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1 | INTRODUCTION
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Abstract

A novel multibody rocking model is developed to investigate the dynamic
response of two stacked rigid blocks placed on a linear base isolation device. The
model is used to investigate the dynamic response of a realistic statue-pedestal
system subject to pulse-like ground motions. The analysis shows that, in general,
base isolation increases the safety level of the rocking system. However, for large
period pulses or small size blocks, the isolator can amplify the ground motion,
resulting in a lower minimum overturning acceleration than for the nonisolated
system. Further, the amplification or shock spectrum of a linear mass-dashpot-
spring oscillator, was found to be the reciprocal of the minimum nondimensional
overturning acceleration of the investigated rocking system. Novel rocking spec-
tra are obtained by normalizing the frequency of the pulse by the frequency of
the isolator. The analysis also demonstrates how the dynamic response of the
two stacked blocks is equivalent to that of a single-block configuration coincident
with the whole system assumed monolithic or the upper block alone, whichever
is more slender.

beginning with the pioneering work on a single block per-
formed by Housner (1963), who discovered the well-known

Statues, obelisks, electrical equipment, computer servers,
medical equipment, storage systems, and transformers are
just a few examples of objects whose behavior can be
modeled as rigid rocking objects when subjected to seis-
mic actions (Housner, 1963; Yim et al., 1980; Zhang &
Makris, 2001). This study is motivated by the need to pro-
tect these nonstructural elements from earthquakes; base
isolation systems may be a suitable strategy for this pur-
pose. The problem can be framed into two subjects: (1)
rocking response of rigid blocks and (2) base isolation
technology to mitigate the response to seismic actions.
Regarding the first subject, the dynamics of rigid blocks
is a topic extensively investigated in the last decades,

scale effect. Housner (1963) pointed out that increasing
the size of the block, while keeping the slenderness con-
stant, increases the resistance of the block to overturning
due to horizontal ground motion. Yim et al. (1980) investi-
gated the dynamic behavior of a rigid block, highlighting
the high sensitivity of this type of system to geometry
and ground motion. Further, the response of a rigid block
subjected to pulse-like ground motion was investigated
using rocking spectra (Zhang & Makris, 2001); this type
of depiction proved to be particularly effective, allowing
an immediate understanding of the response for differ-
ent geometries and different pulses. Dimitrakopoulos and
DeJong (2012) then developed the analytical formulation
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of the rocking spectra for sine pulses. Moreover, rigid block
modeling has recently gained attention for the assessment
of the seismic vulnerability of nonstructural elements
(Dar et al., 2016; Fragiadakis & Diamantopoulos, 2020;
Vlachakis et al., 2021).

Base isolation technology for earthquake protection
has also been extensively investigated in recent decades.
Numerous studies in the field of response control (Fan-
tuzzi et al.,, 2022; Noureldin et al., 2021) and seismic
isolation (Housner et al., 1996; Naeim & Kelly, 1999) have
been conducted worldwide (Lin et al., 2010; Saleh & Adeli,
1998), and significant advances in the innovation of these
technologies have been made (El-Khoury & Adeli, 2013;
Higashino & Okamoto, 2006). Structural control devices
can be classified into three categories: “passive control”
(Froli et al., 2019; Narasimhan et al., 2006; Salvatore et al.,
2021), “semi active control” (Gutierrez Soto & Adeli, 2019;
Naderpoor & Taghikhany, 2022; Shi et al., 2021), and “active
and hybrid control” (Bitaraf et al., 2012; Kim & Adeli,
2005a) systems. Recently, in the field of seismic protec-
tion, important advancements have been made (Gutierrez
Soto & Adeli, 2018; Javidan & Kim, 2022; Xu et al., 2021),
and researchers focused their attention on different vibra-
tion control technologies such as tuned mass dampers
(Kayabekir et al., 2022; Kim & Adeli, 2005b). Base iso-
lation devices have found their primary application in
vibration control of buildings (Gutierrez Soto & Adeli,
2017; Kim & Adeli, 2005c; Li & Adeli, 2018) and bridges
(Ghaedi et al., 2017; Kim & Adeli, 2005b). Here, the inter-
action between rocking systems and isolators is thoroughly
investigated. Only passive control systems, which mitigate
seismic response without the need of electric energy, are
considered for this purpose.

Seismic isolation technology used in the protection of
rocking rigid blocks (Di Egidio & Contento, 2009; Di
Egidio, Contento, De Leo, et al., 2020a; Di Egidio, Con-
tento, Olivieri, et al., 2020b) received attention, mainly to
preserve valuable slender art objects (Baggio et al., 2018;
Berto et al., 2013; Fragiadakis & Diamantopoulos, 2020).
These studies generally confirmed the efficiency of the
seismic isolation technology (Baggio et al., 2015; Calio &
Marletta, 2003; Roussis et al., 2008). According to Vassiliou
and Makris (2012), base isolation may not improve the per-
formance of large free-standing structures. Recently, the
emphasis has shifted to the investigation of novel consti-
tutive laws for the isolation system (Pellecchia et al., 2020,
2022) or innovative protection technologies (Amarante dos
Santos & Fraternali, 2022; De Canio, 2012; Venanzi et al.,
2020).

