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A B S T R A C T

Visual neural decoding, namely the ability to interpret external visual stimuli from patterns of brain activity, is
a challenging task in neuroscience research. Recent studies have focused on characterizing patterns of activity
across multiple neurons that can be described in terms of population-level features. In this study, we combine
spatial, spectral, and temporal features to achieve neural manifold classification capable to characterize visual
perception and to simulate the working memory activity in the human brain. We treat spatio-temporal and
spectral information separately by means of custom deep learning architectures based on Riemann manifold
and the two-dimensional EEG spectrogram representation. In addition, a CNN-based classification model is
used to classify visual stimulus-evoked EEG signals while viewing the 11-class (i.e., all-black plus 0-9 digit
images) MindBigData Visual MNIST dataset. The effectiveness of the proposed integration strategy is evaluated
on the stimulus-evoked EEG signal classification task, achieving an overall accuracy of 86%, comparable to
state-of-the-art benchmarks.
1. Introduction

Understanding how the human brain works, therefore devising the
neural, bioelectrical and biochemical patterns that constitutes the hu-
man ability to think, as well as accessing visual memories, has become
an emerging field of study both for scientific, diagnostic and clinical
purposes [1,2]. Human visual perception (i.e., the collection of light
photons and the related electrochemical reactions on the retina) causes
a cascade of neural signals to fire from the retina, traveling via the
optical nerve to the brain, and propagate through the visual system,
eventually reaching the visual cortex [3]. Holding a mental image of
something you have seen, even when you are not currently looking at
it (specifically using the visual working memory), involves a series of
processes occurring outside the visual system, e.g. in the frontal and
prefrontal (PFC) association cortices [4]. Previous studies regarding
brain lesions allowed us to assert that neurons of PFC encode work-
ing memory representations via persistent firing [5]; however, some
recent studies have reported that neurons in some areas of the parietal
and temporal lobes, classically associated with visual perception, also
encode working memory representations via persistent firing [6].

Brain Computer Interfaces (BCIs) represent the last frontier in
neuroengineering research, enabling a new level of communication
through the brain, based on decoding, learning, and interpreting brain
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activity [7]. With the term Neural Decoding [8] we refer to the mapping
of brain response to stimuli, therefore dealing also with the reconstruc-
tion of a stimulus. In particular, Visual Decoding, namely determining
the external visual stimulus from brain activity patterns [9], is a
challenging task in neuroscience research that is taking great advantage
of the recent advances in generative deep learning models that allow
us to generate the realistic images by learning the intrinsic statistic
distribution of the training data [10,11].

By using visual neural decoding techniques, it is possible to recon-
struct and model the visual stimuli, that a person is perceiving [12]. In
this scenario the decoding approach can reveal how visual information
is represented and processed in the brain cortex, contributing to our
understanding of visual perception [13,14].

The significant clinical applications of this study are vast, seeking
to expand our medical knowledge and ability to help various cate-
gories of mentally and physically disabled people. Extremely important
areas of application include communication with people unable to
express themselves verbally, such as patients suffering from locked-in
syndrome [15] or from aphasia [16], and the treatment of cerebral
paralysis and degenerative diseases such as amyotrophic lateral scle-
rosis [17]. Decoding and translating the brain activity of such patients
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could help them communicate their thoughts, preferences, or needs.
Specifically, severe or progressive aphasia refers to a condition in which
individuals have significant difficulties with language production and
comprehension [16]. Nonetheless, if their higher cognitive processes
and vision remain intact, visual neural decoding may offer a way
to establish alternative communication channels or support existing
communication methods. The application of visual neural decoding in
severe aphasia is still largely speculative [18,19]. However, we propose
a number of theoretical scenarios in which studies and techniques, such
as the decoding architecture presented in this work, could help this
case typology. First, visual neural decoding could help determine what
visual stimuli or cues patients are attending to, even if they cannot
express it verbally. Deep learning systems could be used to develop non-
verbal communication systems that rely on the patient’s visual focus as
a means of expressing their intentions. In addition, patients with severe
aphasia often rely on alternative approaches to communication, such as
gestures, writing, or the use of augmentative and alternative communi-
cation (AAC) devices. Visual neural decoding could complement these
methods by incorporating visual cues or feedback. For example, an
AAC device could be designed to provide visual prompts or suggestions
based on the patient’s ongoing neural responses to help with speech
production and comprehension.

Relatively to cognitive function, the model of single neurons alone
is not sufficient to gain a complete understanding of the involved
processes [20]. In addition to what can be studied at the level of a single
neuron, task-relevant information can be represented as patterns of
activity across multiple neurons [21]. Unfortunately, in the worst case,
characterizing such patterns can require collecting an exponential num-
ber of measurements (the curse of dimensionality [22]). However, in
most cases the observed number of neurons, or even the number of pat-
terns of neural population activity, can be described in terms of fewer
population-level features [23–25]. Since the spatiotemporal dynamics
of brain activity is low-dimensional, or at least much lower-dimensional
than pattern space, then it stands to reason that such activity can be
characterized within reasonable experimental time scales. The main
difficulty of such approaches is to identify neural ensembles by grouping
ogether neurons with sufficiently highly correlated activity during
he same behaviors or in response to the same stimuli. A number of
echniques, commonly referred to as Neural Manifold Learning (NML),
ave been used to accomplish this task [26,27].

Studies in neuroscience and neuroimaging [28] demonstrate that
on-invasive imaging techniques like Functional Magnetic Resonance
maging (fMRI), EEG, and Magnetoencephalography (MEG) can decode
uman cognitive processes, particularly those related to perception and
isual perception. By applying standard notions of information theory,
t is reasonable to assume that since our brains function as transmitters
nd receivers of electrical signals, it is clear that by modifying our sys-
em through reliable measures we can decode these signals. However,
t remains uncertain how reliable non-invasive measures are. The EEG
echnique achieves excellent time-resolution but poor space-resolution.
t is still debated the possibility to successfully achieve acceptable
ccuracy in visual classification tasks, and, especially for reconstruction
asks. The literature indicates that fMRI produces outstanding results in
his area. In contrast, we have very little information concerning EEG
ata.

Nishimoto et al. [29] used fMRI: to overcome the limitation of
he slowness of signal measured with fMRI [30] they built a new
otion-energy [31] encoder. Their results show that dynamic brain

ctivity detected under realistic situations can be decoded using the
MRI technologies now available. More recent studies have used fMRI
ignals from early visual areas to perform visual neural decoding, using
he voxel as the basic unit of measurement, the analog of a pixel
n a regular grid in three-dimensional space. Kay et al.’s basic idea
resented in [32], together with their own dataset of natural images on
hich they achieved 90% accuracy, was to model the responses to each
2

ndividual image as a weighted sum of simple image filters responses, t
called Gabor Wavelet Pyramids, and then to evaluate the trained model
by asking whether it is possible to identify a novel image that a subject
is looking at from a set of possible images. Wavelets are a powerful
tool for analyzing a signal: they can be used embedded in a neural
network [33,34], for subspace decomposition [35,36], and more. Most
recent deep learning methods for natural image reconstruction from
fMRI [37–39] employed GAN architecture with the assumption that
there is a linear relationship between brain activity and the latent
features of GANs [40]. A group of studies on reconstructing natural
images from brain activity patterns [41,42] incorporated probabilistic
inference using VAE-GAN. Specifically, [41] presented a combined
network called D-VAE/GAN. Nonetheless, fMRI is too expensive, both
in terms of costs and technical requirements.

Mengxi et al. [43] explored EEG data evoked by visual object
stimuli to perform visual decoding. Inspired by the recent breakthrough
via convolutional neural networks (CNNs) in classifying mental load,
several improved CNNs methods were introduced: they proposed a
CNN-VAE architecture to perform the classification of visual stimuli.
Zhicheng et al. [44] tried to simplify the integrated LSTM-CNNs model
by proposing variations of CNNs with feature selection and fusion units.

A different type of dataset used for EEG classification comes from
a rapid serial visual presentation (RSVP): [45] presents work based on
stimuli from indoor and outdoor images and applies a CNN directly to
the EEG data, achieving an Area Under the Curve (AUC) of 72%. Manor
et al. [46] build their own RSVP dataset showing a set of five categories
every 90–110 ms, achieving an accuracy value that varies between 70%
and 81% depending on the subject.

