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Abstract: The deficiency of survival motor neuron protein (SMN) causes spinal muscular atro-
phy (SMA), a rare neuromuscular disease that affects different organs. SMN is a key player in
RNA metabolism regulation. An intriguing aspect of SMN function is its relationship with plasma
membrane-associated proteins. Here, we provide a first demonstration that SMN affects the ATP-
binding cassette transporter A1, (ABCA1), a membrane protein critically involved in cholesterol
homeostasis. In human fibroblasts, we showed that SMN associates to ABCA1 mRNA, and impacts
its subcellular distribution. Consistent with the central role of ABCA1 in the efflux of free cholesterol
from cells, we observed a cholesterol accumulation in SMN-depleted human fibroblasts. These results
were also confirmed in SMA type I patient-derived fibroblasts. These findings not only validate the
intimate connection between SMN and plasma membrane-associated proteins, but also highlight a
contribution of dysregulated cholesterol efflux in SMA pathophysiology.
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1. Introduction

Survival motor neuron protein (SMN) influences the RNA life cycle and RNA-related
pathways in all eukaryotic cells [1–3]. SMN is encoded by two almost identical genes,
named SMN1 and SMN2, located on chromosome 5q13 of the human genome. These genes
differ by only five base pairs, remarkably, by a single nucleotide within the coding sequence
(C > T). The centromeric SMN2 gene primarily produces alternatively spliced transcripts
that encode defective SMN. Consequently, SMN2 cannot fully compensate for SMN1 alter-
ations (unless SMN2 is present in multiple copies). Deletions or, less frequently, mutations
of the telomeric SMN1 gene, represent the diagnostic parameter of spinal muscular atrophy
(SMA), one of the most common pediatric genetic diseases [4,5]. SMA is classified into
four different subtypes (SMA type I–IV), based on age of onset and clinical severities. The
spectrum of SMA also includes the type 0 variant that identifies cases in which the degen-
erative process can already be detected during late stages of pregnancy [6]. Degeneration
of alpha-motoneurons in the spinal cord and a progressive muscle weakness, are the main
clinical manifestations observed in the most severe form of the disease. Although the large
alpha-motoneurons in the spinal cord display the highest susceptibility, SMN deficiency
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perturbs additional tissues and organs [7,8]. This is consistent with the fact that SMN drives
multiple facets of RNA metabolism, ranging from transcription to local translation, in all
cell types [2,3]. Our idea is that a large cell surface extension and polarity can exacerbate the
adverse consequences of SMN deficiency. In this context, an intriguing aspect of SMN func-
tion may be its physical and functional link with plasma membrane (PM) compartments.
In human fibroblasts, we showed that SMN binds to structural components of the PM,
such as caveolin-1, and relocalizes at lipid raft microdomains during active cytoskeleton
dynamics [9]. Interestingly, SMN is required to establish proper cell polarity by the accurate
synchronization, in time and space, of actin filament polymerization and protein synthesis.
Moreover, our previous studies reported that SMN affects membrane composition, as well
as the association of distinct transcripts to the PM [10], which emerges as a docking site
for RNA–protein complexes [10,11]. These findings prompted us to investigate if exists
an implication of SMN in the composition and metabolism of the PM. Indeed, a study by
Deguise and colleagues showed an increased propensity to developing dyslipidemia and
liver steatosis in patients with SMA [12]. Notably, this research is in line with early studies
identifying defects in fatty acid oxidation and lipid metabolism in SMA [13–15]. In the
era of SMA therapy, a deep understanding of the molecular mechanisms underlying this
severe pathology is crucial to provide more clinical benefits; furthermore, we focused on
the intriguing relationship between SMN and PM networks.

Cholesterol is a major lipid constituent of the plasma membrane, contributing to mem-
brane integrity and fluidity; it plays an essential role in several biological process [16–18].
Due to its unique ability to interact with phospholipids, cholesterol influences membrane
microdomains, membrane trafficking, and signal transduction. Importantly, cholesterol can
also interact with membrane proteins, affecting their function. Dysregulated cholesterol
homeostasis is implicated in several human pathologies, including cancer, cardiovascular
and neurodegenerative disease [19,20]. Mammalian cells have developed sophisticated
mechanisms to prevent abnormal accumulation of cholesterol in cellular membranes [21].