There are also cases where one block is placed on top
of another, and the single rigid body model is unable to
adequately define the dynamic response. Stacked servers,
medical shelves, a piece of machinery on a base and
ancient columns are real-life examples. Particularly rele-
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FIGURE 1 Example of a real-life two stacked rigid block
system: A Roman bust placed on a pedestal.

vant is the case of two blocks one on top of the other,
such as an art object placed on a pedestal (Figure 1).
The response of this type of system was explored by Psy-
charis (1990), Spanos et al. (2001), Chatzis et al. (2018),
and Diamantopoulos et al. (2022). The authors draw the
conclusion that the formulation of this extremely nonlin-
ear analytical model is challenging, due in part to highly
nonlinear equations of motion, impacts, and continually
changing contacts (Bao & Konstantinidis, 2020). Further
studies on the two-block assemblies were conducted in
the field of out-of-plane mechanisms for masonry struc-
tures (Lourenco et al., 2011), with the goal of investigating
a two-block vertically spanning wall mechanism (DeJong
& Dimitrakopoulos, 2014; Prajapati et al., 2022; Sorrentino
et al., 2008).

Further, a variety of experimental tests have been con-
ducted to investigate the response of rocking objects, such
as medical shelves (Kuo et al., 2011), art objects (Huang
et al., 2022), display cases (Prota et al., 2022), and hospi-
tal cabinets (Di Sarno et al., 2019). Fragiadakis et al. (2020)
carried out a large experimental campaign on several bust-
pedestal systems placed on a base isolation device. Despite
the above-mentioned test, an analytical model capable of
capturing the response of a seismically isolated two stacked
rigid blocks system (Figure 2) has not been developed to
date.

In this paper, a new computational model is developed
to analyze the response of two stacked rocking blocks
resting on flexible elements (such as a base isolation
device). There are similarities between the proposed model
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Pattern
Characteristics
Label 0 la 2a 3a 4a
Lagrangian .0 . .0 - . .
Parameter (DOF) Up up; 6,5 0, uy; 6,5 0, uy; 6 uy; 6
Assumptions 6,=0,=0 6,>6,>0 6,>0;0,<06, 0,=0,>0 6,=0;6,>0
FIGURE 2 Motion patterns of the seismically isolated two stacked rigid blocks system (patterns 1b, 2b, 3b, 4b are reversed with respect to

1a, 2a, 3a, 4a, respectively).

and multibody dynamics (MBD), which is the topic of
computer modeling and analysis of constrained bodies
subject to large displacements and rotations (Shabana,
1997). This paper illustrates in detail a multi-rocking-body
dynamic (MRBD) model capable of describing the dynam-
ics of a three degree-of-freedom (DOF) system; the model
is then used to examine the response of the two stacked
blocks placed on an isolator when subject to sine-pulse
ground motion.

The real-life objects at the base of the model in Figure 2
are 3D in nature. However, the investigation of the 3D
dynamic response, including base isolation, would typi-
cally be investigated numerically, for example by means
of the discrete element method (Malomo et al., 2021) or
the finite-discrete element method (AlShawa et al., 2017),
because deriving the analytical equations of motion for a
range of 3D geometries is impractical. Nonetheless, analyt-
ical equations provide a powerful tool to identify general
trends of the response for a large range of the values of
the system parameters, and therefore can guide the design
of base isolation intervention. Therefore, analytical equa-
tions are derived in the following for a representative 2D
system.

The first part of the study focuses on the description
of the kinematic quantities, energies, and nonconserva-
tive forces, followed by the derivation of the equations
of motion (via a Lagrangian approach) for each possible
rocking mode. Following the description of all possi-
ble transitions between rocking modes (or patterns), the
solution algorithm is presented as well using pseudo-code.

In the second part of the paper, the effect of base iso-
lation on a realistic statue-pedestal system is investigated,

and significant results for both the two stacked blocks
system and the single rocking block have emerged. The
response of this type of system to pulse-like ground motion
can be expressed using rocking spectra, which are typically
built by assuming the ratio between the pulse period and
period of the isolator is constant (Vassiliou & Makris, 2012).
In this study, rocking spectra derived by assuming the
period of the base isolation as constant are compared to the
previous typology, and the benefits and drawbacks of the
two types of spectra are discussed. Interesting results are
also obtained using shock spectra for linear mass-dashpot-
spring (LMDS) oscillators subjected to pulse-like ground
motion; a direct relation between minimum overturning
nondimensional acceleration of rigid blocks and maxi-
mum amplification of the LMDS oscillator is discovered.
Moreover, minimum acceleration overturning spectra are
derived using a different normalization criterion for the
pulse frequency, which has previously been normalized
with respect to the frequency parameter of the rigid block
(Pellecchia et al., 2022; Vassiliou & Makris, 2012; Zhang &
Makris, 2001). The use of this novel criterion allows the
response to be expressed in terms of a rocking spectrum
independent of the isolator period, allowing other param-
eters to be investigated. The previous observations are
generally applicable to both single-block and two stacked
block models, hence additional analysis on the two-block
assembly was performed. Previous research on this topic
has focused on the dynamics and energy dissipation of the
system (Chatzis et al., 2018; Psycharis, 1990; Spanos et al.,
2001); here, dynamic equivalence with a single rocking
block is found as long as a specific configuration is used.
Finally, the paper concludes with practical observations
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for designing base isolation devices for rocking objects and
enhancing the safety level of the system.