Another less recent version of the MindBigData dataset [47] is used
in [48]: they use the spectrogram signal alone with a simple CNN,
achieving an accuracy of 91%. However, this dataset differs from ours
in that it consists of ’digital’ digits, as opposed to MNIST’s handwrit-
ten digits. Other types of datasets have been created specifically for
classification: Spampinato et al. [49] used 40 ImageNet classes and
achieved an accuracy of 83%, conditioned by the fact that, unlike ours,
features of the original image are also given as input to the classifier.
Yang et al. [50] build a dataset by showing images of sinusoidal
gratings, showing the difference between considering all subjects to an
experiment and only one, achieving 60% accuracy.

The novel contribution of this paper concerning visual NML consists
of the following proposed model for EEG data analysis, named Rie-
mann Manifold Spectrogram Network (RieManiSpectraNet), designed
for modeling and classifying electroencephalograms. To the best of our
knowledge, this is the first study presenting a DL model that integrates
spatio-temporal and spectral features from EEG signals to reveal the
latent representation of visually evoked brain signals recorded by EEG.
By doing so, we have established a benchmark for the CustomCap64-
v0.016 MindBigData dataset and are the first, as far as we know, to use
it.

In this paper, we focus on visual Neural Manifold Learning (see
Fig. 1), proposing a novel model, called RieManiSpectraNet (Riemann

anifold Spectrogram Network), constituted by a deep learning ar-
hitecture for modeling and classifying electroencephalograms that
ntegrates spatio-temporal and spectral features from EEG signals, by
evealing the inner latent representation of visually evoked brain sig-
als recorded by EEG. First of all, the system deals separately with
patial information and temporal information by extracting Spatial
ovariance Matrices and Feature Maps, respectively. Spatial features
re drawn out through Riemann geometry, while Temporal features
re brought out through LSTM layers. Both extracted features are then
ombined to reach a proper embedding to integrate with the spectral
eatures coming from the spectrogram images of each EEG channel
omputed according to the Short-Time Fourier Transform (STFT) al-
orithm [51]. In this way, by combining a spatio-temporal- and a
pectral-processing stream, we are able to describe the overall ac-
ivity of the entire brain, delegating the system itself to focus on

he correct weighting of features coming from different brain areas.
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Table 1
Custom Cap 64 Channels device. Details about the dataset under investigation, including the number of EEG recordings, the number and order
of channels used, the number of samples for each channel, the recording interval, and the recording frequency.

Channels N. 64

Samples N. (each) 400 floating point (for each channel)

Samples N. (total) 25,600 floating point (total)

Recording interval 2 s

Recording frequency 200 Hz

EEG recordings 148,736

Channels order FP1, FPz, FP2, AF3, AFz, AF4, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4,
FC6, FT8, T7, C5, C3, C1, Cz, CCPz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8,
P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO5, PO3, POz, PO4, PO6, PO8, CB1, O1, Oz, O2, CB2.
Fig. 1. RieManiSpectraNet Neural Manifold. A 3D projection of the neural manifold
created by the suggested architecture is presented. Each individual point corresponds to
a recording’s representation within the feature space, obtained from the CustomCap64-
v.0.016-MindBigData dataset. The 11-classes identified are represented by color coding,
comprising ‘‘black-screen’’, ‘‘0’’, ‘‘1’’, ‘‘2’’, ‘‘3’’, ‘‘4’’, ‘‘5’’, ‘‘6’’, ‘‘7’’, ‘‘8’’, and ‘‘9’’. The
RieManiSpectraNet Neural Manifold and the Neural Manifold derived from its sub-
variant SpeNet architecture facilitate the dataset’s linear separability in the feature
space. This enables us to successfully carry out the Neural Image Classification task,
achieving an accuracy of 55% for the RieManiSpectraNet Neural Manifold and 78% for
the SpeNet architecture. RieManiSpectraNet+, the improved version of the complete
proposed architecture, increases accuracy to 86%.

Despite the limitations imposed by our specific input signals and the
technique used to collect them, our proposed work is the first one
on the CustomCap64-v0.016 MindBigData Visual MNIST dataset [47]
to achieve comparable outcomes to state-of-the-art results on previous
EEG dataset benchmarks.

The rest of the paper is organized as follows. In Section 2 we de-
scribe the material and methods of this study, presenting the dataset in
which we evaluated our proposed framework, providing data acquisi-
tion information and data analysis. Section 2.2 introduces our proposed
architecture, providing a detailed description of all the experiments
performed. Section 3 provides in detail the theoretical background on
Neural Manifold Learning. In Section 4 we present our results, followed
by further discussion in Section 5. Finally, in Section 6 we draw the
conclusions of the work and highlight some possible future research
directions.

2. Material and methods

Leveraging brain signals, data collection plays a crucial role. If the
input data is poor or incomplete, the output of the model will also be
poor or incomplete. This is known as the ‘‘garbage in, garbage out’’
principle [52], which is particularly important in deep learning, where
models require large amounts of high-quality data in order to learn and
generalize effectively.
3

Being EEG data gathering beyond our scope, we had to rely on
datasets already presented in the literature. The dataset was chosen
to cover a number of different brain regions, collecting raw signals
acquired from several EEG channels. We used the Visual MNIST of
Brain Digits [47] (from MindBigData). All recordings would eventually
be arranged in tuples (signal, image), associating each visual stimulus
to the evoked brain signal. In the following, we report the necessary
parameters for our deep learning framework.

2.1. MindBigData2022_VisMNIST_Cap64 Dataset

CustomCap64-v0.016 is the last version of the MindBigData Visual
MNIST database, updated on 12/27/2022, as reported in [53].

This dataset comes from the home-built Custom Cap 64 Channels
device (all parameters are listed also in Table 1), where a subset of
the well-known Yann LeCun MNIST digits dataset [54] is displayed
while the EEG signals are being captured. It displays 59,699,200 EEG
data points, for a total of 2,332 frames. This gives us 25,600 floating
points per frame. Since we are working with 64 channels, we have
400 floating points for each channel, representing a single recording
of 2 s at a sampling rate of 200 Hz. The 64 EEG channels used are
the following: FP1, FPz, FP2, AF3, AFz, AF4, F7, F5, F3, F1, Fz, F2,
F4, F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3,
C1, Cz, CCPz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4,
CP6, TP8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO5, PO3, POz,
PO4, PO6, PO8, CB1, O1, Oz, O2 and CB2. According to the 10–20
system [ Fig. 2(a)], the A1 earlobe clip channel was used as a reference
for the left hemisphere and the A2 earlobe clip channel was used as
a reference for the right hemisphere; the center channels CCPz, CPz,
Pz, POz, and Oz were referenced to A1 and FPz, AFz, Fz, FCz, Cz to
A2. While evaluating the performance of our proposed system, we also
investigated the relationships that might exist between our input data
and the behavior of the system. However, the results of our analysis
did not reveal any strong evidence of any dominance that could be
attributed to any particular channel, asserting our idea that visual
recognition is more a high-cognitive task than simply a visual task.
Specifically, we ran two trials with a reduced number of electrodes: the
first considering only the occipital and parietal electrodes (covering the
visual cortex), and the second considering selected occipital, parietal,
and frontal electrodes. In both cases, we did not find any electrode to
be redundant for the task.

Since the visual stimuli were presented by alternating 28 × 28
MNIST digits with a black screen while always recording from the brain
[ Fig. 2(c)], the VisMNIST_Cap64 dataset consists of 1,166 black screen
images and 1,166 digit events, observing a fairly balanced number of
samples for each digit from 0 to 9 [ Fig. 2(b)]. For each image, it is
possible to reconstruct the corresponding EEG recording consisting of
64 segments, one from each EEG channel [ Fig. 2(d)].

Moreover, for each image, it is possible to retrieve the spectral
content of each channel [ Fig. 2(e)]. This is the result of applying a
50 Hz notch filter and a band-pass Butterworth filter between 14 Hz
and 71 Hz, including the Beta (15–31 Hz) and Gamma (32–70 Hz)
frequencies.
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Fig. 2. MindBigData CustomCap64-v0.016 Dataset Analysis. (a) 10–20 International
system. (b) Example of a MNIST digit. (c) Digit events occurrences. (d) Example of four
EEG channels recording. (d) Example of one channel spectral content.

