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Abstract—The partial element equivalent circuit (PEEC)
method provides an electromagnetic model of interconnections
and packaging structures in terms of standard circuit elements.
The surface-based PEEC (S-PEEC) formulation can reduce the
number of unknowns compared to the standard volume-based
PEEC (V-PEEC) method. This reduction is of particular use in the
case of high-speed circuits and high-switching power electronics,
where the bandwidth extends from low frequencies to the GHz
range. In this article, the S-PEEC formulation is revised and cast
in a matrix form. The main novelty is that the interaction integrals
involving the curl of the magnetic and electric vector potentials
are computed through the Taylor series expansion of the full-wave
Green’s function, leading to analytical forms that are rigorously
derived. Therefore, the numerical integration is avoided, with a
consequent reduction of the computation time. The proposed for-
mulas are studied in terms of the frequency, size of the mesh,
and distance between the basis function domains. Three examples
are presented, confirming the accuracy of the proposed method
compared to the V-PEEC method and surface-based numerical
methods from literature.

Index Terms—Green’s function, partial element equivalent
circuit (PEEC) method, Taylor-series expansion.

I. INTRODUCTION

G ENERAL circuit models of integrated circuit layouts and
interconnections in a wide frequency range are critical to

accurately predict circuit performance that could be degraded
due to skin and proximity effects. The extraction of parasitics is
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particularly relevant in high-frequency applications that involve
the design of integrated circuits and on-chip and package in-
terconnections, as well as in-power electronics applications. An
accurate impedance extraction can be performed by using pow-
erful numerical engines based on the finite element method [1],
which resort to the meshing of the entire volume of the modeling
domain and approximating the electromagnetic fields on this
volume mesh. On the other hand, methods based on integral
equations such as method of moments (MoM) and partial ele-
ment equivalent circuit (PEEC) method [2]–[4] adopt a volu-
metric mesh based on the concept of the Green’s function, and
hence, differently from the FEM-based modeling, avoid the use
of absorbing boundary conditions to approximate unbounded
media. The PEEC method based on the volume equivalence prin-
ciple is called volume-based PEEC (V-PEEC) [5]–[8], whereas
the PEEC method based on the surface-equivalence principle is
called surface-based PEEC (S-PEEC) [9]–[13]. Both of them
can convert a multiconductor electromagnetic (EM) problem
into a circuit-domain problem. However, the S-PEEC performs
an electromagnetic computation only at the surface and not
within the whole volume of the modeling domain. The surface
formulation is particularly relevant for electrically thick objects,
for which the V-PEEC formulation requires a large number of
unknowns to correctly capture skin and proximity effects across
a wide frequency range. S-PEEC models were first developed for
conductors with surface impedance approximations [14], [15].
However, this approximation cannot be applied to dielectrics
and it is valid only at higher frequencies, for which the conduc-
tor cross-sectional dimensions are larger than the skin-depth.
In [16], an S-PEEC formulation for modeling arbitrarily shaped
3-D composite conductor and dielectric structures was presented
as a systematic extension to the existing V-PEEC solvers. The
proposed approach is based on the surface equivalence princi-
ple [17] and the so-called PMCHWT formulation [18], where
both electric and magnetic field surface integral equations are
used. This leads to electric and magnetic circuits which are
coupled by mutual cross-couplings. The interaction integrals
involve the full-wave Green’s function in both the surrounding
medium (e.g., air) and the modeling media including conduc-
tors, dielectrics, and/or magnetics, which support the surface
electric and magnetic currents and charges. Special care has to
be taken for the computational complexity and computational
accuracy of the integrals [9]. In fact, the numerical computation
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of these integrals is particularly challenging due to singularities
and is time-consuming, especially for highly oscillating func-
tions, which appear in the case of good conductors and a wide
modeling bandwidth ranging from very low frequencies up
to tens of GHz. Significant contributions have been proposed
for the efficient computation of these integrals over triangular
mesh [13], [19]–[22] in the framework of the MoM. A surface
integral formulation using triangular mesh was proposed in [13]
showing its advantage over the volume-based EM modeling.
Conversely to the MoM, the PEEC formulation uses an orthog-
onal mesh. A boundary-integral-element (BIE) method using a
differential surface admittance operator and an equivalent circuit
derivation similar to the PEEC method was proposed in [12] for
impedance extraction of 3-D interconnects using a rectangular
cuboid mesh, which is an orthogonal mesh. The computation
of dense matrices representing the interaction between basis-
functions was based on the static Green’s function, and the
computational complexity of the interaction-integrals was not
discussed in the article. In [23], simplified PEEC-based inte-
gral equations were obtained under the quasi-static assumption
leading to a substantial reduction of the size of the subcircuits
describing dielectrics. In [10], [11], the surface equivalent princi-
ple in the PEEC-based modeling framework with the full-wave
Green’s function was used to model rectangular multilayered
structures. An accurate method to handle the singularity occur-
ring in the interaction integrals is described in [24]. However,
the integration is to be performed numerically.