The energy-dependent efflux of cholesterol from cells is mediated by ATP-binding
cassette (ABC) transporters, primarily ABCA1. ABCA1 is a membrane-associated protein
that acts to transfer intracellular cholesterol to apoliproteins (ApoA-I), promoting the
formation of nascent high-density lipoproteins/HDLs [21–23]. Mutations in the ABCA1
gene have been associated with Tangier disease, a rare genetic disorder characterized
by extremely low levels of HDL and apoA-I; excessive deposition of cholesteryl esters
in macrophages, and lipid deposits in cells including fibroblasts, Schwann cells, and
myofibers [24–27]. ABCA1 is expressed ubiquitously; however, in some tissues there is a
discrepancy between ABCA1 mRNA and protein expression, suggesting the existence of
regulatory mechanisms at both transcriptional and post-transcriptional levels [28].

Here, we provide a first demonstration of a relationship between SMN and the
membrane-associated protein ABCA1. In human fibroblasts, we showed that SMN asso-
ciates to ABCA1 mRNA, and affects its subcellular localization. Consistent with the pivotal
role of ABCA1 in cholesterol efflux from cells, we visualized an accumulation of cholesterol
in SMN-depleted cells, compared with the control. Importantly, this result was confirmed
in SMA type I patient-derived fibroblasts. These findings further confirm an intimate
connection between SMN function and plasma membrane dynamics, and point out that
dysregulated cholesterol homeostasis may be a critical component in SMA pathophysiology.

2. Results
2.1. SMN Associates to ABCA1 mRNA

Keeping in mind that SMN associates and impacts structural components of the plasma
membrane [9,10], we deeply explored this intriguing feature of SMN, starting to focus on
ABCA1, a major regulator of cholesterol homeostasis. First, we analyzed the localization
pattern of endogenous ABCA1 mRNA in single cells. We subjected human fibroblasts to
padlock assay, a method useful to visualize transcripts of interest with high selectivity [10].
By fluorescence microscopy, ABCA1 mRNA appeared to be located throughout the cyto-
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plasm and nuclear/perinuclear regions of the cell (Figure 1A). Interestingly, several fluores-
cent dots/amplicons were present at the cell periphery, indicating traffic to and/or from the
plasma membrane. Next, we combined ABCA1 padlock probe and SMN immunostaining.
As shown in Figure 1B, distinct subcellular sites showed the presence of overlapped fluores-
cent signals (yellow dots), suggesting a partial colocalization between ABCA1 mRNA and
SMN. Most of the overlapped dots were detectable in nuclear/perinuclear sites. To note,
some of these overlapped dots were present also in the cell periphery, in close proximity to
the plasma membrane. To provide a demonstration of a physical association between SMN
and ABCA1 mRNA, we carried out RNA-immunoprecipitation (RIP) experiments. In agree-
ment with fluorescence microscopy data, we revealed the presence of SMN and ABCA1
mRNA in the same complex in human fibroblasts (Figure 1C). This novel interaction of
SMN prompted us to suppose SMN implication in ABCA1 modulation.
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microscopy. Nuclei were stained with DAPI (blue). Scale bar, 10 µm. Higher magnification of the 
boxed area (ZOOM IN) reveals some of the overlapped fluorescent signals (yellow dots). The 
classical Pearson coefficient of the pixel–intensity correlation and the percentage of ABCA1 mRNA 
(red) colocalizing with SMN (green) were reported in the MERGE panel. (C) Cellular extracts were 
processed for RNA-immunoprecipitation (RIP) assay using SMN monoclonal antibody-conjugated 
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the efficiency of SMN immunoprecipitation (left panel). ABCA1 mRNA presence in RIP samples 
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Figure 1. SMN associates to ABCA1 mRNA. (A) Representative image of human fibroblasts subjected
to a padlock assay targeting ABCA1 mRNA. AlexaFluor 595-labelled probe allowed the detection
of amplicons (red dots). Nuclei were labelled with DAPI (blue). Scale bars, 10 µm. (B) Fibrob-
lasts were subjected to a combination of SMN immunostaining (green) and padlock assay targeting
ABCA1 mRNA (red), and then were imaged via high-resolution epifluorescence microscopy. Nuclei
were stained with DAPI (blue). Scale bar, 10 µm. Higher magnification of the boxed area (ZOOM
IN) reveals some of the overlapped fluorescent signals (yellow dots). The classical Pearson coef-
ficient of the pixel–intensity correlation and the percentage of ABCA1 mRNA (red) colocalizing
with SMN (green) were reported in the MERGE panel. (C) Cellular extracts were processed for
RNA-immunoprecipitation (RIP) assay using SMN monoclonal antibody-conjugated beads. As a
negative control, mouse IgG-conjugated beads were used. Immunoblotting validating the efficiency
of SMN immunoprecipitation (left panel). ABCA1 mRNA presence in RIP samples was checked
semiquantitative RT-PCR (right panel). RT-PCR analysis of DNA Polymerase Beta (PolB) mRNA was
used as negative control. Panels are representative of three independent experiments.