2 | EQUATIONS OF MOTION

The MRBD system of this study is an assembly of two
stacked rigid blocks, both free to rock, placed on a seismic
isolation device. Friction is assumed to be sufficiently large
to prevent sliding between the two blocks and between the
lower block and the isolator. Sliding is usually beneficial,
provided that the block does not impact other objects or
walls, and provided that the upper block does not fall from
the lower one (Kounadis, 2018). Hence, an isolator design
based on the no-sliding assumption is generally conserva-
tive. Here, the behavior of the isolator is assumed to be
linear, hence the base isolation system adds one DOF and
it can be described by the mass m;,, the stiffness k;, and the
viscous damping ¢, (all symbols presented herein are listed
in Table D1 of Appendix D). The lower and upper blocks
have thicknesses 2b; and 2b,, respectively, while the height
of the lower block is 2k, and that of the upper block is 2h,.
Further, the lower block has mass m;, while the upper has
mass m,. If the joint between the blocks is closed and the
two blocks move together, the following parameters can be
defined: (1) the total mass of the blocks, m = m; + m,; (2)
the height, h, of the combined center of mass.

The system is characterized by five modes or patterns
(Figure 2), and the equation of motion must be formulated
for each one of them. Due to the several variables and to
the different motion patterns, variational methods are ade-
quate for deriving the equations of motion of the MRBD
model, avoiding the calculation of internal forces (Fabien,
2008; Humar, 1990; Meirovitch, 1970). The system studied
here has three DOFs, the rotations 6; and 6, of the lower
and of the upper block, respectively, and the horizontal
displacement of the isolator u,.

The analytical equation of motion for each pattern
is obtained using a Lagrangian approach, deriving with
respect to the time the kinetic energy, the potential energy,
and the dissipation function, as well as calculating the
nonconservative forces.

As shown in Figure 2, each pattern is characterized by a
specific number of Lagrangian parameters, and the same
number of equations of motion, one for each generalized
coordinate.

2.1 | Kinematic analysis

Once the generalized coordinates are defined, it is con-
venient to define displacement, position, and velocity
vectors to describe the motion of the center of mass of
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FIGURE 3 Kinematic vectors calculation: (a) displacement;
(b) position; (c¢) velocity.

each body. During the motion, for example, in pattern
2a (Figure 2), the system can be seen as two constrained
rigid bodies rotating around an LMDS oscillator (Figure 3),
where the hinges represent the contact points of the rigid
blocks.

In this case, the displacement of the generic point P,
belonging to the upper body rotating with angle 6; about
Q, can be described, with reference to the global axes x-y,
by means of the displacement vector sp:

So.x cosf;—1 —sinf; 0

Sp =80 +Sr,-dpg =450, ¢+| sin6 cos6;—-10
0 0 0 0
Xp — XQ
Yp— Yo
0
@

where s = sp + Sr, - dg  is the known displacement vec-
tor of point Q, sy, is the known displacement vector of point
R belonging to the LMDS oscillator, S, is the displacement
vector transformation matrix of the i-th block, dp (dg r)
is the vector that contains the coordinates, x and y, of the
generic point P (Q) with respect to the center of rotation Q
(R) in the global reference system x-y.

Similarly, it is possible to define a position vector pp g,
used to evaluate the velocity of any point and the angular
momentum of a rigid body:

DPQ.Rrx cos6; —sin6; 0
Prr = Por +Pr, dpg = PoRry (+ sinf; cosf; 0
0 0 0 0
Xp — JCQ
Yp—XYo @)
0
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where p r is the known position vector of the point Q, Pr,
is the transformation matrix for the position vector, which
allows the expression of the position vector of the generic
point as a function of the main reference system.

Furthermore, to compute the kinetic energy, the velocity
of the centers of mass must be calculated for all bodies. In
the case of the generic point P, which belongs to a rigid
body that rotates with angular velocity 6; about the point
Q, the generic velocity vector is:

Vp = Vg + Vo + éi XPp,o (3)

where vy is the known velocity vector of the point R,
Vo = 8; x Po.r is the relative velocity vector of point Q, 8;
is the angular velocity vector, and X is the vector product
operator.

These vectors can be obtained knowing only the
Lagrangian parameters and the coordinates of the points,
allowing a certain convenience in computing the equa-
tion of motion for MRBD systems. Once these vectors are
known, the kinetic and potential energy as well as the
nonconservative forces, used to assemble the Lagrangian
equations of motion, can be easily derived for any kind of
MRBD system.

2.2 | Lagrange’s equation

The kinetic energy T can be derived as:

2
1 2 1 2 ;
T = Smy|vey +;[5 (mulvel +1Gie?)] @

where |vg;| is the magnitude of the velocity vector of the
i-th center of mass, I5; is the mass moment of inertia of the
i-th block with respect to its centroid G, m; is the mass of
the i-th block, the b subscript is related to the base isolator,
and the dot superscript indicates derivative with respect to
time.

