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Abstract. Creating amorphous solid states by randomly bonding an ensemble
of dense liquid monomers is a common procedure that is used to create a variety
of materials, such as epoxy resins, colloidal gels, and vitrimers. However, the
properties of the resulting solid do a priori strongly depend on the preparation
history. This can lead to substantial aging of the material; for example, proper-
ties such as mechanical moduli and transport coefficients rely on the time elapsed
since solidification, which can lead to a slow degradation of the material in tech-
nological applications. It is therefore important to understand under which condi-
tions random monomer bonding can lead to stable solid states, that is, long-lived
metastable states whose properties do not change over time. This work presents
a theoretical and computational analysis of this problem and introduces a ran-
dom bonding procedure that ensures the proper equilibration of the resulting
amorphous states. Our procedure also provides a new route to investigate the
fundamental properties of glassy energy landscapes by producing translationally
invariant ultrastable glassy states in simple particle models.
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1. Introduction

Since glasses are out-of-equilibrium materials, their properties depend on the history
of formation [1]. A glass quenched from its liquid state with a slow cooling rate will
have higher kinetic and mechanical stability with lower energy (or enthalpy) than if
cooled quickly, which reflects the fact that the system resides in a lower region of
its rugged energy landscape [2, 3]. Producing stable glasses and hence accessing deep
minima inside this landscape is a crucial challenge for experiments and computer sim-
ulations, as it allows one to devise better materials and/or gain insight into the nature
of the glassy state. In experiments, vapor deposition techniques with controlled sub-
strate temperature can produce glass samples with extraordinary kinetic stability, a
major breakthrough in the last decades [4–10]. On the atomistic simulation side, vari-
ous sampling techniques, such as replica exchange methods [11–13], Monte-Carlo (MC)
simulations with smart updates [14–17], random pinning methods [18, 19], and machine
learning-assisted sampling techniques [20–26], have been developed. In particular, the
swap MC [17], its generalizations [27, 28], and the random pinning approach [19, 29,
30] allow to generate equilibrium configurations deep inside the glassy landscape. The
key idea behind these approaches is to systematically vary certain degrees of freedom
while maintaining the thermal equilibrium properties of the system. In the swap MC
algorithm [17], the diameters of the particles are the new dynamical variables that are
allowed to fluctuate, significantly accelerating the relaxation dynamics. Although this
method has revolutionized computational glass physics, it has so far remained in the
realm of computer simulations, and extending it to real experiments has turned out to
be challenging. In the random pinning approach [19], the positions of a fraction of the
particles are permanently frozen; hence, the system comprising the remaining mobile
particles enters a very glassy state with strong confinements due to the presence of the
pinned particles. Higher concentrations of pinned particles lead to ideal glasses [29–
31], whose thermodynamic behavior has been found to be consistent with the random
first-order transition theory [32]. A big advantage of this method is that it can be
applied to experimental systems, such as colloids [33, 34] and molecular liquids [35, 36].
However, the dynamics is significantly altered from the bulk state, possibly because of
the violation of translational invariance, leading to a strong decoupling between self and
collective behavior [30, 37, 38], a decrease in fragility with the increased concentration
of pinned particles [39, 40], and a suppression of dynamical heterogeneity when the glass
transition is approached [39, 41–43], in stark contrast to the behavior of standard bulk
materials that are approaching their glass transition.

Recently, we have proposed a random bonding method, in which one creates a bond
between a pair of randomly chosen nearest neighbor particles [44]. This idea is inspired
by random pinning [19], but random bonding has the big advantage that it preserves
the translational invariance of the system and that it can also be realized without much
difficulty in real experiments. In fact, random bonding is routinely used to prepare
amorphous solids such as epoxy resins (via curing agents [45] or stereolithography [46]),
and vitrimers [47, 48]. It has also been used to prepare colloidal or emulsion clusters of
various shapes via programmable bond activation [49, 50] using temperature control [51],
salt addition [52], or UV light [53]. The problem is that, to the best of our knowledge,
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it is not clear whether and under which conditions these techniques can produce stable
glasses [46, 54–57]. In this work, using theoretical analysis and computer simulations
to probe the kinetic and mechanical properties of the system, we demonstrate that the
random bonding method does indeed create ultrastable glasses in the bulk [44]. We
confirm and theoretically support the preliminary molecular dynamics simulations of
[44], which suggested that the relaxation dynamics does not show aging within numerical
accuracy. This implies that, right after bonding, the resulting configuration is indeed
close to equilibrium [44], akin to random pinning [58].

More specifically, in this work, we demonstrate that although the system is in equi-
librium if the bonded particles are selected completely randomly (in this case, the bond
lengths are thus arbitrary), the bonding between pairs of nearest neighbor particles
(which corresponds to a more realistic situation) does not ensure strict equilibration.
However, it turns out that in practice the deviation from equilibrium is very small, and
it can be negligible for most practical purposes, which will be demonstrated by detailed
molecular simulations.

Subsequently, we present results on the (almost) equilibrium dynamics of randomly
bonded glass-forming liquids and contrast our findings with those from the dynamics
of randomly pinned systems. We find that the self and collective correlation functions
for the translational degrees of freedom, as well as the rotational correlation functions,
are strongly coupled. We also observe that the kinetic fragility does not change with
increasing concentration of bonds. Finally, we find that the dynamical heterogeneity
keeps growing as we approach the glass transition. These trends are thus opposite
to the behavior found in the dynamics of randomly pinned systems, highlighting the
importance of the nature of the quenched disorder.

Our paper is organized as follows. Section 2 presents a general statistical mechanics
treatment of the process of freezing some degrees of freedom. We apply this treatment to
the random bonding process and show under which conditions it produces equilibrated
configurations. Section 3 discusses the simulation methods and procedures to generate
randomly bonded configurations. Section 4 describes the structural properties of our
generated configurations and shows that they are compatible with them being essentially
equilibrated. Section 5 explores the dynamical properties of the generated glasses and
shows that no aging is detected. Section 6 demonstrates that the randomly bonded
systems display dynamical heterogeneities similar to standard glasses. Finally, section 7
presents our conclusions.

2. Statistical mechanics of bonded systems

In this section, we present a general treatment of the statistical mechanics of systems
with frozen degrees of freedom [17, 19, 27–30, 59, 60]. In particular, we show that there
are subtle conditions that need to be fulfilled in order to ensure that once some degrees
of freedom are frozen, the remaining ones are still in equilibrium conditioned to the
frozen ones [61]. We then apply this framework to randomly bonded glass formers com-
prising monomers and dimers. We randomly choose the pairs of neighboring particles
from an equilibrium configuration and bond them together by introducing a rigid-body
constraint [44]. The main goal of this section is to demonstrate that while the creation
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of these bonds does not strictly enforce equilibrium, it does not perturb the thermal
equilibrium of the system in a significant manner.

Because the nature of the problem is quite subtle, we begin by a pedagogical present-
ation of the general idea (section 2.1) and its application to the random pinning protocol
(section 2.2) that fixes the positions of particles [58, 62]. Subsequently, we discuss how
to extend similar ideas to random bonding (section 2.3).

2.1. Quiet freezing of variables

Consider a system whose degrees of freedom are arbitrarily split into two distinct vectors
x and y with Hamiltonian H(x,y). The equilibrium probability distribution of the total
system is ρ(x,y) = exp[−βH(x,y)]/Z, where Z is the partition function and β is the
inverse temperature. Let us assume that an equilibrium configuration of the system can
be generated by sampling from ρ(x,y). Consider now the degrees of freedom y. Their
statistics is described by the marginal probability distribution (we add a subscript ‘f ’
because these are the degrees of freedom that will be frozen in the following):

ρf (y) =

ˆ
dxρ(x,y) =

Zf (y)

Z
with Zf (y) =

ˆ
dxe−βH(x,y) . (1)

Next, consider a setting in which one first generates a configuration of the y degrees of
freedom from their marginal probability distribution ρf (y), and then considers a system
wherein y are ‘frozen’ and whose dynamical variables are the x degrees of freedom, with
equilibrium probability:

ρ(x|y) = e−βH(x,y)

Zf (y)
. (2)

Here, the y variables play the role of a frozen or pinned quenched disorder, and one is
interested in the thermal properties of the system described by x.

Using the chain rule of probabilities, we have:

ρ(x,y) = ρ(x|y)ρf (y) . (3)

Hence, a pair {x, y} generated from the joint distribution ρ(x,y) can be considered
either as an equilibrium configuration of the full system or as a realization y of the
quenched disorder of the frozen system obtained from ρf (y) together with a typical
equilibrium realization x of that system obtained from ρ(x|y). We conclude that one
can generate a pair {x,y} from ρ(x,y), then freeze (or pin) y and automatically obtain
an equilibrium configuration x (but only a single one) of the distribution ρ(x|y) that
describes the frozen system with quenched disorder y.

We now define an ‘annealed’ average ⟨· · · ⟩, a ‘thermal’ average ⟨· · · ⟩y, and a ‘disorder’
average · · · by

⟨· · · ⟩=
ˆ

dxdyρ(x,y)(· · ·) , ⟨· · · ⟩y =
ˆ

dxρ(x|y)(· · ·) , · · ·=
ˆ

dyρf (y)(· · ·) ,

(4)
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respectively. Furthermore, we define the ‘quenched’ average as ⟨· · · ⟩y and because of the
chain rule in equation (3), the annealed and quenched averages coincide:

⟨· · · ⟩= ⟨· · · ⟩y . (5)

Conversely, the validity of equation (5) for an arbitrary observable implies equation (3).
Equations (3) and (5) provide the core idea behind the random pinning and swap MC
simulations, as we will discuss in detail below.

