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Abstract 

This contribution presents a numerical model for the shear capacity prediction of reinforced concrete (RC) elements with transverse 
reinforcement. The proposed model originates from one of the most popular mechanical models adopted in building codes, namely 
the variable-angle truss model. Starting from the formulation proposed in the Eurocode 2, two empirical coefficients governing the 
concrete contribution (i.e., the shear capacity ascribed to crushing of compressed struts) are adjusted and enriched through machine 
learning, in such a way to improve the predictive efficiency of the model against experimental results. More specifically, genetic 
programming is used to derive closed-form expressions of the two corrective coefficients, thus facilitating the use of this model for 
practical purposes. The proposed expressions are validated by comparison with a wide set of experimental results collected from 
the literature concerning RC beams and columns failing in shear under both monotonic and cyclic loading conditions, respectively. 
It is demonstrated that the proposed formulation, thanks to the two novel corrective coefficients, not only attains higher accuracy 
than the original Eurocode 2 formulation, but also outperforms many other existing design code provisions while preserving a 
sound mechanical basis. 
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1. Introduction 

The prediction of the shear capacity of reinforced concrete (RC) elements with transverse reinforcement is a critical 
topic to which several studies have been devoted over the last four decades (ASCE-ACI Committee 445, 1998). This 
is motivated by the fact that existing RC structures are often provided with transverse reinforcement much lower than 
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is motivated by the fact that existing RC structures are often provided with transverse reinforcement much lower than 
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that recommended in current design codes, and thus frequently exhibit a shear-dominated failure. In order to perform 
an accurate vulnerability assessment of such structures, the development of reliable, unbiased, and precise numerical 
formulations capable of predicting the actual shear strength of RC elements with stirrups is of utmost importance. 
Some formulations proposed in the past years within international codes were found to be overly conservative 
compared to experimental findings and are often characterized by excessive dispersion (Cladera and Marí 2007; De 
Domenico and Ricciardi 2020). Recently, the use of machine learning techniques has been also exploited to obtain 
more accurate pure data-driven predictions of the shear capacity (Azadi Kakavand 2021; Quaranta et al. 2020).  

Instead of adopting a pure data-driven approach to derive new empirical capacity equations as proposed by ongoing 
studies (Fiore et al. 2016; Feng et al. 2021), the strategy devised in this contribution employs machine learning tools 
for enhancing one of the most popular mechanical models adopted in international codes for the shear capacity 
prediction of RC elements with stirrups, i.e., the variable-angle truss model (European Committee for Standardization 
2004). Specifically, genetic programming is used to calibrate two coefficients ruling the concrete contribution in such 
a capacity model to increase its accuracy (Quaranta et al. 2022). In this way, the mechanical basis of the resisting 
mechanism is preserved, but the correctness of the final predictions is improved thanks to such hybridization. The 
effectiveness and potentials of the proposed formulation are demonstrated by comparison with experimental results 
collected from a large database including RC beams and columns failing in shear under monotonic and cyclic loading, 
respectively. A comparative analysis is also made for a large set of expressions from reference building codes to show 
that the proposed unified shear capacity equation leads to more accurate outcomes and, ultimately, to prove that it is 
suitable for practical design applications. 

2. Brief review of code-conforming shear capacity equations 

The first truss model was proposed by Ritter and Mörsch in the early 1900s. Considering the conservativeness later 
observed in the predictions of this model, two modifications were developed over the years to improve the accuracy: 
1) the additive approach, wherein the truss contribution, with compression struts inclined at 45°, is accompanied by 
an additional concrete contribution (generally having empirical nature) (e.g., ACI 318 Building Code 2019 and pre-
standard version of the Eurocode 2 1991); 2) the variable-angle truss model, in which the compression diagonals are 
inclined of angles generally less than 45° (e.g., Model Code 90 1993, the Eurocode 2 2004 and other national building 
codes in Germany and Italy). The “variable” inclination is introduced to inherently account for some physical 
phenomena occurring during shear failure of RC members with stirrups, such as aggregate interlock, dowel forces and 
residual tensile stress, that indeed produce a strut rotation crossing adjacent cracks (Walraven et al. 2013). 

All these mechanical models are based on pure equilibrium conditions (and the theory of plasticity) without any 
explicit consideration for compatibility conditions. An alternative group of mechanics-based models determines the 
strut inclination angle by incorporating compatibility equations and material constitutive relationships in addition to 
equilibrium equations, e.g., the modified compression field theory (MCFT) (Vecchio and Collins 1986; Bentz et al. 
2006). The MCFT inspired the development of simplified code expressions incorporated into the AASHTO standards 
(2012) and the Canadian Building Code A23.3-04 (2004). Finally, the Model Code 2010 (2013) presents various 
levels of approximation, including a fixed-angle truss model (in which the compression diagonals inclination is less 
than 45°) without concrete contribution and an additive approach with concrete contribution calculated through 
compatibility conditions, similarly to the simplified MCFT (Sigrist et al. 2013). 