The potential energy, V, and the dissipation function, D,
can be obtained as:

2
1 1 .
V= zkbui + Zg m; Pgiy; D = Ecbui )
i=1

where pg; , is the vertical component of the position vector
of the center of mass of the i-th body.

The last step to build the equations of motion is the
applied effort analysis, which provides the nonconserva-
tive forces (one for each generalized coordinate) using the
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virtual work 6W,,.:

2 2

SWye = —my, Xg Suy, — X Z m; 85, x — Vg 2 m;8sg, y
i=1 i=1

(6)

where &sg, , and &sg,, are, respectively, the horizontal
and vertical components of the virtual displacement vec-
tor of the i-th center of mass, ¥, and j, are, respectively,
the horizontal and vertical components of the seismic
ground acceleration. Writing duy, 8s¢, ., and dsg, , as func-
tions of the virtual generalized coordinates provides the
generalized forces.

The approach previously explained is used for the pat-
terns characterized by three DOFs (patterns 1and 2). In the
case of pattern 3, it is necessary to assume the rotations of
the upper and lower blocks equal. Regarding pattern 4, it is
sufficient to assume the rotation of the lower block equal
to zero. For pattern 0, both the rotations 8;and 8, must be
assumed equal to zero. A practical example can be found
in Appendix A.

3 | PATTERN CHANGE

The two-block system can change pattern during motion
due to impacts or acceleration thresholds exceeded (Pra-
japati et al., 2022; Psycharis, 1990; Spanos et al., 2001). In
this case, where the blocks are placed on a seismic isolation
device, three major differences in the formulation of pat-
tern changes are found in comparison to the nonisolated
system.

The first concerns the beginning of motion: differently
from the nonisolated system, the motion is not triggered
by a threshold acceleration, and the base isolation device
is activated for any amplitude of the ground motion. In
the isolated case, the system begins its motion in pattern
0, then for each step of the integration, a check of rocking
motion initiation is performed.

The second difference regards the pattern change due
to acceleration thresholds exceeded. Although the proce-
dure is the same as the one proposed in Spanos et al. (2001)
and Prajapati et al. (2022), where internal and external
moments are set equal, here the external accelerations of
the isolation device must be included in the computation
of the external moments.

The third difference is in the calculation of the coeffi-
cient of restitution after collision occurs: In the isolated
system, the lower block impacts with a device of finite mass
(the isolator) instead of a rigid foundation.
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3.1 | Pattern change due to acceleration
thresholds exceeded

If the ground motion is large enough, rocking will initi-
ate and the system will change its pattern. The problem is
generally solved by setting the external moment equal to
the internal moment in order to find a threshold accelera-
tion to detect the change (Spanos et al., 2001). In the case
at hand, the procedure for evaluating this threshold accel-
eration is similar to that in Prajapati et al. (2022), but has
been appropriately modified to account for the effect of the
base isolation system.

External moments are generated by inertia forces orig-
inating from the ground (and isolator) motion, which are
defined in the external acceleration vector ag:

ap = {—%g — ily, —jg — 8,0} )

Then, the external moment vector My can be calculated
as follows:

M = i m; <P(+;l. X aE) ®)
i=1

where pgi is the position vector of the i-th center of mass
with respect to the center of rotation associated with the
pattern to which the system could change if the threshold
acceleration is reached. The patterns before and after the
change are denoted by ~ and ¥, respectively.

To compute the internal moments, the normal and tan-
gential accelerations of the masses must be calculated in
each instant prior the possible pattern change; these accel-
erations are computed with respect to the pattern before
the possible change as follows:

ag,n = —Paiéf; aG,: = Pg, X (—6) ©)

where ag, ,, and ag, , are, respectively, the normal and the
tangential acceleration vector of the i-th center of mass, éi
is the angular acceleration vector, and P, is the position
vector of the i-th center of mass with respect to the pattern
before the possible change.

The internal moment vector M; can then be calculated
with respect to the pattern in which the system could
change its motion as follows:

M, =g, 6, + m, (pa Xag, , + pgi X aGi,t) (10)

Finally, by setting internal and external moments to be
equal, the minimum acceleration ¥; for which the sys-
tem can transition from pattern j to pattern k can be

@ DESTRO BISOL ET AL.

determined (Equation 11).

M, =Mg, > X ey

where M;, and Mp, are, respectively, the rotational
component of the internal and external moment vectors.

The principal difference between the isolated and non-
isolated cases is the beginning of rocking motion. The
uplift acceleration, which causes rocking motion, can be
viewed as a further pattern change caused by an external
acceleration and calculated using the previous equations.
In Appendix B, more details on pattern changes without
impacts can be found.

3.2 | Pattern change due to impacts

An impact can occur between the upper and lower blocks
(middle impact) or between the lower block and the iso-
lator (lower impact); if this happens, the system starts
to move in another pattern with consequent energy loss.
Here, impacts are assumed to be instantaneous, moreover
only one impact can occur at a given instant. Further, if
the impact is assumed to be inelastic (no bouncing), the
rotation continues smoothly from one corner to the other,
and the angular momentum about is conserved as custom-
ary in rocking dynamics (Housner, 1963) and reasonably
confirmed by experiments (Sorrentino et al., 2011).