2.2. RieManiSpectraNet architecture

In this section, a more detailed description is reported for the
developed Deep Learning Architecture, called RieManiSpectraNet, im-
plemented to learn a Neural Manifold from our EEG Data. This ar-
chitecture, shown in Fig. 3, consists of two processing streams, the
spatio-temporal stream and the spectral stream. The former consists of
three subsequent blocks, where the Riemann Manifold technique to-
gether with LSTMs and VAEs is used to reach an inner low-dimensional
representation for our EEG signals taking into account spatio-temporal
features. The latter is based on the STFT Algorithm, applied to our
EEG signals to extract spectral features. On top of that, there is a
CNN classifier, aiming to classify visual stimulus-evoked EEG signals.
The architecture relies on three distinct turning points: (i) the locality
principle, fundamental to CNNs; (ii) the correlations between pairs of
electrodes which is imperative in recognizing highly cognitive tasks
undertaken by subjects; and (iii) the soft attention mechanism, the
initial step to realize an architecture that mirrors the structure of LLMs.
4

2.2.1. Spatial–temporal stream
The first stream of our proposed architecture consists of a pre-

processing pipeline, which is shown in Fig. 5, that from raw EEG
data would lead us to a proper features-embedding, integrating spatio-
temporal EEG representation. This system is inspired by the framework
presented in [55], allowing us to propose a novel architecture for EEG
neural manifold learning.

Starting from EEG recordings, a stream involving all EEG chan-
nels is processed by learning its own spatio-temporal representation
through a spatial/temporal extractor, a spatial/temporal processor, a
spatial/temporal Variational Auto-Encoders and a final fusion block
aiming to obtain a suitable embedding from the latent spatial and
temporal representations of that stream. Instead of analyzing a stream
consisting of just those channels covering the occipital lobe, being the
visual processing hub of our brain, we decided to involve information
from all EEG channels, allocating image recognition as a high-level
cognitive task.

In the following, we referred to all input and output signals as
PyTorch [56] tensors, to keep consistent with our implementation.

Data pre-processing. Given a single EEG recording, a tensor of size
[𝑁, 𝑇 ], where 𝑁 is the number of channels and 𝑇 is the number of
samples for each segment, we applied a 5th order Butterworth filter
bank as a bandpass filter between 14–71 Hz, splitting the signal into
𝐻 frequency sub-bands. This allowed us to treat the eye-blink artifacts
contaminating the low-frequency EEG bands (0–12 Hz) [57]. Then, a
notch filter at 50 Hz was applied to reduce power line noise. Eventually,
signal amplitudes were re-scaled to the range of [−1, 1] through min–
max normalization, so that data discrepancy across different recording
sessions was decreased. In this way, the module output is a tensor of
size [𝐻,𝑁, 𝑇 ].

Temporal feature processing. We distinguish here a Temporal Feature
Extraction Module and a proper Temporal Feature Processing Module,
shown in Fig. 4, the latter implementing artificial neural network layers
to learn latent representations.

Given as input a tensor of size [𝐻,𝑁, 𝑇 ], the extraction module
returns a tensor of size [𝐻,𝐿,𝑁, 𝐹 ], actually splitting the time in-
terval 𝑇 in 𝐿 windows and extracting 𝐹 exemplifying features for
each channel within each window. Being this tensor the input to the
processing module, we eventually obtain a monodimensional tensor of
size hidden_temporal_fc.

Spatial feature processing. In this section, we distinguish a Spatial Fea-
ture Extraction Module and a proper Spatial Feature Processing Mod-
ule, again with the latter implementing Artificial Neural Networks to
learn latent representations.

Given a tensor of size [𝐻,𝑁, 𝑇 ] coming from data pre-processing,
the extraction module returns here a tensor of size [𝐻,𝑃 ,𝑅(𝑅 + 1)∕2],
basically splitting the EEG recording into 𝑃 segments and representing
each of them through 𝑅(𝑅 + 1)∕2 features, coming from the computa-
tion of Spatial Covariance Matrices (see Section 3.2), the subsequent
application of dimensionality reduction and tangent space learning,
ending up with the implementation of a half-vectorization step. Indeed,
in order to obtain an appropriate input for the succeeding layer of
our architecture, we vectorize our features to form a one-dimensional
array. This process ensures that no information is lost. Following the
feature extraction, through the processing module, we eventually ob-
tain a monodimensional tensor of size hidden_spatial_fc. This general
procedure is represented in Fig. 5.

Fusion strategy. The strategy for the fusion of spatial and temporal
information, shown in Fig. 6, plays an essential role in dealing with
multimodal or multi-learning approaches of one modality in order to
perform classification. Attention mechanisms have been successfully
implemented for refining fusion weights applied to different modalities.

In our architecture, variational auto-encoders (VAEs) are used to
learn embedding-specific features, in place of the fully-connected (FC)
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Fig. 3. RieManiSpectraNet Architecture. Block diagram of our proposed architecture. A 5th-order Butterworth filter bank is used as a band-pass filter, along with a Notch filter
at 50 Hz. The signal is filtered between frequencies 14–71 Hz, followed by the spatio-temporal processing stream and spectral processing stream. A fusion unit is used to perform
multi-learning through the application of attention mechanisms, dealing with both spatial and temporal information. The N+1 features extracted from the two processing streams,
where 𝑁 represents the number of electrodes used, are combined and input into our CNN module. The module is composed of four Conv2D Layers and a FC Layer, generating
N+1 distributions over the 11 presented classes. Finally, a second FC Layer produces a single distribution by weighting its inputs, enabling the classification of EEG signals evoked
by visual stimuli.

Fig. 4. Temporal Feature (TF) Processing sub-stream. Block diagram showing the TF Extraction module followed by the TF Processing module. Temporal features are extracted
from a batch of EEG recordings and then processed through ANN layers to learn latent representations. Workflow inspired by [55].

Fig. 5. Spatial Feature (SF) Processing sub-stream. Block diagram showing the SF Extraction module. Spatial Covariance Matrices are extracted from a batch of EEG recordings
in order to apply the Riemann metric learning method. Workflow inspired by [55].

Fig. 6. Spatio-Temporal Fusion Module. Block diagram showing the strategy for combining spatial and temporal features to achieve a single stream embedding. By introducing
the VAE architecture, we improve the fusion strategy presented in [55].
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layers encoders implemented in [55]. Then, we employ soft attention
to learn the weight (𝛼) applied to each embedding-specific feature.
Next, we compute the new weighted embedding by multiplying the
weight score with the original individual learning embedding. Finally,
we perform decision-level fusion on the concatenation of the two new
embeddings using an FC layer.

Eventually, the monodimensional output tensor of the stream has
size hidden_fusion_fc. This concludes the description of the RieManiSpec-
traNet ’s first processing stream.

2.2.2. Spectrogram stream
The second processing stream of our proposed architecture involves

again all EEG channels, learning their own spectral content to convert
them into image-like representations.

We applied a 5th order Butterworth filter bank, band-pass filtering
it between 14–71 Hz, with a Notch filter applied at 50 Hz to reduce
power line noise. In this way, we aim to extract the spectral content
of the recorded EEG signals at the Beta (15–31 Hz) and Gamma (32–
70 Hz) frequencies, as they carry information about the psychological
cycles involved in visual recognition [58]. To do that, we used the
STFT, a widely used technique that provides a 2D representation of a
signal by dividing it into short, overlapping segments and calculating
the Fourier Transform for each segment. The STFT results in a 2D
matrix often referred to as the spectrogram of the signal, where the
𝑥-axis represents time, the y-axis represents frequency, and the value
at each point represents the magnitude or power of the corresponding
frequency component at that time.

STFT algorithm. The STFT has parameters that affect its behavior, such
as the size of the Fourier Transform window (n_fft), which determines
the number of frequencies bins in the resulting STFT, the number of
samples between successive STFT columns (hop_length), the choice of
the window function to be applied (window) and its size.

Given a single EEG recording as a tensor of size [𝑁, 𝑇 ], for each of
the 𝑁 channels we applied the PyTorch built-in version of the STFT al-
gorithm, selecting such parameters accordingly with the required time–
frequency resolution. Specifically, we set n_fft=256, h_l=64, choosing
the Hanning window with size w_l=256. Since the STFT is normalized
by the sum of the window function, for each channel, we reached
a [129, 7] 2D tensor representation, that we reshaped into an RGB
image-like tensor of size [43, 7, 3].

