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Abstract: Groundwater contamination due to municipal solid waste landfills’ leachate is a serious
environmental threat. Deuterium (2H) and oxygen (18O) isotopes have been successfully applied
to identify groundwater contamination processes, due to interactions with municipal solid waste
landfills’ leachate, including significant organic amounts. A parameter influencing the isotope content
of deuterium and oxygen18 is the deuterium excess (d or d-excess). This paper presents a d-isotope-
based model, defined early-warning model, depending on the assessment of the deuterium excess
variations in groundwater samples. The isotopic results are corroborated with the trace elements’
concentrations (Fe, Mn, Ni, Co and Zn), suggesting that the methanogenic activity diminished under
trace element limitation. This model provides the determination of an index, F, as the percentage
variation of d-excess, which makes it possible to define an alert level system to assess and check
groundwater contamination by leachate. The procedure shows that values of F index higher than
1.1 highlight possible contamination phenomena of groundwater due to leachate and, therefore,
actions by the municipal solid waste landfill management are required. This early-warning model is
presented by the application to a case study in Central Italy in order to evaluate innovative aspects and
opportunities to optimize the model. The application of the procedure to the case study highlighted
anomalous values of the F index for the samples AD16 (Fmax = 2.069) and AD13 (Fmax = 1.366) in
January, April, July and October surveys as well as the boundary values (1 ≤ F ≤ 1.1) for samples
AD73 (F = 1.229) and AD68 (F = 1.219) in the April survey. The proposed model can be a useful
management tool for monitoring the potential contamination process of groundwater due to the
presence of landfills with municipal solid waste, including a significant organic component.

Keywords: deuterium excess; environmental isotopes; municipal solid landfill; leachate contamination;
early-warning model

1. Introduction

Effective municipal solid waste (MSW) management is crucial for preserving ecosys-
tems. As the landfill is the primary method of MSW management, factors impacting
groundwater contamination near MSW landfill sites generally must be studied based on
field investigations, environmental impact assessment and geochemical and hydrogeologi-
cal analyses.

Early warning systems (EWS) represent a relevant choice within the landfill risk
management framework, primarily when structural measures cannot fully guarantee the
safety of the areas of interest for contamination phenomena. Some of the several benefits
linked to EWS comprise their fast, simple, low-cost implementation and environmental
friendliness.
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Several studies selected standard hydrogeological and hydrogeochemical tools that
should be included in EWS design and implementation [1–6]. These tools can be summa-
rized as follows:

• The field monitoring system can acquire physical and geochemical quantities related
to the phenomenon and share them with the monitoring system;

• Analysis and forecasting methods describe the landfill evolution, predict its behavior
and identify critical events based on alert thresholds (if available);

• The warnings and dissemination of alert messages to notify the relevant authorities
about the forecasted critical event;

• Action plans and measures are to be activated based on the forecasting results obtained
by applying the numerical model.

Among these actions, suggesting a correct definition, calibration and validation of the
predictive model is essential. This issue is rigorously related to the choice of the monitoring
system, which best suits the forecasting model implemented. In particular, innovative
monitoring tools that reach high sampling frequencies with low-cost procedures or analyses
represent a significant improvement likened to traditional approaches.

This paper presents a d-isotope-based model, defined early-warning model, depend-
ing on the assessment of deuterium excess variations in groundwater samples. The isotopic
results are corroborated with the trace elements’ concentrations (Fe, Mn, Ni, Co and Zn),
suggesting that the methanogenic activity diminished under trace element limitation. This
d-isotope-based model represents a faster and low-cost implementation to describe the on-
going phenomenon accurately and would be applied to the study of municipal solid waste
(MSW) compared to the other geochemical and hydrogeochemical traditional approaches.

As isotope analysis of 2H and 18O can be carried out monthly, at an affordable cost,
the proposed method can be defined as “early-warning”, as it allows a prompt intervention
in the case of certain values of d-isotope determination.

