. In addition, in (Tupitsa et al., 2020) a Nesterov’s
momentum acceleration was used to build a competitive
algorithm against the greedy multimarginal Sinkhorn. Both
papers (Lin et al., 2020; Tupitsa et al., 2020) derived sub-
linear computational complexity bounds for the considered
RMOT algorithms, but no linear convergence rates were
studied. Moreover, such accelerated versions for large scale
problems, while having desirable theoretical properties, do
suffer from longer computing times compared to greedy
MultiSinkhorn (Lin et al., 2020).
We conclude this discussion by remarking that in the con-
text of bi-marginal optimal transport, various algorithmic
strategies such as simulated annealing (“ε-scaling”) and mul-
tiscale algorithms have been used with much success to ac-
celerate basic Sinkhorn algorithm, see (Flamary et al., 2021)
and references therein. Furthermore , in (Feydy et al., 2019)
implementations exploiting symbolic (kernel) matrices are
developed allowing efficient large-scale OT computations.

Contribution. We propose a batch multimarginal version of
the Greenkhorn algorithm, that greedily selects at each iter-
ation a marginal and a batch of its components. It covers, as
special cases, Sinkhorn and Greenkhorn for the bi-marginal
setting, and (greedy) MultiSinkhorn of (Lin et al., 2020)
for RMOT. For this new general algorithm, we established

(1) global linear rate of convergence in Kulback-Leibler
(KL) distance and (2) iteration complexity in the `1 distance
from the given marginals. Moreover, in the two important
special cases of Batch Greenkhorn for bi-marginal ROT
and (greedy) MultiSinkhorn, we provide a global linear rate
and an iteration complexity bound that depend explicitly on
the problem data. These results offer new insights on the
asymptotic behaviour of those algorithms or improve the
state-of-the-art. Particularly, we remove a logarithmic factor
in the known complexity results for Sinkhorn, Greenkhorn
and MultiSinkhorn. Our theoretical contributions are sum-
marized in Table 1. There, we point out the explicit rate for
the greedy MultiSinkhorn algorithm which is strictly better
than the one, recently derived by Carlier (2021), for cyclic
multimarginal Sinkhorn. Notably, our rate scales better with
the number of marginals m, which we also confirm in our
numerical experiments below.

At last, we stress that our theoretical analysis is not based
on the dual alternating minimization approach used in the
state-of-the-art analyses, but it rather relies on the geometry
of the KL distance and the framework of iterative Bregman
projections.

Paper organization. In Sec. 2 we recall the formulation
of RMOT as a Bregman projection problem. In Sec. 3
we present the proposed batch Greenkhorn algorithm for
RMOT. Our main results are presented in Sec. 4. Numerical
experiments for the proposed method on both bi-marginal
and multimarginal optimal transport are presented in Sec. 5.

Notation. We denote by n1, . . . , nm ∈ N the sizes
of the given m marginals. For every n ∈ N, we set
[n] := {1, 2, . . . , n} and denote the unit simplex by
∆n = {x ∈ Rn+ | ‖x‖1 = 1}. For the sake of brevity
we set J = [n1] × · · · × [nm] and we denote by j =
(j1, . . . , jm) a general multi-index in J . We set X+ =
{π ∈ X |πj ≥ 0, for every j ∈ J } and X++ = {π ∈

Table 1: Convergence results on Sinkhorn-type algorithms for entropic-regularized OT (ROT) and entropic-regularized multimarginal OT
(RMOT): global linear convergence (GL) measured in KL-divergence and iteration complexity bounds (IC). To ease the presentation
we assume ‖C‖∞ = 1. In the following m, n, η, ε and τ are the number marginals, the number of atoms of marginal distributions, the
regularization parameter, the tolerance and the batch size, respectively.

Algorithm (problem) Convergence type Current best Our result

Sinkhorn (ROT) (GL) 1− 1
2
e−24/η (Carlier, 2021)

(
1− e−17/η

)2
Theorem 4.5

(IC) O
( 1/η+logn

ε

)
(Dvurechensky et al., 2018) O

(
1
ηε

)
Greenkhorn (ROT) (IC) O

( 1/η+logn
ε

)
(Lin et al., 2021) O

(
1
ηε

)
Theorem 4.4

BatchGreenkhorn (ROT) (GL) ×
(
1− e−20/η

2n/τ−1

)2n/τ
Theorem 4.4

(IC) × O
(

1
ηε
n/τ

)
MultiSinkhorn (RMOT) (GL) ×

(
1− e−(12m−7)/η

m−1

)m
Theorem 4.5

(IC) O
(m(1/η+logn)

ε

)
(Lin et al., 2020) O

(
m
ηε

)
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X |πj > 0, for every j ∈ J }. We need also to con-
sider multi-indexes without the k-th index, so we define
J−k = [n1] × · · · × [nk−1] × [nk+1] × · · · × [nm] and
j−k a general multi-index in J−k. We will identify J
with J−k × [nk] via the mapping j ↔ (j−k, jk) with
j−k = (j1, . . . , jk−1, jk+1, . . . , jm). The space X is an Eu-
clidean space endowed with the standard scalar product and
norm

〈π, π′〉 =
∑
j∈J πjπ

′
j , ‖π‖2 =

∑
j∈J π

2
j , ∀π, π′ ∈ X.

For every π, π′ we denote by π � π′ ∈ X, the Hadamard
product of π and π′, that is, (π � π′)j = πjπ

′
j . Moreover,

if v1 = (v1,j1)j1∈[n1] ∈ Rn1 , . . . , vm = (vm,jm)jm∈[nm] ∈
Rnm , we set ⊕mk=1vk ∈ X and ⊗mk=1vk ∈ X such that

( m⊕
k=1

vk
)
j

=

m∑
k=1

vk,jk and
( m⊗
k=1

vk
)
j

=

m∏
k=1

vk,jk ,

respectively. For a function φ : X → ]−∞,+∞], its
Fenchel conjugate is the function defined by φ∗(γ) =
supπ∈X〈π, γ〉 − φ(π). Finally, as usual, the Dirac measure
at x is denoted by δx.

2. Entropic RMOT as the Bregman projection
problem

In this section we formally introduce the discrete mul-
timarginal optimal transport problem and its entropic-
regularized version, emphasizing its connection with the
Bregman projection problem.

Let ak ∈ ∆nk , k ∈ [m] be prescribed histograms. MOT
consists in solving the linear program

min
π∈Π(a1,...,am)

〈C, π〉, (1)

where C ∈ X is a given cost tensor and Π(a1, . . . , am),
called transport polytope, is the convex set of nonnegative
tensors in X whose marginals are a1, . . . , am. Specifically,

Π(a1, . . . , am)=
{
π ∈ X+

∣∣Rk(π) = ak,∀k ∈ [m]
}
, (2)

where for all k ∈ [m], Rk : X → Rnk is the k-th push-
forward projection operator, defined as

Rk(π)jk =
∑

j−k∈J−k

π(j−k,jk), ∀jk ∈ [nk], (3)

representing the operation of taking the k-th marginal of
multi-dimensional histograms.

As noted in the introduction, problem (1) may be hard to
solve and an effective alternative is solving a regularized
version using the negative entropy (Cuturi, 2013): for a

cost tensor C ∈ X+, the entropic-regularized multimarginal
optimal transport (RMOT) problem consists in computing

π? = arg min
π∈Π(a1,...,am)

〈C, π〉+ ηH(π), (4)

where H(π) :=
∑
j πj(log πj − 1), π ∈ domH = X+ and

η > 0 is a regularization parameter.

Now, recall that the Kulback-Leibler (KL) divergence
KL : X× X→ [0,+∞] is defined as

KL(π, π′)=


∑
j∈J

πj

(
log

πj
π′j
−1

)
+π′j , π∈X+, π

′∈X++,

+∞ otherwise

and can be interpreted as the Bregman distance associated to
the negative entropy H, that is, KL(π, π′) = H(π)−H(π′)−
〈π−π′,∇H(π′)〉. Then, for an arbitrary closed convex set
C ⊂ X such that C ∩ X++ 6= ∅ and a point π ∈ X++, the
Bregman projection of π onto C with respect to H is

PC(π) := arg min
γ∈C

KL(γ, π). (5)

This is also called the KL projection of π onto C, while its
KL distance to C is defined as KLC(π) := KL(PC(π), π).

Taking this into account, it is easy to recognize that (4) can
be rewritten as

π? = arg min
Rk(π)=ak,k∈[m]

KL(π, ξ), (6)

where ξ = ∇H∗(−C/η) = exp(−C/η) ∈ X++ is the
Gibbs kernel tensor. Note that, since domH = X+, in pass-
ing to (6), the positiveness constraint embodied in problem
(4) has been absorbed in the entropy function H. Overall,
we can conclude that problem (4) is equivalent to the com-
putation of the KL projection of the Gibbs kernel ξ onto the
affine set {π ∈ X | (∀ k ∈ [m]) Rk(π) = ak}.

3. Greedy KL projections for entropic RMOT
In this section, we study the entropic-regularized MOT prob-
lem (4), in the equivalent form of the KL projection problem
(6). We will represent the underlying constraint set as an in-
tersection of possibly simple affine sets, so that the problem
becomes accessible via iterative Bregman projections. This
will lead to a new batch version of Greenkhorn algorithm.

To that purpose, recalling definition (3), we first introduce
the linear operator

R:X→Rn1×· · ·×Rnm , R(π)=(R1(π),. . . ,Rm(π)), (7)

and the affine set

Π := {π ∈ X | R(π) = (a1, . . . , am)}, (8)
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which defines the constraints in (6). Then, we observe that
it is possible to prove (see equation (41) in Appendix A)
that

PΠ(ξ) = PΠ(ξ �⊗mk=1ak). (9)

Therefore, here we will equivalently target the computation
of the KL projection of the normalized Gibbs kernel ξ �
⊗mk=1ak onto Π.

Now we proceed by decomposing the affine set Π into an
intersection of simpler affine sets. More precisely, we will
rewrite the set (8) as an intersection of affine sets, obtained
via specific sketching, on which KL projections have closed
forms. Thus, for each k ∈ [m] (which refers to the k-
th marginal) and each batch L ⊂ [nk] we consider the
canonical injection

S(k,L) : RL → Rn1 × · · · × Rnm

of RL into Rn1 × · · · × Rnm , meaning that for each u =
(ujk)jk∈L ∈ RL, S(k,L)u is the vector of Rn1 × · · · ×Rnm
obtained from the completion of u with zero entries. Then,
since the adjoint operator S∗(k,L) : Rn1 × · · · × Rnm → RL
is the standard projection, we can define

R(k,L) := S∗(k,L)R : X→ RL (10)

and the set

Π(k,L) :={π ∈ X |S∗(k,L)R(π)=S∗(k,L)(a1,..., am)}
= {π ∈ X |R(k,L)(π) = ak|L}
= {π ∈ X | (Rk(π))|L = ak|L}.

(11)

Note that in the definition of Π(k,L) it is required that the
k-th marginal of π is equal to ak only on the components in
L. In the end, given τ = (τk)1≤k≤m a vector of batch sizes,
we set

I(τ) = {(k, L) | k ∈ [m], L ⊂ [nk] | |L| ≤ τk}

and obtain
Π =

⋂
(k,L)∈I(τ)

Π(k,L). (12)

This is the announced decomposition of the set Π into the
intersection of possibly simpler affine sets.