2.2.3. CNN classifier
In order to perform the classification of visual stimulus-evoked EEG

signals, both outputs coming from the spatio-temporal and spectral
processing streams serve as input to our CNN classifier.

Here, the classifier architecture consists of four Conv2D Layers, with
a MaxPool2D Layer between the first and the last two of them, followed
by two FC Layers that lead to a single prediction for the initial input
to the entire architecture. All four Conv2D Layers use ReLU as a non-
linear activation function, whereas the two FC Layers are interleaved by
Softmax as non-linearity in order to deal with distributions over classes.
Further details are specified in Table 2, as well as represented in Fig. 3.

Fusion spatial–temporal–spectral. To combine the features coming from
both processing streams, the output had to be reshaped of the spatio-
temporal stream into an RGB image-like tensor of size [43, 7, 3]. In this
way, since the new representation is compliant with the principle of
locality, it is possible to process these features with the proposed CNN
classifier.

Given a single EEG recording as a tensor of size [𝑁, 𝑇 ], according
to the workflow of our architecture, the CNN classifier would receive
𝑁 images coming from the spectral processing stream, plus one more
image coming from the spatio-temporal stream. Therefore the overall
input can be represented as a four-dimensional tensor of size [𝑁 +
6

1, 43, 7, 3].
Table 2
Summary of all the layers of our RieManiSpectraNet
architecture.

Type Num Params

ButterworthFilterBank 0
Spectrogram_Module 0
TemporalFeatureProcessing_Module 22.6 M
SpatialFeatureProcessing_Module 205 K
VAE_spatial 624 K
VAE_temporal 624 K
FeatureFusion_Module 529 K
CNN_classifier 2.8 M

Total parameters 27.3 M

Table 3
Convolution parameter size. The kernel size, stride,
and padding are set to five, one, and two, respec-
tively. Between each convolution is a ReLu activation
function. The kernel size of the MaxPool is four.
Layer In features Out features

Conv1 3 256
Conv2 256 256
MaxPool – –
Conv3 256 128
Conv4 128 64

To achieve a single prediction for the initial input, our CNN classi-
fier’s strategy is to process every single image through the four Conv2D
Layers plus the first FC Layer, achieving a distribution over the 11
presented classes. In this way, the last FC Layer of our architecture
would receive as input 𝑁+1 different distributions over classes, leading
to a final single distribution coming from the weighted sum of its inputs
(see Tables 3 and 4).

2.3. Experiments

The proposed RieManiSpectraNet architecture belongs to the family
of Hierarchical Architectures [59], a class of Deep Learning models
structured in a layered manner, where each layer represents a different
level of abstraction. In this kind of architecture, higher-level features
are built upon lower-level ones, allowing our model to learn complex
patterns and relationships.

The training process in Hierarchical Architectures often involves a
combination of supervised and unsupervised learning. Specifically, our
training strategy implies distinguishing among three layers, each one
with its own loss function and optimizer.

On the one hand, we have the Temporal Feature Processing layer
and the Spatial Feature Processing layer, both involving their own VAE
to train in an unsupervised fashion. During training, the VAE optimizes
a loss function that balances two objectives: the reconstruction loss,
which measures the difference between the generated sample and the
original input, and the Kullback–Leibler (KL) divergence [60], which
measures the difference between the distribution of the learned repre-
sentation (i.e., the posterior) and the prior distribution. This divergence
is used as a regularization term in the VAE loss, ensuring that the
posterior distribution allows for the generation of meaningful and
useful data points.

On the other hand, the Fusion Strategy Layer (shown in Fig. 6) and
the subsequent CNN classifier are trained in a supervised fashion, trying
to minimize the Cross-Entropy Loss as a loss function.

After conducting several experiments, using a V100 GPU with 32 GB
of Virtual RAM (VRAM), we have decided to fix the parameter values
of the two layers trained in an unsupervised fashion as soon as the
threshold of 0.15 on their training losses is reached. In this way, we
allow the last layer of our architecture to learn complex representations
from a fixed latent space, whose final version has been optimized
during the initial phase of the training.
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Table 4
Hyperparameters from RieManiSpectraNet.

Parameter Value

BFB Hyperparameters
Order 5
Frequency Ranges [14, 71]
Notch Frequency 50 Hz
Notch Q-factor 0.01
Sampling Frequency 200 Hz

Temporal Module
Sampling Frequency 200 Hz
Window Width 1 s
Input Size 1 × 64 × 102
L (LSTM Layers) 3
Hidden Size (LSTM) 256
Hidden Size (Fully Connected) 256
Dropout Rate 0.5
Slope 0.3

Spatial Module
R (Radius) 100
S (Stride) 8
Input Size 1 × 4 × 36
Hidden Size (Fully Connected 1) 512
Hidden Size (Fully Connected 2) 256
Dropout Rate 0.5

Spatial VAE
Input Dimension 256
Hidden Dimension 512
Latent Dimension 64
Number of Layers 3

Temporal VAE
Input Dimension 256
Hidden Dimension 512
Latent Dimension 64
Number of Layers 3

Fusion Module
Input Size 128
Hidden Size (Fully Connected) 129 × 7
Dropout Rate 0.5

We performed the three final experiments on a single NVIDIA
TX 3090 with 10496 CUDA cores and 24 GB of VRAM, aiming to
ighlight the contribution of our proposed architecture in combin-
ng spatial–temporal–spectral features. Specifically, we decomposed
ur architecture, dealing in the first place with the two streams (see
ections 2.2.1 and 2.2.2) independently to then compare the results
chieved with the ones obtained by our full proposed architecture. The
atch size is fixed to 16, while additional details about the specific
osses and optimizers used, with their hyperparameter values, are
pecified in Table 5 for all three case studies. We split our dataset
nto three separated subsets containing 70%, 20% and 10% of the
ata respectively for training, validation, and testing. The number of
pochs has been set to 500, but in order to avoid overfitting, the system
as been provided with an early-stopping callback in order to end the
raining loop if the validation loss of the classifier was not improving
or 50 epochs consecutively.

.4. Evaluation metrics

Several studies in neural manifold analysis of brain circuit dynam-
cs [27] apply internal measures to evaluate the lower-dimensional
pace reached, demonstrating the applicability of these methods to the
tudy of neurological disorders. In evaluating the manifold realized
y our proposed architecture, we opted for external measures while
mplementing a Neural Image Classification task with it.

To be consistent with studies in the literature, we assess the perfor-
ance of our architecture by computing the average accuracy, which
easures the overall correctness of the model’s predictions across all
7

lasses in a multi-class classification problem. In order to offer a more
Table 5
Training process information for all three case studies, including the complete RieMan-
iSpectraNet architecture and its SpeNet and STNet variants. For each Deep Learning
layer, we specified the loss function to minimize, and the adopted optimizer with the
associated learning rate (lr) and weight decay (wd) hyperparameters. Note that we
work with the same multiple optimizers simultaneously for both the RieManiSpectraNet
and the STNet architectures, due to the independent optimization of the parameters of
the temporal sub-stream, the spatial sub-stream, and the parameters of the fusion unit
plus the CNN-classifier. As the SpeNet architecture does not have a spatio-temporal
sub-stream, we only use one optimizer for the CNN-classifier parameters.

Architecture Layers Loss & Optimizer

RieManiSpectraNet

Temporal_feature+
VAE_temporal
Spatial_feature+
VAE_spatial
Feature_Fusion+
CNN_classifier

MSE + Adam
lr = 10−5

MSE + Adam
lr = 10−3

CrossEntropy + SGD
lr = 6 ⋅ 10−2 + wd = 10−6

SpeNet CNN_classifier CrossEntropy+RMSProp
lr = 10−4 + wd = 10−6

STNet

Temporal_feature+
VAE_temporal
Spatial_feature+
VAE_spatial
Feature_Fusion+
CNN_classifier

MSE + Adam
lr = 10−5

MSE + Adam
lr = 10−3

CrossEntropy + SGD
lr = 6 ⋅ 10−2+wd = 10−6

detailed view of the model’s performance, we also provide the confu-
sion matrix, a table displaying the counts of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) predictions
for each class.