The presence of 2H and 18O stable isotopes in the water cycle is conditioned by meteo-
rological processes, which give it a typical footprint that is useful, also, for groundwater
contamination characterization: the source, the path, the residence times in the subsoil and
any phenomena to which groundwater may have been subjected [1]. These isotopes are
generally defined as conservative tracers, as they “retain” their features over the whole path
of the groundwater [2,3]. Additionally, these environmental isotopes have been extensively
used to assess the hydro-environmental issues associated with groundwater contamination
by municipal solid landfill [1,4–6]. While oxygen-18 (18O) and deuterium (2H) generally
correlate with the temperature at middle-to-high latitudes, the deuterium excess (d-excess,
d) is correlated with the physical conditions (humidity, air temperature, evaporation during
precipitation and sea surface temperature) of the oceanic source area of the precipitation [7].
The d-excess can be used to identify processes occurring under non-equilibrium conditions.

Among the phenomena shown in Figure 1, methanogenesis represents one of the
phases of the decomposition process of municipal solid waste (MSW), with a significant
organic component, due to the redox conditions of the system and the bacteria catalytic
effect in landfill [8–14]. Several studies have shown that this process can cause a deuterium
increase [4,12,13,15–18] because the bacteria use, preferentially, the “lighter” isotope, hy-
drogen (1H), due to the methane production; thus, the remaining hydrogen is enriched in
deuterium (2H), that is, the “heavier” isotope [4,18,19], without producing a proportional
increase in 18O [4,19–21]. This process seems to increase the d-excess without a proportional
increase in 18O, producing a shift of the points from ideal conditions, represented by the
reference meteoric water line [10,11].
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Figure 1. Schematic of the main processes that may alter 18O and 2H isotopic compositions of 
groundwaters. Adapted from Hackley et al., 1996 [12] and Jasechko, S. 2019 [13]. 
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ination phenomena in municipal solid waste landfills with solid wastes caused by a sig-
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ply the proposed model are reported in the following paragraphs, referring to some sur-
veys performed in an area in central Italy.  
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the reference value of the d-excess, whose intercept value is equal to +18.15‰ (d-REFtheo). 

Figure 1. Schematic of the main processes that may alter 18O and 2H isotopic compositions of
groundwaters. Adapted from Hackley et al., 1996 [12] and Jasechko, S. 2019 [13].

However, in this paper, building on similar examples [22–33] from the literature, using
d-excess as a marker of groundwater pollution, an early-warning model is proposed for the
management of groundwater leachate contamination phenomena resorting from municipal
solid waste landfills, based on the assessment of deuterium excess variations, which can
occur after precipitation infiltration inside the subsoil.

2. Materials and Methods

This paper presents an isotope-based, defined early-warning model for assessing
d-excess variations (‰). The model has been proposed for managing groundwater con-
tamination phenomena in municipal solid waste landfills with solid wastes caused by a
significant organic component. The procedure and the isotope data (2H and 18O) used to
apply the proposed model are reported in the following paragraphs, referring to some
surveys performed in an area in central Italy.

2.1. The Model

The proposed model is based on the d-excess assessment in groundwater samples.
The d-excess reflects the deviation of a sample from the “ideal” condition (evaporation
in equilibrium conditions at 25 ◦C), represented by the meteoric water line. An increase
in the d-excess, without a proportional increase in 18O, causes the points’ shift from ideal
conditions, represented by the reference meteoric water line (Figure 1). Figure 2 shows
the flowchart of the proposed procedure. In the area under study, the local precipitation
regression line is very close to the Local Meteoric Water Line for Pian dell’Elmo station, as
the reference value of the d-excess, whose intercept value is equal to +18.15‰ (d-REFtheo).
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Atomic Energy Agency (IAEA). In fact, Equation (3) is defined by the isotopic data for the 
2002 year.  

Figure 2. Flowchart of proposed procedure for F index determination.

The proposed procedure (Figure 2) provides the determination of an index, F, for
groundwater samples, as follows (3):

F =
dMEASi

dREF
(1)

where:
dMEASi is referred to the isotope determination in the i-sample according to equation

dMEASi = d2HMEASi − 8d18OMEASi measured in groundwater samples (i) (2)

d2H = 8.21d18O + 18.15‰
dREF = d2H − 8.21d18O = 18.15‰ (d-REFtheo) for reference of d-excess (Pian dell’Elmo station)

(3)

The Pian dell’ Elmo (MC) station has been identified as a reference of precipitations’
isotope composition in this area, and its isotopic data are provided by the International
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Atomic Energy Agency (IAEA). In fact, Equation (3) is defined by the isotopic data for the
2002 year.