As a results of the representation (12), one can envis-
age to approach the computation of the KL projection of
ξ �⊗mk=1ak onto Π by applying the procedure of iterative
Bregman projections (IBP) (Bregman, 1967). This leads
to the following algorithm. Let π0 = ξ � ⊗mk=1ak =
e−C/η � ⊗mk=1ak ∈ int(domH) = X++ and define the
sequence πt recursively as follows

for t = 0, 1, . . .⌊
choose (kt, Lt) ∈ I(τ),
πt+1 = PΠ(kt,Lt)

(πt).
(13)

Since the generalized Pythagoras theorem for Bregman
projections (see equation (40) in Appendix A) yields that
KLΠ(πt) = KLΠ(k,L)

(πt) +KLΠ(PΠ(k,L)
(πt)), in (13) one

may choose the sets in a greedy manner as

(kt, Lt) = arg max
(k,L)∈I(τ)

KLΠ(k,L)
(πt), (14)

so that

(kt, Lt) = arg min
(k,L)∈I(τ)

KLΠ(PΠ(k,L)
(πt)) and (15)

KLΠ(πt+1) = min
(k,L)∈I(τ)

KLΠ(PΠ(k,L)
(πt)). (16)

This means that the next iterate is chosen, among the possi-
ble projections, as the one which is the closest to the target
set Π. Notable examples of existing algorithms that fit in
this framework are (greedy) multimarginal Sinkhorn of (Lin
et al., 2020) and bi-marginal Greenkhorn of (Altschuler
et al., 2017).

We emphasize that the above greedy strategy typically leads
to the best performance, provided that it can be implemented
efficiently. In the following proposition and subsequent
remark we show that the projection onto the sets Π(k,L) can
be computed in a closed form and that the greedy choice
of the sets Π(k,L)’s can indeed be implemented efficiently.
The proof is postponed to Appendix B.

Proposition 3.1. For every π ∈ X+, k ∈ [m] and L ⊂ [nk],

PΠ(k,L)
(π) = π � exp

(
R∗(k,L)(ū)

)
, (17)

where
ū = log

ak|L
Rk(π)|L

, (18)

and, consequently, for every j ∈ J ,

(PΠ(k,L)
(π))j = πj ×


ak,jk

Rk(π)jk
if jk ∈ L,

1 otherwise.
(19)

Moreover,

KLΠ(k,L)
(π)=KL(ak|L,Rk(π)|L). (20)

Remark 3.2. It follows from (20) that the greedy choice
described above can be implemented by computing m
vectors of sizes nk and then choosing kt among m as
the index of the vector that has the maximal sum of the
largest τk components. More formally one lets dk =
(KL(ak,1, (Rk(πt))1), . . . ,KL(ak,nk , (Rk(πt))nk)) ∈ Rnk
and considers the vector dk↓ ∈ Rnk which has the com-
ponents of dk arranged in a decreasing order. Then kt =
arg maxk∈[m]

(∑τk
jk=1(dk↓)jk

)
and Lt corresponds to the

indexes of the largest τkt components of dkt .
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We conclude this section by observing that to ensure bet-
ter numerical stability, especially for small regularization
parameters η, it is more convenient to work with the dual
variables ∇H(π) = log(π). More precisely, according to
(17), we have that each iteration of the IBP algorithm (13)
can be parameterized as

πt = exp
(
− C/η +

m⊕
k=1

vtk

)
�

m⊗
k=1

ak, t ∈ N, (21)

and one can implement the algorithm by updating only the
dual variables vtk = (vtk,j)1≤j≤nk ∈ Rnk , k ∈ [m], which
are also known as potentials (see Proposition B.1). Thus, in
the end, the IBP algorithm (13)-(14) can be written in the
form of Algorithm 1.

Algorithm 1 BatchGreenkhorn(a1, . . . , am,C, η, τ)

Initialization: v0
k = 0, r0k = Rk(exp(−C/η)�⊗mk=1ak)

for t = 0, 1, . . . do
Compute (kt, Lt)= arg max

(k,L)∈I(τ)

KL(ak|L, r
t
k|L)

Set vt+1
k = vtk, k ∈ [m] and update

vt+1
kt |Lt

← vt+1
kt |Lt

+ log(akt |Lt)− log(rtkt |Lt
)

for k ∈ [m] do
rt+1
k = Rk(exp(−C/η +⊕mk=1v

t+1
k )�⊕mk=1ak)

end for
end for
Output: πt = exp(−C/η +⊕mk=1v

t
k)�⊗mk=1ak

A natural issue of BatchGreenkhorn is that of choosing the
batch size. As extreme cases we have full batch (τk = nk),
which yields the (greedy) MultiSinkhorn algorithm pro-
posed in (Lin et al., 2020), and τk = 1, which, in the
bi-marginal case, is known as the Greenkhorn algorithm
(Altschuler et al., 2017). In this respect we observe that,
since the greedy selection step in Algorithm 1 can be ef-
ficiently implemented, as discussed in Remark 3.2, the
largest computational cost lies in the computation of the
marginals rt+1

k . For simplicity, let us assume that nk = n
and τk = τ , for every k ∈ [m]. Then, computing it naively
yields O(mnm) operations, but indeed it can be done more
efficiently in O(τnm−1) as we show in Appendix B. This
way n/τ iterations with batch size τ have the same compu-
tational cost of one iteration with a full batch n and conse-
quently mn/τ iterations of BatchGreenkhorn with batch
sizes τ corresponds to one cycle of cyclic multimarginal
Sinkhorn.

4. Convergence theory for Batch Greenkhorn
algorithm

Results on the convergence of general IBP are typically with-
out any rates (Bregman, 1967; Censor & Lent, 1981; Censor

& Reich, 1996), with the notable exception of (Kostic &
Salzo, 2021) where local linear rate for the greedy IBP was
studied. In the following we prove the global linear conver-
gence of Algorithm 1 and derive the explicit dependence of
the rate on the given data in two important cases. Moreover,
we provide an analysis of the iteration complexity.

Based on the properties of the operators R and R(k,L), de-
fined in (7) and (10) respectively, we can derive the main
results using the properties of KL as Bregman divergence.
The proofs are given in Appendix C.
Theorem 4.1 (Global linear convergence). Algorithm 1
converges linearly. More precisely, if (vtk)k∈[m] are gener-
ated by Algorithm 1, then the primal iterates given by (21)
converge linearly in KL divergence to π? given by (6), i.e.
for all t ∈ N

KL(π?, πt)≤
(

1− e
−(2‖C‖∞/η+3M1)

bτ − 1

)t
KL(π?, π0), (22)

where bτ =
∑
k∈[m]dnk/τke, and 0 < M1 < +∞ is

a constant independent of the batch sizes that satisfies
max

{
‖
⊕m

k=1 v
?
k‖∞, ‖

⊕m
k=1 v

t
k‖∞

}
≤M1 for t ∈ N.

Theorem 4.2 (Iteration complexity). Let ε > 0 and sup-
pose that η > ε. For Algorithm 1, the number of it-
erations required to reach the stopping criterion d∞t :=
maxk∈[m]‖ak − Rk(πt)‖1 ≤ ε satisfies

t ≤ 2 + max
k∈[m]

⌈
nk
τk

⌉
5M2

ε
(2 +M2η), (23)

where 0 < M2 < +∞ is a constant independent of the
batch sizes such that

∑
k∈[m]‖v?k−vtk‖ ≤M2, for all t ∈ N.

Remark 4.3. The constants M1 and M2 considered in the
above theorems always exist (see the proofs in Appendix C),
but we are not able to derive an expression explicitly de-
pending on the problem data for them that is valid for any
m and (τk)k∈[m]. However, in the following subsections, we
show the important cases m = 2 and (τk)k∈[m] arbitrary
and m > 2 and (τk)k∈[m] = (nk)k∈[m], for which we do
provide explicit dependence on the problem data.

Concerning Theorem 4.2, we note that in literature the
stopping criteria normally considered concerns the quan-
tity dt :=

∑
k∈[m]‖ak − Rk(πt)‖1, rather than d∞t . More-

over, the assumptions usually demand nk = n and τk = τ ,
for every k ∈ [m]. In this setting bτ = mn/τ and, since
dt ≤ md∞t , according to the bound (23), to achieve dt ≤ ε
the following number of iterations is required

t ≤ 2 +
nm

τ

5M2

ε
(2 +M2η).

Hence, in terms of normalized cycles T = t/bτ we have

T ≤ 1 +
5M2

mε
(2 +M2), (24)
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which we stress is independent on the batch-size and the di-
mension n. Additionally, the rate (22) w.r.t. the normalized
cycles become

KL(π?, πbτT )≤
[(

1− e
−(2‖C‖∞/η+3M1)

bτ − 1

)bτ]T
KL(π?, π0).

We conclude this general discussion with a remark on the
computational complexity of the proposed algorithm in
terms of arithmetic operations. If we denote by Oξ the
number of arithmetic operations needed to compute a full
marginal using the Gibbs kernel ξ, when we factor this num-
ber out of the total computational complexity, what remains
is the number of iterations normalized with respect to the
full batch, meaning, t̄ = τt/n. Therefore, according to (23)
the total computational complexity is given by[

2 +
5M2

ε
(2 +M2)

]
Oξ. (25)

We note that in the worst case Oξ is of the order of nm,
but this can be significantly reduced for costs with specific
structure such as the graphical one (Haasler et al., 2020) or
the separable one (Benamou et al., 2015; Peyré & Cuturi,
2019).

The following two subsections give explicit convergence
results for two significant special cases of BatchGreenkhorn.
The proofs consist essentially in computing the constants
M1 and M2 in Theorems 4.1 and 4.2 respectively. Details
are in Appendix C.

4.1. Bi-marginal BatchGreenkhorn

Theorem 4.4. Suppose that m = 2. Then the algorithm
BatchGreenkhorn(a1, a2,C, η, τ) converges linearly with
the global rate

KL(π?, πt) ≤
(

1− e−20‖C‖∞/η

bτ − 1

)t
KL(π?, π0). (26)

Moreover, when η > ε, the number of iterations required to
reach the stopping criterion d∞t ≤ ε satisfies

t ≤ 2 + max
k∈[m]

⌈
nk
τk

⌉
15‖C‖∞(2 + 3‖C‖∞)

ηε
. (27)

The results given in the above theorem are entirely novel
when 1 < τk < nk, k = 1, 2. In the case τ1 = τ2 = 1,
we obtain Greenkhorn algorithm by Altschuler et al. (2017).
Then Theorems 4.4 proves global linear rate of convergence
and also improves the complexity bound given in (Lin et al.,
2021). Indeed, assuming for simplicity that n1 = n2 = n
and defining amin = mink∈[m],j∈[n] ak,j , Lin et al. (2021)
shows that Greenkhorn algorithm meets the stopping criteria

dt ≤ ε in the following number of iterations

t ≤ 2 + 112n
‖C‖∞/η + log n+ 2 log(a−1

min)

ε
,

whereas (27) gives t ≤ 2 + 15n‖C‖∞(2 + 3‖C‖∞)/(ηε).
We see that our result removes the logarithmic factors in the
bound. Moreover, our result in terms of normalized cycles
yields T ≤ 1 + 15‖C‖∞(2 + 3‖C‖∞)/(ηε), which is, in
addition, independent on the dimension n.

4.2. MultiSinkhorn

The following theorem provides new insights into the greedy
algorithm proposed by Lin et al. (2020).

Theorem 4.5. Suppose that for all k ∈ [m] τk = nk.
Then BatchGreenkhorn(a1, . . . , am,C, η, τ), converges
linearly with the global rate

KL(π?, πt)≤
(

1− e
−(12m−7)‖C‖∞/η

m− 1

)t
KL(π?, π0). (28)

Moreover, the number of iterations required to reach the
stopping criterion d∞t ≤ ε satisfies

t ≤ 1 +
8(4m− 3)‖C‖∞

ηε
. (29)

Concerning the linear convergence rate, we notice that when
the batch is full (τk = nk, k ∈ [m]), cyclic Sinkhorn of
(Benamou et al., 2015; Carlier, 2021) and (greedy) Multi-
Sinkhorn algorithm generally differ (unless m = 2). Our
results shows (for the first time) that the rate of convergence
of MultiSinkhorn algorithm is strictly better than that of
the cyclic Sinkhorn algorithm obtained in (Carlier, 2021).
Indeed in (Carlier, 2021), the following rate was provided

KL(π?, πmT ) ≤
(

1− e−8(2m−1)‖C‖∞/η

m

)T
KL(π?, π0),

where T counts the number of cycles, each one consisting
of m KL projections on the given marginals. Whereas, (28)
shows that for MultiSinkhorn

KL(π?, πmT )≤
[(

1−e
−(12m−7)‖C‖∞/η

m− 1

)m]T
KL(π?, π0),

which mainly gains an m-power in the rate.