3. Neural manifold learning

Underpinning the term Neural Manifold Learning is an ensemble
of different algorithms designed to embed in low-dimensional matrices
𝒀 the information that represents higher-dimensional activity matrices
𝑿. Such high-dimensional matrices are typically used to describe the
activity of a set of 𝑁 neurons at a given time interval of 𝑇 samples. By
performing a topological projection into a lower dimensional space, it
is possible to observe the emergence of topological manifolds 𝛶 , orig-
inating from a few constrained topological structures. Such manifolds
represent specific patterns of neural activity, which can be recognized
and classified because they retain a local linear geometry despite the
globally curved topology of the space.

Several different systems have taken advantage of manifold learn-
ing [61]. Such systems can be generally classified into two distinct
groups: linear methods and nonlinear methods. The choice between
such methods depends on the feature extraction process, in order to
understand which strategy best suits the type of neural information
under investigation, as this may fundamentally affect the subsequent
interpretation.

To achieve Linear manifold learning, the solution requires the ex-
ecution of a set of linear transformations that are properly designed
in order to verify a set of properties that guarantees the optimality
conditions and, in particular, to achieve a sufficiently low-dimensional
embedding that preserves the possibility of giving an interpretation of
the neurological and physiological phenomena. Principal component
analysis (PCA) and Multi-layer scaling (MDS) have been commonly
used for manifold learning: the former aims to reduce large datasets
with high-dimensional recordings to a lower-dimensional representa-
tion of the information without altering the statistical variability of
the dataset, while the latter attempts to determine a low-dimensional
map without altering the pairwise distance between the data points in
the original space. Linear techniques such as PCA and MDS can only
describe linear relationships between electrodes, which are too weak to
describe high cognitive functions since it is known that more than just

a linear combination of individual neurons is involved. This shifts our
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attention to non-linear techniques, which are able to reveal a broader
non-linear approximation of the activity of the neural population.

Non-linear manifold learning is used to determine whether the ac-
tion matrix manifests emergent non-linear structures. Non-linear man-
ifold learning often embeds in the analysis an approximated calculus
of the manifold 𝑈𝑝𝑠𝑖𝑙𝑜𝑛 from the reduced space 𝒀 in order to identify
population-wide variables capable of describing the local relationship
between points (representing neural states), while neglecting any effect
that would potentially take into account distant points, thus preserving
a locality principle in its application. The most widely used solutions of
this kind are, namely, Locally Linear embedding (LLE), Laplacian eigen-
maps (LEM), t-distributed stochastic neighbor embedding (t-SNE) [62]
and Uniform manifold approximation and projection (UMAP).

3.1. ML algorithms

The state-of-the-art of Machine Learning Algorithms in Neural Man-
ifold Learning is reached through t-SNE and UMAP. Both aim to match
local distances in the high-dimensional space 𝑿 to the low-dimensional
embedding 𝒀 .

For instance, through t-SNE, this is obtained by first constructing a
probability distribution over pairs of high-dimensional points 𝒙𝑖,𝒙𝑗 in
such a way that nearby points are assigned a higher probability while
dissimilar points are assigned a lower probability. Then t-SNE defines
a similar probability distribution over the points 𝒚𝑖, 𝒚𝑗 in the low-
dimensional space, and it minimizes the Kullback–Leibler divergence
between the two distributions [63].

Artificial Neural Networks (ANNs) can also be employed for man-
ifold learning as they have the potential to extract complex non-
linear structures in high-dimensional data. Autoencoders exemplify
this approach as they are designed to find an optimal encoding be-
tween a high-dimensional input and a low-dimensional representa-
tion stored in their ‘‘bottleneck’’ code layer, which preserves the in-
formation necessary to then reconstruct the original input from it.
Within a more technical level, Variational Auto-Encoders (VAE) [64]
promises great potential at extracting low-dimensional structure in
varied high-dimensional data, by constructing a stochastic model of the
low-dimensional data, and by constructing a stochastic model of the
low-dimensional dynamics underlying the neural activity.

The basis of our architecture is discussed in the following, including
the reported solution to deal with spatio-temporal and spectral infor-
mation. The first applied technique (Riemann Manifold) is inspired by
Zhang and Etemad’s Riemann approach [55], outperforming UMAP on
several datasets, as it enhances separability in feature space. The second
technique (Image-like EEG Manifold) provides an intuitive and visually
understandable representation of complex EEG data, making it easier
to identify and interpret patterns or anomalies.

3.2. Riemann manifold

Many approaches use Spatial Covariance Matrices (SCMs) to ex-
tract spatial information from raw multi-channel EEG, applying then
Euclidian metric learning, such as the average of SCMs and the distance
between two SCMs. These matrices are of size 𝑅 × 𝑅 and allow us to
observe the level of correlation between the signals and noise in the
environment as received by each pair of sensors. As the covariance
matrix is symmetrical, it is only necessary to consider the unique
pairs. Therefore, to represent it, we require only R(R+1)/2 values. On
the other hand, Euclidean metric learning suffers from two problems:
the linear mixing effect of EEG due to volume conduction, and the
inaccuracy of the Euclidian mean computation of SCMs, since SCMs
are Symmetric Positive Definite (SPD) matrices and the determinant of
this kind of matrices can be strictly larger than the determinant of any
of the SPD matrices used to compute the mean itself (also known as
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swelling effect [65]).
To overcome these issues, Riemann metric learning method has
been applied to SCMs enhancing the EEG classification performance
[55]. Riemann distance between any two SCMs, unlike the Euclidian
distance, is affine-invariant. If any linear transformation is applied to
EEG signals, this affine-invariance property will allow the distance
between the two SCMs of EEG signals to remain unchanged. As a result,
the linear mixing effect of EEG will be minimized and no swelling effect
would exist during the estimation of the Riemann mean.

So, the assumption is: SCMs of raw EEG are SPD matrices on Rie-
mann manifold [55]. As a consequence, Riemann geometry is employed
to better learn and manipulate the SPD matrices, in order to capture
spatial information. To fully understand the implemented architecture,
basic concepts of Riemann geometry are introduced in the following
Appendix A.

3.3. Image-like EEG manifold

The time–frequency resolution of EEG data can achieve two-dimens-
ional EEG representation. Signals can be converted to a spectrogram
image using STFT [66] (further details on this process are given in
Section 2.2.2). The image-like representation of EEG data as a neural
manifold allows us to apply various analysis and machine learning
techniques for interpretation and analysis. For instance, CNNs can be
employed to extract features and patterns from image-like EEG data.
Additionally, clustering algorithms and dimensionality reduction tech-
niques can be used respectively to identify distinct groups and reduce
the dimensionality of the data while preserving essential information.

4. Results

Conducting a baseline to validate the results of our proposed archi-
tecture, we performed the neural image classification task through the
STNet (Spatio-Temporal Network) model, including only spatial and
temporal features. The accuracy levels obtained do not deviate from
the statistics of the problem, remaining constant at the 14% level (see
Appendix C for further details on the ablation studies). Reasons for such
an expected result, such as the low spatial resolution of the EEG, are
discussed in detail in Section 5. This outlines the significance of our
results, which are discussed below.

Fig. 8 shows the three losses (VAE temporal, VAE spatial, and
training loss) for each model used: specifically Fig. 8(a) shows the losses
of the RieManiSpectraNet model while Fig. 8(b) shows the losses of the
SpeNet (Spectrogram Network).

In Fig. 8(a), we can see how the training loss starts to decrease soon
after the two VAE losses reach the threshold of 0.15 (see Section 2.3),
when the model enters the second training phase where the VAE
weights are frozen. Interestingly, a few steps after reaching the relative
optimum value of loss and accuracy (shown in Figs. 8(a) and 9(a)), the
loss value increases again until the early stopping function interrupts
the training process. The RieManiSpectraNet accuracy value on the test
set is 55%. From its confusion matrix (Fig. 10(a)), it can be seen
that the architecture performs poorly on several images depicting the
digits 1, 7, and 9, while performing remarkably for the remaining
digits. Since each class is a handwritten digit, it is reasonable that an
architecture that integrates spatial features of brain signals would be
confused by similar digits (see Fig. 11). In an attempt to enhance the
integration of spatio-temporal features acquired from brain signals with
spectral features, an attention layer was added before concatenating
the outcomes of the two processing streams depicted in Fig. 3 in
order to modulate the attention that the system needs to pay to each
stream. This revised architecture, called RieManiSpectraNet+, attained
an accuracy value of 86% on the test set. Refer to Appendix C for a
comprehensive analysis of the performance of the RieManiSpectraNet+.