In the PEEC formulation, orthogonal mesh (often referred
as Manhattan-type mesh [8]) allows analytical calculation of
the PEEC integrals [8], [25]. This can significantly reduce the
computational complexity and makes the PEEC method attrac-
tive for fast and accurate EM modeling, which in turn can be
used in optimization routines. Therefore, an orthogonal mesh
is a preferable choice whenever geometrical simplifications are
justified, which is the case for various engineering modeling
tasks. In the context of the S-PEEC formulation employing
rectangular surface mesh, the interaction integrals have been
typically computed numerically and the analytical computation
of these integrals has not been addressed in literature so far to
the authors’ best knowledge. The main focus of this article is the
analytical computation of the interactions integrals occurring
in the S-PEEC method. Accordingly, this article proposes a
solution to avoid slow numerical calculation of the integrals
involved in the S-PEEC formulation, which leads toward a com-
putationally efficient S-PEEC modeling approach. In particular,
analytical formulas for calculating the integrals occurring in
the S-PEEC formulation based on the orthogonal surface mesh
are presented. They are obtained by using the Taylor series
expansion of the exponential term appearing in the Green’s
function. It is to be remarked that the fields of applicability of
the proposed analytical formulas include the parasitic extraction
of power electronic circuits, multilayered circuit boards [11],
transmission lines [26], and 3-D on-chip interconnects [27], [28]
where the orthogonal mesh is well suited.

The rest of this article is organized as follows. Section II
briefly summarizes the S-PEEC formulation. Equations are re-
organized in a matrix form and integrals to be computed are
defined. In Section III, the analytical formulas for the surface

interaction integrals are presented. The range of applicability
and the speed-up of the proposed formulas are discussed in Sec-
tion IV and three numerical examples are presented pointing out
the accuracy achieved. Finally, Section V concludes this article.

II. SURFACE PEEC FORMULATION

Given a 3D object, it is assumed that the surface separating
the internal from the external problem is uniquely identified. The
first region, named region1, is the portion of the space limited
by the surface of a closed 3-D object, and it is related to the
internal problem. The second region, named region2, is related
to the external problem [17], [29]. The electric and magnetic
fields in the two regions 1 and 2 can be written as

E1,2(r) = − jωA1,2(r)−∇Φe
1,2(r)+

− 1

ε1,2
∇× F 1,2(r) (1a)

H1,2(r) = − jωF 1,2(r)−∇Φm
1,2(r)+

+
1

μ1,2
∇×A1,2(r) (1b)

where

A1,2(r) = μ1,2

∫
S

G1,2(r, r
′)Js1,2(r

′)ds′ (2a)

F 1,2(r) = ε1,2

∫
S

G1,2(r, r
′)M s1,2(r

′)ds′ (2b)

Φe
1,2(r) =

1

ε1,2

∫
S

G1,2(r, r
′)qes1,2(r

′)ds′ (2c)

Φm
1,2(r) =

1

μ1,2

∫
S

G1,2(r, r
′)qms1,2(r

′)ds′. (2d)

The Green’s function G1,2(r, r
′) reads

G1,2(r, r
′) =

1

4π

e−jβ1,2|r−r′ |

|r − r′| . (3)

where

β1,2 = ω
√
μ1,2ε1,2 (4)

where μi, εi, i = 1, 2, are the complex permeability and permit-
tivity of the two regions. In the following, the dependence on
jω of the various matrices is omitted for the sake of simplicity.

Denoting with Einc
1 (r), Hinc

1 (r), Einc
2 (r), and Hinc

2 (r) the
incident electric and magnetic fields in region1 and region2,
respectively, the surface equivalence principle enforces the fol-
lowing boundary conditions:

n̂×
[
E1(r) +Einc

1 (r)

]
= n̂×

[
E2(r)+

+Einc
2 (r)

]
r∈S

(5a)

n̂×
[
H1(r) +Hinc

1 (r)

]
= n̂×

[
H2(r)+

+Hinc
2 (r)

]
r∈S

. (5b)
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The electric and magnetic fields in (5) are expressed in terms
of magnetic and electric vector and scalar potentials (2). They
are referred to as surface-electric field integral equation (s-
EFIE) and surface-magnetic field integral equation (s-MFIE),
respectively. The continuity equations for the electric current
and magnetic densities read as

∇ · Js1,2(r) = − jωqes1,2(r) (6a)

∇ ·M s1,2(r) = − jωqms1,2(r). (6b)

The equivalent electrical and magnetic current densities on two
sides of the same surface are related by

Js2(r) = −Js1(r) M s2(r) = −M s1(r). (7)

From (6) and (7), it is evident that similar boundary conditions
hold for the electrical and magnetic surface charge densities

qes2(r) = −qes1(r) qms2(r) = −qms1(r). (8)

The surface S is meshed using two dual grids, referred in the
following as “primal” and “dual” grids, for electric/magnetic
currents and electric/magnetic charges, respectively. The electric
and magnetic quantities are expanded using pulse basis function

b� (r) =

{
û�

w�
if r ∈ S�

0 otherwise
(9)

where û� is the unit vector indicating the current orientation on
surface S�, where � indicates the �th surface element. w� is the
width of the �th elementary surface orthogonal to the direction
in which the currents Js� and Ms� flow.

Similarly, the basis functions used to expand the charge den-
sities are

p� (r) =

{
1
S�

if r ∈ S�

0 otherwise
(10)

where S� is the area of the �th elementary surface where charges
Qe

� and Qm
� are located.

Such choice of the basis functions assumes uniform electri-
cal/magnetic current and charge densities over the elementary
patches of the two grids:

Js� =
I�
w�

; Ms� =
M�

w�
(11a)

qes� =
Qe

�

S�
; qms � =

Qm
�

S�
(11b)

where the weights I� and M� represent the electric/magnetic
current flowing on the surface S� with orientation as defined by
û� andQe,m

� represents the surface electric and magnetic surface
charge on the generic patch of the mesh.