3. Improvement of the variable-angle truss model via machine learning 

An overview of the existing formulations from various technical codes for practice highlights that the shear capacity 
of RC members is based on different mechanical models, involving various sets of parameters governing the overall 
resisting mechanism. Evidently, the accuracy of these models strongly relies on the way such parameters are computed. 
In almost all models, the concrete contribution is governed by a resisting mechanism, but some underlying parameters 
have an empirical (or partly empirical) basis and were calibrated upon experimental data. 

Several models from the literature adopted a pure data-driven methodology, in which the adjective “pure” refers to 
the fact that the resulting capacity equation was not correlated to any resisting mechanism, but it was uniquely based 
on data (e.g., Mansour et al. 2004; Naderpour and Mirrashid 2020). This approach would likely lead to more accurate 
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predictions; however, a shear capacity model that is based on mechanical principles is also a desired objective because, 
in such a model, the governing coefficients have a clear mechanical role, and it is possible to extend the model for 
other cases not originally considered in the calibration procedure. Based on this motivation, a hybrid novel approach 
has is proposed, in which machine learning does not replace a mechanics-based model but is exploited to improve the 
predictive accuracy of the capacity equations through the data-driven definition of some corrective parameters. The 
adopted “gray-box” framework is, therefore, quite different from alternative white box (i.e., fully mechanics-based) 
and black box (i.e., pure data-driven) modeling techniques proposed in the literature. 

The starting point of the proposed model is the Eurocode 2 variable-angle truss model, which is enriched and 
improved by two corrective coefficients whose expressions are identified by means of genetic programming (GP), to 
better match experimental data. The governing equations of the proposed variable-angle truss model with machine-
learning-calibrated coefficients are expressed as follows: 

𝑉𝑉𝑉𝑉 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅},   𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑅𝑅𝑅𝑅
𝑧𝑧𝑧𝑧𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑅𝑅𝑅𝑅𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,   𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦𝑧𝑧𝑧𝑧𝜂𝜂𝜂𝜂𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
1+𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2𝑐𝑐𝑐𝑐

    (1) 

where 𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  and 𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  are the shear capacity ascribed to two failure mechanisms, namely the yielding of the steel 
transverse reinforcement and the crushing of the concrete struts, respectively, 𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑦𝑦𝑦𝑦 is the cross-sectional area of the 
transverse reinforcement, 𝑠𝑠𝑠𝑠 is the spacing of the stirrups, 𝑧𝑧𝑧𝑧 is the inner lever arm (with 𝑧𝑧𝑧𝑧 = 0.9𝑑𝑑𝑑𝑑, 𝑑𝑑𝑑𝑑 being the effective 
depth of the cross section), yswf  is the yield strength of the shear reinforcement, 𝑐𝑐𝑐𝑐 is the angle between the concrete 
compression struts and the longitudinal axis of the RC member, 𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦 is the (minimum) width of the concrete cross 
section and 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅 is the concrete (cylinder) compressive strength. The terms 𝜂𝜂𝜂𝜂 and 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 are the two tuning coefficients to 
be determined through the machine learning approach. The expressions in (1), apart from the coefficients 𝜂𝜂𝜂𝜂 and 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅, 
coincide with those of the EC2 model, and they can be obtained starting from the idealization of the variable-angle 
truss resistant mechanism. More specifically, 𝜂𝜂𝜂𝜂 and 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 are introduced in the proposed formulation as substitutes of 𝜈𝜈𝜈𝜈 
and 𝛼𝛼𝛼𝛼𝑅𝑅𝑅𝑅  governing the concrete contribution in the original EC2 (2004) formulation. The coefficient 𝜂𝜂𝜂𝜂 , like 𝜈𝜈𝜈𝜈 , 
represents a strut efficiency factor, whereas the term 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 incorporates not only the effect of applied compressive stress 
on the resulting shear capacity (like 𝛼𝛼𝛼𝛼𝑅𝑅𝑅𝑅) but also the effect of cyclic loading.  