As for the iteration complexity, in terms of normalized cy-
cles T = t/m and with the stopping criterion dmT ≤ ε, our
result (29) yields T ≤ 1 + 8(4m − 3)‖C‖∞/(ηε), which
improves the existing one from (Lin et al., 2020), that is,
T ≤ 1 + 2m(‖C‖∞/η + log(a−1

min))/ε. The latter bound
contains the term log(a−1

min) which is at best log(n), and,
hence, depends on the dimension of the problem. Our re-
sult removes this dependency. Additionally, we note that
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by using our stopping criterion d∞mT ≤ ε, we obtain the
complexity

T ≤ 1 +
32‖C‖∞
ηε

,

which is, in addition, independent on the number of
marginals m.

We end this section by briefly discussing the linear conver-
gence rate when m = 2, for which MultiSinkhorn reduces
to the classical Sinkhorn algorithm. In this case, our result
shows better rate (1−e−17‖C‖∞/η)2 than the one that can be
derived from (Carlier, 2021), that is, 1− (1/2)e−24‖C‖∞/η .

5. Numerical experiments
In this section we test the BATCHGREENKHORN algorithm
on a number of OT problems relevant to machine learning
in order to empirically check our theoretical findings. We
treat the bi-marginal and multimarginal (m ≥ 3) settings
separately. We are interested in the following two aspects.

• Can the batch size be exploited to make Batch-
Greenkhorn faster than (cyclic) Sinkhorn?

• Does the (greedy) MultiSinkhorn perform better than
the cyclic Sinkhorn, as our global rate predicts?

In the reminder of this section, we have that nk = n for
every k ∈ [m], τ ∈ [n] and will take cyclic Sinkhorn as a
baseline. We introduce the quantity

d∞(πTmn/τ ) := max
k∈[m]

‖ak − Rk(πTmn/τ )‖1, (30)

and we measure the performance of the different algorithms
using two different metrics: (1) the competitive ratio of the
residuals ρτ (T ) := d∞(πTmn/τ )/d∞(π̂T ) where πTmn/τ

is the output of BatchGreenkhorn, while π̂T is the output
of (cyclic) Sinkhorn, and (2) the speedup in computational
time στ , defined as the ratio between BatchGreenkhorn time
and (cyclic) Sinkhorn time, for achieve the precision 10−6,
that is, d∞(πTmn/τ ) ≤ 10−6.

In our experiments we plot the first measure against the num-
ber of normalized cycles T and the second measure vs the
relative batch size τ/n and the relative regularization param-
eter η/‖C‖∞. The algorithms are implemented in Pytorch
and the tests were run on a single Tesla M40 GPU. The codes
are available at www.github.com/CSML-IIT-UCL/
RMOT. We show several results of the experiments, while in
Appendix D a more detailed report is provided.

Bi-marginal setting. In this setup we test Batch-
Greenkhorn and Sinkhorn on the task of computing entropic-
regularized 2-Wasserstein distance between large point-
clouds. In order to treat these large scale OT problems we
implement both algorithms using KeOps library (Charlier

Figure 1: Bi-marginal ModelNet10 experiment. First row shows
competitive ratios ρτ (T ) for size n = 50000 and two relative regu-
larization parameters η = 0.05‖C‖∞ (Left) and η = 0.005‖C‖∞
(Right). Second row shows the speed up στ vs. relative batch size
τ/n for two sizes n = 30, 000 (Left) and n = 50, 000 (Right). In
all plots, the mean is bold and ± standard deviation is shaded.

et al., 2021) achieving a linear memory footprint suitable
to GPUs. First, we consider a random pair of objects from
ModelNet10 dataset (Wu et al., 2015) that contains CAD
models as pre-aligned shapes from 10 categories. Then, in
ten random trials we sample point-clouds of size n from
each one as marginal distributions, and test the algorithms
for different regularization parameters η. The results are
reported in Fig. 1. The first two rows show that with one
only exception BatchGreenkhorn always outperforms cyclic
Sinkhorn in both metrics described above. The last row
shows for sizes n = 30, 000 (Left) and n = 50, 000 (Right)
and different regularization parameters, the speedup factor.
In both cases the best overall performance is achieved at
τ ≈ 5000. Additionally, in Appendix D for this example
we illustrate that, in fact, BatchGreenkhorn can be further
accelerated using simulated annealing strategy from (Feydy
et al., 2019) developed for the classical Sinkhorn. We note,
however, that integrating simulated annealing and greedy
strategies is a delicate matter, which requires further investi-
gation and can be an interesting future research direction.

As a second experiment, we evaluate the performance of
algorithms on the task of label-to-label distance considered
in (Alvarez-Melis & Fusi, 2020) for CIFAR-10 training
dataset (Krizhevsky, 2009) that consists of 50,000 32x32

www.github.com/CSML-IIT-UCL/RMOT
www.github.com/CSML-IIT-UCL/RMOT
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color images in 10 labeled classes. This leads to the
computation of 45 entropic-regularized 2-Wasserstein dis-
tances between point-clouds of dimension 3072. Given a
tolerance ε = 10−6, for moderately small regularization
η = 0.04‖C‖∞ BatchGreenkhorn(12.5%) algorithm com-
pleted the task in 41.98 min compared to Sinkhorn which
took 65.32 min, see Table 4 in Appendix D. This shows
again the practical benefit of using the batch in this prob-
lem.

Multi-marginal setting. In this setup, due to the lack of
KeOps equivalent for higher-order tensors, we implement
the algorithms by pre-computing the kernel tensor and then
storing it on GPU. Clearly, this implies strong memory
limits on the size of the problem one can tackle. In fact, for
large scale problems (moderate m ≥ 3 and moderate n), the
computation of the kernel tensor actually greatly dominates
the computation time of all algorithms. However,we still
provide some preliminary results on the role of greediness
and the batch size in RMOT.

First, we consider a synthetic experiment in order to vali-
date that with growing number of marginals m greedy Mul-
tiSinkhorn converges progressively faster than the cyclic
Sinkhorn, as our theoretical analyses in Sec. 4.2 predicts.
For each m ∈ {3, 6, 9, 12} we randomly generate m 3-
point clouds in 1D of the same form (x1, x2, x3) where
xi ∼ N (−2 + i, 0.1), i = 1, 2, 3. As a ground cost we
use the square of Euclidean distance and we test both al-
gorithms for ten trials and show competitive ratio ρτ (T ),
where τ = n = 3 (full batch) for every m in Fig. 2.

Figure 2: Comparison of convergence rates for (greedy) Mul-
tiSinkhorn and cyclic Sinkhorn on m synthetically generated
3-point-clouds for two relative regularization parameters η =
0.1‖C‖∞ (Left) and η = 0.05‖C‖∞ (Right).

Next, we follow the proposal of (Frogner & Poggio, 2019)
where given m discrete distributions, one can formulate
the MAP estimation of their joint distribution via Bayesian
inference as entropic RMOT for an appropriately chosen
prior. From ModelNet3D dataset, we randomly pick m = 6
objects, for which we wish to infer the joint distribution.
Since our data comes from the aligned 3D objects, using the
square of the Euclidean distance as a cost in the prior is a
suitable choice. For two small sample sizes, n = 8 and n =
16, we construct point-clouds from the objects and run cyclic
Sinkhorn, (greedy) MultiSinkhorn and BatchGreenkhorn

Figure 3: Multi-marginal ModelNet10 experiment. First row:
competitive ratios ρτ (T ) for size n = 16 and two relative regu-
larization parameters η = 0.1‖C‖∞ (Left) and η = 0.01‖C‖∞
(Right). Second row: speedup factor vs relative regularization
parameters for two sizes n = 8 (Left) and n = 16 (Right).

with three batch sizes. Fig. 3 shows the results for ten
random trials. We observe that w.r.t. distance to the transport
polytope, BatchGreenkhorn outperforms cyclic Sinkhorn for
every batch size, while in terms of computational time full
batch, i.e. (greedy) MultiSinkhorn, performs the best. This
is not surprising since the size of each marginal is too small
(12.5% relative batch size for n = 8 gives multimarginal
Greenkhorn, i.e. τ = 1) for the batch to have an effect.

6. Conclusions, limitations and future work
We presented batch Greenkhorn, a new algorithm for solv-
ing multimarginal entropic-regularized optimal transport
problems, which is a natural extension of the Greenkhorn
algorithm. It greedily selects at each iteration a marginal
and batch of its components. We study the convergence of
the algorithm in the framework of the iterative Bregman
projections method, providing novel linear rate of conver-
gence as well as iteration complexity bounds. We made a
comprehensive comparison with existing results showing
the improvements of our methodology over the state-of-the-
art. In addition, we presented numerical experiments that
illustrate how the new flexibility of batch can be exploited
in practice to speed up the Sinkhorn algorithm. A problem
which remains open is that of deriving bounds on the dual
variables with an explicit dependence on the given problem
data for m ≥ 3 when the batch is not full. According to our
general Theorems 4.1 and 4.2, this will allow to have explicit
global linear rate and iteration complexity in all possible
cases. Additional research directions are the extensions of
our analysis to infinite dimensions and general convex reg-
ularizers, implementing batch Greenkhorn with structured
costs, and analyze the impact of parallel computations.
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Appendices
This supplementary material is organized as follows:

• In Appendix A we provide some basic facts on Bregman divergences.

• Appendix B contains the proofs of the results stated in Section 3, notably Proposition 3.1, and gives more information
on the implementation of Algorithm 1.

• In Appendix C we provide the proof of the main results of Sec. 4, concerning the linear convergence and iteration
complexity of Algorithm 1.

• Finally, in Appendix D contains more extensive report on numerical experiments presented in Section 5.

For the reader’s convenience all results presented in the main body of the paper are restated in this supplementary material.

A. Bregman divergences and Bregman projections
In this section we recall few facts on Bregman distance and Bregman projections onto affine sets. In the following X is
an Euclidean space and φ : X → ]−∞,+∞] is an extended-real valued function. The set of minimizers of the function φ
is denoted by arg minx∈X φ(x), the domain of φ is domφ := {x ∈ X |φ(x) < +∞} and φ is proper when domφ 6= ∅.
The function φ is convex if φ(tx + (1 − t)y) ≤ tφ(x) + (1 − t)φ(y) for all x, y ∈ domφ and t ∈ [0, 1]. If the above
inequality is strict when 0 < t < 1 and x 6= y, the function is strictly convex. The function φ is closed if the sublevel
sets {x ∈ X |φ(x) ≤ t} are closed in X for any t ∈ R. For a convex function φ : X → ]−∞,+∞], we denote by φ∗ its
Fenchel conjugate, that is, φ∗ : X → ]−∞,+∞], φ∗(y) := supx∈X{〈x, y〉 − φ(x)}. The conjugate of a convex function is
always closed and convex, and if φ is proper closed and convex, then (φ∗)∗ = φ.