Then, the Galerkin testing process is applied. To this aim, the
following inner products are computed for each term of the s-
EFIE/s-MFIE (5) and the continuity equations (6), respectively:

〈f (r) , bk (r)〉 = 1

wk

∫
Sk

f (r) · ûk (r) ds, k = 1 · · ·Np
s

(12a)

〈g (r) , pj (r)〉 =
∫
Sj

g (r) · pj (r) ds, j = 1 · · ·Nd
s (12b)

where Np
s and Nd

s are the number of patches in the two grids.
Using expressions (1a) and (1b), the tested s-EFIE and s-

MFIE are

0 =
1

wk

∫
Sk

{[
Einc

2 (r)−Einc
1 (r)

]
+ jω

[
A1(r)−A2(r)

]

+∇
[
Φe

1(r)− Φe
2(r)

]
+ (13a)

+

[
1

ε1
∇×F 1(r)− 1

ε2
∇× F 2(r)

]}
· ûk(r)ds

0 =
1

wk

∫
Sk

{[
Hinc

2 (r)−Hinc
1 (r)

]
+ jω

[
F 1(r)− F 2(r)

]

+∇
[
Φm

1 (r)− Φm
2 (r)

]
+

−
[
1

μ1
∇×A1(r)− 1

μ2
∇×A2(r)

]}
· ûk(r)ds

(13b)

for i = 1, . . . , Np
s , where the testing functions are assumed

identical to the basis functions. Since the surface mesh for
electrical and magnetization currents is the dual of that for
electric and magnetic charges, we denote as HC and KC the
matrices computed by integrating the Green’s function (3) and
its curl in (13) over the currents pertinent domains of the primal
grid, respectively. We denote as HQ the integrals referred to
the surface electrical and magnetic charges computed on the
elementary patches of the dual grid.

The generic element k, � of the matricesH andK is computed
as

HC
1,2(k, �) =

1

4πwkw�

∫
Sk

∫
S�

[
e−jβ1,2|r−r′|

|r − r′| û� (r
′)
]

· ûk (r) dsds
′ (14a)

KC
1,2(k, �) =

1

4πwkw�

∫
Sk

∫
S�

[
∇× e−jβ1,2|r−r′ |

|r − r′| û� (r
′)
]

· ûk (r) dsds
′

(14b)

with k, � = 1 · · ·Np
s . By applying the Galerkin’s testing proce-

dure to (2c) and (2d), the corresponding matrix form reads

Φe
1,2 =

1

ε1,2
HQ

1,2Q
e
1,2 = Pe

1,2Q
e
1,2 (15a)

Φm
1,2 =

1

μ1,2
HQ

1,2Q
m
1,2 = Pm

1,2Q
m
1,2 (15b)

where the k, �th entry of HQ
1,2 is

HQ
1,2(k, �) =

1

4πSkS�

∫
Sk

∫
S�

e−jβ1,2|r−r′ |

|r − r′| dsds′ (16)

with k, � = 1 · · ·Nd
s .
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The primal and dual surfaces are meshed using a Manhattan-
type (rectangular) mesh. Manhattan-type meshes have become
popular in the V-PEEC formulation because they allow obtaining
analytical formulas of partial elements, namely partial induc-
tances and coefficients of potentials [5], [6] under the quasi-static
assumption. In the V-PEEC formulation in [25], [30], Taylor’s
expansion of the full-wave Green’s function with analytical
formulas has been used. In this article, a similar approach is
followed.

Analytical formulas for the calculation of partial elements
in the V-PEEC formulation including the full-wave Green’s
function have been handled by means of the Taylor’s expansion
in [25], [30].

In the following, each patch is uniquely associated with a node
in an equivalent circuit network, and touching patches that share
the same node have the same (unique) potential. The continuity
of the potential across touching patches and the conservation
of the charge are enforced with a reduction matrix T acting on
Φe,m

1,2 and Qe,m
1,2 as follows:

Φ
(e,m)
1,2 = TΦ̃

(e,m)

1,2 (17a)

Q̃
(e,m)
1,2 = TTQ

(e,m)
1,2 (17b)

Φ̃
(e,m)

1,2 =
(
TTP

(e,m)−1
1,2 T

)−1

Q̃
(e,m)
1,2 =

= P̃
(e,m)
1,2 Q̃

(e,m)
1,2 . (17c)

where the “tilde” denotes the reduced potentials and charges.
Hence, the electric and magnetic charges can be related to the
electric and magnetic potentials as

Q̃
(e,m)
1,2 =

(
TTP

(e,m)
1,2

−1
T
)
Φ̃

(e,m)

1,2 =

=
[
P̃

(e,m)
1,2

]−1

Φ̃
(e,m)

1,2 . (18)

By using the Galerkin’s testing process and assuming constant
basis functions over the elementary domains, the continuity
equations (6) for the external and internal problems of both the
electric and magnetic charges are rewritten as

−AT I+ jω
[
P̃

(e)
1

]−1

Φ̃
(e)

1 = Is (19a)

AT I+ jω
[
P̃

(e)
2

]−1

Φ̃
(e)

2 = Is (19b)

−ATM+ jω
[
P̃

(m)
1

]−1

Φ̃
(m)

1 = 0 (19c)

ATM+ jω
[
P̃

(m)
2

]−1

Φ̃
(m)

2 = 0 (19d)

where A is the connectivity matrix [8] and Is is the electric
current sources vector. Depending on the frequency of interest,
the surface impedance approximation guarantees reasonable
accuracy [31]. Given a generic conductor body, if the cross-
sectional dimensions of the conductor are much larger than the
effective skin depth for the defined frequency, i.e., the skin-
effect is well developed, the surface impedance approximation
is a valid assumption [16]. However, such a model is typically

accurate enough only at relatively high frequencies (above tens
of MHz). The resulting model can be expressed in the time
domain by approximating the surface impedance in a rational
form in the complex plane [32]. If the dimension of the conductor
and the operating frequency do not allow assuming the surface
impedance approximation, the conductor can be modeled as a
dielectric object with a complex permittivity given by

ε (ω) = ε′
(
1 +

σ

jωε′

)
(20)

where ε′ is the real part of the permittivity of the surrounding
dielectric.