Since the freezing of degrees of freedom eliminates possible relaxation channels [17,
28, 59, 60, 63], it can be expected that sampling x from ρ(x|y) at fixed y is harder
than sampling x and y together from ρ(x,y). (In some cases, however, the conditional
sampling gives rise to faster sampling, e.g. [64]). In other words, a local dynamics for
x that satisfies a detailed balance with respect to ρ(x|y) will in general have a much
larger decorrelation time than a similar local dynamics that acts on x and y and sat-
isfies detailed balance with respect to ρ(x,y). Generating additional independent con-
figurations from ρ(x|y) for the same y might thus be a hard task. Still, having a single
equilibrium configuration x of the pinned system allows one to run local dynamics start-
ing from that configuration and thus obtain equilibrium dynamical properties without
having to worry about the process of equilibration itself.

A few remarks on this construction are in order at this point:

• The distribution ρf (y) depends on temperature and hence a different ensemble of
pinned systems is obtained at each preparation temperature. The configuration x
is in equilibrium at the same temperature. Once y is frozen, one is still allowed to
change the temperature of x, but in that case equilibrium is not guaranteed anymore.

• In systems with quenched disorder, the thermal degrees of freedom x are usually
described by ρ(x|y) as in equation (2), but the distribution of the quenched disorder y,
that is, ρq(y), is selected independently, and in general ρq(y) ̸= Zf (y)/Z, where Zf (y)
is defined in equation (1). Physically, this corresponds to the fact that the quenched
disorder y represents impurities in the Hamiltonian H(x,y) (e.g., the location of
the magnetic atoms in a magnetic alloy that forms a spin glass) whose dynamics is
extremely slow, thus preventing them to equilibrate with the other degrees of freedom
x and as a consequence the annealed and quenched averages do not coincide. Note
that usually one keeps ρq(y) fixed while changing the temperature associated with x.
The choice ρq(y) = ρf (y) = Zf (y)/Z, in which the quenched disorder depends on tem-
perature, guarantees the equality of annealed and quenched averages in equation (5).
It is a very special choice and is called Nishimori condition in the physics literature,
quiet planting in optimization, and Bayes optimal condition in statistical inference.
See [61] for a pedagogical discussion.

• The thermal average ⟨O(x)⟩y of an extensive observable, which is the sum of local
terms of the form

O (x) =
∑
i

o1 (xi)+
∑
i,j

o2 (xi,xj)+ · · · (6)

is a random variable that depends on the realization of the disorder y (the ‘sample’).
However, in the thermodynamic limit, disordered systems usually display the so-called
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self-averaging property : the disorder-induced fluctuations of thermal averages vanish
and as a consequence the thermal average for a single typical sample coincides with the
average over samples, namely, ⟨· · · ⟩y = ⟨· · · ⟩y. Furthermore, note that the observable
O(x,y) can also depend on the frozen degrees of freedom y (e.g., if O =H ), in which
case its thermal average also depends explicitly on y through O. This does not affect
the proof of equivalence of the annealed and quenched averages in equation (5), and
it also does not affect the self-averaging property. Note that self-averaging only holds
for extensive variables, that is, the averages of local terms over the whole system or
at least a finite fraction of it in the thermodynamic limit. As an example, in a system
that has been subjected to a random pinning procedure, the pair correlation function
measured in a large configuration is independent of the choice of the pinned particles,
and is self averaging. In contrast, the density at a specific point in space will depend
on this choice, and is not self averaging.

• A local dynamics on x that samples from ρ(x|y) could be so slow that it becomes
non-ergodic at the ideal glass transition. This has been shown to happen in randomly
pinned mean field spin glasses [19, 65] and finite-dimensional glasses [29–31]. In this
case, the system remains stuck forever around the initial equilibrium configuration
x, and generating independent additional configurations is impossible using standard
simulation approaches such as simple MC simulations or molecular dynamics.

It is crucial to stress that the above construction, which we will call the quiet freezing of
variables, supposes that the division of the degrees of freedom into x and y is done before
the construction of a thermalized configuration. In other words, the proof described
above does not hold if we first thermalize a system and, then, choose which degrees
of freedom to freeze by using properties of the thermalized configuration because this
would introduce a bias that is not described by equation (1). Keeping this in mind, we
now discuss how this construction can be applied to randomly pinned particle systems,
and how it can be generalized when pinning is not random.

2.2. Random pinning and wall pinning

The construction in section 2.1 can be applied in a straightforward manner to the
random pinning procedure [18, 58, 62]. We will consider a system of N point particles
in d dimensions, such as the Kob-Andersen model [66], and we will make use of the
particle permutation symmetry as a crucial ingredient. Note that in most cases, the
systems of interest are polydisperse, including binary or ternary mixtures, and the
particle permutation symmetry does not exist because particles have distinct sizes. Yet,
one can always recover it if one considers the permutation of the particle species as an
additional degree of freedom and sum up all the possible permutations in the partition
function [27, 67–69]. This treatment does not change the thermodynamic properties
that we discuss in this paper. A formally equivalent way of reintroducing the particle
permutation symmetry is to assign to each particle an additional degree of freedom
describing its size. Thus, for simplicity, we focus only on positions (and momenta) as
relevant degrees of freedom.

https://doi.org/10.1088/1742-5468/ad17b6 7
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2.2.1. Random pinning: choosing at random the particles that will be pinned. The
Hamiltonian H and the partition function Z are given by:

H
(
rN ,pN

)
=

N∑
i=1

p2
i

2mi
+U

(
rN
)
, Z =

ˆ ( N∏
i=1

dridpi

)
exp

[
−βH

(
rN ,pN

)]
, (7)

where ri , pi , and mi are the position, momentum, and mass of the ith particle, respect-
ively. U is the potential energy, and β = 1/T is the inverse temperature. Particles are
assumed to be confined in a volume V with some boundary conditions that do not need
to be specified at this stage. In this paper, we use a shorthand notation for a vector
of N variables, for example, rN = (r1,r2, . . .,rN ). Note that we omit the combinatorial
factors such as N ! and the Planck’s constant h in the definition of the partition function
in equation (7) because we are not concerned with the absolute value of the free energy
or entropy.

One can then split the N particles into a set of Nf pinned particles, with coordinates
y= {rNf ,pNf}, and a set of N −Nf unpinned (or mobile) particles with the remaining
coordinates, x. Because the labeling of particles is arbitrary, we consider the first Nf

particles as pinned ones. Note that the splitting is here performed before any thermal-
ization, as we emphasized in section 2.1. One can then thermalize the whole system
of N particles; hence, the joint set {x,y} is in the liquid phase. Because particles can
freely diffuse in such phase, we expect the pinned particles to be uniformly distributed
in the volume V. At this point, the positions of the Nf particles, r

Nf , are frozen and
their velocities are set to zero. Because the distribution of momenta is a product of
independent distributions for each particle, setting the momenta of pinned particles
to zero does not affect the distribution of x (in other words, only the configurational
part of the Hamiltonian matters). Hence, the particles x can be considered to be in
equilibrium with the pinned particles y, and the procedure allows one to generate an
equilibrium configuration of the pinned system even in the case in which the density of
pinned particles is so high that the pinned system is glassy. Note that in usual imple-
mentations of the random pinning procedure, one first generates a configuration of the
full system of N particles and then randomly chooses the Nf particles to be pinned.
However, since from the point of view of the full system, this is just a labeling that does
not depend on the equilibrated configuration, the two operations (randomly selecting
the particles that are going to be pinned and equilibrating the full system) can be safely
exchanged. We thus conclude that random pinning belongs to the class of quiet freezing
procedures, as it is well known and numerically validated.

2.2.2. Wall pinning: choosing the particles to be pinned according to a geometrical
criterion. In [62], the random pinning construction has been extended to introduce
the possibility of choosing which particles have to be frozen after the equilibrated con-
figuration of the unpinned system is prepared. This ‘wall pinning’ construction has
been widely applied in the context of glass physics to probe the equilibrium properties
of liquids [70–73]. We briefly describe the proof for completeness. Suppose that the total
volume V is split into a ‘wall’ region W, in which particles will eventually be frozen,
and a ‘fluid’ region F, such that V =W +F , as schematically shown in figure 1. The
shape of these regions is completely arbitrary. We can then generate an equilibrium
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Figure 1. Illustration of the wall pinning procedure, of which we give two different
proofs in the main text. The first, as in [62], is based on the idea of separating the
volume in the wall (bottom part) and fluid (top part) regions, and freezing particles
in the former region; the corresponding averages are given in equation (10). The
second corresponds to ordering the particles according to their z component, and
freezing the k particles with the smallest z, as in equation (13). The number k has
to be selected such that the wall region has the desired size.

configuration of the full N -particle system and freeze the particles that fall into the W
region. Because the choice of degrees of freedom that are going to be frozen depends
on the equilibrated configuration, the proof of section 2.1 does not apply directly and
must be generalized. We note that the momenta are always irrelevant (their distribution
is a product over particles) and thus can be ignored. Given the total configurational
partition function

Zc =

ˆ ( N∏
i=1

dri

)
e−βU(rN) , (8)

the average of an arbitrary observable O(rN ) that is invariant under permutations of
the particle labels can be written as:

⟨O⟩= 1

Zc

ˆ
W+F

dr1 · · ·
ˆ
W+F

drN O
(
rN
)
e−βU(rN)

=
1

Zc

[ˆ
W

dr1+

ˆ
F

dr1

]
· · ·
[ˆ

W

drN +

ˆ
F

drN

]
O
(
rN
)
e−βU(rN)

=
1

Zc

N∑
k=0

(
N

k

)ˆ
W

dr1 · · ·
ˆ
W

drk

ˆ
F

drk+1 · · ·
ˆ
F

drN O
(
rN
)
e−βU(rN) , (9)
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where
(
N
k

)
is the binomial coefficient. In the last step, we defined k as the number of

particles in the W region, and we used the permutation symmetry of both O(rN ) and
U(rN ), hence of the whole integrand, to relabel the first k particles as being those in
the W region and the remaining N − k as being those in the F region.