The proposed model provides the determination of F index (Equation (1), given by
the ratio between the d-excess for the i-sample (dMEASi) and the d-excess reference value
(dREF). Since the latitude influences the d-excess trend, it would be better to consider a
meteoric water line reference for the study area in order to define an appropriate reference
for d-excess (dREFStudyArea). To perform a meteoric water line of the study area, it would
need at least 4 rainwater samples collected in the study area, all over one year, to represent
the seasonality. If this hydrological information is not available, it is possible to refer
to other Local Meteoric Water Lines, available in the literature. The application of the
proposed model considers the Local Meteoric Water Line for Pian dell’Elmo station (3), as
the reference value of the d-excess, whose intercept value is equal to +18.15‰ (d-REFtheo).

This procedure provides the determination of a coverage index, as usually found in
geochemical prospecting, F, as the d-excess percentage variation, which makes it possible
to define an alert level system in monitoring the groundwater’s potential contamination
due to leachate from municipal solid waste landfills. Depending on the value assumed by
the F index, it is possible to hypothesize three zones (Table 1).

Table 1. Zones for F index: values assumed by index F.

Values Zones

F > 1.1 (+10%) Alarm zone—
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The methanogenesis phenomena can cause an exclusive enrichment of the deuterium
isotope (d2H) and, therefore, an increase of d-excess.

The choice of 1.1 as a threshold value for the alarm zone of F is because, in environ-
mental monitoring processes, it is mandatory to apply a caution criterion. This means that,
as a contamination process could occur, the management of the landfill must be alerted as
soon as possible. On the other hand, 10% is the maximum variation we can have, usually
for δ2H and δ18O contents in rainwater [8,9,34,35]

2.2. Study Area and Sampling Data

The study area is located in central Italy and is characterized by a hilly morphology,
with altitude ranging between 500 and 600 m a.s.l. The landfill plant, designed in the
1980s, covers an area of approximately 0.12 km2. It is used for the storage of municipal
solid waste (MSW). The study area, where the landfill plant is located, is characterized
by two outcropping deposits: upper sandy conglomerate deposits and marly arenaceous
formation. The latter outcrops all over the area, and it is made of marly and arenaceous
layers, alternated with clay and limestone lenses.

Moreover, the study area is characterized by marly and arenaceous layers with low
permeability, alternated with limestone lenses which, if fractured, can host suspended
aquifers. In the study area, there is a debris layer, which has, therefore, caused the design
of an impermeable layer at the landfill bottom, capable of ensuring a perfect water seal
of the landfill bottom. Downstream of the landfill, a barrier has been located. It consists
of variable dimensions soil, with sandstone and marl lithoid elements. On the barrier
downstream of the landfill, a series of sub-horizontal drains have been drilled to drain
most of the landfill percolation water. These drains have been made with a slope such as to
drain the percolation water downstream of the barrier towards the drain’s channels of the
shallow waters. During the executive phase, drainage channels have been created to reduce
the connection between rainwater and embanked waste and to avoid the production of
leachate. They are due to the discharge of the surface water into the canal downstream of
the embankment. In the end, a final covering with waterproofing layers has been located.
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Figure 3 shows (i) groundwater samples identified with “P” and “PM” that are related
to piezometers that cross all sediments until the impermeable layer, (ii) rainwater samples
identified with “AP”, (iii) samples by leachate tanks, identified with “PE”, and (iv) drainage
water samples used to catch percolation water, identified with “AD”.
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2.2.1. d2H and d18O Isotopes

Table 2 presents the isotope data (d2H and d18O) considered for the proposed model
implementation. The data refer to some monitoring surveys performed at a municipal solid
waste landfill in central Italy (Figure 3). The isotope data of four monitoring surveys, carried
on in 2020, have been considered: January, April, July and October. In fact, the four monitoring
surveys can properly represent a whole hydrological year: January and April for the wet
season, July and October for the dry season. The δ2H and δ18O contents of groundwater and
leachate samples were analyzed by the Isotope Geochemistry Laboratory of the University of
Parma (Italy) using the IRMS (isotope-ratio mass spectrometry) continuous flow-equilibration
method with CO2. Isotopic abundance ratios are expressed as parts per million of their
deviations, as given by the Vienna Standard Mean Ocean Water (VSMOW).