On the other hand, Fig. 8(b) shows the training and validation
losses for the SpeNet architecture. It can be seen that the training

loss achieves values close to 0, yielding a training accuracy (Fig. 9(b))
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Fig. 7. Ablation Studies accuracies. The accuracy levels of all tested architectures
are presented and compared against the established ’by chance’ level, as indicated by
the green dashed line. As shown in Fig. 2(c), the calculation of the ’by chance’ level
takes into account the unbalanced dataset. This reduces the ’by chance’ level from 9%
(1/11) to approximately 1%. Our findings reveal that the t-SNE (13%) and UMAP (12%)
accuracies resemble the reference level (1%). Meanwhile, the spatio-temporal (STNet,
with 14%) and spectral (SpeNet, with 78%) individual processing streams impart an
increase in accuracy. Additionally, RieManiSpectraNet (55%) and RieManiSpectraNet+
(86%) exhibit the accuracy levels reached through the integration of both processing
streams, resulting in a successful outcome for the latter enhanced architecture.

Table 6
Comparison with previous studies, with the methodology used and the accuracy
associated with it.

Research Methodology Acc. (%)

Yang et al. [50]
Personal datasets
Different spatial frequency
Sinusoidal images

60%

Spampinato et al. [49]
40 Image-Net classes
Use features from
the original images

83%

Kumari et al. [48] ‘‘Real Digital" digits
Only spectrogram 91%

Our Approach 𝐇𝐚𝐧𝐝𝐰𝐫𝐢𝐭𝐭𝐞𝐧 𝐌𝐍𝐈𝐒𝐓
𝐎𝐧𝐥𝐲 𝐬𝐩𝐞𝐜𝐭𝐫𝐨𝐠𝐫𝐚𝐦

78%

Our Approach
𝐇𝐚𝐧𝐝𝐰𝐫𝐢𝐭𝐭𝐞𝐧 𝐌𝐍𝐈𝐒𝐓
𝐑𝐢𝐞𝐌𝐚𝐧𝐢𝐒𝐩𝐞𝐜𝐭𝐫𝐚𝐍𝐞𝐭
𝐓𝐞𝐦𝐩𝐨𝐫𝐚𝐥 + 𝐒𝐩𝐚𝐭𝐢𝐚𝐥 + 𝐒𝐩𝐞𝐜𝐭𝐫𝐨𝐠𝐫𝐚𝐦

55%

Our Approach
𝐇𝐚𝐧𝐝𝐰𝐫𝐢𝐭𝐭𝐞𝐧 𝐌𝐍𝐈𝐒𝐓
𝐑𝐢𝐞𝐌𝐚𝐧𝐢𝐒𝐩𝐞𝐜𝐭𝐫𝐚𝐍𝐞𝐭+
𝐓𝐞𝐦𝐩𝐨𝐫𝐚𝐥 + 𝐒𝐩𝐚𝐭𝐢𝐚𝐥 + 𝐒𝐩𝐞𝐜𝐭𝐫𝐨𝐠𝐫𝐚𝐦

86%

of approximately 99%, with a corresponding validation accuracy of
around 70%. For the SpeNet model, the achieved test accuracy is 78%.
Its confusion matrix is shown in Fig. 10(b).

Table 6 shows a comparison with previous studies, as well as the
approach and accuracy involved. Fig. 7 displays the accuracy values
achieved by the implemented architectures in our ablation studies
(discussed in Appendix C) compared to the baseline random accuracy.
These results reasonably support our thesis that the integration of
spatial, temporal, and spectral features is a successful strategy for
decoding brain signals. In the following, we will discuss our results in
comparison with the others in literature.

5. Discussion

In the light of what has already been presented in Section 1, Kumari
et al. presents a work which, at first glance, may seem very similar to
ours. First of all, they use a less recent version of the MindBigData [47]
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dataset (2015), completely different from our version. The main dif-
ference is that the images shown are ‘‘real digital’’ digits, not those
from the handwritten MNIST dataset, and the subjects are not shown
the black screen between the images. Please refer to Appendix B for
a deeper explanation. Moreover, our dataset had only 148,736 brain
signals, while their work uses 1,207,293 brain signals.

Spampinato et al. [49] use EEG data from observing 40 Image-Net
classes, using a 128-channel EEG cap. However, their results are also
achieved by using a CNN-based approach to extract features directly
from the images since they map such images to the corresponding EEG
feature vectors. In this case, using original images as prior knowledge
in input to the model helps to achieve high accuracy.

On the other hand, our approach is based on only 148,736 brain
signals with a 64-channel EEG cap: having so few signals makes it easier
to train the classifier, but much harder to obtain acceptable results.
Despite these limitations, the proposed architecture was able to achieve
satisfying results with an accuracy comparable to the others.

The possibility to combine spatial–temporal–spectral features de-
rived from EEG recordings is of great importance. By integrating infor-
mation about the spatial distribution, temporal dynamics, and spectral
characteristics of brain signals, our approach aims to help us to gain
a comprehensive understanding of neural activity and its underlying
processes. Our proposed model for decoding purposes seems to be
underperforming when combining the spatial–temporal–spectral fea-
tures (RieManiSpectraNet) with respect to using only spectral features
(SpeNet). However, this effect is connected to the intrinsic difficulty
of extracting stronger relationships from spatio-temporal dynamics in a
small-scale machine learning experiment. This can be seen in Fig. 10(a),
which shows the confusion matrix of RiemaniSpectraNet: the MNIST
digits 1, 7, and 9 (shown in Fig. 11) are very similar to each other,
and an architecture that incorporates spatial features of the brain
signals would have a hard time distinguishing similar digits, resulting in
poor performance. In addition, we improved the integration of spatial,
temporal, and spectral features in our RieManiSpectraNet+ C by incor-
porating an attention layer prior to concatenating the two processing
streams, resulting in a more segregated final neural manifold.

On the other hand, the proposed approach is unique due to its
ability to effectively capture local relationships effectively. Moreover,
EEG recordings have inherent limitations in spatial resolution, which
further impact the effectiveness of combining spatial–temporal–spectral
information, and have been shown to have individual specificity [46],
leading to variable effectiveness in extracting features. This is an initial,
very promising attempt to create a technique that could be crucial not
only for patients with verbal difficulties but also for individuals in their
daily lives, using non-invasive and handy techniques to collect EEG
data. To ensure its broad applicability, it is crucial to incorporate an
Explainable AI module into our architecture. This will help overcome
the individual idiosyncrasies associated with EEG signals and enable
us to conduct larger-scale experiments with more extensive datasets
featuring brain signals from multiple subjects. Future research direc-
tions should explore complementary DL modules, such as transformers
or Variational Auto-Encoders (VAE), to efficiently extract features from
the spatio-temporal stream. These advanced modules may offer en-
hanced capabilities in capturing complex relationships within EEG data
and improving the performance of decoding tasks.

6. Conclusions

Anchored in this work, the RieManiSpectraNet model has been pre-
sented, a deep learning architecture for learning and classifying elec-
troencephalograms that integrates spatial–temporal–spectral features
from EEG signals. Our findings align with the initial research objectives
and shed light on Neural Manifold Learning of visually evoked brain
signals recorded by EEG.

The significance of our study lies in its contribution to the field
of Visual Systems Neuroscience. By proposing our deep learning ap-
proach to combine information about the spatial distribution, temporal
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Fig. 8. Plots of the Losses profiles during the training process. Case study (a) shows the loss functions optimized by VAEs in the spatial (Spatial Loss) and temporal (Temporal
Loss) layers, in addition to the training (Train Loss) and validation (Val Loss) losses associated with the final classifier for the RieManiSpectraNet. Note that in the upper part of
the case study (a) there is the initial value of the spatial loss plot (∼130) and then we cut the plot until smaller values to facilitate the overall view. Case study (b) shows the
training (Train Loss) and validation (Val Loss) losses associated with the final classifier in the SpeNet.