Using the shorthand notation rW = (r1, . . . ,rk) ∈W k =ΩW and rF = (rk+1, . . . ,rN ) ∈
FN−k =ΩF , we can write

⟨O⟩= 1

Zc

N∑
k=0

(
N

k

)ˆ
ΩW

drW
ˆ
ΩF

drF O
(
rW ,rF

)
e−βU(rW ,rF)

=
N∑
k=0

(
N

k

)ˆ
ΩW

drW
ZW

(
rW
)

Zc

ˆ
ΩF

drFO
(
rW ,rF

) e−βU(rW ,rF)

ZW (rW )
with

ZW

(
rW
)
=

ˆ
ΩF

drF e−βU(rW ,rF) . (10)

We conclude, as in section 2.1 that we can define an ‘annealed’ average ⟨· · · ⟩, a
‘thermal’ average ⟨· · · ⟩W conditioned to the wall, and a ‘disorder’ average · · · over the
realizations of the wall, from

⟨· · · ⟩=
ˆ

drN
e−βU(rN)

Zc
(· · ·) , ⟨· · · ⟩W =

ˆ
ΩF

drF
e−βU(rW ,rF)

ZW (rW )
(· · ·) ,

· · ·=
N∑
k=0

(
N

k

)ˆ
ΩW

drW
ZW

(
rW
)

Zc
(· · ·) , (11)

and because of the chain rule in equation (10), the annealed and quenched averages

coincide, that is ⟨· · · ⟩= ⟨· · · ⟩W . Clearly, this proof can be generalized to whatever situ-
ation in which (i) there is permutation symmetry over N degrees of freedom (recall that
this also holds for polydisperse systems if one considers the particle species as additional
degrees of freedom) and (ii) the integration space of each individual degree of freedom
can be split a priori (i.e. independently of the configuration of the system) into two
distinct regions W and F. One can then generate a full equilibrium configuration of
the N degrees of freedom and freeze those falling into region W, which produces an
equilibrium configuration of the remaining degrees of freedom conditioned to the frozen
ones. We note that the unfrozen (‘fluid’) degrees of freedom should be constrained
inside the ΩF region during the thermal average. This constraint is nearly satisfied in
dense particle systems where an excluded volume effect prevents the fluid particles from
entering the ΩW region. Yet, this is not the case for dilute systems; hence, one has to
impose additional constraints on the dynamics of fluid particles such as the hard wall
condition.

Note that the only requirement on the observable O(rN ) is that it is invariant under
permutations of particles. We also mention that one can construct an observable O(rN )
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that only depends on the particles that are in the F region while keeping the global
permutation symmetry of the observable. This can be done, for example, by writing:

O
(
rN
)
=

N∑
i=1

o1 (ri) I [ri ∈ F ] +
N∑
i=1

N∑
j=1

o2 (ri,rj) I [ri ∈ F ]I [rj ∈ F ] + · · · , (12)

where I[E ] is the indicator function of event E , which is one if E is realized and zero
otherwise. Then, any observable of the form in equation (12) can be used to characterize
the fluid system only while keeping the quenched and annealed averages coincident.

2.2.3. Sorted pinning: choosing the particles to be pinned according to an ordering. We
now consider an alternative proof for quiet freezing in a similar spirit by introducing
‘sorted pinning’ described as follows. Suppose that an ordering relation between the N
particle positions can be defined. One example is to use the binary ordering relation
ri ≺ rj if ri · e< rj · e, where e is an arbitrary unit vector. Similarly, ri ⪯ rj if ri · e⩽
rj · e. We will see that the proof given below can be generalized to any ordering operation
that is able to uniquely sort a set of positions, {r1, · · · ,rN}. We now define the vector for
the k first ordered particles and the vector for the rest of the ordered particles as r⪯k =
(r1, . . . ,rk) and r≻k = (rk+1, . . . ,rN ), respectively. Considering again only permutation-
symmetric observables O(rN ), and using the permutation symmetry, we can order N
particles and write:

⟨O⟩= N !

Zc

ˆ
V

dr1

ˆ
r2⪰r1

dr2 · · ·
ˆ
rN⪰rN−1

drN O
(
rN
)
e−βU(rN)

=

ˆ
Ω⪯k

dr⪯kN !Zk

(
r⪯k
)

Zc

ˆ
Ω≻k

dr≻k e
−βU(r⪯k,r≻k)

Zk (r⪯k)
O
(
r⪯k,r≻k

)
with

Zk

(
r⪯k
)
=

ˆ
Ω≻k

dr≻k e−βU(r⪯k,r≻k) , (13)

where ˆ
Ω⪯k

dr⪯k =

ˆ
V

dr1

ˆ
r2⪰r1

dr2 · · ·
ˆ
rk⪰rk−1

drk, (14)

ˆ
Ω≻k

dr≻k =

ˆ
rk+1⪰rk

drk+1

ˆ
rk+2⪰rk+1

drk+2 · · ·
ˆ
rN⪰rN−1

drN . (15)

We thus obtain a relation similar to equation (10).
The core idea both in the ‘wall pinning’ proof (section 2.2.2) and in the ‘sorted

pinning’ proof (this section) is that the integral regions for the pinned and unpinned
(fluid) particles have a separation, either by a wall that we specify or by ranking via
some ordering operation. Thus, as long as a clear-cut separation is enforced, the internal
ordering constraint on the two vectors r⪯k and r≻k in equation (13) can be released.
This results in a similar expression for the wall pinning case, but using a separation
between the kth and (k+1)th ordered particles:

https://doi.org/10.1088/1742-5468/ad17b6 11

https://doi.org/10.1088/1742-5468/ad17b6


Creating equilibrium glassy states via random particle bonding

J.S
tat.

M
ech.(2024)

013303

⟨O⟩=
(
N

k

)ˆ
V k

dr⪯kZk

(
r⪯k
)

Zc

ˆ
ri⪰rmax

(∀i>k)

dr≻k e
−βU(r⪯k,r≻k)

Zk (r⪯k)
O
(
r⪯k,r≻k

)
with

rmax =max{r1, . . . ,rk} and Zk

(
r⪯k
)
=

ˆ
ri⪰rmax

(∀i>k)

dr≻k e−βU(r⪯k,r≻k) . (16)

This relationship is identical to equation (10) with the only difference that k is now
fixed and the boundary between the wall and fluid regions is fluctuating and determined
by the largest of the first k vectors. Hence, this second proof corresponds to a ‘fixed-k ’
ensemble, whereas the first proof corresponds to a ‘fixed-boundary’ ensemble. Typically,
the two ensembles become equivalent in the thermodynamic limit if the wall and fluid
regions are both macroscopic, that is, if k ∼N . An illustration is given in figure 1.

While the derivations presented here and in section 2.2.2 concern the thermodynam-
ics of the system, it is useful to also discuss their dynamical meaning. Suppose that we
are performing some dynamics of the N -particle system that results, at a given time
t =0, in an equilibrium configuration rN . At that instant, we can perform the sorting
of the particles (e.g., according to their z component and setting e= ez) and identify
the first k ‘wall’ particles and the last N − k ‘fluid’ ones. Now, if we let the system
evolve in an unconstrained way, the z coordinate of the kth particle might cross the
(k+1)th one. But if this happens, we would just relabel the particles by exchanging
k ↔ k+1, such that at any time, the first k particles would have the smallest z values.
This dynamics would result in the ‘annealed’ thermodynamic average. Alternatively, at
time t =0, we can freeze the positions of the first k particles, and only let the remaining
N − k particles evolve. We know that these N − k particles start in equilibrium with
the wall, but then, we have the additional hard constraint that the z coordinates of the
evolving particles must be at any time t > 0 larger than zmax =max{z1, . . . ,zk}. This
hard constraint can be implemented in a MC simulation by rejecting moves that would
bring a particle at z < zmax, or in Molecular Dynamics by adding a reflecting wall at
z = zmax. In both cases, the resulting dynamics will lead to the ‘thermal’ average ⟨· · · ⟩W
over the fluid particles. One should then either perform the disorder average over the
wall particles, that is · · ·, by repeating the freezing procedure many times, or invoke
the self-averaging properties for large N (assuming k to be of order N ) to claim that a
single run is representative of the average.

Note that, as in the wall pinning case, we can construct an observable O(rN ) =
O(r≻k) that depends only on the last N − k ordered vector r≻k = (rk+1, . . . ,rN ). Such an
observable is still invariant under permutations of the N particles, and it can describe
the fluid region without an explicit dependence on the frozen particles.

2.3. Random bonding procedures

2.3.1. Variable transformation to create virtual dimers. We now show that the ideas
presented in section 2.2 can be implemented within the random bonding approach.
Suppose that we want to create Nd dimers and Nm monomers from our system with
N =Nm+2Nd particles. To this aim, given a configuration rN of the N monomers,
what we need is a procedure that creates Nd dimers in a permutation-invariant way.
More precisely, the criteria that are used to decide which particles are going to be in the
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dimers should not depend on the particle labeling itself. The remaining Nm particles
are left unbonded. We can then exploit the permutation symmetry to indicate the
indices of dimers and monomers as belonging to sets i ∈ D = {1,3,5, . . . ,2Nd− 1} and
i ∈M= {2Nd+1, . . . ,N}, respectively, with dimer i having particles i and i +1. We
then denote r2Nd = (r1,r2, . . . ,r2Nd

) and rNm = (r2Nd+1, . . . ,rN ) the dimer and monomer
coordinates, respectively. We stress that this is just a sorting operation of the particle
labels, and no physical constraint is imposed on the system at this stage.