A proper closed and convex function φ is essentially smooth if it is differentiable on int(domφ) 6= ∅, and ‖∇φ(xn)‖ → +∞
whenever xn ∈ int(domφ) and xn → x ∈ bdry(domφ). The function φ is essentially strictly convex if int(domφ∗) 6= ∅
and is strictly convex on every convex subset of dom ∂φ. A Legendre function is a proper closed and convex function
which is also essentially smooth and essentially strictly convex. A function is Legendre if and only if its conjugate is so.
Moreover, if φ is a Legendre function, then ∇φ : int(domφ) → int(domφ∗) and ∇φ∗ : int(domφ∗) → int(domφ) are
bijective, inverses of each other, and continuous. Given a Legendre function φ, the Bregman distance associated to φ is the
function Dφ : X ×X → [0,+∞] such that

Dφ(x, y) =

{
φ(x)− φ(y)− 〈x− y,∇φ(y)〉 if y ∈ int(domφ)

+∞ otherwise.
(31)

Fact A.1. Let φ be a Legendre function on X . Then the following hold

(i) (∀π, γ ∈ domφ) Dφ(π, γ) +Dφ(γ, π) = 〈π − γ,∇φ(π)−∇φ(γ)〉.

(ii) (∀π, γ ∈ domφ) Dφ(π, γ) = Dφ∗(∇φ(γ),∇φ(π)).

(iii) If φ is twice differentiable, then

(∀π, γ ∈ domφ)(∃ ξ ∈ [π, γ]) Dφ(π, γ) =
1

2
〈∇2φ(ξ)(π − γ), π − γ〉,

where [π, γ] = {(1− α)π + αγ |α ∈ [0, 1]} is the segment with end points π and γ.

(iv) Suppose that φ is twice differentiable on int(domφ). Then(
∀π∈ int(domφ), ∇2φ(π) is invertible

)
⇔
(
φ∗ is twice differentiable

)
. (32)

Fact A.2. Let φ be a Legendre function on X and φ∗ be it’s Fenchel conjugate. If domφ∗ is open, then the following hold

(i) For every π ∈ int(domφ), the sublevel sets of Dφ(π, ·) are compact.



Convergence of Batch Greenkhorn Algorithm

(ii) For every π ∈ int(domφ), and every sequence (γk)k∈N in int(domφ)

Dφ(π, γk)→ 0 ⇒ γk → π. (33)

Let C ⊂ X be an affine set, represented as follows

A : X → Y, b ∈ Im(A), C := {π ∈ X |Aπ = b}, (34)

for some linear operator A between X and another Euclidean space Y . Given a Legendre function φ : X → ]−∞,+∞] and
π ∈ int(domφ), the Bregman projection of π onto C is defined as the unique solution, denoted by PφC (π), of the optimization
problem

min
γ∈C

Dφ(γ, π) = min
γ∈C

φ(γ)− φ(π)− 〈γ − π,∇φ(π)〉 (35)

and the optimal value defines the Bregman distance from π to C and is denoted by Dφ
C (π). The dual of the above problem is

min
λ∈Y

φ∗(∇φ(π) +A∗λ)− φ∗(∇φ(π))− 〈b, λ〉 (36)

and strong duality holds, meaning that

min
γ∈C

Dφ(γ, π) = −min
λ∈Y

[
φ∗(∇φ(π) +A∗λ)− φ∗(∇φ(π))− 〈b, λ〉

]
. (37)

Moreover, the following KKT conditions hold for a couple (π?, λ?) solving the primal and dual problem above

π? ∈ int(domφ), Aπ? = b and ∇φ(π) +A∗λ? = ∇φ(π?). (38)

Note that the KKT conditions characterizes the projection, so that

π? = PφC (π) ⇔
(
π? ∈ int(domφ), Aπ? = b, and ∇φ(π)−∇φ(π?) ∈ Im(A∗)

)
. (39)

Finally we mention the generalized Pythagoras theorem. If C1 is an affine set such that C ⊂ C1, then, for every π ∈ int(domφ)
it holds

Dφ
C (π) = Dφ

C1(π) +Dφ
C (PφC1(π)). (40)

Moreover, in this case PφC (π) = PφC (PφC1(π)), and

(∀γ ∈ int(domφ)) ∇φ(γ)−∇φ(π) ∈ Im(A∗)⇐⇒ PC(γ) = PC(π). (41)

In the following we let φ : R→ ]−∞,+∞[ be the (negative) Boltzmann-Shannon entropy, that is,

φ(t) =


t log t− t if t > 0

0 if t = 0

+∞ if t < 0.

It is clear that φ∗(s) = exp(s). We define the Bregman distance associated to φ

Dφ(s, t) =

{
φ(s)− φ(t)− φ′(t)(s− t) if t > 0

+∞ otherwise.

=

{
s log s

t − s+ t if t > 0

+∞ otherwise,
(42)

which is nothing but the Kullback-Leibler divergence on R.

Proposition A.3. Let M > 0. The following hold.
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(i) The function φ is strongly convex on the interval ]0,M ] with modulus of strong convexity equal to 1/M . Moreover, for
every a > 0 and s, t ∈ R++, Dφ(s, t) = aDφ(s/a, t/a).

(ii) The function φ∗ is strongly convex on the interval [−M,+∞[ with modulus of strong convexity equal to exp(−M).

Proof. (i): It follows from the fact that the second derivative of φ is φ′′(t) = 1/t, which is bounded from below away from
zero on the interval ]0,M ] by the constant 1/M . the second part follows directly from the definition (42).

(ii): It follows from the fact that the second derivative of exp is bounded from below away from zero on the interval
[−M,+∞[ by exp(−M).

The negative entropy and the Kullback-Leibler divergence on X are

H(γ) =
∑
j

φ(γj) and KL(γ, π) =
∑
j

Dφ(γj , πj). (43)

Lemma A.4. Let π, γ, α ∈ X++ and suppose that

0 < Mmin ≤ min
j

min{πj , γj}
αj

≤ max
j

max{πj , γj}
αj

≤Mmax.

Then, setting A = α� (·) : X→ X (which is a positive diagonal operator), we have

KL(π, γ) ≥ max

{
Mmin

2
‖log π − log γ‖2A,

1

2Mmax
‖π − γ‖2A−1

}
. (44)

Proof. It follows from Proposition A.3(i) that, for a > 0 and s, t > 0 such that s/a, t/a ≤ M , we have Dφ(s, t) =
aDφ(s/a, t/a) ≥ a(2M)−1|s/a− t/a|2 = (2M)−1a−1|s− t|2. Thus, since γj/αj , πj/αj ≤Mmax, we have

KL(π, γ) =
∑
j

Dφ(πj , γj) ≥
1

2Mmax

∑
j

1

αj
|πj − γj |2 =

1

2Mmax
‖π − γ‖2A−1 .

Now, it follows from Proposition A.3(ii) that for every a, s, t > 0 such that s/a, t/a ≥ e−M we have log(s/a), log(t/a) ≥
−M and hence Dφ(s, t) = aDφ(s/a, t/a) = aDφ∗(log(s/a), log(t/a)) ≥ a(e−M/2)|log s − log t|2. Therefore, since
πj/αj , γj/αj ≥Mmin, we have

KL(π, γ) =
∑
j

Dφ(πj , γj) ≥
Mmin

2

∑
j

αj |log πj − log γj |2 =
Mmin

2
‖log π − log γ‖2A.

B. BatchGreenkhorn algorithm and its implementation
Here we provide proofs of the results in Sec. 3.

Proposition 3.1. For every π ∈ X+, k ∈ [m] and L ⊂ [nk],

PΠ(k,L)
(π) = π � exp

(
R∗(k,L)(ū)

)
, (17)

where
ū = log

ak|L
Rk(π)|L

, (18)

and, consequently, for every j ∈ J ,

(PΠ(k,L)
(π))j = πj ×


ak,jk

Rk(π)jk
if jk ∈ L,

1 otherwise.
(19)

Moreover,
KLΠ(k,L)

(π)=KL(ak|L,Rk(π)|L). (20)
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Proof. It follows from (11) that
Π(k,L) =

{
π ∈ X

∣∣R(k,L)(π) = ak|L

}
. (45)

Then the first equality in (17) follows directly form the KKT conditions (38), which in this case yields

R(k,L)(π̄) = ak|L and π̄ = ∇H∗
(
∇H(π) + R∗(k,L)(ū)

)
, (46)

where, according to (36), the dual parameter ū ∈ RL solves the minimization problem in (18). Now, since for every j ∈ J ,
(∇H(π))j = log(πj) and (∇H∗(γ))j = exp(γj), then (46) gives

π̄j = exp(log(πj) + R∗(k,L)(ū))j) = πj exp
(
(R∗(k,L)(ū))j

)
and the second equality in (17) follows.

Now, let J (k)
L : RL → Rnk be the canonical injection of RL into Rnk . Then, recalling the definition of R(k,L) in (10), we

have R(k,L) = J
(k)∗
L Rk and hence R∗(k,L) = R∗kJ

(k)
L , where R∗k : Rnk → X acts as (R∗kv)j = vjk . Therefore, for every

j ∈ J ,

(R∗(k,L)ū)j = (R∗kJ
(k)
L ū)j = (J

(k)
L ū)jk =

{
ūjk if jk ∈ L
0 otherwise.

Hence,

π̄j = πj ×

{
eūjk if jk ∈ L
1 otherwise.

(47)

On the other hand, since ak|L = J
(k)∗
L Rkπ̄, by (47), we derive that, for every jk ∈ L,

ak,jk = (Rkπ̄)jk =
∑

j−k∈J−k

π̄(j−k,jk) = eūj (Rkπ)j , (48)

so that eūjk = ak,jk/(Rkπ)jk . Hence now (19) follows from (47). Concerning the formula for the distance, by (19), we
have that,

Dφ
Π(k,L)

(π) = Dφ(π̄, π)

=
∑
j∈J

π̄j log
( π̄j
πj

)
− π̄j + πj

=
∑
jk∈L

∑
j−k∈J−k

π̄(j−k,jk) log
( ak,jk

(Rkπ)jk

)
− π̄(j−k,jk) + π(j−k,jk)

=
∑
jk∈L

ak,jk log
( ak,jk

(Rkπ)jk

)
− ak,jk + (Rkπ)jk

= KL(ak|L,Rk(π)|L),

which completes the proof.

The following proposition justifies equation (21) and Algorithm 1.

Proposition B.1. Let (πt)t∈N be defined according to algorithm (13). Then, we have

(∀ t ∈ N) πt = exp
(
− C/η +

m⊕
k=1

vtk

)
�

m⊗
k=1

ak, (49)

where vtk = (vtk,j)1≤j≤nk ∈ Rnk and

vt+1
k = δk,ktJ

(kt)
Lt

ut + vtk, ut = log akt|Lt − log(Rktπ
t)|Lt , (50)

J
(kt)
Lt

: RLt → Rnkt is the canonical injection, δk,kt is the Kronecker symbol, and v0
k, k ∈ [m] are arbitrary.
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Proof. By definition of πt+1 we have

πt+1 = PΠ(kt,Lt)
(πt), Π(kt,Lt) =

{
π ∈ X | J (kt)∗

Lt
Rktπ = akt|Lt

}
. (51)

Then it follows from Proposition 3.1 that

∇H(πt+1) = ∇H(πt) + R∗ktJ
(kt)
Lt

ut (52)

with ut ∈ RLt . Therefore, applying the above equation recursively, we get

∇H(πt) = ∇H(π0) +

t−1∑
s=0

R∗ksJ
(ks)
Ls

us

= ∇H(π0) +

t−1∑
s=0

m∑
k=1

R∗kδk,ksJ
(ks)
Ls

us

= ∇H(π0) +

m∑
k=1

t−1∑
s=0

R∗kδk,ksJ
(ks)
Ls

us

= ∇H(π0) +

m∑
k=1

R∗k

( t−1∑
s=0

δk,ksJ
(ks)
Ls

us
)
.

Then if we set vtk =
∑t−1
s=0 δk,ksJ

(ks)
Ls

us ∈ Rnk , we have (recalling that π0 = e−C/η �⊗mk=1ak)

πtj = exp
(

log(π0
j ) +

m∑
k=1

(R∗kv
t
k)j

)
= exp

(
− Cj/η +

m∑
k=1

vtk,jk

) m∏
k=1

ak,jk .