Table 2. Isotopes (d2H and d18O) data for monitoring surveys: January, April, July and October.

January April

Samples ‰d(2H) ± 1 ‰
(VSMOW)

‰d(18O) ± 0.05 ‰
(VSMOW)

Samples ‰d(2H) ± 1 ‰
(VSMOW)

‰d(18O) ± 0.05 ‰
(VSMOW)

AD16 −22.7 −7.5 AD16 −28.2 −8.22
AD17 −36.6 −6.92 AD13 −37.6 −7.8
AD47 −36.5 −7.29 AD47 −40.1 −7.69
AD63 −40.8 −6.85 AD68 −41.8 −7.99
AD60 −39.8 −7.178 AD73 −44.1 −8.3
AD32 −40.3 −6.9 AP −7.8 −2.69
AD64 −41.2 −6.778
AD85 −38.56 −6.287

AP −8.73 −3.37
PE1 −17.2 −5.85
PE2 −2 −4.52
P1 −40.4 −5.9
P6 −41.1 −6.3

PM1 −42.1 −6.28
P5 −44.55 −6.92
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Table 2. Cont.

July October

Samples ‰d(2H) ± 1 ‰
(VSMOW)

‰d(18O) ± 0.05 ‰
(VSMOW)

Samples ‰d(2H) ± 1 ‰
(VSMOW)

‰d(18O) ± 0.05 ‰
(VSMOW)

AD13 −42.2 −7 AP −30 −5.3
AD16 −24.3 −7.5 AD10 −40.6 −7.71

P1 −46.1 −7.6 AD16 −28 −8.2
P4 −43.3 −7.5 AD17 −41.3 −7.76
P5 −50.5 −7.9 AD41 −43.5 −7.8
P6 −40.9 −6.9 AD47 −41 −7.67
P12 −52.6 −8.3 AD53 −42.9 −7.68
PM1 −42.3 −6.9 AD68 −40 −7.2
P13 −49.5 −8 AD71 −43.9 −7.73

ADF −49.2 −8 AD76 −44.4 −7.85
PE1 −21.3 −7.9 AD55 −41.6 −7.52
PE2 −4 −6.1 AD56 −41.6 −7.52

AD58 −41.8 −7.56
AD59 −41.4 −7.48
AD73 −41.8 −7.52
AD13 −45.3 −7.88
ADF −46.5 −8.19

P1 −45.7 −7.96
P4 −46.3 −8.18
P5 −50 −8.49
P6 −42.5 −7.49

PM1 −40.7 −7.36
P12 −49.3 −8.45
P13 −47.7 −8.24
PE1 −27.1 −7.78
PE2 −19.9 −7.09

Table 2 presents the isotope data for (i) groundwater samples, identified with “P”
and “PM”, (ii) rainwater sample, identified with “AP”, (iii) samples by leachate tanks,
identified with “PE” and (iv) drainage water samples, identified with “AD”. In fact, on the
embankment downstream of the landfill, a series of sub-horizontal drains have been drilled
to collect most of the landfill percolation water and to carry it outside the landfill. These
drains have been made with a slope to drain the percolation water to the downstream of
the embankment towards the drain channels of the shallow waters.

2.2.2. Trace Elements Concentration: d2H and d18O

Supplementary Materials (Table S1) shows the concentrations of the trace elements:
Iron (Fe), Manganese (Mn), Nickel (Ni), Cobalt (Co) and Zinc (Zn). Trace element concen-
trations were determined for the samples used for the monitoring surveys. Laboratory
analyses for the determination of concentrations of some trace elements were performed at
the Laboratory of the Department of Earth Sciences of the University of Rome “La Sapienza”.
Concentrations of trace elements were measured using an ICP-MS (X Series 2, Thermo
Fisher Scientific, Waltham, MA, USA) following filtration (0.45 µm) and acidification in the
field (HNO3 1:1).