The splitting of all particles into dimers and monomers defines an integration space
for both sets of variables, which we denote as Ωd for the dimers and Ωm for the
monomers. Due to permutation invariance, there are

Πm,d =
N !

2NdNd!Nm!
(17)

distinct equivalent ways of constructing the dimers4, and the sum over all these equi-
valent possibilities reconstructs the whole integration volume of the original monomer
system5. Taking advantage of the permutation symmetry of the problem, we can then
write:

⟨O⟩= Πm,d

Z

ˆ ( N∏
i=1

dpi

)ˆ
Ωd

dr2Nd

ˆ
Ωm

drNm O
(
rN
)
e−βH(rN ,pN) . (19)

We next consider a variable transformation from Cartesian coordinates to Jacobi
coordinates for the dimers. We assign virtual bonds between particles in each dimer,
as schematically shown in figure 2(a). Once again, we emphasize that this is a vir-
tual operation, and the actual system is not altered at all, that is, this is merely a
variable transformation. For the monomers, we continue to use the Cartesian coordin-
ates. For the dimers, instead, we use the Jacobi coordinates for the two-body prob-
lem (figure 2(b)), using the center of mass and relative position for the dimer i ∈
D = {1,3,5, . . . ,2Nd− 1} comprising the ith and (i+1)th particles. These are given
by Ri =

mi ri+mi+1ri+1

mi+mi+1
and r̃i = ri− ri+1, respectively. The corresponding momenta are

denoted by Pi and p̃i, respectively. Also, the dimer total mass and the reduced mass
are given byMi =mi+mi+1 and µi =

mimi+1

mi+mi+1
, respectively. This variable transformation

is formally written as (rN ,pN )→ (RNd,PNd, r̃Nd, p̃Nd,rNm,pNm).
By making this variable transformation, we can rewrite the Hamiltonian H and the

partition function Z as:

4 There are
( N
2Nd

)
= N !

(2Nd)!Nm !
ways to choose particles associated with dimers. Then there are (2Nd − 1)!! = (2Nd)!

2NdNd !
ways to construct

pairs among 2Nd particles. Thus Πm, d =
( N
2Nd

)
(2Nd − 1)!!, giving equation (17).

5 To fix ideas by an example, consider the ‘wall pinning’ setting of section 2.2.2. The criterion to decide whether a particle belongs
to the wall or to the fluid regions is ri ∈W and ri ∈ F , respectively. So the integration space for wall particles is rW ∈ ΩW =W k

and that for fluid particles is rF ∈ ΩF = FN−k . Of course, the union of all the spaces obtained by permuting the particle identities
reconstructs the original space rN ∈ V N , because of the trivial identity

V N = (W +F )N =
N∑
k=0

(N
k

)
W k ×FN−k . (18)

.
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Figure 2. Illustration of the creation of virtual bonds and the associated change of
coordinates. (a) Schematic plot for making virtual bonds. (b) The center of mass
and relative position describe a dimer connecting particles i and i +1.

H
(
RNd,PNd, r̃Nd, p̃Nd,rNm,pNm

)
=
∑
i∈D

(
P2

i

2Mi
+

p̃2
i

2µi

)
+
∑
i∈M

p2
i

2mi
+U

(
RNd, r̃Nd,rNm

)
,

(20)

Z =Πm,d

ˆ (∏
i∈D

dRidPi

)ˆ
Ωd

(∏
i∈D

dr̃idp̃i

)ˆ
Ωm

(∏
i∈M

dridpi

)
× exp

[
−βH

(
RNd,PNd, r̃Nd, p̃Nd,rNm,pNm

)]
. (21)

Note that the integration spaces Ωd and Ωm in equation (21) are not exactly the same
as the ones in equation (19), they are the images of those spaces under the change of
variable. Yet, with a little abuse of notation, we keep the same notation for both.

We further proceed with the variable transformation for the relative movements of
dimers by using spherical coordinates in d =3, which is formally written as (r̃Nd, p̃Nd)→
(r̃Nd,θNd,φNd,pNd

r̃ ,pNd

θ ,pNd
φ ). We note that because of Liouville’s theorem, the Jacobian is

unity for this transformation, namely, dr̃idp̃i = dr̃idθidφidpr̃idpθidpφi
. Also, the kinetic

part of the Hamiltonian can be written as:

p̃2
i

2µi
=

p2r̃i
2µi

+
p2θi
2Ii

+
p2φi

2Ii sin
2 θi

, (22)

where Ii = µir̃
2
i is the moment of inertia, pr̃i = µi

˙̃ri, pθi = Iiθ̇i, and pφi
= Ii(sin

2 θi)φ̇i are
the new momenta and the dot denotes a time derivative. We note that as one can see in
equation (22), the kinetic term also depends on the coordinates. Thus, we cannot treat
the momenta and positions separately, unlike in the random pinning setting.

We finally arrive at the expressions for the Hamiltonian H and the partition function
Z that are suitable for our study:

H
(
RNd,PNd, r̃Nd,θNd,φNd,pNd

r̃ ,pNd

θ ,pNd
φ ,rNm,pNm

)
=
∑
i∈D

(
P2

i

2Mi
+

p2r̃i
2µi

+
p2θi
2Ii

+
p2φi

2Ii sin
2 θi

)
+
∑
i∈M

p2
i

2mi
+U

(
RNd, r̃Nd,θNd,φNd,rNm

)
, (23)
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Z =Πm,d

ˆ (∏
i∈D

dRidPi

)ˆ
Ωd

(∏
i∈D

dr̃idθidφidpr̃idpθidpφi

)ˆ
Ωm

(∏
i∈M

dridpi

)
× exp

[
−βH

(
RNd,PNd, r̃Nd,θNd,φNd,pNd

r̃ ,pNd

θ ,pNd
φ ,rNm,pNm

)]
. (24)

We can then define the total (or annealed) average as:

⟨O⟩= Πm,d

Z

ˆ (∏
i∈D

dRidPi

)ˆ
Ωd

(∏
i∈D

dr̃idθidφidpr̃idpθidpφi

)ˆ
Ωm

(∏
i∈M

dridpi

)
×O

(
rN
)
exp

[
−βH

(
RNd,PNd, r̃Nd,θNd,φNd,pNd

r̃ ,pNd

θ ,pNd
φ ,rNm,pNm

)]
. (25)

We note again that up to this point, we have just discussed an exact variable trans-
formation in the statistical mechanics expectation values. We did not modify the system
itself at all.

From a dynamical point of view, similarly to what has been discussed at the end
of section 2.2.2, one should imagine the following procedure: first, an equilibrium con-
figuration of rN is generated at time t =0. Second, the Nd dimers are defined using
the permutationally invariant procedure described in the first paragraph of this section.
Third, some dynamics is run and the configuration of the system evolves in time. As
long as the dimer and monomer variables remain in their respective domains6, r2Nd ∈ Ωd

and rNm ∈ Ωm, one can keep running the dynamics. If at some point one variable goes
out of its domain, then one should run the procedure again to relabel the monomers
and dimers according to the new particle positions. Once again, this is just a relabeling
procedure that does not alter the system in any way. Doing this results in an annealed
average as shown in section 2.2.2.

2.3.2. Random bonding. Using the notations introduced in section 2.3.1, it is now
straightforward to perform random bonding, that is, freeze the dimer bond lengths to
define a quenched average. We consider the dimer lengths r̃Nd as being frozen, that is,
r̃Nd plays the same role as the positions of the pinned particles in the random pinning
approach, and of the frozen degrees of freedom y in the general discussion of section 2.1.
We can thus consider the statistical mechanics of the remaining degrees of freedom,
namely a composite of monomers and dimers for a particular realization of r̃Nd, that
play the role of the thermal degrees of freedom x in section 2.1. Note that the kinetic
term associated to the frozen bond lengths is decoupled from all the other degrees of
freedom. Hence, as in the particle pinning case, we can set the momenta pr̃i to zero
at the instant at which the bonds are frozen. Nevertheless, we include in the partition
function the kinetic energy associated with the non-frozen variables that, for a given
realization r̃Nd, is then given by

6 The reader should keep in mind that while the dimer constraints are always the same, they are formally represented in different
ways depending on the choice of coordinates, hence leading to formally different spaces Ωd and Ωm.
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Zr̃

(
r̃Nd
)
=

ˆ (∏
i∈D

dRidPi

)ˆ (∏
i∈D

dθidφidpr̃idpθidpφi

)ˆ
Ωm

(∏
i∈M

dridpi

)
× exp

[
−βH

(
RNd,PNd, r̃Nd,θNd,φNd,pNd

r̃ ,pNd

θ ,pNd
φ ,rNm,pNm

)]
, (26)

and the thermal average of an observable for a particular realization r̃Nd is defined by:

⟨· · · ⟩r̃Nd =
1

Zr̃ (r̃Nd)

ˆ (∏
i∈D

dRidPi

)ˆ (∏
i∈D

dθidφidpr̃idpθidpφi

)ˆ
Ωm

(∏
i∈M

dridpi

)
× exp

[
−βH

(
RNd,PNd, r̃Nd,θNd,φNd,pNd

r̃ ,pNd

θ ,pNd
φ ,rNm,pNm

)]
(· · ·) . (27)

Comparing this with equation (25), we can write:

⟨O⟩=Πm,d

Z

ˆ
Ωd

(∏
i∈D

dr̃i

)ˆ (∏
i∈D

dRidPi

)ˆ (∏
i∈D

dθidφidpr̃idpθidpφi

)ˆ
Ωm

(∏
i∈M

dridpi

)
×O

(
rN
)
exp

[
−βH

(
RNd ,PNd , r̃Nd ,θNd ,φNd ,pNd

r̃ ,pNd

θ ,pNd
φ ,rNm ,pNm

)]
=
Πm,d

Z

ˆ
Ωd

dr̃NdZr̃

(
r̃Nd
)
⟨O⟩r̃Nd . (28)

From this expression, we can deduce the probability distribution of the frozen variables
r̃Nd, which is given by:

ρf
(
r̃Nd
)
=Πm,d

Zr̃

(
r̃Nd
)

Z
, (29)

and define a ‘disorder’ average over the realization of r̃Nd as:

· · ·=
ˆ
Ωd

dr̃Ndρf
(
r̃Nd
)
(· · ·) . (30)

Finally, as it can be expected from the discussion of section 2.1, we can obtain the
identity that is at the basis of the random pinning procedure [58, 62]: The quenched
average, i.e. the disorder average over the frozen degrees of freedom, taken after the
thermal average over all remaining degrees of freedom conditioned on the frozen ones,
corresponds exactly to the annealed average of the bulk system without bonding. By
using equations (26)–(30), we get:

⟨O⟩=
ˆ
Ωd

dr̃Ndρf
(
r̃Nd
)
⟨O⟩r̃Nd = ⟨O⟩r̃Nd . (31)

The random bonding procedure then goes as follows. First, one generates an equi-
librium configuration of N particles. Then, one performs the permutationally-invariant
procedure described at the beginning of section 2.3.1 to identify the Nd dimers. The
bond lengths are finally frozen, that is taken as a quenched disorder, and one considers
the statistical mechanics of the remaining degrees of freedom as thermal. With this
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construction, all the hypotheses discussed in section 2.1 are fulfilled, and we can rig-
orously state that an equilibrium configuration of a system containing Nd dimers and
Nm monomers have been created. However, it should also be noted that the resulting
system is a rather unphysical one: due to the unbiased manner in which the choice of
the dimers has been made (based purely on the labels and not on a property of the
initial configuration), their length distribution will be proportional to the pair correl-
ation function of the initial system of monomers, and arbitrarily long dimers (up to
the system size) will be present7. It is clear that in order to produce an equilibrium, or
nearly equilibrium, configuration of a more realistic system, a bias must be introduced
in the choice of the frozen dimers. The Nishimori (quiet freezing) condition (section 2.1)
will therefore not be strictly respected, and the consequences of this choice have to be
assessed. In the following section, we discuss several possible choices, and study two of
them numerically.

2.3.3. ‘Sorted bonding’ from the shortest to the largest bond. We start by considering
a seemingly ‘natural’ procedure, which will, however, turn out to give unsatisfactory
results. In this procedure, the dimers are created between those pairs of particles that
have the smallest inter-particle distance. Specifically, we find the two particles with the
smallest distance |̃rij|= |ri− rj| and we relabel them as r1 and r2 (which particle is 1
and which one is 2 is irrelevant). Then, we look at the remaining particles (excluding
1 and 2) and find once again the pair with the smallest inter-particle distance between
particles, which we relabel as r3 and r4. We continue iterating this procedure until Nd

pairs have been sorted. This is a permutation-invariant procedure. We then make Nd

dimers by freezing the bond lengths.
We note that the configuration that has been created is not an equilibrium configur-

ation of the systems of dimers and monomers interacting with the original Hamiltonian.
To see this, one simply has to imagine the evolution of the system starting from the ini-
tial configuration just after freezing. In this initial configuration, all monomer-monomer
distances or monomer-dimer distances are, by construction, larger than the largest dimer
size. The dynamics will, obviously, not preserve this constraint and the ‘hole’ created
by the freezing procedure in the (say) monomer-monomer correlation function, which
is an intensive, self averaging quantity, will disappear progressively. The system shows
the aging of a static observable, a hallmark of nonequilibrium dynamics.

A short reflection shows that the above procedure for creating dimers can in fact be
used to create an equilibrium monomer-dimer mixture if one allows a modification of
the interaction energies between the particles. This energy function should preserve the
following properties:

1. Ωd is defined by the constraint (as above, the tilde notation indicates a distance
between a pair of particles, rather than an absolute position):

|r̃12|< |r̃34|< |r̃56|< · · ·< |r̃2Nd−1,2Nd
|=Rmax , (32)

7 The case in which such long range interactions are soft has been considered in [74, 75] and it was found that such a system does
show a strong slowing down of the dynamics when the number of links is increased.
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that is, the integration over the Nd dimers (first 2Nd particles) is constrained in such
a way that each dimer has a larger inter-particle distance than the previous one.
Here, Rmax is the maximal bond length of the dimers.

2. Additional constraints have to be imposed in Ωd on the distances between particles
belonging to distinct dimers. For example,

|r̃12|< |r̃13| , |r̃12|< |r̃14| , (33)

in order to guarantee that |̃r12| remains the shortest distance. Similar constraints are
needed for particles with higher labels.

3. The integration over the remaining Nm monomers is over the space Ωm such that all
of the Nm(Nm− 1)/2 monomer-monomer distances and each of the NmNd monomer-
dimer distances is larger than Rmax. This must be true because, otherwise, in the
sorting procedure, we would have chosen one of the monomers to belong to a dimer.
The positions of the monomers are then constrained to the space Ωm, that is, the
smallest monomer-monomer and monomer-dimer distances must stay larger than the
largest dimer bond length Rmax.

To perform the quenched average dynamically, the above constraints must be imple-
mented either by rejecting moves that violate them in a MC simulation or by adding a
hard wall term that would reflect the relative velocity of two monomers or a monomer-
dimer pair if they reach the minimal distance in a Molecular Dynamics simulation. The
time-average under this constraint would then result in a proper quenched average over
the Ωm space.

The positive aspect of this construction is that we can construct permutationally
invariant observables O(rN ) that only depend on the unfrozen degrees of freedom.
However, if the number of bonds is large, such that Rmax reaches the first peak of the
radial distribution of monomer distances g(r), the resulting constraints on the monomers
will be quite strong, and the corresponding dynamics becomes unphysical, because the
interactions between the particles are non-zero even for arbitrarily large distances.

2.3.4. ‘Random bonding’ within a cutoff. We now consider a different procedure, close
to the rigorous ‘random bonding’ described at the end of section 2.3.2, but now imposing
that the length of the formed dimers does not exceed a maximum value Rb (figure 3(a)).
This method was used in [44], where it was assumed to produce an equilibrium config-
uration of the dimer-monomer mixture.

The procedure is as follows: first, we select at random the first particle in each of
the Nd dimer. Second, for each of these, we choose a particle at random among those
at distance smaller than Rb from it to be its partner in the dimer. If there is no viable
partner, we discard that candidate and choose at random a new one. This procedure is
also permutation invariant with the following properties:

1. The space Ωd is defined by the only constraint that the dimer bond lengths r̃i ⩽Rb,
which is trivially satisfied if the bond lengths are frozen. For the rest, dimers are free
to translate and rotate.
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Figure 3. Schematic illustration of the construction of a bond connecting particles
i and i +1. (a) Random bonding with spherical cut-off. The sphere at the center
of the particle i with the radius Rb defines its neighborhood. (b) Random bonding
with directional alignment. An additional constraint is imposed by a cut-off Pb =
cosθb associated with directional alignment.

2. The monomer space Ωm is, seemingly, unconstrained because in the dimer construc-
tion procedure, nothing is implied about the monomers.

However, the choice of the Nd dimers is now not only based on the labels of the
particles but depends on the properties of the equilibrated configuration of the system
of monomers so that the Nishimori condition is, again, not strictly respected. The dis-
tribution of the frozen variables (bond lengths) is not strictly the one in an equilibrium,
unconstrained system, but will converge to it as Rb is increased. As a result, the initial
configuration will also display subtle correlations between non-bonded particles, which
will decay with time if the system is propagated with the original interaction potential.
To see this, let us consider the total pair correlation function of the system just after
the freezing of the bonds, g(r). This correlation function can be written as:

g (r) = ginter (r)+ gintra (r) , (34)

where ginter(r) is the contribution of pairs of particles is not bonded together by a frozen
bond, and gintra(r) is the contribution of the pairs of particles that are connected. By
construction, gintra(r) will have a discontinuity at Rb, above which it will jump to zero.
In contrast, g(r) is the pair correlation of an equilibrium system of monomers and is
continuous. We conclude that ginter(r) will initially have a discontinuity at Rb, which will
not be preserved by the dynamics. The situation is similar to the one described above
in the ‘sorted bonding’ case, but more subtle. In the following numerical study, we will
see that the nonequilibrium character of the initial configuration is extremely small and
disappears very rapidly. The choice of this bond distribution, for Rb of the order of
the interparticle distance, leads to a physically reasonable system which is nearly at
equilibrium and can be considered to be close to optimal.
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2.3.5. Random bonding with directional alignment. As a final example, we will consider
a situation in which it is intuitively more obvious that the initial configuration is out of
equilibrium and will display aging over a measurable time scale. The bonding scheme
is similar to the random bonding within a cutoff Rb discussed in the previous section;
however, an additional constraint is imposed on the orientation of the frozen dimers,
which are restricted to an angular sector θb around the z -direction figure 3(b)). The
initial configuration therefore displays nematic order of the dimers, which obviously will
not be preserved by the dynamics. The numerical study will allow us to estimate the
persistence time of this nonequilibrium feature compared to the isotropic case.