Moreover, it is clear that

vt+1
k =

t∑
s=0

δk,ksJ
(ks)
Ls

us = δk,ktJ
(kt)
Lt

ut + vtk

Finally, it follows from (18) that, for every jkt ∈ Lt, e
utjkt = akt,jkt/(Rkπ

t)jkt , so that

(∀ jkt ∈ Lt) utjkt = log akt,jkt − log
(
(Rkπ

t)jkt
)
.

The statement follows.

Next we give more detailed implementation of the batch Greenkhorn given in Algorithm 1.
Remark B.2 (Implementation details on Algorithm 1). The most delicate part is to avoid recomputing the marginals
Rk(πt) = rtk = (rtk,jk)jk∈[nk], k ∈ [m], (step 5) that are necessary for making the greedy choice in step 3. Now, due to
equation (19) in Proposition 3.1, we have that

πt+1
j = πtj ×


akt,jkt

Rkt(π
t)jkt

if jkt ∈ Lt,

1 otherwise
(53)

and hence

rt+1
kt,jkt

=

{
akt,jkt jkt ∈ Lt,
rtkt,jkt

otherwise.
(54)

To derive update formula for the other marginals, observe that for all k 6= kt it follows from (49) that

rt+1
k,jk

=
∑

j−k∈J−k

exp
(

log π0
(j−k,jk) +

∑
h6=k

vt+1
h,jh

+ vt+1
k,jk

)
=

∑
j−k∈J−k

exp
(

log π0
(j−k,jk) +

∑
h6∈{k,kt}

vth,jh + vt+1
kt,jkt

+ vtk,jk

)
.
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So, since according to (50), vt+1
kt,jkt

= vtkt,jkt
if jkt 6∈ Lt and vt+1

kt,jkt
= vtkt,jkt

+ log(akt,jkt/r
t
kt,jkt

) if jkt ∈ Lt, we have

rt+1
k,jk

=
∑

j−k∈J−k
jkt 6∈Lt

exp
(

log π0
(j−k,jk) +

∑
h6=k

vth,jh + vtk,jk

)

+
∑

j−k∈J−k
jkt∈Lt

exp
(

log π0
(j−k,jk) +

∑
h6=k

vth,jh + vtk,jk

)akt,jkt
rtkt,jkt

=
∑

j−k∈J−k
jkt∈Lt

exp
(

log π0
(j−k,jk) +

∑
h6=k

vth,jh + vtk,jk

)(akt,jkt
rtkt,jkt

− 1
)

+ rtk,jk .

Therefore, at each iteration t ≥ 0 we will construct an auxiliary tensor π̃t ∈ Rn1×···×nkt−1×1×nkt+1×···×nm
+ by

π̃tj1,...,jkt−1,1,jkt+1,...,jm
=
∑

jkt∈Lt

exp
(

log π0
j1,...,jkt−1,jkt ,jkt+1,...,jm

+
∑
k∈[m]

vtk,jk (55)

+ log|akt,jkt − r
t
kt,jkt

| − log(rtkt,jkt )
)

sgn(akt,jkt − r
t
kt,jkt

), (56)

in order to obtain that for every k 6= kt, rt+1
k = rt+1

k + Rk(π̂t). Hence, we can use π̂t to efficiently update non-active
marginals without recomputing them from scratch. Moreover, note that using (55)-(56) one avoids excessive numerical
errors when ak,j ≈ rtk,j . These observations lead us to the following implementation of BATCHGREENKHORN.

Algorithm 2 BatchGreenkhorn(a1, . . . , am,C, η, τ)

Input: C ∈ X+, η > 0, (a1, . . . , am), (τ1, . . . , τm), 1 ≤ τk ≤ nk, ε > 0
Initialization: v0

k = 0, r0k = Rk(exp(−C/η)�⊗mk=1ak), k ∈ [m]
while

∑
k∈[m]‖ak − rtk‖1 > ε do

for k ∈ [m] do
Compute vectors pk as pk,j := KL(ak,j , r

t
k,j), for j ∈ [nk]

Take L′k to be τk largest elements of pk
end for
Choose the marginal with the best batch: kt ← arg maxk∈[m]‖pk|L′k‖1 and Lt = L′kt
Set vt+1

k = vtk and update vt+1
kt |Lt

← vt+1
kt |Lt

+ log(akt |Lt)− log(rtkt |Lt
)

Set rt+1
kt

= rtkt and update rt+1
kt |Lt

= akt |Lt
for k ∈ [m] \ {kt} do

Update rt+1
k ← rtk + Rk(π̃t), where π̃t is given by (55)–(56)

end for
Set t← t+ 1

end while
Output: {vtk}k∈[m]

Remark B.3. Let us assume that τk = τ and nk = n for all k ∈ [m] and that m << n. Then, we can conclude that the
cost of one iteration of BATCHGREENKHORN is essentially determined by step 10 of Algorithm 2 which is performed in
O(τnm−1) operations. Hence, one iteration of the MULTISINKHORN (i.e, BATCHGREENKHORN with a full batch τ = n)
has the same order of computational cost as n/τ iterations of BATCHGREENKHORN with a batch size τ . So, we can
introduce the normalized iteration counter as t = tτn/τ , where tτ is the iteration counter for the BatchGreenkhorn
with a batch size τ .

C. Convergence of Batch Greenkhorn algorithm
Here we provide proofs of the main results given in Sec. 4. We first set notation for the rest of the section. Given k ∈ [m]
and L ⊂ [nk], we denote by

Jk : Rnk → Rn1 × · · · × Rnk × · · · × Rm, vk 7→ (0, . . . , 0, vk, 0, . . . , 0), (57)
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the canonical injection of Rnk into Rn1 × · · · × Rnk × · · · × Rnm and by

J
(k)
L : RL → Rnk (58)

the canonical injection of RL into Rnk .

We note that, referring to the operators R and Rk defined in (7) and (3), respectively, we have

R∗ : Rn1 × · · · × Rnm → X, R∗(v1, . . . , vm) =

m∑
k=1

R∗k(vk) =

m⊗
k=1

vk, (59)

where (R∗k(vk))j1,...,jk,...,jm = vk,jk . Indeed the second equality in (59) follows from the fact that for every j ∈ J ,
(R∗(v1, . . . , vm))j =

∑m
k=1(R∗kvk)j =

∑m
k=1 vk,jk =

(⊕m
k=1 vk

)
j
. We note also that Rk = J∗k ◦ R, since J∗k is the k-th

canonical projection.

Then we provide a result concerning the properties of optimal potentials.

Lemma C.1. Let π? be the solution of RMOT given by (4). Then π? = PΠ(ξ�⊗mk=1ak) and, for every k ∈ [m], there exist
v?k = (v?k,j)1≤j≤nk ∈ Rnk , such that

π? = exp
(
− C

η
+

m⊕
k=1

v?k

)
�

m⊗
k=1

ak, (60)

and the v?k’s, can be chosen so that ∑
k∈[m]

‖v?k‖∞ ≤ (4m− 3)
‖C‖∞
η

. (61)

Moreover, if m = 2, then v?1 and v?2 can be chosen such that

max
k∈[m]

‖v?k‖∞ ≤
3

2

‖C‖∞
η

. (62)

Proof. Since, by definition π? = PΠ(ξ), it easy to see, from the characterization of the projection given in (39), that

π? = PΠ(ξ �⊗mk=1ak) ⇔ ∇H(ξ �⊗mk=1ak)−∇H(ξ) ∈ Im(R∗).

Thus, since ∇H(ξ �⊗mk=1ak)−∇H(ξ) = log⊗mk=1ak = ⊕mk=1 log ak = R∗(log a1, . . . , log am) ∈ Im(R∗), we have that
PΠ(ξ �⊗mk=1ak) = PΠ(ξ) = π?. Now, it follows from the KKT conditions (38) for the projection of ξ �⊗mk=1ak onto
affine set Π, that

π? = ∇H∗
(
∇H(ξ �⊗mk=1ak) + R∗(v?1, . . . , v

?
m)
)

for some (v?1, . . . , v
?
m) ∈ Rn1 × · · · × Rnm . Since∇H∗ = exp and∇H = log, (60) follows. Next, observe that for every

k ∈ [m], since Rk(π?) = ak, using (60), we obtain that for every jk ∈ [nk],

exp(v?k,jk)
∑

j−k∈J−k

exp(−C(j−k,jk)/η +

m∑
h6=k

v?h,jh)
∏
h6=k

ah,jh = 1. (63)

Hence, the vectors v?1, . . . , v
?
m solve a (discrete) Schrödinger system, and we can apply the results from (Carlier, 2021,

Lemma 3.1) and (Di-Marino & Gerolin, 2020, Theorem 2.8) to obtain (61) and (62), respectively.

Lemma C.2. Let A, : X→ X and Ak : Rnk → Rnk be diagonal and positive operators defined as A(π) = π �
⊗m

k=1 ak
and Ak(vk) = vk � ak, respectively. Then the following hold.

(i) For every k ∈ [m] and every vk ∈ Rnk , ‖R∗kvk‖2A = ‖vk‖2Ak
(ii) Let (v1, . . . , vm) ∈ Rn1 × · · · × Rnm , if 〈vk, ak〉 = 0 for every k = 1, . . . ,m− 1, then

‖R∗(v1, . . . , vm)‖2A =

m∑
k=1

‖R∗kvk‖2A =

m∑
k=1

‖vk‖2Ak . (64)
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Proof. Let k ∈ [m]. Then, recalling that (R∗k(vk))j = vk,jk , we have

‖R∗kvk‖2A =
∑
j∈J

v2
k,jk

m∏
`=1

a`,j`

=
∑

j−k∈J−k

nk∑
jk=1

v2
k,jk

ak,jk

m∏
6̀=k

a`,j`

=
∏
` 6=k

( n∑̀
`=1

a`,j`

) nk∑
jk=1

v2
k,jk

ak,jk .

Since
∑n`
`=1 a`,j` = 1, we get ‖R∗kvk‖2A = ‖vk‖2Ak and (i) follows. Concerning (ii), equation (64) will follow if we prove

that, for every k, h ∈ [m] with k 6= h, we have that R∗k(vk) and R∗h(vh) are orthogonal in the metric 〈·, ·〉A. Thus, let
k, h ∈ [m] and suppose (w.l.o.g.) that k < h. Then

〈R∗k(vk),R∗h(vh)〉A =
∑
j∈J

vk,jkvh,jh

m∏
`=1

a`,j`

=
∑

j1,...,jk−1,jk+1,...,
jh−1,jh+1,...,jm

nk∑
jk=1

nh∑
jh=1

vk,jkvh,jhak,jkah,jh

m∏
6̀=k,` 6=h

a`,j`

=

( nk∑
jk=1

vk,jk

)( nh∑
jh=1

vh,jh

) ∏
` 6=k,` 6=h

( n∑̀
`=1

a`,j`

)
.

Since
∑n`
`=1 a`,j` = 1 and for k < m,

∑nk
jk=1 vk,jkak,jk = 〈vk, ak〉 = 0, we have 〈R∗k(vk),R∗h(vh)〉A = 0 and hence the

statement (ii) follows.

Theorem 4.1 (Global linear convergence). Algorithm 1 converges linearly. More precisely, if (vtk)k∈[m] are generated by
Algorithm 1, then the primal iterates given by (21) converge linearly in KL divergence to π? given by (6), i.e. for all t ∈ N

KL(π?, πt)≤
(

1− e−(2‖C‖∞/η+3M1)

bτ − 1

)t
KL(π?, π0), (22)

where bτ =
∑
k∈[m]dnk/τke, and 0 < M1 < +∞ is a constant independent of the batch sizes that satisfies

max
{
‖
⊕m

k=1 v
?
k‖∞, ‖

⊕m
k=1 v

t
k‖∞

}
≤M1 for t ∈ N.

Proof. We start by recalling the two formulas

πt = exp
(
− C

η
+ Vt

)
� α and π? = exp

(
− C

η
+ V?