As previously described in Spanos et al. (2001) and Pra-
japati et al. (2022), the analytical coefficient of restitution
must be estimated for each type of pattern change due to
impacts. The distinction between the nonisolated case and
that where the system is placed on an isolator is in the
calculation of the postimpact velocities. When an impact
occurs, the base isolation also undergoes a change in veloc-
ity (Vassiliou & Makris, 2012). For the model of two stacked
rigid blocks placed on a finite mass isolator, the new veloci-
ties after impact must be evaluated for all three Lagrangian
parameters. The postimpact velocities are computed by
solving a system of three equations (Equation 12), obtained
using conservation of momentum principles, and more
specifically: (1) conservation of angular momentum of the
entire system Hy,, (2) conservation of angular momentum
of the top block only Hy,,, and (3) conservation of linear
momentum in the horizontal direction g, .. The momen-
tums must be calculated with respect to the pattern before
(=) and after (+) the impact.

Hg, = HJ);
- _ gt
Htop - Htop (12)

- _ o
8sys,x = 8sys,x
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The angular momentum of the entire system is obtained
as follows:

2 2
Hy = ZIGiéi + Z PG, X Mg, (13)
i=1 i=1

The angular momentum of the upper body alone can be
derived using Equation (14).

H,,, = I, 0, + Pg, X myvg, (14)

The linear momentum in the horizontal direction can be
obtained as follows:

2

8sys,x = MpUG, x + 2 m;Ug, x (15)
i=1

Further, after each type of impact, whether lower or mid-
dle, the system can transit to an a priori assumed pattern,
after which angular velocities are controlled to assess kine-
matic admissibility. If it is not satisfied, the system will
switch to an alternative pattern (Prajapati et al., 2022). Fur-
ther information about transitions due to impacts can be
found in Appendix C, while the postimpact velocities for
every possible pattern change are presented in Destro Bisol
et al. (2023).

4 | SOFTWARE DEFINITION

Once the equations of motion are obtained and the pat-
tern changes are defined for each possible transition, the
response of the system to ground motion was simulated.
The solution algorithm, implemented in MATLAB (2018),
is briefly summarized in Figure 4 using a pseudocode
scheme

The analysis can start once the input data, that is, the
geometric and mechanical properties and ground motion
excitation, are defined. The first stage is the integration of
the equation of motion for pattern 0; the integration con-
tinues until an event occurs. From pattern 0, two possible
events can occur: (a) rocking motion starts without impact;
(b) the system stops, that is, comes to rest. If the threshold
acceleration of Equation (11) is overcome, rocking motion
starts (event a) and the pattern in which the system is mov-
ing must be updated, a new case must be assumed for the
switch function (Figure 4, line 6) and the integration of the
specific equation of motion is restarted.

Once the system is moving in a rocking pattern (either
1, 2, 3, or 4), the following events can occur: (a) pattern
change without impact (Figure 4, line 10); (b) pattern
change with impact (Figure 4, line 12); (c) overturning
(Figure 4, line 20). If event (a) occurs, the integration
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MRBD Algorithm: Basc Isolation of Two Stacked Rocking Blocks
1. procedure

2. input « [by, bz, hy, hy, my, kp, p, Xg, ¥g| \\ input data
3 start

4 while system is in motion do

5. switch

6. case pattern repeat for pattern 0,1,2,3,4.

7 start with pattern 0

8 integrate differential equation for specific pattern

9 event function

10. if pattern change w/o impact detected

11. update pattern case Table B. 1

12. elseif impact detected ‘' 6,— 0 or 6, 6,

13. calculate velocities after impact "6, 07, 1]

14. if kinematic assumption check true ‘' Table C. 1
15. update pattern case

16. else

17. calculate velocities after impact ' 07, 05, @}
18. update pattern case

19. end if

20. elseif overturning detected ‘' 6,= /2 or 6, = /2
21. | end loop

22. elseif stop rocking motion detected

23. | update pattern case to pattern 0

24. elseif end of ground motion and small total energy
25. ‘ end loop

26. end if

217. end switch

28. end while
29. end procedure

FIGURE 4 MRBD system solution algorithm.

continues with the new pattern, all these possible tran-
sitions are defined in Table Bl. If event (b) takes place,
impact occurs, and the postimpact velocities must be cal-
culated (Figure 4, line 13) in relation to the primary pattern
(Table C1) in which the system can move; then the kine-
matic check must be performed. If the kinematic check
is satisfied, the integration can proceed in the new pat-
tern with the newly calculated postimpact velocities. If it is
not satisfied, the postimpact velocities must be calculated
(Figure 4, line 17) with respect to the secondary pattern
(Table C1) in which the system can switch, and the inte-
gration continues with the new pattern. If event (c) occurs,
the system (or part of it) has overturned: In this case, the
analysis stops, and the while cycle is interrupted.