3. Simulation methods

3.1. Model

We employ the Kob-Andersen binary mixture [66], in which particles interact through
the Lennard-Jones pair potential:

uαβ (r) = 4ϵαβ

[(σαβ

r

)12
−
(σαβ

r

)6]
, (35)

where α,β ∈ {A,B} are species indexes. Both species have the same mass, which is set
to m =1. The values of the parameters σαβ and ϵαβ are given in [66]. The units of
length and energy are set by the parameters σ = σAA = 1 and ϵ= ϵAA = 1, respectively,
and we use the Boltzmann constant kB = 1. The potentials are cut and shifted at a
distance 2.5σαβ. We simulate systems comprising N particles in a cubic box of side
L with periodic boundary conditions at a number density ρ=N/V = 1.2. We use the
system size N =1200. We perform constrained molecular dynamics simulations via the
RATTLE algorithm [76] with a simple Nosé-Hoover thermostat [44].

3.2. Making randomly bonded systems

Starting from an equilibrium configuration of the original (bulk) KA model with N
particles described above, we generate a randomly bonded system comprising monomers
and dimers. We consider the following two protocols to do so.

(1) Random bonding with spherical cut-off: First, we choose a particle randomly, say
particle i. We then randomly pick another particle j among the neighboring particles
of particle i, located inside a sphere with a cut-off radius Rb and which is not yet
bonded. We then relabel the particle j as i +1. This process is schematically shown in
figure 3(a). We set Rb = 1.5, which is near the first minimum of the radial distribution
function, thus corresponding roughly to the boundary of the first coordination shell. We
then permanently freeze the distance between the two particles, r̃i = |ri− ri+1|, which
means that the particles i and i +1 now form a dimer with a rigid body constraint.
We repeat the above process for the remaining monomer particles until the number of
dimers, Nd, reaches the target value. By construction, we have N =Nm+2Nd, where
Nm is the number of monomers. We introduce the control parameter c= 2Nd

N = N−Nm

N ,
such that c=0 corresponds to a system with only monomers (hence the original bulk
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Figure 4. Examples of initial bonded configurations, here for T =0.6, c=0.5, and
Rb = 1.5. Left: Pb = 0 (random bonding with spherical cut-off). Right: Pb = 0.9
(random bonding with directional alignment).

model), whereas c=1 corresponds to a system having only dimers. Using the algorithm
explained above, it is difficult in practice to reach c=1, because at some point one runs
out of neighboring pairs, leaving a few percentage of monomer particles. Thus, in the
present work, we use c=0.95 as the maximum value.

(2) Random bonding with directional alignment: In this protocol, we aim to prepare
an initial bonded configuration such that the orientation of the dumbbell molecules
tends to align along the unit vector of the z -direction, ez = (0,0,1). We define a unit
vector for the orientation of each dumbbell molecule composed of particles i and i +1
by ni = r̃i/|̃ri|, where r̃i = (xi−xi+1,yi− yi+1,zi− zi+1). In protocol (1) we make a bond
between the ith and (i+1)th particles randomly among the neighbor particles inside a
spherical shell with the radius Rb centered at the position of the ith particle. We now
impose a further limitation on the neighboring region by considering the orientation of
the molecule. To this end, we define a magnitude of alignment (or polarization) for each
molecule, Pi, given by

Pi = |ez ·ni|= |zi− zi+1|/|̃ri|= |cosθi|. (36)

We then introduce another cut-off threshold Pb such that particles having Pi > Pb =
cosθb can be considered as candidate neighbors for bonding. This new neighborhood
region is schematically shown in figure 3(b). As in protocol (1), we repeat the above
process for the remaining monomer particles until either the number of dimers reaches
the target value or we run out of candidate pairs for bonding. In practice, we set c=0.75
as the maximum value for this protocol with Pb = 0.9.

In figure 4, we show initial bonded configurations for T =0.6, c=0.5, and Rb = 1.5.
The left panel is Pb = 0.0 (random bonding with spherical cut-off), and the right panel
is Pb = 0.9 (random bonding with directional alignment).
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Figure 5. Static properties in the random bonding with spherical cut-off. (a) Radial
distribution function g(r) for the original system with c=0 at T =0.6 (black
curve), and bonded systems generated by the spherical cut-off protocol (Pb = 0)
with c=0.95 at T =0.6 measured in time windows t ∈ [0,10] (red curve) and
t ∈ [10 000,20 000] (blue curve). The arrow indicates the location of the cut-off,
Rb = 1.5. The inset shows a zoomed plot near Rb. (b) Decomposition of g(r) into
the intramolecule contribution gintra(r) and intermolecule contribution ginter(r) for
c=0.95 at T =0.6 in the time window t ∈ [0,10]. (c) Orientational correlation func-
tion gori(r) for the bonded systems presented in (a), measured in two different time
windows.

4. Structural properties

In this section, we study how the bonding process affects the equilibrium properties of
the system in terms of the static structure.

4.1. Radial distribution function

We first characterize the static structure by the radial distribution function g(r) for all
particles, which is defined by:

g (r) =
L3

4πr2∆rN (N − 1)

〈∑
i,j

(i ̸=j)

δ (r− |ri − rj|)

〉
r̃Nd

, (37)

where ∆r is the bin size for computation. We use ∆r = 0.0125. Figure 5(a) shows
g(r) for the original system (c=0) in equilibrium and a bonded system (c=0.95)
with Pb = 0 measured in a short time window (t ∈ [0,10]) starting right after bonding
(t =0) and a longer time window (t ∈ [10 000,20 000]) starting after a waiting time
tw = 10 000. The former time scale corresponds to a vibrational one, whereas the latter
timescale corresponds to the time scale for escaping from the cage (figure 7(a)). We
note that the first and second peaks correspond to the nearest neighbor contacts for
A−B and A−A pairs, respectively. Overall, the three g(r)’s superimposed very well.
However, around the cut-off distance Rb = 1.5, there are tiny but distinct differences
between the original and bonded system, as emphasized in the inset. This means that
the bonding process disturbs the initial equilibrium state, and the system enters an
out-of-equilibrium state and thus will age. Yet this aging process is very fast, within the
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vibrational timescale, as can be recognized from the fact that in the inset the curves
for t ∈ [0,10] and t ∈ [10 000,20 000] superimpose very well, i.e. the system ends up in a
new stationary state very quickly.

In order to better understand the differences between the bulk and bonded systems
around r =Rb, we decompose g(r) into the contributions from the bonded pair (intra
molecule contribution, gintra(r)) and the rest (inter molecule contribution, ginter(r)),
following the discussion in section 2.3.4. By construction, g(r) = gintra(r)+ ginter(r). In
figure 5(b), we present g(r), gintra(r), and ginter(r) for c=0.95 in the time window
t ∈ [0,10]. This graph shows that gintra(r) is only a small contribution to the total radial
distribution and, as expected, vanishes beyond Rb. Since the bonding we employ in
this work is a rigid body constraint, gintra(r) is completely frozen at time t =0, and it
never changes during the simulation for any t > 0. We also find that ginter(r), at strictly
t =0, has a small dip at r =Rb (not shown), compensating the sharp edge in gintra(r),
such that the total g(r) is smooth as in the original system. At t > 0, only ginter(r)
evolves with time, which removes the dip around r =Rb and ends up in a smooth curve
as shown in figure 5(b). Consequently, the total contribution, g(r) = gintra(r)+ ginter(r),
has a bump around r =Rb at t > 0. Indeed, this out-of-equilibrium effect originates from
the bonding process with a cut-off Rb, but we show that it is a very minor perturbation
of the whole system even for a very high value of the dimer concentration c=0.95.

4.2. Orientational correlation function

The radial distribution function g(r) considers only the particle positions irrespective
of molecular orientations. To characterize the configuration of molecules in more detail,
we compute an orientational correlation function given by:

gori (r) =

〈∑
i,j∈D
(i ̸=j)

|ni ·nj|δ (r− |Ri −Rj|)
〉

r̃Nd〈∑
i,j∈D
(i ̸=j)

δ (r− |Ri −Rj|)
〉

r̃Nd

, (38)

whereRi is the center of mass of molecule composed of the ith and (i+1)th particles. In
figure 5(c), we present gori(r) for shorter and longer time windows, respectively. We find
that the two curves are superimposed very well. No aging is thus detected right after
a quick relaxation within a vibrational timescale in terms of molecular orientational
correlations.

4.3. Random bonding with directional alignment

The above simulation results suggest that although it is not strictly in equilibrium, the
bonding protocol with a spherical cut-off produces a nearly equilibrium state, and its
aging process is very fast. We now test whether this is also the case for an arbitrary
bonding protocol. To this end, we study the bonding protocol with directional alignment
illustrated in figure 3(b) (see also the discussion in section 2.3.5). In figure 6(a), we show
g(r) for the original system (c=0) in equilibrium and a bonded system (c=0.75) with
Pb = 0.9 measured in a shorter time window (t ∈ [0,10]) starting right after the bonding
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Figure 6. Random bonding with directional alignment. (a) Radial distribution
function g(r) for the original system with c=0 at T =0.6 (black curve), bonded
systems generated by the spherical and directional cut-off protocol (Pb = 0.9) with
c=0.75 measured in time windows t ∈ [0,10] (red curve) and t ∈ [10 000,20 000]
(blue curve). The arrow indicates the location of the spherical cut-off, Rb = 1.5. The
inset shows a zoomed plot near Rb. (b) Orientational correlation function gori(r) for
the bonded systems presented in (a), measured in two different time windows. (c)
Time evolution of the total polarization Ptot for the spherical cut-off (c=0.95 and
T =0.6 with Pb = 0) and directional alignment (c=0.75 and T =0.6 with Pb = 0.9)
protocols. Three representative trajectories are shown for each protocol.