)
� α, (65)

where α :=
⊗m

k=1 ak, Vt :=
⊕m

k=1 v
t
k, and V? :=

⊕m
k=1 v

?
k. Moreover, since for every (λk)k∈N ∈ RN such that∑m

k=1 λk = 0, we have
⊕m

k=1(vtk + λk) =
⊕m

k=1 v
t
k and

⊕m
k=1(v?k + λk) =

⊕m
k=1 v

?
k, we can choose the dual variables

(vtk)k∈[nk] and (v?k)k∈[nk] so that

(∀ k = 1, . . . ,m− 1) 〈vtk, ak〉 = 0 and 〈v?k, ak〉 = 0. (66)

First, observe that Pythagoras theorem yields that KLΠ(πt+1) = KLΠ(πt) − KLΠ(kt,Lt)
(πt) ≤ KLΠ(πt), which implies

that, for every t ≥ 0, DH∗(log πt, log π∗) = KL(π?, πt) ≤ KLΠ(π0) < +∞. Howevery, since H∗ is a Legendre function,
the sublevel sets of DH∗(·, log π∗) are bounded, and hence the sequence (log πt)t∈N is bounded in X. Now, since the first of
(65) yields that log πt = −C/η + Vt + logα, we have that also the sequence (Vt)t∈N is bounded in X. Thus let M1 > 0 be
such that

‖V?‖∞, ‖Vt‖∞ ≤M1 (∀ t ∈ N).
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Then, recalling (65),

πt

α
= exp

(
− C

η
+ Vt

)
≥ exp

(
− ‖C‖∞

η
− ‖Vt‖∞

)
≥ exp

(
− ‖C‖∞

η
−M1

)
and

π?

α
= exp

(
− C

η
+ V?

)
≥ exp

(
− ‖C‖∞

η
− ‖V?‖∞

)
≥ exp

(
− ‖C‖∞

η
−M1

)
and hence

exp
(
− ‖C‖∞

η
−M1

)
≤ min

{πt
α
,
π?

α

}
(∀ t ∈ N). (67)

Let t ∈ N, k ∈ [m] and L ⊂ [nk]. It follows from (19) that

(∀ j ∈ J ) (PΠ(k,L)
(πt))j = πtj ×


ak,jk

Rk(π)jk
if jk ∈ L,

1 otherwise
(68)

and hence

(∀ j ∈ J )
(PΠ(k,L)

(πt))j

αj
≤
πtj
αj

max

{
1,

ak,jk
Rk(π)jk

}
. (69)

Now, since C ≥ 0, we have

πt

α
= exp

(
− C

η
+ Vt

)
≤ exp(Vt) ≤ exp(‖V‖∞) ≤ exp(M1) (70)

and

Rk(π)jk
ak,jk

=

∑
j−k∈J−k π

t
(j−k,jk)

ak,jk

=

∑
j−k∈J−k exp

(
− C(j−k,jk)/η + Vt(j−k,jk)

)∏m
h=1 ah,jh

ak,jk

=
∑

j−k∈J−k

exp
(
− C(j−k,jk)/η + Vt(j−k,jk)

) m∏
h6=k

ah,jh

≥ exp
(
− ‖C‖∞/η −M1

) ∑
j−k∈J−k

m∏
h6=k

ah,jh

= exp
(
− ‖C‖∞/η −M1

) m∏
h 6=k

( nh∑
jh=1

ah,jh

)
= exp

(
− ‖C‖∞/η −M1

)
, (71)

since
∑nh
jh=1 ah,jh = 1. Therefore, by (69), (70), and (71),

PΠ(k,L)
(πt)

α
≤ exp(M1) exp

(
‖C‖∞/η +M1

)
= exp

(
‖C‖∞/η + 2M1

)
and hence, recalling (70),

max

{
πt

α
,
PΠ(k,L)

(πt)

α

}
≤ exp

(
‖C‖∞/η + 2M1

)
. (72)

We now prove that

exp
(
− 2‖C‖∞ − 3M1

)
b−1
τ KLΠ(πt) = KLΠ(kt,Lt)

(πt) = max
(k,L)∈I(τ)

KL(PΠ(k,L)
(πt), πt). (73)
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From this inequality it will follow, using the Pythagoras theorem KLΠ(πt+1) + KLΠ(kt,Lt)
(πt) = KLΠ(πt), that

exp(−2‖C‖∞ − 3M1)b−1
τ KLΠ(πt) = KLΠ(πt)− KLΠ(πt+1) (74)

and hence
KLΠ(πt+1) ≤

(
1− exp(−2‖C‖∞ − 3M1)b−1

τ

)
KLΠ(πt), (75)

which gives the statement. Thus, it remains to prove (73). Let t ∈ N and, for the sake of brevity set

π := πt, πhk := PΠ
(k,Lh

k
)
(πt) vk := v?k − vtk, and vhk := J

(k)∗
Lhk

vk. (76)

Let, for every k ∈ [m], (Lhk)1≤h≤sk be a partition of [nk] made of non empty sets of cardinality exactly τk possibly except
for the last one, such that L1

kt−1
= Lt−1, where sk = dnk/τke. Then, it follows from (65) that

π?

π
=

exp(−C/η) exp(V?)

exp(−C/η) exp(Vt)
= exp(V? − Vt). (77)

Hence, recalling that R∗(v1, . . . , vm) =
∑m
k=1 R

∗
kvk =

⊕m
k=1 vk =

⊕m
k=1(v?k − vtk), we have

KLΠ(π) + KL(π, π?) = KL(π?, π) + KL(π, π?)

= 〈π? − π, log(π?/π)〉
= 〈π? − π,V? − Vt〉
= 〈π? − π,R∗(v1, . . . , vm)〉

=

m∑
k=1

〈π? − π,R∗k(vk)〉. (78)

Moreover, recalling that R(k,Lhk) = J
(k)∗
Lhk
◦ R∗k and vhk = J

(k)∗
Lhk

(vk), we have

R∗k(vk) = R∗k

( nh∑
h=1

J
(k)

Lhk
◦ J (k)∗

Lhk
(vk)

)
=

nh∑
h=1

R∗(k,Lhk)(v
h
k) (79)

and hence

KLΠ(π) + KL(π, π?) =

m∑
k=1

sk∑
h=1

〈π? − π,R∗(k,Lhk)(v
h
k)〉. (80)

Now, recalling the general definition of Π(k,L) in (11), since πhk and π? both belong to Π(k,Lhk), we have that π? − πhk ∈
Ker(R(k,Lhk)) = Im(R∗

(k,Lhk)
)⊥ and hence

〈π? − π,R∗(k,Lhk)(v
h
k)〉 = 〈π? − πhk ,R∗(k,Lhk)(v

h
k)〉+ 〈πhk − π,R∗(k,Lhk)(v

h
k)〉 = 〈πhk − π,R∗(k,Lhk)(v

h
k)〉

and hence

KLΠ(π) + KL(π, π?) =

m∑
k=1

sk∑
h=1

〈πhk − π,R∗(k,Lhk)(v
h
k)〉

=

m∑
k=1

sk∑
h=1

〈A−1(πhk − π),R∗(k,Lhk)(v
h
k)〉A, (81)

where A is the positive diagonal operator defined in Lemma C.2. Now, it follows from (67), Lemma A.4, and Lemma C.2(i)
that

KL(πt, π?) ≥ (1/2) exp(−‖C‖∞/η −M1)‖log π? − log πt‖2A
= (1/2) exp(−‖C‖∞/η −M1)‖V? − Vt‖2A
= (1/2) exp(−‖C‖∞/η −M1)‖R∗(v1, . . . , vm)‖2A

= (1/2) exp(−‖C‖∞/η −M1)

m∑
k=1

‖vk‖2Ak .
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Moreover, recalling the definition of vhk in (76), since vk =
∑sk
h=1 J(k,Lhk)v

h
k and (J(k,Lhk)v

h
k)h∈[sk] is a finite orthogonal

sequence in Rnk w.r.t. the metric 〈·, ·〉Ak , we have

‖vk‖2Ak =

sk∑
h=1

‖J(k,Lhk)v
h
k‖2Ak =

sk∑
h=1

‖R∗kJ(k,Lhk)v
h
k‖2A =

sk∑
h=1

‖R∗(k,Lhk)v
h
k‖2A, (82)

where we used Lemma C.2(ii) applied to J(k,Lhk)v
h
k and the fact that, by definition, R(j,Lhk) = J

(k)∗
Lhk

Rk. Overall we get that

KL(πt, π?) ≥ (1/2) exp(−‖C‖∞/η −M1)

m∑
k=1

sk∑
h=1

‖R∗(k,Lhk)v
h
k‖2A

and hence (81) yields

KLΠ(π) ≤
m∑
k=1

sk∑
h=1

〈A−1(πhk − π),R∗(k,Lhk)(v
h
k)〉A − KL(π, π?)

≤
m∑
k=1

sk∑
h=1

〈A−1(πhk − π),R∗(k,Lhk)(v
h
k)〉A −

1

2
exp(−‖C‖∞/η −M1)‖R∗(k,Lhk)v

h
k‖2A

≤ exp(‖C‖∞/η +M1)

2

m∑
k=1

sk∑
h=1

‖A−1(πhk − π)‖2A

=
exp(‖C‖∞/η +M1)

2

m∑
k=1

sk∑
h=1

‖(πhk − π)‖2A−1 ,

where in the last inequality we used the Young-Fenchel inequality 〈a, b〉A ≤ µ
2 ‖a‖

2
A+ 1

2µ‖b‖
2
A. Now, recalling that we set π =

πt and πhk = PΠ
(k,Lh

k
)
(πt), it follows from (72) and Lemma A.4 that 1

2‖π
h
k − π‖2Θ−1 ≤ exp

(
‖C‖∞/η + 2M1

)
KL(πhk , π),

and consequently

KLΠ(πt) ≤ exp
(
2‖C‖∞/η + 3M1

) ∑
k∈[m]

∑
h∈[sk]

KL(πhk , π)

≤ exp
(
2‖C‖∞/η + 3M1

)( ∑
k∈[m]

sk − 1

)
max
k∈[m]

max
h∈[sk]

KL(πhk , π)

= exp
(
2‖C‖∞/η + 3M1

)( ∑
k∈[m]

dnk/τke − 1

)
max
k∈[m]

max
h∈[sk]

KL(PΠ
(k,Lh

k
)
(πt), πt)

≤ (bτ − 1) exp
(
2‖C‖∞/η + 3M1

)
max

(k,L)∈I(τ)
KL(PΠ(k,L)

(πt), πt),

where in the second inequality we used that, for k = kt−1 and h = 1, πhk = PΠ(kt−1,Lt−1)
(πt) = πt (since by definition

πt ∈ Π(kt−1,Lt−1)), so that KL(πhk , π) = 0. This proves (73) and the proof is complete.

We now provide a result concerning the convergence of numerical sequences which is critical to analyze the iteration
complexity of the algorithm. This result has been first showed implicitly in (Dvurechensky et al., 2018). We provide here a
more explicit version together with a complete proof for the reader’s convenience.

Lemma C.3. Let M,C > 0 and let (δt)t∈N and (d∞t )t∈N be two sequences of positive numbers such that, for every t ∈ N,

(i) δt − δt+1 ≥
(
d∞t
C

)2

,

(ii) δt ≤Md∞t .

Let ε > 0 and set t̄ = min{t ∈ N | d∞t ≤ ε}. Then t̄ ≤ 1 + 2MC2/ε.
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Proof. Items (i) and (ii) imply that

δt − δt+1 ≥
(

δt
MC

)2

.

Therefore, since δt ≥ δt+1, we have

δt − δt+1 ≥
δ2
t

M2C2
≥ δtδt+1

M2C2

and hence, dividing by δtδt+1,
1

δt+1
− 1

δt
≥ 1

M2C2
.