Finally, using integrals (14) and (16), (13) can be rewritten as

jωLe
pI+KM+AΦ̃

e

1 −AΦ̃
e

2 = Ve
s (21a)

−KI+ jωLm
p M+AΦ̃

m

1 −AΦ̃
m

2 = Vm
s (21b)

where matrices Le
p,L

m
p ,K are

Le
p = μ1H

C
1 + μ2H

C
2 (22a)

Lm
p = ε1H

C
1 + ε2H

C
2 (22b)

K = KC
1 +KC

2 (22c)

and the right-hand-side terms represent the excitations voltages

Ve
sk

=
1

wk

∫
Sk

[
Einc

1 (r)−Einc
2 (r)

] · ûk(r)ds (23a)

Vm
sk

=
1

wk

∫
Sk

[
Hinc

1 (r)−Hinc
2 (r)

] · ûk(r)ds (23b)

with k = 1, . . . , Np
s .

Finally, a matrix block-elimination of (21) and (19) allows
rewriting the equations in terms of the electric currents I and
electric potentials Φe

1 of the exterior problem[
Zem

s A

−AT jωC̃e
1

] [
I
Φe

1

]
=

[
Vem

s

Is

]
(24)

where C̃e
1 = [P̃e

1]
−1 and where the impedance matrix Zem

s

and Vem
s represent the equivalent surface impedance and the

equivalent voltage source taking into account both the electric
and magnetic surface phenomena, and are defined as

Zem
s = jωLe

p +KTK+A
P̃e

2

jω
AT (25a)

Vem
s = Ve

s +KTVm
s +A

P̃e
2

jω
Is (25b)

T =

[
jωLm

p +
1

jω
A
(
P̃m

1 + P̃m
2

)
AT

]−1

. (25c)

The system matrix (24) has a circuit interpretation, as depicted
in Fig. 1.

III. ANALYTICAL COMPUTATIONS

Equation (14) requires the solution of two types of integrals

Ihh
=

∫
S

∫
S′

û(r′)e−jβ|r−r′ |

| r − r′ | dSdS ′ (26a)

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 15,2021 at 06:34:48 UTC from IEEE Xplore.  Restrictions apply. 



MURRO et al.: EFFICIENT COMPUTATION OF PARTIAL ELEMENTS IN THE FULL-WAVE SURFACE-PEEC METHOD 1193

Fig. 1. Equivalent circuit model of the S-PEEC formulation (24) and (25) for
a simple problem comprising two branches and three nodes.

Ihk
=

∫
S

∫
S′
∇ × û(r′)e−jβ|r−r′|

| r − r′ | dSdS ′. (26b)

Integral (16) can be regarded as the scalar case of integral (26a).
In [25], the Green’s function was computed by using its

Taylor expansion that was then used to compute the integral
(26a) in an efficient and accurate way, avoiding to resort to the
computationally time-demanding numerical integration. In the
following, we focus on the computation of integral (26b).

Under the assumption of a Manhattan-type mesh, from (26b),
six transfer functions hky,x

, hkz,x
, hkx,y

, hkz,y
, hkx,z

, and hky,z

can be defined as follows:

Ihk
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŷ

∫
S

∫
S′

∂

∂z

e−jβR(x,y,z,x,′y,′z′)

R(x, y, z, x,′ y,′ z′)
ds′ds︸ ︷︷ ︸

hky,x

+

+ẑ

∫
S

∫
S′

∂

∂y

−e−jβR(x,y,z,x,′y,′z′)

R(x, y, z, x,′ y,′ z′)
ds′ds︸ ︷︷ ︸

hkz,x

for û = [x̂, 0, 0]

x̂

∫
S

∫
S′

∂

∂z

−e−jβR(x,y,z,x,′y,′z′)

R(x, y, z, x,′ y,′ z′)
ds′ds︸ ︷︷ ︸

hkx,y

+

+ẑ

∫
S

∫
S′

∂

∂x

e−jβR(x,y,z,x,′y,′z′)

R(x, y, z, x,′ y,′ z′)
ds′ds︸ ︷︷ ︸

hkz,y

for û = [0, ŷ, 0]

x̂

∫
S

∫
S′

∂

∂y

e−jβR(x,y,z,x,′y,′z′)

R(x, y, z, x,′ y,′ z′)
ds′ds︸ ︷︷ ︸

hkx,z

+

+ŷ

∫
S

∫
S′

∂

∂x

−e−jβR(x,y,z,x,′y,′z′)

R(x, y, z, x,′ y,′ z′)
ds′ds︸ ︷︷ ︸

hky,z

for û = [0, 0, ẑ]

where

R(x, y, z, x,′ y,′ z′) =
√

(x− x′)2 + (y − y′)2 + (z − z′)2.
(27)

Note that only one transfer function, e.g.,hky,z
, is to be computed

because the solutions for the remaining transfer functions are
obtained by a suitable change of variable.