(t =0) and a longer time window (t ∈ [10 000,20 000]) after a waiting time of tw = 10 000.
Similar to the spherical cut-off case, all g(r)’s superimpose well and the tiny discrepancy
can be recognized only in the zoomed-in plot near Rb. However, a strong aging effect
can be observed in gori(r) presented in figure 6(b). At shorter time scale, gori(r) is overall
larger because of the initially aligned molecular configuration. It then decays with time,
as expected from the fact that randomly oriented configurations are entropically more
favored. At longer timescale, gori(r) converges to gori(r)≈ 0.5 at r≫ 1 and is overall
similar to that of figure 5(c) for a spherically bonded system.

This aging process can be directly quantified by the total molecule polarization,
given by:

Ptot (t) =
1

Nd

∑
i∈D

Pi (t) . (39)

Figure 6(c) shows the time evolution of Ptot. The system with Pb = 0 has randommolecu-
lar orientations, producing Ptot ≈ 0.5 during the entire simulation. In contrast, the sys-
tem with Pb = 0.9 takes a higher value, Ptot ≈ 0.95 at t =0, and it decays slowly with
time, demonstrating a strong aging effect. At a longer time, it then reaches Ptot ≈ 0.5.

5. Dynamical properties

In the previous section, we have confirmed that the random bonding protocol with
a spherical cut-off produces a near equilibrium configuration right after bonding, and
the subsequent aging process lasts only a short period of time. Thus, in practice, this
procedure allows us to study equilibrium dynamical properties on a longer time scale. In
the present section, we hence study the (equilibrium) dynamical properties of randomly
bonded glass-forming liquids generated by the spherical cut-off protocol.
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Figure 7. Dynamical correlations for dimers and monomers. (a) Self-intermediate
scattering function Fs(q, t) for T =0.6 and c=0.95 for monomers, dimers, and all
particles. Dashed and solid curves indicate Fs(q, t) computed from trajectories with
the waiting time tw = 0 and tw = 105, respectively. (b) Relaxation time τα versus
the inverse of temperature 1/T for c=0.5.

5.1. Intermediate scattering functions

To characterize the dynamic properties of the system, we compute the self part of the
intermediate scattering functions for monomers, the center of mass of dimers, and all
particles, given by:

FMono
s (q, t) =

〈
1

Nm

∑
j∈M

e−iq·(rj(t)−rj(0))

〉
r̃Nd

, (40)

FDi
s (q, t) =

〈
1

Nd

∑
j∈D

e−iq·(Rj(t)−Rj(0))

〉
r̃Nd

, (41)

FAll
s (q, t) =

〈
1

N

N∑
j=1

e−iq·(rj(t)−rj(0))

〉
r̃Nd

, (42)

respectively. We have averaged over 5–20 different realizations to calculate these time
correlation functions. The wave-vector q is chosen to be q =7.25, and the location of
the main peak in the static structure factor [66].

Figure 7(a) shows these intermediate scattering functions at T =0.6 and c=0.95.
FDi
s (q, t) displays a higher value of the plateau than the one found in FMono

s (q, t) or
FAll
s (q, t), which is reasonable because the effective cage size of the dimers is smaller

than that of the monomers. More important is the observation that these functions
relax on essentially the same timescale, which proves that the monomers and dimers
have a very similar relaxation dynamics in terms of translational motions. We define
the relaxation time τα as the time at which the intermediate scattering function decays
to 1/e and present the τα versus 1/T plot for c=0.5 in figure 7(b). The relaxation
time for the center of mass of dimers exceeds τα for the monomers by a factor around
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Figure 8. Intermediate scattering function for various temperatures and dimer con-
centrations. Fs(q, t) for all particles for several values of c for T =2.0 (a), T =0.8
(b), T =0.6 (c), and T =0.424 (d).

2, independent of T, demonstrating that the dynamics of the two types of particles
stays coupled in the whole accessed T−range, and we have checked that this is also the
case for the other values of c. Hence one can conclude that the three definitions of the
intermediate scattering functions provide, essentially, the same information in terms of
structural relaxation. Therefore, we focus on the following on FAll

s (q, t) and drop the
superscript unless otherwise specified.

In figure 7(a), we also include data for a different waiting time tw, that is, the
time interval between the initial configuration (t =0), and the time when we start
measuring the correlation (t= tw). The graph demonstrates that there is no detectable
waiting-time dependence on the time scale of structural relaxation, as expected from
the structural analysis presented in the previous section. Thus, the random bonding
(using the spherical cut-off protocol) allows us to probe equilibrium dynamics relevant
to structural relaxation in simulations right after bonding, akin to random pinning.

The temperature and c−dependence of Fs(q, t) is presented in figure 8. We find that
the influence of bonding is very small if the temperature is high, T =2.0, panel (a).
However, once T is decreased, panels (b)–(d), the bonding affects the dynamics very
strongly, akin to the behavior of randomly pinned systems [38, 41]. For example, at the
lowest temperature T =0.424, one can see that for c> 0.5 the dynamics is completely
frozen on the timescale of our simulation, demonstrating that the random bonding
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Figure 9. Relaxation time as a function of temperature T and dimer concentra-
tion c. We report iso-τα curves in the T − c plane, obtained from the dynamical
correlations shown in figure 8.

allows to access an extremely slow glassy dynamics in almost equilibrium. By using the
data for τα (figure 11(a)), we estimate that the bonded system at T =0.424 and c=0.95
(that are prepared by forming bonds from the original T =0.424 configurations) has an
equilibrium relaxation time τα ≈ 1012, about a factor of 107 larger than the largest τα
accessed in our simulations [44]. This demonstrates that the random bonding protocol
indeed provides us with a huge gain in terms of computational time for the preparation
of the initial equilibrium state.

To observe the influence of T and c together we present in figure 9 the iso-τα curves
in the T − c plane. These curves increase with increasing c, which is again similar to the
results found for randomly pinned systems [29, 30]. The shape of the curves depends
only mildly on τα, hinting at a simple functional relation among τα, T, and c. This
point will be investigated in more detail below.

Finally, we present a comparison between the self and collective parts of the inter-
mediate scattering functions. Previous studies have reported that in randomly pinned
fluids the collective part shows apparent freezing while the self part did not render the
analysis of the system dynamics difficult [30, 37, 38]. In figure 10(a), we show that the
self- and collective parts for the randomly-bonded glass formers at T =0.6 for different
values of c. One recognizes that, in contrast to the pinned systems, the collective part
also relaxes to zero and that the relaxation time is slightly larger than the one for the self
part, at least for the wave vector considered. Interestingly, however, the ratio between
the two timescales is about a factor two irrespectively of c, as shown in figure 10(b).
This suggests that the self and collective correlators do not decouple and therefore we
can conclude that the self part gives reliable dynamical information about the system.
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Figure 10. Comparison of the self and collective dynamics. (a) Self (dashed curves)
and collective (solid curves) intermediate scattering functions at T =0.6 for differ-
ent c. (b) Relaxation time τα versus c, computed from the data in (a).

5.2. Scaling of the dynamics and fragility

In the following, we study how the relaxation time τα depends on T and c and in
particular we examine the scaling of the dynamics and kinetic fragility of the system.

Figure 11(a) presents an Arrhenius plot of the structural relaxation time τα(c,T )
for different c and one recognizes that for all investigated values of c there is a pro-
nounced non-Arrhenius dependence. Interestingly, we find in figure 11(b) that the dif-
ferent curves can collapse onto a master curve by introducing the scaled temperature
T/µ(c), i.e. τα(c,T ) = τα(c= 0,T/µ(c)), where µ(c) is an unknown function. The inset
of figure 11(b) shows µ(c), which for each c has been determined manually such that
τα(c,T ) superimposes with τα(c= 0,T ). One sees that to a first approximation µ(c) is
linear, but a slight upward bending can be noticed. The existence of a master curve is
so far just an empirical observation, and it holds at least for the T - and c-range probed
by our simulations. The presence of this scaling behavior suggests that all relevant
temperature scales, such as the mode-coupling crossover Tmct [77] and the Kauzmann
transition temperature TK [78] (if it exists) for the original system (c=0), are just
scaled by µ(c)⩾ 1. This is in contrast to the random pinning case, where the value of
TK as determined from the dynamics is essentially unchanged (or slightly decreases)
with increasing the pinning density [40]. (Note however, that instead the value of TK as
estimated from the thermodynamics increases [30, 31].)

We now discuss the consequences of the observed empirical scaling in terms of kinetic
fragility [79, 80]. The kinetic fragility mF(c) (for a given c) can be defined by

mF (c) =
∂ log10 τα (c,T )

∂ (Tg (c)/T )

∣∣∣∣
T=Tg(c)

, (43)

where Tg(c) is a kinetic glass transition temperature. Conventionally, this temperat-
ure is defined by τα(c,Tg(c)) = τg, where τ g is a typical experimental timescale, e.g.
100 s. The dynamical scaling implies that τg = τα(c,Tg(c)) = τα(c= 0,Tg(c)/µ(c)) =
τα(c= 0,Tg(c= 0)), and hence Tg(c) = µ(c)Tg(c= 0). These relations and equation (43)
give:
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Figure 11. Dynamical scaling of the relaxation time with dimer concentration. (a)
Relaxation time τα(c,T ) obtained from the self-intermediate scattering function
for all particles. (b) The same data using a normalized abscissa, µ(c)/T . The inset
shows µ(c) versus c.

mF (c) =
∂ log10 τα (c= 0,T/µ(c))

∂ (µ(c)Tg (c= 0)/T )

∣∣∣∣
T=µ(c)Tg(c=0)

=
∂ log10 τα (c= 0,T ′)

∂ (Tg (c= 0)/T ′)

∣∣∣∣
T ′=Tg(c=0)

=mF (c= 0),

(44)

irrespective of c. This means that the fragility of randomly-bonded glass-forming liquids
is independent of c. This is in stark contrast to randomly pinned systems [38–40], where
the fragility decreases with increasing the pinning density.