2.2. SMN Knockdown Affects the Subcellular Distribution of ABCA1 mRNA

The next step was to verify an implication of SMN in subcellular localization of ABCA1
mRNA. To this end, we down-regulated SMN levels by transfection of human fibroblasts
with a pool of SMN1-selective siRNAs (siSMN). Scrambled siRNAs were used as control
(siControl). Forty-eight hours after transfection, fibroblasts were subjected to a padlock
assay targeting the ABCA1 mRNA. A combination of padlock assay and SMN immunos-
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taining was carried out to identify SMN-depleted cells (Figure 2A). In siControl-transfected
cells, ABCA1 mRNA was found diffusely distributed throughout the cytoplasm, in periph-
eral as well as nuclear/perinuclear sites (Figure 2A, siControl). Conversely, ABCA1 mRNA
amplicons exhibited a propensity to accumulate at nuclear/perinuclear subregions upon
SMN knockdown (Figure 2A siSMN). By quantitative analysis of amplicons, we observed a
general significant increase in ABCA1 transcript in SMN-deficient cells (Figure 2B). Note-
worthy, by padlock experiments we observed that SMN deficiency disturbed peripheral
location of ABCA1 mRNA. Given our previous study, suggesting that SMN could promote
membrane compartmentalization of a subset of transcripts [10], we wanted to verify the
following: (1) whether a pool of ABCA1 mRNA could associate to plasma membrane
compartments; (2) whether this association could occur in an SMN-dependent manner. To
this end, we approached a biochemical method that was useful to isolate plasma membrane-
enriched fractions (PMEFs) from cultured cells [9]. Both siSMN- and siControl-transfected
fibroblasts were processed to obtain PMEFs. Then, total RNA was extracted from whole
cell extracts (WCE) as well as their respective PMEFs. By a semiquantitative RT-PCR, we
observed that ABCA1 transcript was detectable in WCE and, most importantly, in PMEFs
of human fibroblasts (Figure 2C). Remarkably, we found that SMN knockdown reduced
the abundance of ABCA1 mRNA in the PMEFs, despite its higher detection in whole cells
(Figure 2D). Considering the assumption that the PM could act as a docking site for a
subset of transcripts, we suggested the following: (1) ABCA1 mRNA may be one of the
membrane-associated transcripts; (2) ABCA1 mRNA membrane compartmentalization
may be influenced by SMN.
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Figure 2. SMN knockdown affects the subcellular distribution of ABCA1 mRNA. (A) Padlock assay
targeting ABCA1 mRNA (red dots). Images in ZOOM IN panels represent high magnifications of
a selected cell. Nuclei were labelled with Dapi (blue). The combination of padlock assay targeting
ABCA1 mRNA (red dots) and SMN immunostaining (green) was carried out in siControl- and
siSMN-transfected human fibroblasts. Nuclei were stained with DAPI (blue). Scale bar, 10 µm.
(B) Quantitative analysis of ABCA1 mRNA amplicons per cell (n = 20 cells were analyzed for each
condition). Results from three independent experiments are plotted in the graph. Mean ± s.d. are
illustrated. Asterisks indicate significant differences using unpaired t-test (*** p < 0.0001). (C) Western
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blot analysis validating SMN reduction in siSMN-transfected fibroblasts. Equal amounts of proteins
were immunoblotted for the indicated antibodies. (D) Histogram indicates SMN fold change in
siSMN-transfected fibroblasts compared to siControl, taken as 1. The means of three independent
experiments are reported. Error bars represent s.d. (E) ABCA1 mRNA and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) mRNA were checked in WCE and PMEF of siControl- and
siSMN-transfected fibroblasts by semiquantitative RT-PCR, and analyzed by agarose gel electrophore-
sis. Panels are representative of three independent experiments. (F) Densitometric analysis of ABCA1
mRNA normalized to GAPDH mRNA in WCE and PMEF of siSMN-transfected fibroblasts compared
with the control (siControl). The graph illustrates the means of three independent experiments. Error
bars represent s.d. Asterisks indicate significant differences using unpaired t-test (*** p < 0.01).