The methodology pursued in this paper aims at finding the best tuning (corrective) coefficients 𝜂𝜂𝜂𝜂 and 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 to match 
a series of experimental data collected from the literature. The determination of the best expression for 𝜂𝜂𝜂𝜂 is carried out 
for each sample of the database (training) under the assumption 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 = 1, i.e., by selectively excluding the effect of axial 
compressive stress (only RC beams are considered) and that of cyclic loading (only monotonic loading is considered). 
In mathematical terms, the optimal value for 𝜂𝜂𝜂𝜂 is obtained for each sample of the database by solving the following 
constrained optimization problem: 
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𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

       𝑠𝑠𝑠𝑠. 𝑐𝑐𝑐𝑐.  �
𝜂𝜂𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜂𝜂𝜂𝜂 ≤ 𝜂𝜂𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑐𝑐𝑐𝑐 ≤ 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

   (2) 

where 𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂|𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 = 1) represents the numerical prediction of the shear capacity through Eq. (1) depending on the 
coefficient 𝜂𝜂𝜂𝜂 and assuming 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 = 1. Based on Eq. (2), the optimal value of 𝜂𝜂𝜂𝜂 is sought so that the numerical shear 
capacity approximates the corresponding experimental result in the best possible manner, while satisfying certain 
constraints given by 𝜂𝜂𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜂𝜂𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. Once the optimal value of 𝜂𝜂𝜂𝜂 is determined for each sample of the 
database, namely optη , a machine learning technique is adopted to obtain an analytical expression depending on some 
explanatory variables 𝝑𝝑𝝑𝝑, namely 𝜂𝜂𝜂𝜂 = 𝑓𝑓𝑓𝑓(𝝑𝝑𝝑𝝑), such that its predictions fit the retrieved optimal values optη . Similarly, 
the determination of the best expression for 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 is carried out for each sample of the database including RC columns 
under cyclic loading (thus including the effects of compressive stress and cyclic loading) assuming the previously 
obtained expression for 𝜂𝜂𝜂𝜂, namely 𝜂𝜂𝜂𝜂 = 𝑓𝑓𝑓𝑓(𝝑𝝑𝝑𝝑). This requires the solution of the following constrained optimization 
problem: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝜂𝜂𝜂𝜂𝑐𝑐𝑐𝑐

�𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅�𝜂𝜂𝜂𝜂 = 𝑓𝑓𝑓𝑓(𝝑𝝑𝝑𝝑)�−𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�
𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

       𝑠𝑠𝑠𝑠. 𝑐𝑐𝑐𝑐.  �
𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 ≤ 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑐𝑐𝑐𝑐 ≤ 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

   (3) 
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where 𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅|𝜂𝜂𝜂𝜂 = 𝑓𝑓𝑓𝑓(𝝑𝝑𝝑𝝑)) represents the numerical prediction of the shear capacity through Eq. (1) depending on the 
coefficient 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅. Based on Eq. (3), the optimal value of 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 is sought so that the numerical shear capacity approaches, in 
the best possible manner, the corresponding experimental results, while satisfying certain constraints given by 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
and 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. Once the optimal value of 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 is obtained for each sample of the database, namely ,c optη , 
a machine learning technique is adopted to derive an analytical expression depending on some explanatory variables 
𝝋𝝋𝝋𝝋, namely 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 = 𝑔𝑔𝑔𝑔(𝝋𝝋𝝋𝝋), such that its predictions fit the retrieved optimal values ,c optη .  

The functional relationships 𝑓𝑓𝑓𝑓 and 𝑔𝑔𝑔𝑔 to be identified by GP are searched within the class of function sets including 
standard arithmetic operators only, so that the resulting expressions are suitable for practical design purposes. Lower 
and upper bounds for 𝜂𝜂𝜂𝜂 and 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 in Eq. (2) and (3), respectively, are assumed equal to 𝜂𝜂𝜂𝜂min = 1.001𝜔𝜔𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (where 𝜔𝜔𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is 
the mechanical ratio of transverse reinforcement), 𝜂𝜂𝜂𝜂max = 1.0, 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅,min = 0.3 and 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅,max = 3.0. On the other hand, 
𝑐𝑐𝑐𝑐max = 45° in agreement with EC2 (2004), since this upper bound is motivated by mechanical considerations and is 
also supported by experimental data (Biskinis et al. 2004). With regard to the lower bound 𝑐𝑐𝑐𝑐min, Biskinis et al. (2004) 
pointed out that it can be lower than the value of 21.8° recommended in the EC2 formulation, as also suggested by 
other truss resisting mechanisms (Colajanni et al. 2014; De Domenico 2021); in this paper, it is assumed 𝑐𝑐𝑐𝑐min =
11.31° (i.e., 1 ≤ cot𝑐𝑐𝑐𝑐 ≤ 5), in line with other truss models from the literature (De Domenico and Ricciardi 2019). 