Fig. 9. Plots of the average accuracy profiles during the training process. Both case studies (a) and (b) show the accuracy calculated during training on the training set
(Train Acc) and the validation set (Val Acc). It can be seen, as in Fig. 8, that the performance of RieManiSpectraNet collapses quickly after reaching the optimum value, unlike
the performance of SpeNet. This is taken as an index of the difficulty of training the proposed RieManiSpectraNet architecture.

Fig. 10. Confusion Matrices on Test Set. The decoding performance for each class is calculated for both case studies (a) and (b). It can be seen that both architectures perform
equally well in decoding most of the classes, with the exception of classes ’1’, ’7’, and ’9’, where RieManiSpectraNet is completely fooled.
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Fig. 11. Examples of the three interested MNIST classes, digits 1, 7 and 9. The first row (top) shows examples of the digit 1, the second row (middle) displays examples of
the digit 7, and the third row (bottom) presents examples of the digit 9. It is understandable, given that each class represents a handwritten digit, that an architecture incorporating
spatial features of the brain signals would struggle to distinguish similar digits, resulting in poor performance specifically on images depicting the digits 1, 7 and 9. However, the
architecture excels at recognizing the remaining digits.
,

Fig. A.12. Basics of Riemann Geometry.
Source: Courtesy of [55].

dynamics, and spectral characteristics of brain signals, we have pro-
vided new insights into how Deep Learning systems could enhance
Neural Decoding. Furthermore, our study has practical implications
for BCI and neuroengineering research, enabling a new level of com-
munication through the brain. The RieManiSpectraNet architecture
aims to be a tool for dimensionality reduction of neural population
activity, improving the separability of features in the analysis fea-
ture space. This enhanced separability of features implies that the
reduced dimensional representations may better capture the essential
information encoded by neural populations, providing valuable insights
into the neural mechanisms underlying brain functioning and visual
perception. Further directions of this study relate to the neural corre-
lates of specific visual perceptual features or categories. By mapping
the reduced-dimensional representations back to the original neural
population activity, it is possible to investigate how different visual
features are represented and processed in the brain. This can shed light
on the underlying neural mechanisms involved in visual perception,
contribute to our understanding of how the brain constructs visual
representations, and reveal hierarchical organization within the brain.

Future research should explore variations on the proposed architec-
ture, possibly based on attention-based mechanisms. Moving forward,
several promising directions for future research emerge from our find-
ings, e.g. in order to explore Neural Visual Decoding from non-invasive
fMRI imaging techniques, working with natural scenes and natural
images, and exploiting deep generative methods to perform Neural
Image Reconstruction.
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Appendix A. Basics of Riemann geometry

We briefly introduce basic concepts of Riemann geometry (Fig. A.12)
in order to fully understand the architecture developed.

Let  be a differentiable manifold with 𝐺 dimensions. Let us denote
with 𝑻 𝑪 the tangent space (also called derivative) of  at 𝑪 ∈ .
Given a tangent vector 𝑻 ∈ 𝑻 𝑪, its norm is given by the inner
product operator:

‖𝑻 ‖𝑪 = [⟨𝑻 ,𝑻 ⟩𝑪 ]
1
2 = 𝑇 𝑟(𝑻𝑪−1𝑻𝑪−1)

1
2 (A.1)

In order to rely on specific tangent vectors 𝑻 ′, that are the projec-
tions of other matrices 𝑪 ′ ∈  in 𝑻 𝑪, as shown in Fig. A.12. In order
to project 𝑪 ′ to 𝑻 ′, and then to project 𝑻 ′ back to 𝑪 ′, we introduce two
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Fig. B.13. Dataset variations between the current study and Kumari et al.’s work. Each Gaussian represents the variation of a class from the two datasets under examination.
They are defined by the average and the standard deviation of all brain signals belonging to the respective class. It can be seen that the Gaussians from our dataset have greater
overlap and wider spread in comparison with those from Kumari’s dataset..
Table B.7
Dataset variations between the current study and Kumari et al.’s work. The Gaussians (mean, std) from our dataset have a
larger standard deviation (std) and an interquartile range (IQR) that is one or even two orders larger than those from Kumari’s
dataset.

Classes Our dataset Kumari et al. dataset

mean std IQR mean std IQR

black_screen 0.5341 0.0657 0.0817 – – –
0 0.5972 0.0763 0.0954 0.5642 0.0123 0.0082
1 0.4176 0.0756 0.0944 0.6097 0.0119 0.0085
2 0.5455 0.0731 0.0907 0.5492 0.0112 0.0083
3 0.4707 0.0861 0.1066 0.5644 0.0110 0.0081
4 0.5152 0.1061 0.1327 0.5293 0.0127 0.0088
5 0.4966 0.0953 0.1179 0.5643 0.0117 0.0081
6 0.5111 0.1063 0.1328 0.6637 0.0215 0.0165
7 0.4700 0.0976 0.1216 0.5126 0.0118 0.0087
8 0.4048 0.0837 0.1040 0.5641 0.0127 0.0082
9 0.4814 0.0847 0.1038 0.5662 0.0108 0.0079
operators, the Logarithm mapping 𝐿𝑜𝑔 and the Exponential mapping
𝐸𝑥𝑝 respectively:

𝑻 ′ = 𝐿𝑜𝑔𝑪 (𝑪 ′) = 𝑪
1
2 𝑙𝑜𝑔(𝑪− 1

2 𝑪 ′𝑪− 1
2 )𝑪

1
2 (A.2)

𝑪 ′ = 𝐸𝑥𝑝𝑪 (𝑻 ′) = 𝑪
1
2 𝑒𝑥𝑝(𝑪− 1

2 𝑻 ′𝑪− 1
2 )𝑪

1
2 (A.3)

Where 𝑪 ,𝑪′ ∈ , 𝑻 ′ ∈ 𝑻 𝑪, 𝑙𝑜𝑔(.), 𝑒𝑥𝑝(.) are logarithm and expo-
nential operations applied on a matrix. Let us define Riemann distance
(also called geodesic distance) 𝛿𝑅 as the shortest path between 𝑪 and
𝑪′, thus equivalent to the length of the tangent vector from 𝑪 to 𝑪 ′:

𝛿𝑅(𝑪 ,𝑪 ′) = ‖𝑻 ′
‖𝑪 = ‖𝐿𝑜𝑔𝑪 (𝑪 ′)‖𝑪 (A.4)

Finally, let us define the four spaces that are used in this work:

1. 𝑺𝑁 = {𝑴 ∈ R𝑁×𝑁 ,𝑴𝑇 = 𝑴 ,𝒙𝑇𝑴𝒙 ≥ 0 ∀𝒙 ∈ R𝑁 ⧵ 0} is the
space of Symmetric Positive Semi-Definite (SPSD) matrices;

2. 𝑺+
𝑁 = {𝑴 ∈ R𝑁×𝑁 ,𝑴𝑇 = 𝑴 ,𝒙𝑇𝑴𝒙 > 0 ∀𝒙 ∈ R𝑁 ⧵ 0} is the

space of SPD matrices;
3. 𝑺𝑅 = {𝑴 ∈ 𝑺𝑁 , 𝑟𝑎𝑛𝑘(𝑴) = 𝑅,𝑅 < 𝑁} is the space of SPSD

reduced matrices with rank 𝑅;
4. 𝑺+

𝑅 = {𝑴 ∈ R𝑅×𝑅,𝑴𝑇 = 𝑴 ,𝒙𝑇𝑴𝒙 > 0 ∀𝒙 ∈ R𝑅 ⧵ 0} is the
subspace of SPD matrices with full rank 𝑅.

Appendix B. Dataset variations between the current study and
Kumari et al.’s work

In this Section we are going to explain in detail the dataset varia-
tions between the current study and Kumary et al.’s work. Our dataset
comprises 11 classes, including ten digits from 0 to 9, as well as
a ‘black screen’ category. In contrast, Kumari’s dataset comprises 10
12
categories that encompass the ten digits from 0 to 9 exclusively. This
forms a consistent distinction between the two datasets, which makes
our decoding task more engaging. Technically, including a ‘‘null case’’
category in a machine learning model, particularly in digit recognition
or comparable activities, can be a beneficial tactic for enhancing the
overall performance and stability of the model. This technique is com-
monly referred to as managing ‘‘negative’’ or ‘‘background’’ samples. It
involves training the model to identify not only positive instances (such
as EEG signals associated with digits), but also cases in which the target
is absent or irrelevant.