2.3. SMN Deficiency Down-Regulates ABCA1 Protein Levels and Causes Intracellular
Accumulation of Cholesterol

Given the novel link between SMN and ABCA1 mRNA, we asked whether SMN could
also influence expression levels of ABCA1 protein. Using Western blot analysis, we checked
and compared ABCA1 protein content in siSMN- and siControl-transfected fibroblasts
(Figure 3A). Furthermore, since ABCA1 protein induction occurs in an ATP-dependent
manner [26], we also monitored ABCA1 protein levels in cells stimulated by a standard
ATP-depletion/recovery assay [9,29,30]. A band of approximately 254 kDa, correspond-
ing to the molecular weight of ABCA1, was detected in unstimulated fibroblasts. In our
system, ABCA1 protein appeared unchanged or slightly reduced in SMN-depleted cells,
compared to control (Figure 3A,B, unstimulated). Interestingly, ATP-depletion/recovery
stimulation caused an increase in ABCA1 protein, which was impaired in SMN-depleted
cells (Figure 3A,B, stimulated). Thus, our findings demonstrate that SMN impacts ABCA1
mRNA intracellular distribution, and this correlates with an altered ABCA1 protein level.
Given the pivotal role of ABCA1 in counteracting cellular cholesterol accumulation, we
suspected a disturbed distribution of cholesterol following SMN knockdown. To verify
this hypothesis, we visualized intracellular cholesterol by subjecting fibroblasts to filipin
staining. As shown in Figure 3C (unstimulated), images from fluorescence microscopy
were indicative of abnormal accumulation of free cholesterol into siSMN-transfected fi-
broblasts, compared to siControl-transfected cells. This event persisted following ATP-
depletion/recovery treatment (Figure 3C, stimulated). We also verified this issue in primary
fibroblasts derived from an SMA type I patient. By a semiquantitative RT-PCR, we showed
that despite the almost unchanged abundance of ABCA1 transcript in whole cell extracts,
SMA type I fibroblasts exhibited a clear reduction in plasma membrane-associated ABCA1
transcript (Figure 4A,B). These findings were in line with the results obtained in siSMN-
transfected fibroblasts. Next, we monitored free cholesterol distribution by filipin staining
(Figure 4C, unstimulated). In SMA type I fibroblasts, we found an abnormal cholesterol
accumulation compared to primary fibroblasts from a healthy individual (control) in
the steady-state condition (unstimulated). In stimulated healthy control fibroblasts, we
observed an increase in cholesterol staining that became more accumulated and clearly
aberrant/disorganized in an SMN deficiency background (SMA type I) (Figure 4C, stimu-
lated). Together, these findings provide a first demonstration that SMN associates to and
affects ABCA1 mRNA, impacting cholesterol efflux regulation.
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Densitometric analysis of ABCA1 normalized to alpha-tubulin in unstimulated and stimulated 