A wide database of RC beams (Mansour et al. 2004; Zhang et al. 2016; Reineck et al. 2014, 2017) and RC columns 
(NEES ACI 369 rectangular column database compiled by Ghannoum et al. 2015, with recent extensions by Azadi 
Kakavand et al. 2019 in the PRJ-2526 database) was collected from the literature. Excluding replications of samples 
among different databases and specimens not failing in shear, additional filters were applied to ensure consistency 
with the underlying hypotheses of the truss resisting mechanism considered in this work, namely: 1) shear span-to-
effective depth ratio 𝑎𝑎𝑎𝑎/𝑑𝑑𝑑𝑑 ≥ 2.2; 2) mechanical ratio of transverse reinforcement 𝜔𝜔𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≤ 0.25; 3) applied compressive 
stress ratio 𝜎𝜎𝜎𝜎𝑅𝑅𝑅𝑅/𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅 ≤ 0.50. After excluding replications and incorporating filters, the database includes 373 RC beams 
and 119 RC columns.  

In the GP approach, dimensional and non-dimensional variables are taken into account in the derivation of the final 
expressions of 𝜂𝜂𝜂𝜂 = 𝑓𝑓𝑓𝑓(𝝑𝝑𝝑𝝑) or 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 = 𝑔𝑔𝑔𝑔(𝝋𝝋𝝋𝝋), i.e., 𝝑𝝑𝝑𝝑 = {𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅, 𝑏𝑏𝑏𝑏𝑅𝑅𝑅𝑅/𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎/𝑑𝑑𝑑𝑑,𝜔𝜔𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅} and 𝝋𝝋𝝋𝝋 = {𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅 , 𝑏𝑏𝑏𝑏𝑅𝑅𝑅𝑅/𝑑𝑑𝑑𝑑 , 𝑎𝑎𝑎𝑎/𝑑𝑑𝑑𝑑,𝜔𝜔𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ,𝜎𝜎𝜎𝜎𝑅𝑅𝑅𝑅/𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅, 𝜇𝜇𝜇𝜇}, where 
𝜇𝜇𝜇𝜇 is the displacement ductility demand appearing in the case of RC columns tested under cyclic loading. The entire 
database is divided into training (80% of the samples) and testing (20% of the samples) datasets, and the final 
expressions of the corrective factors 𝜂𝜂𝜂𝜂 = 𝑓𝑓𝑓𝑓(𝝑𝝑𝝑𝝑) or 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 = 𝑔𝑔𝑔𝑔(𝝋𝝋𝝋𝝋) are: 

𝜂𝜂𝜂𝜂 = 0.12 + 3.9 (1+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠/𝑑𝑑𝑑𝑑)
8.2−0.08𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐+(𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐−0.08)(𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠/𝑑𝑑𝑑𝑑)

       (𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎])   (4) 

𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 = �
1 𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔

0.37 + 3.8 0.30+0.75(𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐/𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐)−1.39(𝑚𝑚𝑚𝑚/𝑑𝑑𝑑𝑑)𝜔𝜔𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚/𝑑𝑑𝑑𝑑

�1 + 15 𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐/𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐
𝜇𝜇𝜇𝜇2

� 𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔
  

  (5) 

which are valid under the constraints 0.1 ≤ 𝜂𝜂𝜂𝜂 ≤ 1.0, 1/3 ≤ 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 ≤ 2.6. These expressions are plotted (in terms of some 
of the parameters) in Fig. 1. It can be noted that the corrective coefficient 𝜂𝜂𝜂𝜂 decreases with increasing 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅, in line with 
the inverse relationship existing between 𝜈𝜈𝜈𝜈 and 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅 in the original EC2 formulation, and generally decreases as the 
𝑏𝑏𝑏𝑏𝑅𝑅𝑅𝑅/𝑑𝑑𝑑𝑑  ratio increases. This result may be justified, from a mechanical standpoint, by the fact that the effective 
compressive stress of compression struts decreases as the flexural inertia of the concrete diagonals decreases, an aspect 
that is not incorporated in the coefficient 𝜈𝜈𝜈𝜈 of the EC2 formulation. On the other hand, the corrective coefficient 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 
increases with increasing compressive stresses 𝜎𝜎𝜎𝜎𝑅𝑅𝑅𝑅/𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅, similar to the 𝛼𝛼𝛼𝛼𝑅𝑅𝑅𝑅 expression of the original EC2 formulation, and 
decreases with increasing 𝜇𝜇𝜇𝜇 , 𝜔𝜔𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  and 𝑎𝑎𝑎𝑎/𝑑𝑑𝑑𝑑 , which are three factors that are not involved in the original EC2 
formulation. 