Thus,
1

δt
− 1

δ0
=

t−1∑
i=0

(
1

δi
− 1

δi+1

)
≥ t

M2C2

and hence we get the following rate of convergence for the sequence (δt)t∈N

δt ≤
(

1

δ0
+

t

M2C2

)−1

. (83)

Now, we let δ ∈ ]0, δ0]. We wish to determine the number of iterations such that δt ≤ δ. It follows from (83) that(
1

δ0
+

t

M2C2

)−1

≤ δ ⇔ 1

δ0
+

t

M2C2
≥ 1

δ
⇔ t ≥M2C2

(
1

δ
− 1

δ0

)
. (84)

This means that if we take t ≥M2C2(1/δ − 1/δ0), we have δt ≤ δ as desired. So we set t = bM2C2(1/δ − 1/δ0)c+ 1.
Then, we have δt ≤ δ. Now we have to cases. Suppose that t < t̄ and let s ∈ N be such that t+ s = t̄− 1. Then, for every
i = 0, . . . , s, since t+ i < t̄, we have d∞t+i > ε and hence, using (i),

δ ≥ δt − δt̄ =

s∑
i=0

(
1

δt+i
− 1

δt+i+1

)
≥

s∑
i=0

(d∞t+i)
2

M2C2
≥ (s+ 1)

ε2

M2C2
, (85)

which implies that s+ 1 ≤ C2δ/ε2. Overall we have

t̄ = t+ s+ 1 ≤
⌊
M2C2

(
1

δ
− 1

δ0

)⌋
+ 1 + C2 δ

ε2
≤ 1 +

M2C2

δ
− M2C2

δ0
+
C2δ

ε2
. (86)

Note that this inequality is true for any δ ∈ ]0, δ0]. Now, suppose that Mε ≤ δ0. Then we have

t̄ ≤ 1 + min
δ∈]0,δ0]

(
M2C2

δ
+
C2δ

ε2

)
= 1 + 2

MC2

ε
, (87)

where the minimum is attained at δ = Mε ∈ ]0, δ0]. On the other hand, if δ0 < Mε, then the minimum on the right hand
side of (86) is attained at δ = δ0 and hence

t̄ ≤ 1 +
C2δ0
ε2
≤ 1 +

C2Mε

ε2
= 1 +

MC2

ε
. (88)

In any case, the statement follows.

Remark C.4. The statement of Lemma C.3 is equivalent to the fact that the sequence (min0≤s<t ds)t∈N converge to zero
with rate O(1/t), i.e., that for every integer t > 1,

min
0≤s<t

ds ≤
2MC2

t− 1
.

Next, we prove the main result on the iteration complexity.
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Theorem 4.2 (Iteration complexity). Let ε > 0 and suppose that η > ε. For Algorithm 1, the number of iterations
required to reach the stopping criterion d∞t := maxk∈[m]‖ak − Rk(πt)‖1 ≤ ε satisfies

t ≤ 2 + max
k∈[m]

⌈
nk
τk

⌉
5M2

ε
(2 +M2η), (23)

where 0 < M2 < +∞ is a constant independent of the batch sizes such that
∑
k∈[m]‖v?k − vtk‖ ≤M2, for all t ∈ N.

Proof. For the sake of brevity let b̄ = maxk∈[n]dnk/τke and set, for every t ∈ N, δt := KLΠ(πt). Let t ∈ N be arbitrary.
Recalling (78), we have that

δt = KLΠ(πt) ≤
∑
k∈[m]

〈π? − πt,R∗k(v?k − vtk)〉=
∑
k∈[m]

〈ak − Rk(πt), v?k − vtk〉,

which, using Hoölder inequality, yields

δt ≤
∑
k∈[m]

‖ak − Rk(πt)‖1 ‖v?k − vtk‖∞ ≤M2d
∞
t . (89)

Now, we prove

δt − δt+1 ≥ min
{ (d∞t )2

5b̄
,

δ2
t

4M2
2 b̄

}
≥ δ2

t

5M2
2 b̄
. (90)

Let for every k ∈ [m], (Lhk)1≤h≤[sk], sk := dnk/τke, be a partition of [nk] made of nonempty sets of cardinality exactly τk,
except maybe for the last one, such that L1

kt
= Lt (not that necessarily the cardinality of Lt is τkt ). Then, according to the

greedy choice of (kt, Lt) we have that

b̄KLΠ(kt,Lt)
(πt) ≥ max

k∈[m]
sk max

h∈[sk]
KLΠ

(k,Lh
k
)
(πt) ≥ max

k∈[m]

∑
h∈[sk]

KLΠ
(k,Lh

k
)
(πt).

Thus, equation (20) of Proposition 3.1 yields

b̄KLΠ(kt,Lt)
(πt) ≥ max

k∈[m]

∑
h∈[sk]

KL(ak|Lhk ,Rk(πt)|Lhk ) = max
k∈[m]

KL(ak,Rk(πt)). (91)

Now Pinsker’s inequality guaranties that, for every k ∈ [m]

KL(ak,Rk(πt)) ≥ ‖ak − Rk(πt)‖21
2
3‖ak‖1 + 4

3‖Rk(πt)‖1
=
‖ak − Rk(πt)‖21

2
3 + 4

3‖πt‖1
≥ ‖ak − Rk(πt)‖21

2 + 4
3‖ak − Rk(πt)‖1

, (92)

where in the second inequality we used that ‖ak − Rk(πt)‖1 ≥ ‖Rk(πt)‖1 − ‖ak‖1 = ‖πt‖1 − 1. Thus, solving the
quadratic inequality in ‖ak − Rk(πt)‖1 ≥ 0 we can conclude that

‖ak − Rk(πt)‖1 ≤ 2
3KL(ak,Rk(πt)) +

√
( 2

3KL(ak,Rk(πt)))2 + 2KL(ak,Rk(πt)).

Therefore, if maxk∈[m] KL(ak,Rk(πt)) ≤ 1, then 2 + 4d∞t /3 ≤ 5, and consequently, maxk∈[m] KL(ak,Rk(πt)) ≥
(d∞t )2/5, which, using Pythagoras theorem and (91), yields

δt − δt+1 = KLΠ(πt)− KLΠ(πt+1) = KLΠ(kt,Lt)
(πt) ≥ (d∞t )2

5b̄
. (93)

On the other hand, if maxk∈[m] KL(ak,Rk(πt)) > 1, it follows again from Pythagoras theorem and (91), that δt−δt+1 ≥ 1/b̄.
Moreover, since δt ≤ δ0 ≤M2d

∞
0 ≤M2(1 + ‖π0‖1) ≤ 2M2, we have that 1 ≥ δ2

t /(4M
2
2 ), and (90) follows.
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Now, similarly to what was done in the proof of Lemma C.3 we can derive from (90) that

δt ≤
(

1

δ0
+

t

5M2
2 b̄

)−1

. (94)

Thus, if we take r = b5M2
2 b̄c+ 1 we have δr ≤ 1. Then, by (20) with L = [nk] and Pythagoras theorem we have that, for

every t ∈ N,
KL(ak,Rk(πr+t)) = KL(PΠ(k,[nk])

(πr+t), πr+t) ≤ KL(π?, πr+t) = δr+t ≤ δr ≤ 1.

Thus, maxk∈[m] KL(ak,Rk(πr+t)) ≤ 1 and for what we already saw,

δr+t − δr+t+1 ≥
d2
r+t

5b̄
. (95)

In the end the sequence (δr+t)t∈N satisfies the two assumptions of Lemma C.3 with C =
√

5b̄ and M = M2. Thus, we can
conclude that the smallest t so that dr+t ≤ ε satisfies t ≤ 1 + 10M2b̄/ε. Hence

r + t ≤ 2 +
10M2b̄

ε
+ 5M2

2 b̄ ≤ 2 +
10M2b̄

ε
+

5M2
2 b̄η

ε
= 2 +

5M2b̄

ε
(2 +M2η).

The next two results are based on novel bounds on potentials that imply explicit dependence of constant M > 0 in the global
rate (22) on the given data: a1, . . . , am, C and η.

Theorem 4.4. Suppose that m = 2. Then the algorithm BatchGreenkhorn(a1, a2,C, η, τ) converges linearly with the
global rate

KL(π?, πt) ≤
(

1− e−20‖C‖∞/η

bτ − 1

)t
KL(π?, π0). (26)

Moreover, when η > ε, the number of iterations required to reach the stopping criterion d∞t ≤ ε satisfies

t ≤ 2 + max
k∈[m]

⌈
nk
τk

⌉
15‖C‖∞(2 + 3‖C‖∞)

ηε
. (27)

Proof. Let vtk, k ∈ [m], t ≥ 0 be given by Algorithm 1. Then from Proposition B.1 we have that for every t ≥ 0

πt+1 = exp
(
− C

η
+

m⊕
k=1

vt+1
k

)
�

m⊗
k=1

ak, (96)

with v0
k = 0 and for t ≥ 0, k ∈ [m] and jk ∈ [nk],

vt+1
k,jk

=

{
vtk,jk + log(ak,jk)− log(Rk(πt)jk) k = kt, jk ∈ Lt,
vtk,jk otherwise.

So, to bound log πt, we will bound vtk, k ∈ [m]. Since Rkt(π
t+1)jkt = akt,jkt for all jkt ∈ Lt, (96) implies that

1 = exp(vt+1
kt,jkt

)
∑

j−kt∈J−kt

exp
(
− C(j−kt ,jkt )

/η +
∑
k 6=kt

vtk,jk

) ∏
k 6=kt

ak,jk ,

and, hence,
exp(−vt+1

kt,jkt
) =

∑
j−kt∈J−kt

exp
(
− C(j−kt ,jkt )

/η +
∑
k 6=kt

vtk,jk

) ∏
k 6=kt

ak,jk . (97)

So, using (63) we obtain that for every jkt ∈ Lt

exp(vt+1
kt,jkt

− v?kt,jkt ) =

∑
j−kt∈J−kt

exp
(
− C(j−kt ,jkt )

/η +
∑
k 6=kt

v?k,jk

)
∑

j−kt∈J−kt

exp
(
− C(j−kt ,jkt )

/η +
∑
k 6=kt

vtk,jk

) ,
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while

exp(v?kt,jkt − v
t+1
kt,jkt

) =

∑
j−kt∈J−kt

exp
(
− C(j−kt ,jkt )

/η +
∑
k 6=kt

vtk,jk

)
∑

j−kt∈J−kt

exp
(
− C(j−kt ,jkt )

/η +
∑
k 6=kt

v?k,jk

) .
However, since in general, αi, βi > 0 implies that (

∑
i αi)/(

∑
i βi) ≤ maxi αi/βi, the last two equalities give

exp(vt+1
kt,jkt

− v?kt,jkt ) ≤ max
j−kt∈J−kt

exp
( ∑
k 6=kt

(v?k,jk − v
t
k,jk

)
)

and
exp(v?kt,jkt − v

t+1
kt,jkt

) ≤ max
j−kt∈J−kt

exp
( ∑
k 6=kt

(vtk,jk − v
?
k,jk

)
)
.

Hence, taking the logarithm we obtain that for every jkt ∈ Lt,

|vt+1
kt,jkt

− v?kt,jkt | ≤ max
j−kt∈J−kt

∣∣∣ ∑
k 6=kt

(v?k,jk − v
t
k,jk

)
∣∣∣ ≤ max

j−kt∈J−kt

∑
k 6=kt

|v?k,jk − v
t
k,jk
| =

∑
k 6=kt

‖vtk − v?k‖∞.