Furthermore, Kumari’s dataset contains brain signals obtained from
the observation of ‘digital’ digits, while our dataset contains brain
signals recorded during the observation of handwritten digits. Rea-
sonably, images of a handwritten digit exhibit some variability in
comparison to the image of the same ‘digital’ digit. To establish the
discrepancy between our dataset and Kumari’s dataset, it is necessary
to show that the brain signals of a handwritten-digit class exhibit a
greater variability than those of the corresponding ‘digital’-digit class.
As Kumari’s dataset includes signals from 5 EEG channels (‘AF3’, ‘AF4’,
‘T7’, ‘T8’, ‘Pz’), we limited our analysis to these same channels in our
dataset to enable a fair comparison.

We represented the variability of a class by using a Gaussian,
computing the mean and standard deviation of all brain signals referred
to the corresponding digit. We replicated this process for both datasets.
As a result, Fig. B.13 shows how Gaussians from our dataset are more
overlapped than those from Kumari’s dataset. Additionally, Gaussians
from our dataset display a greater standard deviation and one- or even
two-orders greater interquartile range (IQR) than those from Kumari’s
dataset, as shown in Table B.7.

In summary, the larger standard deviation and interquartile range
suggest increased variability in our dataset compared to Kumari’s
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Fig. C.14. Neural Manifolds resulting from state-of-the-art machine learning algorithms. 3D projections of the neural manifolds, generated with t-SNE (a) and UMAP (b), are
displayed. Each point relates to the representation of a recording within the feature space derived from the Cus-tomCap64-v.0.016-MindBigData dataset. Color coding demonstrates
the 11 identified classes, including ‘‘black-screen’’, ‘‘0’’, ‘‘1’’, ‘‘2’’, ‘‘3’’, ‘‘4’’, ‘‘5’’, ‘‘6’’, ‘‘7’’, ‘‘8’’, and ‘‘9’’. Due to the high computational expense of both algorithms, manifolds of
three and ten dimensions have been accomplished, respectively. Upon comparison with the manifold of our recommended architecture in Fig. 1, it is noticeable that they are more
compact, resulting in an accuracy of approximately 10% in both cases, not so far from the by chance level.
Fig. C.15. Performance of the t-SNE decoding algorithm. The Train Loss and Val Loss for training and validation are presented in figure (a). The Average accuracy profiles of
Train Acc and Val Acc for the respective sets are depicted in (b). Throughout the training process (800 epochs), both losses and accuracy show a plateau, indicating that the CNN
classifier is unable to learn dependencies from the manifold constructed through the t-SNE algorithm.
dataset. This suggests that the data points within each class in our
dataset exhibit more dispersion and variability around the mean than
in Kumari’s dataset, leading to a more challenging decoding task.

Appendix C. Ablation studies

In this section, we delve into the explanation of the ablation studies
carried out for this work.

To showcase the enhancement of our proposed model in separating
data within the feature space, we conducted comparative experimen-
tal analysis with the two state-of-the-art algorithms from machine
learning, t-SNE and UMAP. The neural manifolds attained after the
application of the algorithms are presented in Fig. C.14. The exper-
imental results are displayed in Figs. C.15 and C.16. By examining
the confusion matrices depicted in Fig. C.17, it is evident that the
architectures are entirely misled, as all the digits, including the black
screen, are mistakenly identified as a single digit.

Not surprisingly, as discussed in Section 4, the STNet shows an ex-
pected problem in recognizing all digits as one due to its over-reliance
on spatio-temporal features. This is demonstrated by the corresponding
confusion matrix in Fig. C.18.
13
In an effort to refine the method for merging spatio-temporal fea-
tures derived from brain signals with spectral features, we incorporated
an attention layer prior to concatenating the results of the two pro-
cessing streams illustrated in Fig. 3. This augmented version of the
proposed architecture is denoted as RieManiSpectraNet+. The architec-
tural model was trained using the same loss and optimizer parameters
as the VAE in the other models. In contrast, the classifier was trained us-
ing SGD optimizer with the lr set to 10−2. After observing a decreasing
trend in the loss function after 500 epochs, it was reasonable to extend
the training period by an additional 300 epochs to assess potential
convergence. Fig. C.19 displays the experimental results. The confusion
matrix in Fig. C.20 illustrates the improved integration of spatio-
temporal features with spectral ones through the new attention layer,
resulting in an accuracy of 86% on the Neural Image Classification task.

The significance and efficacy of combining spatial, temporal, and
spectral features from brain signals are underlined by the results of the
different ablation studies conducted, which are summarized in Fig. 7
and Table C.8. Further technical tests have been carried out on the
suggested structure, utilizing various optimizers, including Adam and
its different variants, as well as diverse learning rates. Nonetheless, they
have not been documented for the aim of clarity, and the best results
have been the preferred choice.
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Fig. C.16. Performance of the UMAP decoding algorithm. Figure (a) presents the Train Loss and Val Loss for both training and validation, while Figure (b) depicts the Average
Accuracy profiles of Train Acc and Val Acc for their respective sets. The CNN classifier was unable to learn dependencies from the manifold constructed via the UMAP algorithm,
as demonstrated by a plateau observed throughout the training process (800 epochs) in both losses and accuracy.

Fig. C.17. Confusion matrices resulting from state-of-the-art machine learning algorithms. The decoding performance for every class has been assessed for both architectures
relying on t-SNE (a) and UMAP (b) manifolds. Confirming the limited ability demonstrated in Figs. C.15 and C.16 of the models to learn dependencies, the confusion matrices show
that these architectures are completely fooled, since all the digits, even the black screen, are confused with digit ’7’. This issue is entirely resolved with the proposed architecture,
RieManiSpectraNet+.

Fig. C.18. Confusion matrix resulting from STNet architecture. The decoding performance for each class has been computed. Similar to what happens for t-SNE and UMAP,
the STNet architecture is entirely misled because all digits, including the black screen, are misinterpreted as digit ’1’. However, this problem is completely solved by merging
spatial, temporal, and spectral features under the proposed RieManiSpectraNet+ architecture.
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Fig. C.19. Performance of the RieManiSpectraNet+ decoding architecture. The training and validation losses (Train Loss and Val Loss, respectively), along with losses incurred
through the spatio-temporal processing stream (Spatial Loss and Temporal Loss), are presented in Figure (a). It is worth noting that the graph exhibits fluctuations with peak values
(around 60) that surpass those observed near convergence. Average accuracy profiles of the training set (Train Acc) and the validation set (Val Acc) are depicted in (b). Based
on the data presented in 8(a) and 9(a), it can be observed that RieManiSpectraNet+ exhibits greater stability than the original RieManiSpectraNet architecture, as it maintains
convergence during the final epochs.
Table C.8
Ablation studies were carried out in this study. The training process of all tested architectures, along with details of the used
optimizers and losses, are documented. The cumulative accuracies achieved and displayed in Fig. 7 have been presented in
a summary table.

Architectures Accuracies (%) Losses Optimizers

t-SNE algorithm 13% CrossEntropy RMSprop (lr = 10−4, wd = 10−6)

UMAP algorithm 12% CrossEntropy RMSprop (lr = 10−4, wd = 10−6)

STNet 14%
MSE
MSE
CrossEntropy

Adam (lr = 10−5)
Adam (lr = 10−3)
SGD (lr = 6 ∗ 10−2, wd = 10−6)

SpeNet 78% CrossEntropy RMSProp (lr = 10−4, wd = 10−6)

RieManiSpectraNet 55%
MSE
MSE
CrossEntropy

Adam (lr = 10−5)
Adam (lr = 10−3)
SGD (lr = 6 ∗ 10−2), wd = 10−6)

RieManiSpectraNet+ 86%
MSE
MSE
CrossEntropy

Adam (lr = 10−5)
Adam (lr = 10−5)
SGD (lr = 10−2, wd = 10−6)
Fig. C.20. Confusion matrix resulting from RieManiSpectraNet+ architecture. The
decoding performance for each class has been computed. When compared to Fig. 10(a),
it is evident that all previous difficulties in distinguishing the classes have been
resolved, thereby confirming that the RieManiSpectraNet+ architecture has achieved
better integration of both spatio-temporal and spectral features.
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