4. Validation with experimental results and comparison with other code-based models 

Considering that the developed model represents an improvement of a code-based formulation (i.e., the EC2 truss 
model), the accuracy of the proposed shear capacity equation is evaluated by comparison with shear strength 
expressions from alternative technical codes proposed by international organisms, national/federal regulatory agencies 
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predictions; however, a shear capacity model that is based on mechanical principles is also a desired objective because, 
in such a model, the governing coefficients have a clear mechanical role, and it is possible to extend the model for 
other cases not originally considered in the calibration procedure. Based on this motivation, a hybrid novel approach 
has is proposed, in which machine learning does not replace a mechanics-based model but is exploited to improve the 
predictive accuracy of the capacity equations through the data-driven definition of some corrective parameters. The 
adopted “gray-box” framework is, therefore, quite different from alternative white box (i.e., fully mechanics-based) 
and black box (i.e., pure data-driven) modeling techniques proposed in the literature. 

The starting point of the proposed model is the Eurocode 2 variable-angle truss model, which is enriched and 
improved by two corrective coefficients whose expressions are identified by means of genetic programming (GP), to 
better match experimental data. The governing equations of the proposed variable-angle truss model with machine-
learning-calibrated coefficients are expressed as follows: 

𝑉𝑉𝑉𝑉 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅},   𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑅𝑅𝑅𝑅
𝑧𝑧𝑧𝑧𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑅𝑅𝑅𝑅𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,   𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦𝑧𝑧𝑧𝑧𝜂𝜂𝜂𝜂𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
1+𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2𝑐𝑐𝑐𝑐

    (1) 

where 𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  and 𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  are the shear capacity ascribed to two failure mechanisms, namely the yielding of the steel 
transverse reinforcement and the crushing of the concrete struts, respectively, 𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑦𝑦𝑦𝑦 is the cross-sectional area of the 
transverse reinforcement, 𝑠𝑠𝑠𝑠 is the spacing of the stirrups, 𝑧𝑧𝑧𝑧 is the inner lever arm (with 𝑧𝑧𝑧𝑧 = 0.9𝑑𝑑𝑑𝑑, 𝑑𝑑𝑑𝑑 being the effective 
depth of the cross section), yswf  is the yield strength of the shear reinforcement, 𝑐𝑐𝑐𝑐 is the angle between the concrete 
compression struts and the longitudinal axis of the RC member, 𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦 is the (minimum) width of the concrete cross 
section and 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅 is the concrete (cylinder) compressive strength. The terms 𝜂𝜂𝜂𝜂 and 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 are the two tuning coefficients to 
be determined through the machine learning approach. The expressions in (1), apart from the coefficients 𝜂𝜂𝜂𝜂 and 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅, 
coincide with those of the EC2 model, and they can be obtained starting from the idealization of the variable-angle 
truss resistant mechanism. More specifically, 𝜂𝜂𝜂𝜂 and 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 are introduced in the proposed formulation as substitutes of 𝜈𝜈𝜈𝜈 
and 𝛼𝛼𝛼𝛼𝑅𝑅𝑅𝑅  governing the concrete contribution in the original EC2 (2004) formulation. The coefficient 𝜂𝜂𝜂𝜂 , like 𝜈𝜈𝜈𝜈 , 
represents a strut efficiency factor, whereas the term 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 incorporates not only the effect of applied compressive stress 
on the resulting shear capacity (like 𝛼𝛼𝛼𝛼𝑅𝑅𝑅𝑅) but also the effect of cyclic loading.  

The methodology pursued in this paper aims at finding the best tuning (corrective) coefficients 𝜂𝜂𝜂𝜂 and 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 to match 
a series of experimental data collected from the literature. The determination of the best expression for 𝜂𝜂𝜂𝜂 is carried out 
for each sample of the database (training) under the assumption 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 = 1, i.e., by selectively excluding the effect of axial 
compressive stress (only RC beams are considered) and that of cyclic loading (only monotonic loading is considered). 
In mathematical terms, the optimal value for 𝜂𝜂𝜂𝜂 is obtained for each sample of the database by solving the following 
constrained optimization problem: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝜂𝜂𝜂𝜂

�𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝜂𝜂𝜂𝜂�𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 = 1�−𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�
𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

       𝑠𝑠𝑠𝑠. 𝑐𝑐𝑐𝑐.  �
𝜂𝜂𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜂𝜂𝜂𝜂 ≤ 𝜂𝜂𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑐𝑐𝑐𝑐 ≤ 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