First, hky,z
is rewritten in the equivalent form as

hky,z
= e−jβRcc

∫
S

∫
S′

∂

∂x

e−jβ
[
R(x,y,z,x,′y,′z′)−Rcc

]
R(x, y, z, x,′ y,′ z′)

ds′ds

(28)
being Rcc the center-to-center distance between the two
surfaces.

Then, the term e−jβ
[
R(x,y,z,x,′y,′z′)−Rcc

]
in (28) is approxi-

mated with its third-order Taylor’s expansion (29)

e−jβR̂(x,y,z,x,′y,′z′) � 1− jβR̂(x, y, z, x,′ y,′ z′)+

− 1

2
β2R̂(x, y, z, x,′ y,′ z′)2 + j

1

6
β3R̂(x, y, z, x,′ y,′ z′)3

(29)

where R̂(x, y, z, x,′ y,′ z′) = R(x, y, z, x,′ y,′ z′)−Rcc.
Finally, using the approximation (29) in (28), and after some

algebraic manipulations, the hky,z
can be written as

hky,z
� e−jβRcc

[
hQS
ky,z

+ jβhQS
ky,z

Rcc+

+ β2

(
−1

2
hQS
ky,z

R2
cc +

1

2
ho2
ky,z

)
+

+ jβ3

(
−1

6
hQS
ky,z

R3
cc +

1

2
ho2
ky,z

Rcc − 1

6
ho3
ky,z

)]
(30)

where

hQS
ky,z

=

∫
S

∫
S′

∂

∂x

1

R(x, y, z, x,′ y,′ z′)
ds′ds (31a)

ho2
ky,z

= −
∫
S

∫
S′

∂

∂x
R(x, y, z, x,′ y,′ z′)ds′ds (31b)

ho3
ky,z

= −
∫
S

∫
S′

∂

∂x
R(x, y, z, x,′ y,′ z′)2ds′ds. (31c)

The analytical solution for integrals in (31) is provided in
the next section for a simple geometrical configuration of two
surfaces in the space. In fact, the solution for other geometrical
configuration can be simply derived by a suitable change of
variable.

A. Analytical Solution for hky,z
: Case 1

The analytical solution for the first cases is derived using
two surfaces S and S ′ lying on the x− y plane, where the
surface S is defined by four vertices (x1, y1, z1), (x2, y1, z1),
(x1, y2, z1), and (x2, y2, z1) with x1 < x2 and y1 < y2, and the
surface S ′ by the vertices (x3, y3, z3), (x4, y3, z3), (x3, y4, z3),
and (x4, y4, z3) with x3 < x4 and y3 < y4. In this case, the
analytical solution for hQS

ky,z
, defined in (31a), is given by

hQS
ky,z

=

2∑
i=1

2∑
j=1

4∑
m=3

4∑
n=3

(−1)i+j+m+n
4∑

k=1

γk (32)
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where

γ1 = sysz arctan

(
sxsy
szR

)
(33a)

γ2 = − sxsy arctanh
(sy
R

)
(33b)

γ3 = − 1

2
(s2y − s2z) log (sx +R) (33c)

γ4 =
1

2
sxR (33d)

and

R =
√
s2x + s2y + s2z (34a)

sx = xi − xm (34b)

sy = yj − yn (34c)

sz = z1 − z3. (34d)

By using the same definition in (34), the analytical solutions for
ho2
ky,z

, in (31b), and ho3
ky,z

, in (31c), are derived

ho2
ky,z

=

2∑
i=1

2∑
j=1

4∑
m=3

4∑
n=3

(−1)i+j+m+n
4∑

k=1

γk (35)

where

γ1 = − 1

3
sys

3
z arctan

(
sxsy
szR

)
(36a)

γ2 =
1

24
(s4y + 6s2ys

2
z − 3s4z) log (sx +R) (36b)

γ3 =
1

6
sxsy(s

2
x + 3s2z) log (sy +R) (36c)

γ4 =
1

24
(−2s2x + 3s2y − 5s2z)R. (36d)

ho3
ky,z

=

2∑
i=1

2∑
j=1

4∑
m=3

4∑
n=3

(−1)i+j+m+n s3xs
2
y. (37)

B. Analytical Solution for hky,z
: Case 2

In case 2, a surface S lying on the x− y plane and a surface
S ′ lying on the z − x plane are considered. The surface S is
defined by four vertices (x1, y1, z1), (x2, y1, z1), (x1, y2, z1),
and (x2, y2, z1) with x1 < x2 and y1 < y2. Similarly, four ver-
tices (x3, y3, z3), (x4, y3, z3), (x3, y3, z4), and (x4, y3, z4) with
x3 < x4 and z3 < z4 represent the surface S ′. The analytical
solution for hQS

ky,z
, in (31a), is derived as

hQS
ky,z

=
2∑

i=1

2∑
j=1

4∑
m=3

4∑
n=3

(−1)i+j+m+n
6∑

k=1

γk (38)

where

γ1 = − sysz log (sx +R) (39a)

γ2 = − sxsz log (sy +R) (39b)

γ3 = − sxsy log (sz +R) (39c)

γ4 =
1

2
s2z arctan

(
sxsy
szR

)
(39d)

γ5 =
1

2
s2y arctan

(
sxsz
syR

)
(39e)

γ6 =
1

2
s2x arctan

(
sysz
sxR

)
(39f)

and where

R =
√
s2x + s2y + s2z (40a)

sx = xi − xm (40b)

sy = yj − y3 (40c)

sz = z1 − zn. (40d)