Figure 3. SMN deficiency down-regulates ABCA1 protein levels and causes intracellular accumula-
tion of cholesterol. (A) Representative Western blot analysis of protein extracts from unstimulated
and stimulated transfected cells. Equal amounts of proteins were blotted and checked for ABCA1
and SMN. Levels of alpha-tubulin were monitored as a control of protein loading. (B) Densitometric
analysis of ABCA1 normalized to alpha-tubulin in unstimulated and stimulated siSMN transfected fi-
broblasts compared with the control (siControl). The graph illustrates the means of three independent
experiments. Error bars represent s.d. Asterisks indicate significant differences using unpaired t-test
(*** p < 0.01). (C) Representative images of free cholesterol in unstimulated and stimulated transfected
human fibroblasts by filipin staining. Scale bars, 10 µm. (D) Cholesterol staining intensity analysis
in siSMN-transfected fibroblasts compared with the control (siControl) in both unstimulated and
stimulated conditions. The graph illustrates the means of cholesterol staining intensity determined
by ImageJ 1.53a software. Error bars represent s.d. Asterisks indicate significant differences using
unpaired t-test (*** p < 0.01).
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Figure 4. ABCA1 and intracellular distribution of cholesterol are altered in SMA type I fibroblasts.
(A) Representative images of ABCA1 immunostaining (green) in control (unaffected) and SMA type I
fibroblasts. Nuclei were stained with DAPI (blue). Scale bar, 10 µm. (B) ABCA1 mRNA and GAPDH
mRNA were checked in WCE and PMEF of control (unaffected) and SMA type I fibroblasts using
semiquantitative RT-PCR. Panels are representative of three independent experiments. (C) Densito-
metric analysis of ABCA1 mRNA normalized to GAPDH mRNA in WCE and PMEF of control and
SMA type I fibroblasts. The graph illustrates the means of three independent experiments. Error bars
represent s.d. Asterisks indicate significant differences using unpaired t-test (*** p < 0.01). (D) Rep-
resentative images visualizing free cholesterol via filipin staining in unstimulated and stimulated
SMA type I fibroblasts compared to primary fibroblasts from a healthy individual. Scale bars, 10 µm.
(E) Cholesterol staining intensity analysis in SMA type I-derived fibroblasts compared to primary
fibroblasts from a healthy individual (Control), in both unstimulated and stimulated conditions. The
graph illustrates the means of cholesterol fluorescence intensity determined by ImageJ software. Error
bars represent s.d. Asterisks indicate significant differences using unpaired t-test (*** p < 0.01).

3. Discussion

SMA is a rare genetic disease whose complexity emerges by its pathological impact
involving different organs, beyond the neuromuscular system. It has been reported that
SMA patients exhibit an increased risk of dyslipidemia, suggesting an implication of SMN
in lipid metabolism [12]. Although intriguing, this aspect of SMA pathophysiology remains
to be addressed.

We recently showed a relationship between SMN and plasma membrane-related net-
works [9,10]. SMN not only associates to plasma membrane proteins, but also makes the
PM competent to restrict protein synthesis at the subcellular level. Moreover, experimental
evidence corroborates the concept that SMN may impact membrane trafficking and en-
docytosis pathways [3]. These findings suggest that SMN can promote the establishment
of specialized subdomains by a fine synchronization of membrane remodeling and pro-
tein synthesis control. This implies that the amount of SMN that a cell needs for proper
performance depend on the extension of its endomembrane system. As known, SMN
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binds ribosomal proteins as well as their coding transcripts [9,10,31]. Recently, Lauria and
colleagues reported that SMN deficiency causes ribosome depletion at the beginning of
the coding sequence of distinct mRNAs. Some of these SMN-specific mRNAs are linked to
lipid metabolism, such as SREBF1 transcript [31]. Notably, SREBF1 is a transcription factor
that targets the promoter sequence of genes involved in cholesterol biosynthesis and lipid
homeostasis [32]. In this framework, we wanted to establish whether SMN can impact
lipid components of the plasma membrane. Since cholesterol is an essential structural
constituent of the PM, we started to explore a relationship between SMN and ABCA1, a
key regulator of cholesterol homeostasis. In human fibroblasts, we showed the existence of
intracellular complexes in which SMN coexists with ABCA1 transcript. Indeed, a co-traffic
of SMN and ABCA1 mRNA was also suggested by our imaging studies. As indicated by
both biochemical and microscopy approaches, a pool of ABCA1 transcripts was prone to
localize at the cell periphery, and to associate with the PM. Importantly, membrane com-
partmentalization of ABCA1 mRNA was impaired by SMN deficiency, despite an overall
increment in ABCA1 mRNA levels. Accordingly, ABCA1 protein, whose expression levels
increased in an activity-dependent context, appeared down-regulated in SMN-depleted
stimulated cells. Other transcripts appeared to accumulate in nuclear regions of fibroblasts
following SMN knockdown [10,33]. Indeed, mature mRNAs of several genes may be
detected in the nucleus, independently of their expression levels [34,35]. It is plausible that
nuclear retention of distinct transcripts may occur (1) when their subcellular trafficking
is impaired; (2) to prevent aberrant translation processes. Regarding ABCA1 mRNA, at
this stage we can only speculate that SMN may work to properly promote the subcellular
localization and translation of ABCA1 mRNA.