   (2) 

where 𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂|𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 = 1) represents the numerical prediction of the shear capacity through Eq. (1) depending on the 
coefficient 𝜂𝜂𝜂𝜂 and assuming 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 = 1. Based on Eq. (2), the optimal value of 𝜂𝜂𝜂𝜂 is sought so that the numerical shear 
capacity approximates the corresponding experimental result in the best possible manner, while satisfying certain 
constraints given by 𝜂𝜂𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜂𝜂𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. Once the optimal value of 𝜂𝜂𝜂𝜂 is determined for each sample of the 
database, namely optη , a machine learning technique is adopted to obtain an analytical expression depending on some 
explanatory variables 𝝑𝝑𝝑𝝑, namely 𝜂𝜂𝜂𝜂 = 𝑓𝑓𝑓𝑓(𝝑𝝑𝝑𝝑), such that its predictions fit the retrieved optimal values optη . Similarly, 
the determination of the best expression for 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 is carried out for each sample of the database including RC columns 
under cyclic loading (thus including the effects of compressive stress and cyclic loading) assuming the previously 
obtained expression for 𝜂𝜂𝜂𝜂, namely 𝜂𝜂𝜂𝜂 = 𝑓𝑓𝑓𝑓(𝝑𝝑𝝑𝝑). This requires the solution of the following constrained optimization 
problem: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝜂𝜂𝜂𝜂𝑐𝑐𝑐𝑐

�𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅�𝜂𝜂𝜂𝜂 = 𝑓𝑓𝑓𝑓(𝝑𝝑𝝑𝝑)�−𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�
𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

       𝑠𝑠𝑠𝑠. 𝑐𝑐𝑐𝑐.  �
𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 ≤ 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑐𝑐𝑐𝑐 ≤ 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

   (3) 
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where 𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚(𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅|𝜂𝜂𝜂𝜂 = 𝑓𝑓𝑓𝑓(𝝑𝝑𝝑𝝑)) represents the numerical prediction of the shear capacity through Eq. (1) depending on the 
coefficient 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅. Based on Eq. (3), the optimal value of 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 is sought so that the numerical shear capacity approaches, in 
the best possible manner, the corresponding experimental results, while satisfying certain constraints given by 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
and 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. Once the optimal value of 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 is obtained for each sample of the database, namely ,c optη , 
a machine learning technique is adopted to derive an analytical expression depending on some explanatory variables 
𝝋𝝋𝝋𝝋, namely 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 = 𝑔𝑔𝑔𝑔(𝝋𝝋𝝋𝝋), such that its predictions fit the retrieved optimal values ,c optη .  

The functional relationships 𝑓𝑓𝑓𝑓 and 𝑔𝑔𝑔𝑔 to be identified by GP are searched within the class of function sets including 
standard arithmetic operators only, so that the resulting expressions are suitable for practical design purposes. Lower 
and upper bounds for 𝜂𝜂𝜂𝜂 and 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 in Eq. (2) and (3), respectively, are assumed equal to 𝜂𝜂𝜂𝜂min = 1.001𝜔𝜔𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (where 𝜔𝜔𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is 
the mechanical ratio of transverse reinforcement), 𝜂𝜂𝜂𝜂max = 1.0, 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅,min = 0.3 and 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅,max = 3.0. On the other hand, 
𝑐𝑐𝑐𝑐max = 45° in agreement with EC2 (2004), since this upper bound is motivated by mechanical considerations and is 
also supported by experimental data (Biskinis et al. 2004). With regard to the lower bound 𝑐𝑐𝑐𝑐min, Biskinis et al. (2004) 
pointed out that it can be lower than the value of 21.8° recommended in the EC2 formulation, as also suggested by 
other truss resisting mechanisms (Colajanni et al. 2014; De Domenico 2021); in this paper, it is assumed 𝑐𝑐𝑐𝑐min =
11.31° (i.e., 1 ≤ cot𝑐𝑐𝑐𝑐 ≤ 5), in line with other truss models from the literature (De Domenico and Ricciardi 2019). 

A wide database of RC beams (Mansour et al. 2004; Zhang et al. 2016; Reineck et al. 2014, 2017) and RC columns 
(NEES ACI 369 rectangular column database compiled by Ghannoum et al. 2015, with recent extensions by Azadi 
Kakavand et al. 2019 in the PRJ-2526 database) was collected from the literature. Excluding replications of samples 
among different databases and specimens not failing in shear, additional filters were applied to ensure consistency 
with the underlying hypotheses of the truss resisting mechanism considered in this work, namely: 1) shear span-to-
effective depth ratio 𝑎𝑎𝑎𝑎/𝑑𝑑𝑑𝑑 ≥ 2.2; 2) mechanical ratio of transverse reinforcement 𝜔𝜔𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≤ 0.25; 3) applied compressive 
stress ratio 𝜎𝜎𝜎𝜎𝑅𝑅𝑅𝑅/𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅 ≤ 0.50. After excluding replications and incorporating filters, the database includes 373 RC beams 
and 119 RC columns.  