5 | RESPONSE TO PULSE-TYPE
GROUND MOTION

The developed computational software can be employed
for any type of ground excitation, with earthquake ground
motion being the most important in terms of potential
damage to the blocks investigated here. However, record
selection can be performed only with a specific system
at a specific location in mind and usually would involve
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modeling the building that houses the system (D’Angela
et al., 2021, 2022; Giouvanidis & Dimitrakopoulos, 2018).
Therefore, in order to get a general understanding of the
dynamic response of the MRBD model, as well as to
derive general trends in its behavior, a pulse-like ground
motion is considered. Conveniently, the response to this
input can be expressed in dimensionless plots using rock-
ing spectra (Zhang & Makris, 2001). These spectra are
nondimensional, allowing exploration of a range of pulses
with different amplitude and period, or a range of sys-
tems with different slenderness and size. For this purpose,
the slenderness a (a,), the size parameter R (R,), and
the frequency parameter p (p,) are introduced for two
cases: (a) two-block assembly considered as monolithic,
that is, interface between upper and lower block is closed
(Equation 16); (b) upper block alone (Equation 17).

a =tan"! <%) ;R=1/b? +h% p~+/3g/4R  (16)
b

o, =tan”! <h—2> ;Ry = \/b? + h3;py = /3g/4R, (17)
2

The previous equations are derived under the assump-
tions that both blocks are homogeneous and share the
same density. The base isolation device can be described
using the period T}, the mass ratio y,, and the damping
ratio &, as described in Equation (18). Additionally, the
pulse amplitude is denoted as a,, the pulse circular fre-
quency is named w), and the pulse period is denoted as

T

Ch
= 1
ZCUbM ( 8)

Ty =2m\M/kp;yp = ]%§§b
where w), is circular frequency of the isolator, and M = m
+ my, is the total mass.

The behavior of the system and its sensitivity to the dif-
ferent parameters are described starting from an applica-
tion where the real-life system in Figure 1 is approximated
using the model in Figure 5a, with appropriate parameters.
The lower block of the investigated system has a height of
2h; = 1.0 m, and a thickness of 2b; = 0.4 m, whereas the
upper block has a height of 2h; = 0.75 m and a thickness
of 2b, = 0.22 m; it is assumed that the two blocks have
the same density. The mechanical properties of the base
isolation for the investigated system can be summarized
as follows: (a) period T}, = 2.0 s; (b) mass ratio y; = 0.9;
(c) damping ratio £, = 0.05. This scenario is referred to
as the “reference system” in this paper; variations to this
reference system will be considered later in the paper.

The response of the reference system to a sine-pulse
ground motion (Figure 5b) is shown in terms of displace-
ment of the base isolator (Figure 5c), of rotation of each

@ DESTRO BISOL ET AL.

of the two blocks (Figure 5d), and in terms of pattern
(Figure 5e). The system begins to move in pattern O at
the onset of the ground motion, then the system starts to
rock in pattern 3 due to a large acceleration. As the accel-
eration increases, another pattern change without impact
occurs, and the two blocks start to move with different
angular velocities. Following that, numerous middle and
base impacts occur, and the system changes continuosly
its pattern until the system stops rocking. Finally, the sys-
tem continues its motion in pattern 0, until it comes to
rest.

5.1 | Overturning spectra: Constant
period of the isolator

When the sine-pulse analysis is used to obtain overturn-
ing spectra, it can be an effective tool to understand the
dynamic response of rocking systems. This type of spectra
is created by subjecting the system to a wide range of sine
pulses that differ in frequency and amplitude, and then
determining whether or not overturning occurs. When a
single rocking rigid block undergoes a sine-pulse ground
motion, it can overturn in two manners: (a) with no impact
and (b) following an impact between lower block and foun-
dation (Dimitrakopoulos & DeJong, 2012). In this case,
where two blocks are stacked one on top of the other,
overturning can occur in any of the above-mentioned pat-
terns and can involve a variety of impacts. The overturning
mechanisms can be divided in four different types: (a) no
impact; (b) middle impact, where an impact between the
two blocks occurs; (c) base impact, in which the lower
block impacts the base isolation device one or more times
prior to the collapse; and (d) base and middle impact,
where the two blocks impact one another and the lower
block impacts with the isolator prior to the overturning.
Here, the investigated system (Figure 5a) is used to eval-
uate the performance of the isolator on the overall dynamic
response. Three rocking spectra, for different periods T},
are derived to study the effect of the isolation system
(Figure 6). Overturning spectra are generally built by nor-
malizing the frequency of the pulse with respect to the
inverted pendulum frequency parameter, and the ampli-
tude of the pulse by the minimum acceleration that triggers
the rocking motion (Housner, 1963), also called the uplift
acceleration. Because the upper block can be seen as the
valuable object to be protected using the base isolation
technique, its response can be used as a benchmark to eval-
uate the efficiency of the isolator and the influence of the
other system parameters. Hence, the frequency parame-
ter p, and the acceleration g tan(a,) (Equation 17), related
to the upper block alone, are used. The analytical rocking
spectra for the upper block alone are computed using the
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equations in Dimitrakopoulos and DeJong (2012) and are
shown with a black line in Figure 6.