By using the same definition in (40), the analytical solutions for
ho2
ky,z

, in (31b), and for ho3
ky,z

, defined in (31c), are given by (41)
and (43)

ho2
ky,z

=
2∑

i=1

2∑
j=1

4∑
m=3

4∑
n=3

(−1)i+j+m+n
7∑

k=1

γk (41)

where

γ1 =
1

4
sxsyszR (42a)

γ2 = − 1

12
s4z arctan

(
sxsy
szR

)
(42b)

γ3 = − 1

12
s4y arctan

(
sxsz
syR

)
(42c)

γ4 = − 1

12
s4x arctan

(
sysz
sxR

)
(42d)

γ5 =
1

6
sysz

(
s2y + s2z

)
log (sx +R) (42e)

γ6 =
1

6
sxsz

(
s2x + s2z

)
log (sy +R) (42f)

γ7 =
1

6
sysx

(
s2y + s2x

)
log (sz +R) . (42g)

ho3
ky,z

=

2∑
i=1

2∑
j=1

4∑
m=3

4∑
n=3

(−1)i+j+m+n 1

3
s3xsysz. (43)

C. Analytical Solution for hky,z
: Case 3

The analytical solution for hky,z
is provided by using an

example of a surface S defined by four vertices (x1, y1, z1),
(x2, y1, z1), (x1, y2, z1), and (x2, y2, z1)withx1 < x2 and y1 <
y2, and a surface S ′ defined by vertices (x3, y3, z3), (x3, y4, z3),
(x3, y3, z4), and (x3, y4, z4) with y3 < y4 and z3 < z4. In a
similar way as in the previous cases, the analytical solutions
for hQS

ky,z
, ho2

ky,z
, and ho3

ky,z
, from (31), are defined by (44), (47)

and (49), respectively.

hQS
ky,z

=

2∑
i=1

2∑
j=1

4∑
m=3

4∑
n=3

(−1)i+j+m+n
4∑

k=1

γk (44)
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where

γ1 = sxsy arctan

(
sysz
sxR

)
(45a)

γ2 = − sysz arctanh
(sy
R

)
(45b)

γ3 = − 1

2
(s2y − s2x) log (sz +R) (45c)

γ4 =
1

2
szR (45d)

and where

R =
√

s2x + s2y + s2z (46a)

sx = xi − x3 (46b)

sy = yj − ym (46c)

sz = z1 − zn. (46d)

ho2
ky,z

=

2∑
i=1

2∑
j=1

4∑
m=3

4∑
n=3

(−1)i+j+m+n
6∑

k=1

γk (47)

where

γ1 =
1

3
s3xsy arctan

(
sz
sx

)
(48a)

γ2 = − 1

3
s3xsy arctan

(
sysz
sxR

)
(48b)

γ3 =
1

6
sysz

(
s2z + 3s2x

)
log (sy +R) (48c)

γ4 =
1

24

(−3s4x + 6s2xs
2
y + s4y

)
log (sz +R) (48d)

γ5 = − 1

24
szR(2s2z − 3s2y + 5s2x) (48e)

γ6 = s2xsysz +
1

6
sys

3
z. (48f)

ho3
ky,z

=

2∑
i=1

2∑
j=1

4∑
m=3

4∑
n=3

(−1)i+j+m+n 1

2
s2xs

2
ysz. (49)

D. Analytical Solution for hky,z
: Case 4

In this last case, two surfaces S and S ′ lie on the y − z plane.
The surfaceS is defined by the vertices (x1, y1, z1), (x1, y2, z1),
(x1, y1, z2), and (x1, y2, z2) with y1 < y2 and z1 < z2, and
the surface S ′ by (x3, y3, z3), (x3, y4, z3), (x3, y3, z4), and
(x3, y4, z4)with y3 < y4 and z3 < z4. In this case, the analytical
solution forhQS

ky,z
is defined by (50). By using the same definition

in (52), the analytical solutions for ho2
ky,z

, and ho3
ky,z

from (31),
are derived as (53) and (55).

hQS
ky,z

=

2∑
i=1

2∑
j=1

4∑
m=3

4∑
n=3

(−1)i+j+m+n
4∑

k=1

γk (50)

where

γ1 = sysz arctan

⎛⎝ sysz

sx
√

s2x + s2y + s2z

⎞⎠ (51a)

γ2 = sxsy arctanh

⎛⎝
√

s2x + s2y + s2z

sy

⎞⎠ (51b)

γ3 = sxsz log
(
sz +

√
s2x + s2y + s2z

)
(51c)

γ4 = − sx

√
s2x + s2y + s2z (51d)

and where

R =
√

s2x + s2y + s2z (52a)

sx = x1 − x3 (52b)

sy = yi − ym (52c)

sz = zj − zn. (52d)

ho2
ky,z

=
2∑

i=1

2∑
j=1

4∑
m=3

4∑
n=3

(−1)i+j+m+n
4∑

k=1

γk (53)

where

γ1 = − syszs
2
x arctan

(
sysz
sxR

)
(54a)

γ2 =
1

2
sxsz(s

2
y − s2x) log (sz +R) (54b)

γ3 =
1

2
sxsy(s

2
z − s2x) log (sy +R) (54c)

γ4 = − 1

6
sx(s

2
z + s2y − 2s2x)R. (54d)

ho3
ky,z

=

2∑
i=1

2∑
j=1

4∑
m=3

4∑
n=3

(−1)i+j+m+n 1

2
sxs

2
ys

2
z. (55)