In the GP approach, dimensional and non-dimensional variables are taken into account in the derivation of the final 
expressions of 𝜂𝜂𝜂𝜂 = 𝑓𝑓𝑓𝑓(𝝑𝝑𝝑𝝑) or 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 = 𝑔𝑔𝑔𝑔(𝝋𝝋𝝋𝝋), i.e., 𝝑𝝑𝝑𝝑 = {𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅, 𝑏𝑏𝑏𝑏𝑅𝑅𝑅𝑅/𝑑𝑑𝑑𝑑, 𝑎𝑎𝑎𝑎/𝑑𝑑𝑑𝑑,𝜔𝜔𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅} and 𝝋𝝋𝝋𝝋 = {𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅 , 𝑏𝑏𝑏𝑏𝑅𝑅𝑅𝑅/𝑑𝑑𝑑𝑑 , 𝑎𝑎𝑎𝑎/𝑑𝑑𝑑𝑑,𝜔𝜔𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ,𝜎𝜎𝜎𝜎𝑅𝑅𝑅𝑅/𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅, 𝜇𝜇𝜇𝜇}, where 
𝜇𝜇𝜇𝜇 is the displacement ductility demand appearing in the case of RC columns tested under cyclic loading. The entire 
database is divided into training (80% of the samples) and testing (20% of the samples) datasets, and the final 
expressions of the corrective factors 𝜂𝜂𝜂𝜂 = 𝑓𝑓𝑓𝑓(𝝑𝝑𝝑𝝑) or 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 = 𝑔𝑔𝑔𝑔(𝝋𝝋𝝋𝝋) are: 

𝜂𝜂𝜂𝜂 = 0.12 + 3.9 (1+𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠/𝑑𝑑𝑑𝑑)
8.2−0.08𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐+(𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐−0.08)(𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠/𝑑𝑑𝑑𝑑)

       (𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎])   (4) 

𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 = �
1 𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔

0.37 + 3.8 0.30+0.75(𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐/𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐)−1.39(𝑚𝑚𝑚𝑚/𝑑𝑑𝑑𝑑)𝜔𝜔𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚/𝑑𝑑𝑑𝑑

�1 + 15 𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐/𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐
𝜇𝜇𝜇𝜇2

� 𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔
  

  (5) 

which are valid under the constraints 0.1 ≤ 𝜂𝜂𝜂𝜂 ≤ 1.0, 1/3 ≤ 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 ≤ 2.6. These expressions are plotted (in terms of some 
of the parameters) in Fig. 1. It can be noted that the corrective coefficient 𝜂𝜂𝜂𝜂 decreases with increasing 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅, in line with 
the inverse relationship existing between 𝜈𝜈𝜈𝜈 and 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅 in the original EC2 formulation, and generally decreases as the 
𝑏𝑏𝑏𝑏𝑅𝑅𝑅𝑅/𝑑𝑑𝑑𝑑  ratio increases. This result may be justified, from a mechanical standpoint, by the fact that the effective 
compressive stress of compression struts decreases as the flexural inertia of the concrete diagonals decreases, an aspect 
that is not incorporated in the coefficient 𝜈𝜈𝜈𝜈 of the EC2 formulation. On the other hand, the corrective coefficient 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 
increases with increasing compressive stresses 𝜎𝜎𝜎𝜎𝑅𝑅𝑅𝑅/𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅, similar to the 𝛼𝛼𝛼𝛼𝑅𝑅𝑅𝑅 expression of the original EC2 formulation, and 
decreases with increasing 𝜇𝜇𝜇𝜇 , 𝜔𝜔𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  and 𝑎𝑎𝑎𝑎/𝑑𝑑𝑑𝑑 , which are three factors that are not involved in the original EC2 
formulation. 

4. Validation with experimental results and comparison with other code-based models 

Considering that the developed model represents an improvement of a code-based formulation (i.e., the EC2 truss 
model), the accuracy of the proposed shear capacity equation is evaluated by comparison with shear strength 
expressions from alternative technical codes proposed by international organisms, national/federal regulatory agencies 
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or standardization bodies, namely: 1) original EC2 formulation (EC2); 2) Model Code 2010 (MC); 3) Italian Technical 
Code 2018 (NTC); 4) ACI 318 Building Code (ACI); 5) provisions from the American Association of State Highway 
and Transportation Officials (AASHTO); 6) New Zealand Standards for concrete structures (NZS); 7) Codes for 
Design of Concrete Structures (China) GB50010-2010 (GB); 8) Japan Society of Civil Engineering Guidelines for 
Concrete no. 15 (JSCE). 

 
Fig. 1. Parametric study of the proposed machine-learning-based formulation for the new parameters ruling the concrete contribution. 