Therefore, since vt+1
k,jk

= vtk,jk if k 6= kt or jkt /∈ Lt,

max
{
‖vt+1
kt
− v?kt‖∞,

∑
k 6=kt

‖vt+1
k − v?k‖∞

}
≤ max

{
‖vtkt − v?kt‖∞,

∑
k 6=kt

‖vtk − v?k‖∞
}
,

and, since m = 2,
max
k∈[m]

‖vt+1
k − v?k‖∞ ≤ max

k∈[m]
‖vtk − v?k‖∞,

which implies, recalling that v0 = 0, that, for all t ≥ 0, maxk∈[m]‖vtk − v?k‖∞ ≤ maxk∈[m]‖v?k‖∞. Now, in view of (62) in
Lemma C.1, we have

max
k∈[m]

‖v?k‖∞ ≤
3

2

‖C‖∞
η

(98)

and hence, since ‖vtk‖∞ ≤ ‖vtk − v?k‖∞ + ‖v?k‖∞, maxk∈[m]‖vtk‖∞ ≤ 2 maxk∈[m]‖v?k‖∞ ≤ 3‖C‖∞/η. In the end, since
for every (vk)k∈[m] ∈ Rn1 × · · · × Rnm∥∥∥∥ m⊕

k=1

vk

∥∥∥∥
∞

= max
j∈J

∣∣∣∣ m∑
k=1

vk,jk

∣∣∣∣ ≤ max
j∈J

m∑
k=1

|vk,jk | =
m∑
k=1

‖vk‖∞ ≤ m max
k∈[m]

‖vk‖∞, (99)

we can satisfy the boundedness assumptions on the dual variables of Theorem 4.1 with M1 = 6‖C‖∞/η and (26) follows
from (22). Concerning the iteration complexity, again by (98), since maxk∈[m]‖vtk − v?k‖∞ ≤ maxk∈[m]‖v?k‖∞, we have∑
k∈[m]‖vtk − v?k‖∞ ≤ 3‖C‖∞/η. So, using η ≥ ε, (29) follows directly from (23) with M2 = 3‖C‖∞/η.

Theorem 4.5. Suppose that for all k ∈ [m] τk = nk. Then BatchGreenkhorn(a1, . . . , am,C, η, τ), converges linearly
with the global rate

KL(π?, πt)≤
(

1− e
−(12m−7)‖C‖∞/η

m− 1

)t
KL(π?, π0). (28)

Moreover, the number of iterations required to reach the stopping criterion d∞t ≤ ε satisfies

t ≤ 1 +
8(4m− 3)‖C‖∞

ηε
. (29)

Proof. Using the same notation as in the previous proof, we first show that

(∀ t ∈ N)(∀ k ∈ [m])(∀ jk, `k ∈ [nk]) vtk,jk − v
t
k,`k
≤ 2‖C‖∞/η. (100)
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Indeed, since for t = 0, vtk,jk − v
t
k,`k

= 0, we proceed by induction assuming that (100) holds for t and proving it for t+ 1.
Noting that for every k ∈ [m], every j−k ∈ J−k and every jk, `k ∈ [nk]

C(j−k,jk) − C(j−k,`k) ≤ 2‖C‖∞,

and that Lt = [nkt ], from (97) we have that vt+1
kt,jkt

− vt+1
kt,`kt

≤ 2‖C‖∞/η holds for every jkt , `kt ∈ [nkt ]. On the other

hand for every k 6= kt v
t+1
k = vtk, which using the inductive hypothesis (100) yields vt+1

k,jk
− vt+1

k,`k
≤ 2‖C‖∞/η. In any case

(100) holds for t+ 1.

Next, let t ∈ N and define the normalizing constants λt+1
1 , . . . λt+1

m ∈ R as λt+1
k := −〈ak, vt+1

k 〉 for k 6= kt, and λt+1
kt

:=

−
∑
k 6=kt λ

t+1
k . Then denoting ut+1

k := vt+1
k +λt+1

k , k ∈ [m], since
∑
k∈[m] λ

t+1
k = 0, we have

⊕m
k=1 v

t+1
k =

⊕m
k=1 u

t+1
k

and hence, recalling (49),

πt+1 = exp
(
− C/η +

m⊕
k=1

ut+1
k

)
�

m⊗
k=1

ak, (101)

Moreover, from (100) we have that for every k 6= kt and every jk, `k ∈ [nk]

ut+1
k,jk
− ut+1

k,`k
= vt+1

k,jk
− vt+1

k,`k
≤ 2‖C‖∞/η,

which, using
∑
j∈[nk] ak,j = 1 and the fact that the λt+1

k ’s are chosen so that 〈ak, ut+1
k 〉 = 0 for all k 6= kt, implies

−ut+1
k,`k

=
∑

jk∈[nk]

ak,jk(ut+1
k,jk
− ut+1

k,`k
) ≤ 2‖C‖∞/η, `k ∈ [nk], (102)

and
ut+1
k,jk

=
∑

`k∈[nk]

ak,`k(ut+1
k,jk
− ut+1

k,`k
) ≤ 2‖C‖∞/η, jk ∈ [nk]. (103)

Therefore, we have obtained that ‖ut+1
k ‖∞ ≤ 2‖C‖∞/η for k 6= kt. On the other hand, similar to what was done in the

proof of Theorem 4.4 we can derive that, for every jkt ∈ Lt = [nkt ],

exp(−ut+1
kt,jkt

) =
∑

j−kt∈J−kt

exp
(
− C(j−kt ,jkt )

/η +
∑
k 6=kt

utk,jk

) ∏
k 6=kt

ak,jk .

Since, recalling (102) and (103),

exp(−(2m− 1)‖C‖∞/η) ≤ exp
(
− C(j−kt ,jkt )

/η +
∑
k 6=kt

utk,jk

)
≤ exp((2m− 1)‖C‖∞/η),

and
∑
j−kt∈J−kt

∏
k 6=kt ak,jk = 1, we have

exp(−(2m− 1)‖C‖∞/η) ≤ exp(−ut+1
kt,jkt

) ≤ exp((2m− 1)‖C‖∞/η).

Therefore,
exp

(
|ut+1
kt,jkt

|
)

= max
{

exp
(
ut+1
kt,jkt

)
, exp

(
− ut+1

kt,jkt

)}
≤ exp((2m− 1)‖C‖∞/η) (104)

and hence
‖ut+1
kt
‖∞ ≤ (2m− 1)‖C‖∞/η.

Therefore, we have
∑
k∈[m]‖utk‖∞ ≤ (4m − 3)‖C‖∞/η =: M and due to (101) and the computation (99), we can use

M1 = M in Theorem 4.1 and get (28). Concerning iteration complexity, recalling (61) we have that
∑
k∈[m]‖uk − v?k‖∞ ≤

2(4m− 3)‖C‖∞/η and hence as done in (89) we have

δt ≤
2(4m− 3)‖C‖∞

η
d∞t .

Moreover, since ‖πt‖1 = 1 and b̄ = 1, it follows from (91), (92) and (93) that

δt − δt+1 ≥
(d∞t )2

2
. (105)

Thus, the statement follows from Lemma C.3.
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D. Numerical Experiments
Here we provide a more extensive report on the numerical experiments presented in Section 5:

• Bi-marginal ModelNet10 experiment: for the pair of objects shown in the first column of Figure 4, we report the
performance of BatchGreenkhorn and Sinkhorn in Figure 5. Three sizes n, four regularization parameters η and
eighteen relative batch-sizes were tested.

• Bi-marginal ModelNet10 experiment with simulated annealing: to illustrate that BatchGreenkhorn can be further
accelerated, we have implemented BatchGreenkhorn with a simulated annealing strategy in the same way as (Fla-
mary et al., 2021) did for Sinkhorn. This has required a log-domain implementation of BatchGreenkhorn in small
regularization parameter regimes. For the small size point clouds from first two objects from Figure 4 we compare
BatchGreenkhorn(25%) and Sinkhorn to a baseline of GeomLoss library (Feydy et al., 2019) by setting debias=True,
backend=’online’ and using annealing by setting scaling parameter. Since our implementations are using the stopping
criterion d∞ ≤ ε, we first run GeomLoss and check a posteriori the error ε on the marginals, and then we run Sinkhorn
and BatchGreenkhorn with and without annealing till this precision ε is achieved. In Table 2 we show the computation
times for size n = 1000, regularization parameter η/‖C‖∞ = 10−3 and two scaling parameters. We note that the
annealing strategy does accelerate convergence of BatchGreenkhorn. However, we stress that we did not optimize the
scaling procedure for BatchGreenkhorn. In particular the overhead of computing during the iterations the stopping
criterion has not been factor out and this affects more the BatchGreenkhorn than Sinkhorn, because of the greedy
strategy. Moreover, here the setting is small size and we already observed in the previous experiments that in that
scenario BatchGreenkhorn is not performing so well with respect to Sinkhorn.

• Label-to-label distance experiment: in Tables 3 and 4 we present total running time (min) needed for BatchGreenkhorn
and Sinkhorn algorithms to compute 45 η-regularized OT problems with tolerance ε = 10−6 for FashinMNIST and
CIFAR10 datasets, respectively.

• Multi-marginal ModelNet10 experiment: for inferring the joint distribution of six objects shown in Figure 4, we report
the performance of cyclic Sinkhorn, (greedy) MultiSinkhorn and BatchGreenkhorn in Figure 6.

Table 2: Run time in seconds for simulated annealing acceleration on ModelNet10 experiment.

Algorithm scaling = 0.75 scaling = 0.99
ε = 6.75 · 10−2 ε = 4.2 · 10−3

GeomLoss 0.51 11.5

Sinkhorn 3.22 5.90

Sinkhorn with annealing 0.55 2.49

BatchGreenkhorn(25%) 3.87 13.86

BatchGreenkhorn(25%) with annealing 0.94 3.48
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Figure 4: Six objects from ModelNet10 dataset used in the experiments.

Table 3: Total run time in minutes for the FashionMNIST dataset.

n = 2500 n = 5000

‖C‖∞/η Sinkhorn BatchGreenkhorn Sinkhorn BatchGreenkhorn
50% 25% 12.5% 50% 25% 12.5%

5 1.89 1.42 1.38 1.37 5.88 4.37 4.26 4.21

10 2.86 2.15 2.02 2.00 8.73 6.55 6.27 6.16

15 3.88 2.82 2.71 2.71 11.83 8.76 8.32 8.22

20 4.92 3.55 3.41 3.39 15.00 10.82 10.43 10.26

25 6.01 4.30 4.14 4.12 18.41 13.04 12.55 12.52

Table 4: Total run time in minutes for the CIFAR-10 dataset.

n = 2500 n = 5000

‖C‖∞/η Sinkhorn BatchGreenkhorn Sinkhorn BatchGreenkhorn
50% 25% 12.5% 50% 25% 12.5%

5 6.61 5.20 4.96 5.37 21.41 16.82 15.75 17.13

10 9.87 7.31 6.81 6.65 31.78 23.35 21.53 20.92

15 12.99 9.6 9.13 8.91 42.24 30.53 28.53 28.09

20 16.7 12.09 11.47 11.11 53.63 38.10 35.58 35.03

25 20.23 14.55 13.76 13.35 65.32 45.88 43.25 41.98
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Figure 5: Bi-marginal ModelNet10 experiment : In the first three rows we show competitive ratios ρτ (T ) for n =
10000, 30000, 50000 (rows) and relative regularization parameters η/‖C‖∞ = 0.05, 0.02, 0.01, 0.005 (columns). In the
bottom two rows we show speedup factors στ vs. relative regularization ‖C‖∞/η (fourth row) and vs. relative batch size
(fifth row) for n = 10000, 30000, 50000 (columns). In all plots, mean is bold and ± standard deviation is shaded.
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Figure 6: Multi-marginal ModelNet10 experiment : In the top two rows we show competitive ratios ρτ (T ) for n = 8 and
n = 16 (rows) and relative regularization parameters η/‖C‖∞ = 0.1, 0.05, 0.01 (columns). In the bottom row we show
speedup factors στ vs. relative regularization ‖C‖∞/η for n = 8 and n = 16 (columns). In all plots, mean is bold and ±
standard deviation is shaded.