3. Results and Discussion

Several studies [4,30–33] have highlighted how methanogenesis processes can affect
leachate enrichment in δ2H. As a matter of fact, the methanogenic bacteria, during the
methane production, use first the “lighter” isotope of hydrogen (1H), therefore, leaving the
enriched “heavier” isotope of hydrogen in the leachate (2H) [20,21,36,37]. In the natural
environment, the abundance and concentration of trace elements might enhance the rate of
carbon source degradation by methanogens either directly or in a more indirect way. For
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example, it might increase the specific metabolic activity of bacterial groups such as primary
or secondary fermenters whose products are the substrates for methanogens. Burgess
et al. [38] reported that trace metals influence microbial waste degradation and species
diversity within sewage sludge. By comparing enrichment cultures with and without trace
element amendments (Fe, Ni, Co, Mo, Co, Zn, B, Mn), Unal et al. [39] not only have found
a correlation between the increasing mcrA levels and elevated methane production but
have also demonstrated a shift in the metabolically active methanogenic community from
a M. formicicum-like group to a M. subterraneum-like. Figure 3 shows deuterium δ2H
and oxygen δ18O isotopes composition for groundwater samples. Figure 4 shows also the
GMWL, MMWL and Local Meteoric Water Line for Pian dell’Elmo station (2).
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The deviation from meteoric lines shows alteration phenomena due to processes
that occurred in the soil. In particular, the variation from meteoric lines highlights the
mixing phenomena of groundwater with leachate, coming from landfills of municipal
solid waste, made of a significant organic part [4]. PE1 and PE2 (red arrows, Figure 4)
have been used to assess the leachate levels of isotope compositions; in fact, they confirm
a sound enrichment in δ2H (Figure 4), and they act as end-members of possible mixing
processes. In addition to the leachate sampling points, Figure 4 shows deviations from
the reference meteoric lines for the drainage water samples: AD16 and AD13. The former
shows deuterium enrichment for all four monitoring surveys, with values ranging from a
minimum of −28.20‰ in April and a maximum of −22.74‰ in January; on the contrary,
the latter presents deuterium enrichment in April with a value equal to −37.6‰. At the
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same time, in April, the points AD68 and AD73 show isotopic connotations at the boundary
with the reference meteoric lines, with deuterium values equal to −41.80‰ for AD68 and
−44.10‰ for AD73. In particular, the AD16 sample presents a significant enrichment in
deuterium isotopes in January and July related, respectively, to the beginning of the wet
and dry seasons. Therefore, it seems evident that the methanogenesis processes, during
which bacteria use the “lighter” isotope hydrogen (1H) and leave the “heavier” isotope (2H)
in leachate, cause a deuterium isotope enrichment without involving 18O [12,20,21]. The
proposed isotope model considers the index, F, according to d-excess percentage variation.
The F index (Equation (1)) is given by the ratio between the d-excess for the samples
(dMEASi) and the d-excess reference value, given by the Local Meteoric Water Line for Pian
dell’Elmo station (d-REFtheo = +18.15‰). Figure 5 shows the results of the index F, calculated
according to Equation (3).
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The values of index F in Figure 5 shows how the exceeding of a value equal to
1.1, corresponding to an increase of 10% compared to the d-REFtheo (+18.15‰), confirms
contamination phenomena due, probably, to mixing with leachate. The methanogenesis
phenomena can cause an exclusive enrichment of the deuterium isotope (d2H) and, there-
fore, an increase of d-excess. As shown in Table 1, three characterizing zones have been
proposed, according to the results of index F related to the considered samples. Figure 5
shows that the AD16 sample presents an index F higher than 1.1 for the four monitoring
surveys, with values in a range between 1.96 and 2.072. The AD13 sample also shows an
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anomalous d2H in April such as to result in an index F equal to 1.36 (Figure 5). At the same
time, the AD68 and AD73 samples have an index F equal to 1.21 and 1.22, respectively
(Figure 5). Moreover, the October survey shows numerous samples in the warming zone.
Therefore, according to F index results (Figure 5), Figure 6 shows a scatter plot between
d2H and F index for monitoring surveys.

Figure 6. Scatter Plot between the d2H and the F index for monitoring surveys.