One of downstream effects of the reduced expression levels of ABCA1 is the cyto-
plasmatic accumulation of cholesterol, due to its efflux impairment [21]. Accordingly, in
our system we demonstrated an aberrant distribution of cholesterol in siSMN-transfected
fibroblasts and, most importantly, in SMA type I patient-derived fibroblasts. Thus, in an
SMN deficiency background, the intracellular content of cholesterol appears dysregulated.
Furthermore, since ABCA1 synergizes with ABCG1 in regulating reverse cholesterol trans-
port [36], we cannot exclude a relationship between SMN and additional ATP-binding
cassette (ABC) transporters.

It is noteworthy that ABCA1, in addition to regulating cholesterol efflux, modulates
annexin A1 (ANXA1), which is associated with anti-inflammatory responses [37,38]. Inter-
estingly, an important paralog of the ANXA1 gene is ANXA2, whose transcript displays
an SMN-dependent axonal localization [39]. An interesting notion is that miR-183 levels
are increased in SMN-deficient neurons [40]. Remarkably, it has been demonstrated that
miR-183 binds the 3’UTR of ABCA1 mRNA, and negatively regulates its expression [41,42].
Collectively, these findings fit very well with the idea that SMN supports membrane dy-
namics by a fine-tuning of membrane-related factors. Homeostatic regulation of cholesterol
is needed to remodel membrane platforms underlying specialized cellular activities. No-
tably, cholesterol biosynthesis and efflux are dysregulated in amyotrophic lateral sclerosis
(ALS) [43], a neuromuscular pathology that shares several clinical aspects with SMA. It
is important to mention that cholesterol stabilizes neuromuscular junctions (NMJs), pro-
moting their maturation from patch- to pretzel-type morphology [44]. Moreover, it has
been reported that proper cholesterol content ensures fine neuromuscular transmission
and synaptic integrity [16]. This is a crucial issue in SMN-related networks, since NMJ
dysfunction is an early event in SMA pathophysiology [45]. In this context, it is important
to point out that cholesterol is essential for the membrane expansion of glial cells, and it is
one of the main lipid molecules in myelin. Notably, in a mouse model of SMA, it has been
shown that myelination defects as well as NMJ alterations may be reversed by selective
restoration of SMN levels in myelinating Schwann cells [46]. Interestingly, ANXA1 can
trigger Schwann proliferation and migration following peripheral nerve injury [47]. Given
the relationship between ANXA1 and ABCA1, it is plausible to suppose a critical role of
ABCA1 also in Schwann cells activity. Indeed, in Tangier families, a demyelinating multi-
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neuropathy condition has been described [48,49]. These findings highlight an intriguing
interplay between SMN and ABCA1 networks. Thus, it will be interesting to deeply assess
whether and how SMN influences cholesterol homeostasis and its related pathways.

In conclusion, in the era of SMA-modifying therapies [50], this study provides further
understanding of the molecular landscape related to SMN functions, and can help to
develop complementary approaches that provide more clinical benefits for patients.

4. Materials and Methods
4.1. Antibodies and Reagents

The following antibodies were used: anti-SMN mouse monoclonal antibody (cat. no.
610647, BD Transduction Laboratories; work dilution for Western blotting, 1:10,000; for
immunofluorescence, 1:150); anti-ABC1 mouse monoclonal antibody (cat. no. sc-53482
Santa Cruz Biotechnology, Dallas, TX, USA; work dilution for Western blotting, 1:200);
anti-alpha-tubulin mouse monoclonal antibody (cat. no. T6074, Sigma-Aldrich, St. Louis,
MO, USA; work dilution for Western blotting, 1:2000). The secondary antibodies conjugated
to horseradish peroxidase were purchased from Jackson ImmunoResearch Laboratories
(West Grove, PA, USA) and used at a dilution of 1:5000. The Alexa Fluor488-conjugated
secondary antibodies were purchased from Thermo Fisher (Waltham, MA, USA), and were
used at a dilution of 1:200. Filipin (cat. no. F-9765) was purchased from Sigma-Aldrich.