The overturning spectra in Figure 6 show how strongly
the period T}, influences the global response of the system:
As Ty, increases, the overturning area shrinks, implying
that the efficiency of the base isolation device increases
as well. If the overturning spectrum for short periods T},

Rocking spectra (built assuming a constant isolator period) of the investigated system for various isolator periods: (a)

(Figure 6a) is compared with the response of the upper
block alone, the overturning area is larger than the ana-
lytical spectra, meaning that the addition of the isolator
decreases the safety level of the art object. When T} is
increased (Figure 6b,c), the overturning area shrinks and is
generally contained within the analytical spectrum, imply-
ing that the use of the seismic isolation device increases
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the safety level of the system. This effect is particularly
evident for large values of w, or small values of p,.
The beneficial effect provided from the isolator vanishes
when w,, is small (or p, is large), and in this region,
an overturning area below the upper block spectrum is
noticed (Figure 6). The base isolation device is ineffec-
tive in this region because the upper block alone overturns
for larger sine-pulse amplitudes than the isolated system.
This peculiar behavior indicates that the isolator amplifies
the ground motion: This amplification depends on Ry, the
ratio between the pulse period, T,, and the period of the
isolator, Tp,. Similar conclusions can be drawn when the
analytical rocking spectra for the nonisolated system, con-
sidered as monolithic, is compared with the response of
the isolated system (Figure 6). In this case, the overturning
area is contained within the analytical spectrum only when
long period isolators are used (Figure 6¢c), implying that to
increase the safety level of the system, it is necessary to use
base isolation devices with longer period if compared with
the case of the upper block alone. Indeed, if the two analyti-
cal spectra are compared (Figure 6), it is possible to observe
that the addition of the pedestal improves the performance
of the system for large blocks or small period pulses. This
behavior is slightly reversed for small blocks or for large
period pulses; indeed in this region, the analytical spec-
trum of the nonisolated monolithic system is just below the
spectrum of the nonisolated upper block alone.

Shock spectra (Irvine, 2002) can be a powerful tool to
enhance the understanding of the dynamic response of
LMDS oscillators (such as the base isolation in this study).
This type of spectra is created by subjecting the LMDS to
a wide range of sine pulses that differ in frequency and
amplitude, and then determining the ratio of the max-
imum (pos) or minimum (neg) LMDS acceleration and
the amplitude of the pulse. A sample shock spectrum
(Figure 7a) is built using a full sine-pulse ground motion
and an LMDS oscillator with damping ratio &, = 0.05,
the same as in the linear isolator of the investigated sys-
tem. The spectrum highlights how the LMDS system can
amplify the ground motion, because the oscillator tends
to become in phase with the second half of the full sine
pulse. This phenomenon has a significant influence on the
response of isolated rocking-block systems; the overturn-
ing spectrum of Figure 6b, after zooming in on the region
below the analytical spectrum of the upper block (see
Figure 7b), mimics a mirrored shock spectrum (Figure 7a).
Further observations on the relationship between normal-
ized minimum overturning acceleration and amplification
of the LMDS system can be found in the following sections
(Figure 11).

Shock spectra were also constructed using a half sine-
pulse ground motion and an LMDS oscillator with vary-
ing damping factors (Figure 7c). The spectrum for &, =

@ DESTRO BISOL ET AL.

0.05 shows smaller amplitudes compared with Figure 7a,
because there is no synchronicity anymore between the
response of the oscillator and the second half of the full
sine pulse. Given the simpler nature of this spectrum, for
which no minimum (negative) amplification is present any
longer, it is possible to expand on the investigation of the
damping effect. The shock spectra show how, as damp-
ing is increased, the amplification of the ground motion
decreases in general. This behavior is weakly inverted for
large damping factors and for long period pulses (or short
LMDS oscillator periods). In this case, the beneficial effect
of the damping vanishes, and the acceleration amplifi-
cation can be slightly reduced for smaller values of the
damping ratio (Figure 7c).

Finally, minimum acceleration rocking spectra
(Figure 7d) for various damping factors and isolator
periods are plotted. These spectra are built using only
the first amplitude of the sine-pulse, which causes over-
turning, neglecting the information above this curve. The
response of the system in Figure 7d for different damping
ratios confirms the results obtained with the shock spectra
(Figure 7c), indicating that as the damping ratio increases,
so does the minimum acceleration necessary to overturn
the system. Similar to the shock spectra, for large values
of damping ratio and for large pulse circular frequency (or
small frequency parameter p,), the normalized minimum
overturning acceleration decreases compared to the cases
with smaller damping ratio. Observing, for example, the
case with damping &, = 0.4 in Figure 7d, it is possible
to see that the curve, at approximately w, / p, = 1.25,
becomes almost straight and intersects the smaller damp-
ing curves. This behavior is due to the following: (a) The
amplification of the LMDS oscillator becomes linear in
this range of periods; (b) collapse occurs following only
a middle impact (while in the previous stage, collapse
occurs for both middle and base impacts). Thus, it is
possible to conclude that adding damping to the isolator
is generally beneficial for the system, but this may not
be true for short period isolators with large damping.
Moreover, when the period T}, is increased while keeping
the damping constant, the area encompassed by the
spectrum tends to shrink, but the minimum normalized
accelerations of the spectra remain constant (Figure 7d).