Figure 6 shows that the leachate samples, PE1 and PE2, have values of F index which
are all inside the alarm zone. At the same time, the AD16 sample shows values of the F
index as being within the alarm zone (Figure 6), confirming contamination phenomena of
drainage water by leachate. In the April monitoring survey, the AD13 sample shows an
index value F > 1.1, which is, in fact, in the alarm zone (Figure 6). On the contrary, there are
no anomalies in July and October surveys. At the same time, the AD73 and AD68 samples
present F index values, such as being in the warning range (Figure 6). Therefore, the
occurring value for AD13, AD73 and AD68 samples, resulting from the April monitoring
survey, could be due to a seasonal anomaly. To assess the seasonality influence, Figure 7a,b
shows a combined graph where the monthly cumulative rainfall (Figure 7a) and the
monthly average temperatures (Figure 7b) are represented with the F index of AD16, AD13,
AD73 and AD68 samples. As the thermo-pluviometric data by Pian dell’ Elmo station for
2020 were not available, the data by Monte San Vicino (MC) station have been considered,
which is located a few kilometers from Pian dell’Elmo. The thermo-pluviometric data have
been provided by the Regional Meteorological-Hydrological Information System managed
by the Civil Protection Service of Marche Region.
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Figure 7a,b shows that April 2020 is a month characterized by large precipitations
(Figure 7a) and moderate average temperatures (Figure 7b). This process influences the
2H enrichment in AD13, AD73 and AD68 samples, which, actually, show values of the F
index greater than 1.1 for the AD13 sample and values in the range 1 and 1.1, for the AD73
and AD68 samples. However, for the months of July and October 2020 (Figure 7a,b), the
F index is less than 1 for the AD13, AD73 and AD68 samples, thus confirming a seasonal
anomaly. On the contrary, the AD16 sample does not seem to be influenced by seasonality
(Figure 7a,b); in fact it shows values of F > 1.1 in all monitoring surveys. The results of the
F index confirm leachate contamination in the AD16 sample, according to results by the
main isotope diagrams in Figure 3, and, therefore, it confirms the validity of the proposed
model as a useful management tool in the case of landfills with municipal solid waste with
a significant organic component.

Furthermore, the correlations between the trace elements (Fe, Mn, Ni, Co e Zn), whose
data are shown in Table S1 of Supplementary Materials, and the index F are shown in
Figure 8.

Trace element concentrations (Table S1 of Supplementary Materials) highlight a higher
content of Fe, Mn, Co and Zn in the drainage water samples (AD16, AD13, AD16, AD68
and AD63) affected by methanogenic processes as well as in the leachate samples (PE1 and
PE2). Many unknowns exist regarding trace elements’ effects due to their bioavailability,
their optimal concentration on facilitated methanogenesis and their toxic concentrations for
microbial growth and activity in coal bed basins in situ. The bioavailability and toxicity of
trace elements in the environment are controlled by geochemical processes such as mineral
dissolution, precipitation and ion adsorption/desorption. In this study, the abundance
and concentration of trace elements might enhance the rate of carbon source degradation
by methanogens either directly or indirectly. For example, it might increase the specific
metabolic activity of bacterial groups such as primary or secondary fermenters whose
products are methanogen substrates. Further investigation should focus on the effects of
trace elements on bacterial activity in coal biodegradation pathways and their associated
community compositions. Therefore, a better understanding of trace elements as a limiting
factor for methanogenic activity in a coal bed basin will have a broader impact on our
knowledge of the ecology and physiology of methanogens.



Water 2023, 15, 2646 12 of 14

Water 2023, 15, x FOR PEER REVIEW 12 of 15 
 

 

Figure 7. Combined graph of monthly cumulative rainfall (a) and monthly average temperatures 
(b) with index F for samples AD16, AD13, AD73 and AD68. 