4.2. Cell Cultures and Transfection

hTert-immortalized human fibroblasts, were grown in Dulbecco’s modified Eagle’s
medium (DMEM, Gibco, Grand Island, NY, USA), supplemented with heat-inactivated
10% FBS (Australian) (Gibco), penicillin-streptomycin (Gibco) and GlutaMAX (Gibco).
Human fibroblasts from SMA type I patient (GM00232) and healthy control (GM08333)
were obtained from Coriell Institute for Medical Research (Camden, NJ, USA), and grown
in DMEM medium supplemented with 10% FBS, penicillin/streptomycin, and GlutaMAX.
All cell cultures were maintained at 37 ◦C in a humidified atmosphere of 5% CO2. For
knockdown experiments, cells were transfected with Lipofectamine 2000 (Thermo Fisher
Scientific) and a combination of three siRNA-27 duplexes targeting the human SMN1
gene (OriGene, Rockville, MD, USA), following manufacturer’s instructions. Universal
scrambled siRNA duplex was used as negative control. Cells were harvested after 48 h
post transfection.

4.3. ATP Depletion and Recovery Assay

The ATP depletion/recovery assay was performed as described previously [9,29].
Briefly, fibroblasts were incubated in PBS supplemented with 1 mM CaCl2, 1 mM MgCl2
and 20 mM NaN3, for 1 h. NaN3-containing buffer was then replaced with fresh medium
supplemented with heat-inactivated 10% FBS (Australian) (Gibco) for 30 min, allowing
ATP recovery.

4.4. Preparation of Plasma-Membrane-Enriched Fractions

Plasma-membrane-enriched fractions (PMEFs) were isolated as previously described [9].
Briefly, cells were lysed in buffer A (5 mM Tris-HCl pH 7.4, 1 mM EGTA, 1 mM DTT, and
320 mM sucrose). Extracts were passed through a 26G needle five times and centrifuged at
1000× g for 10 min at 4 ◦C. The supernatant was kept, and the pellet was quickly vortexed
in the presence of the original volume of lysis buffer and centrifuged at 1000× g for 10 min
at 4 ◦C. The two supernatants were pooled and centrifuged at 24,000× g for 20 min at 4 ◦C
in a Beckman SW41 rotor. The supernatant was discarded, and the pellet was resuspended
in 12 mL of buffer B (5 mM Tris-HCl pH 7.4, 1 mM EGTA, and 1 mM DTT), and centrifuged
at 24,000× g for 30 min at 4 ◦C in a Beckman SW41 rotor. The supernatant was discarded.
The pellet was aliquoted and processed for RNA extractions.
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4.5. Immunofluorescence and Filipin Staining

Cells were fixed with 4% formaldehyde in PBS, permeabilized in 0.2% Nonidet P40
(Boehringer Mannheim, Mannheim, Germany) for 20 min, and blocked with 1% BSA in PBS
at room temperature. Samples were incubated sequentially with the appropriate primary
and secondary antibodies. Slides were mounted with ProLong with Dapi (Thermo Fisher
Scientific), and examined with a conventional epifluorescence microscope (Olympus BX53;
Milano, Italy). For free cholesterol staining by filipin, cells were fixed in 4% formaldehyde
in PBS, incubated with 1.5 mg of glycine/mL PBS for 10 min at room temperature to
quench the formaldehyde, and stained with 0.05 mg/mL in PBS filipin for two hours at
room temperature. Slides were mounted with ProLong (Thermo Fisher Scientific) and
examined using a conventional epifluorescence microscope (Olympus BX53; Milano, Italy),
using excitation at 340–380 nm and emission at 385–470 nm. Images were captured with
a SPOT RT3 camera, elaborated by IAS v.5.0.1 software (Biosistem ’82, Rome, Italy), and
analyzed by ImageJ, National Institutes of Health, Bethesda, MD, USA 1.53a software.