E. Tips for Integrals Evaluation

In this section, the solution for the singularities of all the
analytical formulas in Section III is presented. In particular, the

singularity of type x log

(√
x2 + y2 + z2

)
is solved by using

the following limit:

lim
x→0

[
x log

(√
x2 + y2 + z2

)]
= 0. (56)

The function x2 tan−1

(
yz

x
√

x2+y2+z2

)
is evaluated as

x|x|arctan2

(
yz

|x|
√

x2+y2+z2

)
, where the function arctan2 is de-

fined by (57), with tan−1(q) representing the inverse tangent of
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q computed in the range [−π/2, π/2].

arctan2

(
k

m

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tan−1

(
k
m

)
if m > 0

tan−1
(

k
m

)
+ π if k ≥ 0 & m < 0

tan−1
(

k
m

)− π if k < 0 & m < 0
π
2 if k > 0 & m = 0

.

(57)

A detailed description of for solving this type of singularity can
be found in [30].

IV. NUMERICAL RESULTS

Formula (30) for hky,z
is validated with numerical examples.

The analytic evaluation of hQS
ky,z

, ho2
ky,z

, and ho3
ky,z

, as derived in
Sections III-A–III-D, is further improved by using a technique
proposed in [33], increasing the calculation accuracy when
dealing with surfaces characterized by large aspect ratios, e.g.,
length much higher than width. The reader is referred to [33] for
all the details. This technique allows the suppression of one or
more dimensions of integration, alleviating the computational
complexity. The analytical solution for simpler double folded
integrals (resulting from the applied technique) can be easily
obtained from the solutions of the surface–surface integrals
provided in Sections III-A–III-D by performing one or more
derivatives with respect to the variables belonging to the sup-
pressed dimensions of the integration.

A. Evaluation of the Range of Applicability

The evaluation of hky,z
, in (30), is performed in the frequency

range [100 Hz − 1 THz] sampled by 12 logarithmically spaced
frequency points for two square surfaces with the same area. The
distance between the nearest edges of the surfaces is varied in
the range [0 − 1] m for a total of 31 geometrical configurations.
Additionally, the tests are performed for the edge size of the
surfaces in the range from 1 μm to 1 mm. The integral (30) is
compared in two different ways.

1) TAYLOR: The integrals are computed using the derived
analytical formulas provided in Sections III-A–III-D by
adopting the strategy proposed in [33];

2) NUMERICAL: The integral computation is based on the
adaptive numerical Gaussian integration described in [34]
with a relative threshold error of 10−6.

All the computations have been performed using Matlab,
and the integral computed with the two different approaches
are precompiled as MEX files [35]. The CPU times for the
calculation of hky,z

are summarized in Table I, emphasizing
the speed-up achieved by the TAYLOR approach. In particular,
the speed-up is computed as the ratio between the CPU time
required for computing the integrals using the NUMERICAL
method and the CPU time spent for computing the same
integrals when using the derived analytical formulas, i.e., the
TAYLOR method. From Table I, it is evident the TAYLOR
method outperforms the NUMERICAL method.

TABLE I
CPU TIMES REQUIRED FOR CALCULATING THE INTEGRALS BASED ON THE

TAYLOR AND NUMERICAL APPROACHES FOR THE DESCRIBED TEST CASES

OF 31 GEOMETRICAL CONFIGURATIONS EVALUATED IN THE FREQUENCY

RANGE BETWEEN 10Hz AND 1 THz AT 12 FREQUENCY SAMPLES

Fig. 2. Error evaluation for the transfer function hky,z , defined in (30), for
different surface sizes and for the external problem for the internal problem:
(a) 1 µm, (b) 10 µm, (c) 100 µm, (d) 1 mm.

The accuracy of the proposed closed formulas are defined by
the following relative error:

ε = |hTAY LOR − hNUMERICAL|/|hNUMERICAL|. (58)

The relative errors of the hky,z
computation for the external

problem and internal problems are shown in Figs. 2 and 3,
respectively. For the external problem, for a larger edge size of
the surfaces, the accuracy of analytical formulas is decreasing
at higher frequencies, due to the Taylor’s expansion of the ex-
ponential term. However, the elementary mesh cells in practical
applications are typically much smaller at higher frequencies,
i.e., above 1 GHz, which is required to accurately capture the
high-frequency effects. A similar behavior is shown also for the
internal problem of conductors, but the TAYLOR approach fails
at lower frequencies. Hence, the numerical integration for the
internal problem is required in all the cases in which the error is
higher than 0.1 % as reported in Fig. 3. The analytical solution
of integrals occurring in the internal problems of conductors is
under investigation and the results will be presented in forth-
coming publications. It is important to point out that all the
considerations made for hQS

ky,z
are valid also for the coefficients
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Fig. 3. Error evaluation for the transfer function hky,z , defined in (30), for
different surface sizes and for the internal problem for the internal problem:
(a) 1 µm, (b) 10 µm, (c) 100 µm, (d) 1 mm.

Fig. 4. Test example: a single copper bar.

of H and P matrices because they have an error similar to that
reported in Figs. 2 and 3.

In the first example, a single copper bar is used to demonstrate
the differences between S-PEEC and V-PEEC modeling. In par-
ticular, the FEM method requires to define a return path for the
current, which would impact the modeling results. Therefore, the
results were compared to low frequency ANSYS Q3D simulator,
specialized for the extraction of partial inductances, resistances,
and capacitances. Then, two more examples are taken from the
literature in order to compare the proposed S-PEEC method
with the other surface-based numerical techniques from litera-
ture mainly in terms of accuracy. In all the examples, a direct
LU-based solver is used.