Fig. 2 illustrates the experimental shear strength versus the shear strength numerically predicted by the proposed 
capacity equations. The same scale is adopted for the two axes, so that the perfect agreement between the two sets of 
data is obtained along the 45° line. A good agreement is observed for both RC beams under monotonic loading and 
RC columns under cyclic loading, with most of the numerical-to-experimental shear strength ratios falling close to the 
unity, with a mean ratio equal to 1.0034 (1.0324) and a coefficient of variation (CoV) equal to 32.45% (28.07%) for 
RC beams (columns).  

 
Fig. 2. Comparison between experimental shear strength values and corresponding predictions obtained by means of the proposed capacity 

equation for RC beams under monotonic loading (left) and RC columns under cyclic loading (right). 

Similar plots corresponding to alternative code-based formulations are shown in Fig. 3 and Fig. 4 for RC beams 
and columns, respectively. It is clearly seen that the predictive accuracy worsens in the other capacity equations. As 
an example, by considering again the numerical-to-experimental shear strength ratios for the EC2 formulation, such 
samples are characterized by a mean equal to 0.7926 (1.1816) and a CoV equal to 54.16% (46.12%) for RC beams 
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(columns). These results highlight that the EC2 formulation is generally biased and more dispersed than the proposed 
model and provides conservative (unconservative) estimates of the shear strength for RC beams (columns). These 
values, if compared to the previous metrics obtained for the proposed formulation, demonstrate that the machine-
learning improvement of the corrective coefficients 𝜂𝜂𝜂𝜂 and 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 in the proposed formulation remarkably enhances the 
predictive accuracy of the variable-angle truss model of the EC2. 

 
Fig. 3. Experimental vs numerical shear strengths for RC beams obtained using capacity models available in some technical codes and guidelines. 

 
Fig. 4. Experimental vs numerical shear strengths for RC columns obtained using capacity models available in some technical codes and 

guidelines. 

To better infer the predictive accuracy of the proposed model as compared to alternative code-based equations, Fig. 
5 reports the mean squared error (MSE) values (obtained as sum of variance and squared bias of the numerical-to-
experimental shear strength ratios) for RC beams and columns. In particular, the MSE for RC beams (columns) related 
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to the proposed formulation is 0.10608 (0.085067), which is a relatively low value, whereas that of the original EC2 
formulation is 0.22733 (0.33001). Based on this indicator, as well as considering the previous correlation trends and 
dispersion analysis, the proposed model represents the best equation for predicting the shear strength of RC members 
with transverse reinforcement among those considered in this study.  

 
Fig. 5. Mean squared error of the numerical-to-experimental shear-strength ratios for RC beams (top) and columns (bottom). 

5. Conclusions 

A grey box modelling approach for the shear capacity prediction of RC members with transverse reinforcement 
has been proposed in this work. The proposed approach is different from alternative black-box modelling (i.e., pure 
data-driven) techniques and white-box modelling (i.e., mechanics-based) strategies. In the proposed approach, a 
mechanical model, namely the variable-angle truss model of the EC2 formulation, has been enriched by two corrective 
coefficients governing the concrete contribution (i.e., the shear capacity ascribed to crushing of compressed struts), 
whose expressions have been determined through a data-driven technique, namely genetic programming. The 
proposed model avoids typical overfitting problems of pure data-driven approaches and improves the accuracy of 
traditional mechanics-based models. The proposed approach has allowed the derivation of relatively compact 
expressions for two corrective coefficients, called 𝜂𝜂𝜂𝜂 and 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅, that aims at replacing the coefficients 𝜈𝜈𝜈𝜈 and 𝛼𝛼𝛼𝛼𝑅𝑅𝑅𝑅 appearing 
in the concrete contribution of the original EC2 formulation. Although genetic programming has been used to identify 
data-driven expressions of the corrective parameters, the shear capacity is still ruled by a mechanics-based resisting 
mechanism. In particular, it has been found that the coefficient 𝜂𝜂𝜂𝜂  (replacing the efficiency factor 𝜈𝜈𝜈𝜈  of the EC2 
formulation) depends not only on the compressive strength of concrete 𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅, but also on the cross-section shape factor 
𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦/𝑑𝑑𝑑𝑑, somehow suggesting that the effective concrete compressive strength in the truss model decreases as the 
flexural inertia of the concrete diagonals cross-section decreases. Moreover, the coefficient 𝜂𝜂𝜂𝜂𝑅𝑅𝑅𝑅 (replacing 𝛼𝛼𝛼𝛼𝑅𝑅𝑅𝑅 of the 
EC2 formulation) depends not only on the applied compressive strength on the RC member 𝜎𝜎𝜎𝜎𝑅𝑅𝑅𝑅/𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅, but also on the 
displacement ductility demand 𝜇𝜇𝜇𝜇, suggesting that shear strength of RC columns under cycling loading condition 
decreases as the displacement ductility demand increases, which is consistent with available experimental findings 
from the literature. 
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