4.6. RNA Immunoprecipitation (RIP) Assay

Cells were resuspended in IP Buffer (50 mM Tris-HCl pH 7.5, 250 mM NaCl, 5 mM
EDTA, 50 mM NaF, 0.1 mM NaVO4, 0.1% Triton X-100, 5% glycerol, and complete protease
inhibitor cocktail (Roche, Indianapolis, IN, USA)), in the presence of RNase inhibitors
(Thermo Fisher Scientific). Extracts were vortexed 3 times for 10 s, incubated in ice for
20 min, and centrifuged at 10,000× g for 7 min at 4 ◦C. For the immunoprecipitation assay,
the protein lysate was pre-cleared with Protein A/G-Agarose beads (Roche, Indianapolis,
IN, USA), pre-saturated in 2% BSA-PBS by replacing beads 3 times within 90 min, at 4 ◦C.
Then, 750 µg of extract was immunoprecipitated in IP buffer overnight with the anti-SMN
monoclonal antibody. As negative control, the immunoprecipitation was carried out with
mouse IgG-beads. The beads were washed five times for 5 min at 4 ◦C in IP buffer, and once
in PBS buffer. The immunoprecipitated samples were resuspended in IP buffer. A portion of
immunoprecipitation was analyzed with Western blot analysis. RNA was extracted using
TRIzol® reagent (Thermo Fisher Scientific), according to the manufacturer’s instructions.
RNAs were converted to cDNAs using a High Capacity cDNA Reverse Transcription kit
(Thermo Fisher Scientific).

4.7. Western Blot Analysis

All samples were processed in sample buffer and incubated at 100 ◦C for 10 min, except
samples designated for ABCA1 detection. For ABCA1 detection, samples were incubated
with sample buffer containing beta-mercaptoethanol at room temperature for 30 min.
Protein extracts were electrophoresed through standard 6% SDS-PAGE, and transferred
onto nitrocellulose membranes (GE Healthcare; Milano, Italy). Immunodetection of the
reactive bands was revealed by chemiluminescence (ECL kit, GE Healthcare), and analyzed
by iBright 1500 (Thermo Fisher Scientific Inc.).

4.8. RNA Extraction, Retrotranscription and Semiquantitative Real-Time PCR (RT-PCR)

RNA from whole cell extract and PMEF fraction was extracted using TRIzol® reagent
according to the manufacturer’s instructions, and was then reverse transcribed using a High
Capacity cDNA Reverse Transcription kit (Thermo Fisher Scientific). A semiquantitative
PCR (RT-PCR) assay was performed in triplicate using the BioMix 2× (Bioline) according
to the manufacturer’s instructions. The primer sequences used in this study are shown in
Table 1.
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Table 1. Oligos used in the study.

Primer Name Primer Sequence (5′-3′)

RT-PCR GAPDH F CATGAGAAGTATGACAACAGCCT

RT-PCR GAPDH R AGTCCTTCCACGATACCAAAGT

RT-PCR POLB F GTGAGACAAAGTTCATGGGTGT

RT-PCR POLB R GTGAAACCCTTTTCTAGGGCAT

RT-PCR ABCA1 F TACATCTCCCTTCCCGAGCA

RT-PCR ABCA1 R GGAGCTGGAGCTGTTCACAT

Padlock Probe ABCA1 CATGTCACTCCAGCTTTTTTTTCTCAATTCTGCTACTTTACTACCTCAATTCTGCTACTGTACTACTTTTTTCATCACCTCCTGTCG

RCA Primer AGTACAGTAGCAGAATTGAG

AlexaFluor 595-labelled probe CTCAATTCTGCTACTTTACTAC

4.9. Padlock Assay

Phosphorylation of the padlock probe and padlock assay were performed as previously
described [9].

4.10. Quantification and Statistical Analysis

All experiments were performed on at least three independent biological replicates.
Data are presented as mean ± s.d. Statistical analysis was performed using GraphPad
Prism 9.4.1 software. Data were analyzed using an unpaired t-test; p < 0.01 was considered
statistically significant.
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