From these observations, one concludes that the dynamics of randomly bonded glass-
forming liquids is qualitatively quite different from that of the randomly pinned systems
also in terms of the temperature dependence of structural relaxation.

The dynamical scaling shown in figure 11(b) reminds us of simple systems where
structure and dynamics are invariant to a good approximation along isomorphs in the
phase diagram [81, 82]. In these systems, the dynamics at different state points can
be rescaled by a uniform scaling of space and time. In contrast, the randomly bonded
systems introduce strong constraints on the system (in the form of bonds) that alter
dynamical relaxation processes significantly as c is increased. The origin of the observed
empirical scaling must then be different from the isomorph invariance. Figure 12 shows
Fs(q, t) having similar T/µ(c). Although the relaxation time τα is similar, there is a
trend that the correlators with higher c show a lower plateau compared to those with
smaller c. This suggests that the observed scaling collapse cannot be understood as a
simple uniform space-time rescaling. Further investigations are needed to understand
the origin of the empirical dynamical scaling.

6. Dynamical heterogeneity

The dynamics of glassy liquids is accompanied by strong dynamical heterogeneities,
the intensity of which grows with decreasing temperature [83–86]. Since our bond-
ing procedure allows to generate configurations in the deeply supercooled regime, we

https://doi.org/10.1088/1742-5468/ad17b6 29

https://doi.org/10.1088/1742-5468/ad17b6


Creating equilibrium glassy states via random particle bonding

J.S
tat.

M
ech.(2024)

013303

Figure 12. Comparison of dynamical correlations at corresponding state points
under dynamical scaling. Fs(q, t) for different state points with similar T/µ(c). (a)
T/µ(c)≈ 0.55. (b) T/µ(c)≈ 0.42.

can thus access these heterogeneities in the randomly bonded glass-forming liquids in
(nearly) thermal equilibrium. Since bonded dimer systems involve rotational motion as
an additional relaxation channel, we consider dynamical heterogeneities not only for the
positional degrees of freedom but also the rotational ones.

6.1. Positional degrees of freedom

First, we compute the standard four-point correlation function χQ
4 (t) associated with

the positional degrees of freedom, which is given by:

χQ
4 (t) =N

(〈
Q̂2 (t)

〉
r̃Nd

−
〈
Q̂(t)

〉2
r̃Nd

)
, (45)

where Q̂(t) = 1
N

∑N
i=1 θ(a− |ri(t)− ri(0)|) is an overlap function taking into account all

particles and θ(x) is the Heaviside step function [87]. We set the distance a to the

often used value a =0.3. We note that χQ
4 (t) defined in equation (45) does not contain

contributions from sample-to-sample fluctuations associated with different realizations
of bonds [42]. Figure 13 shows χQ

4 (t) for different values of c at a constant temperature,
panel (a) and with decreasing T at a constant c, panel (b). We find systematic growth
with increasing glassiness in both cases, which is in contrast to randomly pinned particle
systems. It has been reported that the four-point correlation function of randomly
pinned particle systems does not grow systematically or decreases approaching the glass
transition, whereas the relaxation time increases significantly [39, 41–43]. This difference
in the dynamical behavior is directly related to the fact that in pinned systems the size
of the dynamical heterogeneities is hindered by the presence of the pinned particles,
whereas, in the present system, the heterogeneities can grow unhindered.
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Figure 13. Dynamical heterogeneity of positional degrees of freedom. (a) Four-

point correlation function χQ
4 (t) associated with positional degrees of freedom com-

puted from the overlap function Q̂ at a constant temperature (T =0.65), panel (a),
and at different T for constant dimer concentration c=0.950, panel (b).

6.2. Rotational degrees of freedom

We next consider the rotational degrees of freedom for the dimers. We first compute
the average dynamics with the mean rotational angle [88], which is given by

Φ(t) =

〈
1

Nd

∑
i∈D

φi (t)

〉
r̃Nd

, (46)

where φi(t) = arccos(ni(t) ·ni(0)). Figure 14(a) shows Φ(t) for different c at constant
temperature. One finds that the correlator has a two-step relaxation with a plateau
on an intermediate timescale, akin to the mean-squared displacement. At sufficiently
long times, the correlator approaches the asymptotic value π/2, which is expected when
ni(t= 0) and ni(t→∞) are uncorrelated. In short, Φ(t) can separate vibrational motion
and structural rearrangement in terms of rotational relaxation. In addition, the separa-
tion becomes more distinct when c is increased, which is also in qualitative agreement
with the mean-squared displacement.

We can now define a mean overlap function associated with the rotational
motion via:

R (t) =

〈
1

Nd

∑
i∈D

θ (b−φi (t))

〉
r̃Nd

, (47)

where b is a threshold separating vibrational motion and structural relaxation. In prac-
tice, we have chosen the value b=0.2, see figure 14(a). Figure 14(b) shows that R(t)
presents a two-step relaxation, similar to Fs(q, t). This correlation function allows to
compute a characteristic timescale for rotational relaxation, τR, defined by R(τR) = 0.3,
which is presented in the inset, together with τα obtained by Fs(q,τα) = 1/e. Both τR
and τα track each other very well, particularly at larger c, suggesting that positional and
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Figure 14. Dynamical correlations of the orientational degrees of freedom. (a) and
(c): mean rotational angle Φ(t) for (a) a constant temperature (T =0.65) while
varying c and (c) a constant concentration (c=0.95) varying T. The horizontal
dashed line is at Φ(t) = 0.2, the threshold used to define the overlap function R(t).
(b) and (d): the corresponding rotational overlap function R(t) for (b) constant T
and (d) constant c. The inset in (b) compares the relaxation times τR measured
by R(τR) = 0.3 and τα measured by Fs(q,τα) = 1/e (computed from all particles)
for T =0.60.

rotational relaxations are strongly coupled in the deep glassy regime. If instead of vary-
ing the concentration of the dimers one changes the temperature, one finds qualitatively
the same glassy slowing down phenomenology, see figures 14(c) and (d).

Finally, we define the corresponding four-point correlation function associated with
the rotational degrees of freedom by:

χR
4 (t) =Nd

(〈
R̂2 (t)

〉
r̃Nd

−
〈
R̂ (t)

〉2
r̃Nd

)
, (48)

where R̂(t) = 1
Nd

∑
i∈D θ (b−φi(t)). Figure 15(a) shows the time evolution of χR

4 (t) vary-

ing c at fixed T. We find that χR
4 (t) grows systematically with increasing glassiness,

that is here the concentration of dimers. We find the same trend when T is decreased
while c is fixed, see figure 15(b). We thus conclude that randomly bonded glass-forming
liquids demonstrate growing dynamical heterogeneities approaching the glass transition
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Figure 15. Dynamical heterogeneity of the orientational degrees of freedom. (a)
and (b): four-point correlation function χR

4 (t) associated with the rotational degrees

of freedom computed from the overlap function R̂ at a constant temperature
(T =0.65) while varying c, panel (a), and a constant concentration (c=0.95), vary-
ing T, panel (b).

in terms of both positional and rotational degrees of freedom. We note that dynamical
heterogeneities in rotational motions have so far not been studied widely in computer
simulations [89, 90], whereas these are relevant for most molecular experiments [91].

7. Conclusion and discussion

We have studied randomly bonded glass-forming liquids where pairs of neighbor
particles selected from an equilibrium configuration are bonded permanently. We con-
firm theoretically and numerically that random bonding with a neighbor cut-off is not
in strict equilibrium right after bonding. However, if one generates the bonds using a
spherical cut-off as in [44], the deviation from equilibrium is very small, and the aging
process stops soon after the timescale of vibrations. Therefore, this random bonding
method can be used to probe the (almost) equilibrium dynamics of stable bonded glass-
forming liquids deep inside the energy landscape.

Our detailed computer simulations demonstrated that (1) there is no decoupling
between self and collective correlation functions, (2) fragility does not change with
increasing concentration of bonds, and (3) dynamical heterogeneity keeps growing as
approaching the glass transition. All these features are thus in contrast to the behavior
found in the dynamics of randomly pinned systems. These discrepancies are (partly)
related to the preservation of the translational invariance in the random bonding
process, emphasizing the importance of the details on how the quenched disorder is
generated.

Most previous studies on low-temperature glassy dynamics have been performed in
simple spherical particle systems, whereas most real molecular liquid experiments char-
acterize orientational relaxation processes probed by dielectric measurements, making a
conceptual gap between simulation and experiment. Instead, our randomly bonded sys-
tem with rotational relaxation allows us to study phenomena that are relevant for real
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experiments. As a future investigation, this approach permits thus to measure various
rotational observables and test the validity of the Stoke–Einstein–Debye relationship in
the deeply supercooled state [92, 93]. On the more theoretical side, it would be inter-
esting to compute the phase diagram of randomly bonded glass formers based on the
framework developed in [94] because the obtained results will be useful to connect the
dynamics of molecular systems to those of gels. On the more applied side, it would be
extremely interesting to revisit a series of random bonding protocols that are routinely
used to prepare amorphous solids such as epoxy resins [45, 46], vitrimers [47, 48], col-
loidal or emulsion clusters [46, 49–57], in order to understand to what extend these
protocols give rise to equilibrated glass samples whose properties remain stable over
time.

In conclusion, we emphasize that the bonding approach presented in this work is not
limited to the creation of dimers, since it can easily be extended to trimers, oligomers,
etc, and this is in contrast to methods that have been proposed earlier. This freedom
will thus permit in the future to study the (nearly) equilibrium properties of glass-
forming systems at thermodynamic state points, which have so far been inaccessible to
simulations.
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