B. Single Copper Bar Example

In this example, a copper bar of size 0.5 × 0.5 × 5 mm is
considered. The geometry is depicted in Fig. 4 where the blue
line represents the lumped current port. The ports are modeled
as equipotential squares of 1.8 mm2 centered around the red
dots in Fig. 4. The port impedance, evaluated through different
methods, is shown in Fig. 5, where

Fig. 5. Port impedance for the single copper bar example.

1) 3D-PEEC-UNIFORM denotes the full-wave volumetric
PEEC solution obtained with a uniform mesh resulting in
1275 nodes and 4680 inductive branches;

2) 3D-PEEC-NON-UNIFORM denotes the full-wave volu-
metric PEEC solution obtained with a nonuniform mesh
resulting in 2989 nodes and 14 400 inductive branches in
which the smallest element size is 1 μm;

3) 3D-PEEC-NON-UNIFORM-2 denotes the full-wave vol-
umetric PEEC solution obtained with a nonuniform mesh
resulting in 7381 nodes and 31 360 inductive branches in
which the smallest element size is again 1 μm;

4) S-PEEC denotes the full-wave surface PEEC solution
obtained with a uniform mesh resulting in 834 nodes and
2256 surfaces; and

5) QS Q3D denotes the quasi-static R-L solution obtained
with the commercial software ANSYS Q3D Extractor.

From Fig. 5, it can be seen that the S-PEEC method achieves
a high accurate result with a reduced number of unknowns
compared to the various volumetric PEEC solvers. However, the
S-PEEC requires further investigation: 1) in terms of accuracy
at lower frequencies, when the E field and the H field have a
divergence-free and a curl-free part that scale differently leading
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Fig. 6. Test example: Rectangular copper loop (all dimensions are in μm).

Fig. 7. Port impedance for the rectangular copper loop example comparing
the full-wave volumetric PEEC solution, the proposed full-wave surface PEEC
solution, and the results obtained with the technique presented in [12].

to large numerical error when one part dominates the other one;
2) the numerical integration, required to fill the coefficients for
the internal problem in which the Taylor expansion approach
cannot be used as reported in Fig. 3, is extremely slow. Both
challenges will be addressed in the future work based on a
specialized technique for solving the surface–surface integrals
in a faster semi-analytical fashion.

C. Rectangular Loop Example

In this example, a rectangular copper loop is considered in or-
der to compare the accuracy of the developed S-PEEC modeling
approach to the boundary integral method presented in [12]. The
rectangular copper loop is depicted in Fig. 6, where the blue line
represents a lumped current port. The port impedance, evaluated
through different methods, is shown in Fig. 7, where

Fig. 8. Test example: Two-port inductor. The dimensions are as follows: s =
1.25, τ = 2.5, t = 1, h = 1.75, �1 = 102.5, �2 = 77.5, �3 = 52.5, �4 = 10,
�5 = 23.75, �6 = 22.5, and �7 = 10.5 (all dimensions are in μm).

1) 3D-PEEC-UNIFORM denotes the full-wave volumetric
PEEC solution obtained with a uniform mesh resulting in
370 nodes and 1144 inductive branches;

2) S-PEEC denotes the full-wave surface PEEC solution
obtained with a uniform mesh resulting in 364 nodes and
1064 surfaces; and

3) BIE (boundary integral equation) denotes the full-wave
solution obtained with the technique proposed in [12].

The S-PEEC has a comparable accuracy with respect to the
3D-PEEC-UNIFORM and the BIE, as can be seen in Fig. 7. As
the numerical integration used for the internal modeling domain
slows down the computational speed as previously mentioned,
the PEEC mesh was optimized for the maximum frequency of
10 GHz in order to speed up the calculation.

D. Two-Port Inductor Example

As third example, with the aim to directly compare the
accuracy of the developed S-PEEC modeling approach to the
surface integral formulation presented in [9], a two-port inductor
is investigated. Its geometry is shown in Fig. 8 where the dashed
blue lines represent the lumped current ports.

The scattering parameters, with a reference impedance of
50Ω, are evaluated by means of three different methods.
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Fig. 9. Port impedance for the rectangular copper loop example comparing
the full-wave volumetric PEEC solution, the proposed full-wave surface PEEC
solution, and the results obtained with the technique presented in [9].

1) 3D-PEEC-UNIFORM denotes the full-wave volumetric
PEEC solution obtained with a uniform mesh resulting in
222 nodes and 696 inductive branches.

2) S-PEEC denotes the full-wave surface PEEC solution
obtained with a uniform mesh resulting in 220 nodes and
728 surfaces.

3) SIF (surface integral formulation) denotes the full-wave
solution obtained with the technique proposed in [9].

The results are shown in Fig. 9 , demonstrating a satisfactory
agreement between all the methods.

V. CONCLUSION

In this article, analytical formulas for the computation of the
interaction integrals occurring in the S-PEEC formulation have
been proposed. Based on the Taylor expansion of the Green’s
function, analytical formulas are derived for the coefficients of
the resulting expansion up to the third order. Their range of
applicability to preserve the accuracy is discussed in terms of
frequency, size of the mesh, and distances. Impressive speed-ups
have been found in the computation of partial elements as a
consequence of the analytical forms. Three test cases taken from

the literature have been presented, confirming the accuracy of
the proposed approach compared to other methods. The main
focus of the present article has been the accuracy and the
computational efficiency of the interaction integrals.
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