Figure 7a,b shows that April 2020 is a month characterized by large precipitations 
(Figure 7a) and moderate average temperatures (Figure 7b). This process influences the 
2H enrichment in AD13, AD73 and AD68 samples, which, actually, show values of the F 
index greater than 1.1 for the AD13 sample and values in the range 1 and 1.1, for the AD73 
and AD68 samples. However, for the months of July and October 2020 (Figure 7a,b), the 
F index is less than 1 for the AD13, AD73 and AD68 samples, thus confirming a seasonal 
anomaly. On the contrary, the AD16 sample does not seem to be influenced by seasonality 
(Figure 7a,b); in fact it shows values of F > 1.1 in all monitoring surveys. The results of the 
F index confirm leachate contamination in the AD16 sample, according to results by the 
main isotope diagrams in Figure 3, and, therefore, it confirms the validity of the proposed 
model as a useful management tool in the case of landfills with municipal solid waste with 
a significant organic component. 

Furthermore, the correlations between the trace elements (Fe, Mn, Ni, Co e Zn), 
whose data are shown in Table S1 of Supplementary Materials, and the index F are shown 
in Figure 8.  

  
(a) (b) 

  
(c) (d) 

Figure 8. Combined graph of trace elements and index F: (a) January, (b) April, (c) July and (d) 
October. 

Trace element concentrations (Table S1 of Supplementary Materials) highlight a 
higher content of Fe, Mn, Co and Zn in the drainage water samples (AD16, AD13, AD16, 
AD68 and AD63) affected by methanogenic processes as well as in the leachate samples 
(PE1 and PE2). Many unknowns exist regarding trace elements’ effects due to their bioa-
vailability, their optimal concentration on facilitated methanogenesis and their toxic con-
centrations for microbial growth and activity in coal bed basins in situ. The bioavailability 

Figure 8. Combined graph of trace elements and index F: (a) January, (b) April, (c) July and (d) October.

4. Conclusions

This paper proposes an original procedure for the application of isotope-based early-
warning model for monitoring the potential mixing phenomena between groundwater
and leachate from municipal solid waste with a significant organic component. Several
studies [4,14,15,18–22] have shown that methanogenesis can cause a deuterium increase
because bacteria use, preferentially, the “lighter” isotope hydrogen (1H) along the methane
production; therefore, the remaining hydrogen is enriched in deuterium (2H), that is, the
“heavier” isotope, without causing a proportional increase in 18O. The isotopic model is
validated by the abundance and concentration of trace elements that seem to enhance the
rate of carbon source degradation by methanogens.

The proposed isotopic model has assessed the d-excess variation for the management
of groundwater leachate contamination phenomena. This seems to be an original applica-
tion for d-excess, as it is generally used for the calibration of atmospheric general circulation
models [7,8,21,35]. The proposed procedure (Figure 2) provides the determination of F
index (Equation (1)), given by the ratio between the d-excess for the samples (dMEASi)
and the d-excess reference value (dREF). Based on the values assumed by F index, the
model proposes three zones (Table 1) with diverse warning levels for the management
of mixing phenomena between leachate and groundwater. Values of F index higher than
1.1 (Table 1) confirm contamination phenomena between groundwater and leachate, and,
therefore, actions by the municipal solid waste landfill manager are required. The results
(Figures 5 and 6) of the application to a study case of the proposed procedure show that
the F index can be used as a footprint for mixing phenomena between groundwater and
lactate by the municipal solid waste landfill. Furthermore, these results (Figure 7a,b) also
show how the seasonality is a parameter to consider in F index assessment, as it can affect
the 2H enrichment and, so, the d-excess in groundwater samples. Groundwater samples
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that are located in the warning zones must be monitored to verify the anomaly source, such
as due to seasonality or leachate contamination, by carrying out samplings; if not for the
whole hydrological year, they should at least be, in any case, representative of seasonality.
According to the procedure of this proposed model (Figure 2), the determination and moni-
toring of the F index can be a useful tool to assess and manage possible mixing phenomena
between groundwater and leachate from municipal solid waste landfills. The proposed
isotope-based early-warning model is still in a first phase, as it would be better to consider
a meteoric water line that refers to the study area for the F index determination, as the
d-excess is highly affected by latitude trend. However, in the lack of other information
and as a cautionary guide, the Mediterranean Meteoric Water Line has been considered
as a reference. In fact, the value from an equation of a Local Meteoric Water Line could
be lower.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/w15142646/s1. Table S1: Trace elements concentrations. Data for
monitoring surveys: January, April, July and October.
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