5.2 | Overturning spectra: Constant
period ratio

The previous rocking spectra in Figure 6 do not have the
typical shape of a single rigid block rocking spectrum
(Zhang & Makris, 2001), in which two areas can be distin-
guished: (a) aregion where the overturning occurs without
impact and (b) a bubble-shaped region where overturning
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half sine-pulse ground motion for different damping ratios; (d) minimum acceleration overturning spectra for different base isolation

damping ratios and periods.

occurs following an impact with the foundation. The rea-
son for this difference can be found in the altering effect of
the base isolation on the sine-pulse ground motion. As pre-
viously stated, the ratio Ry plays an important role in the
response of the system; if the period of the base isolation is
kept constant while building the rocking spectra, then Ry
is allowed to vary. Thus, the amplification of the linear iso-
lator is different for each step of the analysis, implying that
the response is significantly altered when compared to the
simple rigid block placed on a rigid foundation.
Alternatively, the rocking spectra can be built assum-
ing that the period ratio Ry remains constant (Figure 8)
for all analyses, which means that the amplification of
the ground motion caused by the linear isolator remains
constant. For these reasons, two distinct rocking spec-
tra are built for two different period ratios: (1) Ry = 3
(Figure 82) and (2) Ry = 1/3 (Figure 8b). The results in
this case show that by keeping the ratio Ry constant during
spectrum construction, the typical bubble-shaped rocking
spectra (Vassiliou & Makris, 2012) and the distribution
of the overturning mechanisms (Chatzis et al., 2018) are
restored. When the two rocking spectra are compared, it
is noticeable that the minimum overturning acceleration
increases as the period ratio decreases. The reason for this
behavior is again illuminated by the full sine-pulse shock

spectrum (Figure 8c); indeed, the use of a constant period
ratio implies that the amplification of the linear isolator
is constant. If the period ratio is assumed to be 3, ap is
amplified by approximately 1.30 times, whereas if Ry is
1/3, the ground motion is amplified by approximately 0.55
times (i.e., deamplified). Finally, the rocking spectra are
compared to the response of the upper block on a rigid
foundation (expressed in terms of analytical spectra). The
base isolation system is generally ineffective when Ry = 3,
because the isolated system overturns for a smaller ampli-
tude of the ground motion than the upper block alone.
When Ry is assumed to be 1/3, the isolator appears to
be effective for small values of w,, (or for large values of
D), but ineffective for small frequency pulses or blocks of
large size (small values of p,). The last observations lead
to the conclusion that isolation technology may be ineffec-
tive in some circumstances (e.g., for short period pulses) in
preventing overturning of rocking systems. However, it is
important to note that the period T}, of the base isolation
is different for each simulation when building this type of
spectrum (Figure 8a,b). The use of isolators having a small
period, for example, T} < 2.0 s, is not frequent in practice
and it is well known that large values are usually effective
(Figure 7), although they require that larger displacements
are accommodated.
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and (b).
5.3 | Minimum acceleration overturning

spectra: Normalization studies

Previously the effect of the period of the isolator on the
global behavior of the system was investigated. The sine-
pulse analysis and the minimum acceleration rocking
spectra are used in the following sections to understand
the influence of various system parameters. For this pur-
pose, the use of minimum acceleration overturning spectra
(built using only the minimum acceleration a, that causes
the overturning for each frequency) allows the response
to be expressed with only one curve, making comparison
easier. Furthermore, in this section, a novel normalization
criterion is used to express the response of the system inde-
pendent of the period of the isolator, and to investigate
different parameters.

Here, 11 spectra are derived for 11 different T} values
(Figure 9), and the results confirm the previous observa-
tion: As the period increases, so does the safety level. When
the spectra are built by normalizing the pulse frequency,
wp, with respect to the frequency of the base isolation, w,
(rather than p,), all the curves collapse into one. Conse-
quently, it can be stated that (for a given value of p,) by
using the aforementioned normalization, the response of
the system can be expressed independently of the period
of the base isolation, facilitating the investigation of other
parameters.

So far, normalization has always been referred to the
upper block, with the goal of establishing the effective-

ness of the base isolation system in protecting the upper
rocking object; it is now necessary to evaluate the response
of the system accounting (when necessary) for the pres-
ence of a lower block. The response is now evaluated in
relation to two distinct slenderness values that charac-
terize the system: (a) slenderness o of the two blocks
considered as monolithic and (b) slenderness a, of the
upper block alone. Further, the slenderness ratio R, is
introduced:

Ry =a,/a (19)

Therefore, different minimum acceleration overturning
spectra are derived for various slenderness ratio values.
In this case, the curves are built again for 11 periods
to maintain independence from the period T}, and the
median values are assumed to define the spectrum of each
different slenderness ratio. The amplitude of the pulse,
ap, is now normalized in two ways. First, it is normalized
with respect to the slenderness of the monolithic system,
a (Figure 10a), and then to the slenderness of the upper
block alone, a, (Figure 10b). If the pulse amplitude is nor-
malized with respect to o (Figure 10a), then the response
of the system (when the slenderness ratio is greater than
one) collapses into a single curve, whereas when R, < 1,
the minimum acceleration for which overturning occurs
decreases. On the other hand, if a, is normalized with
respect to o, (Figure 10b), the response of the system
when R, < 1 collapses into one curve, while decreasing
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FIGURE 10 Minimum acceleration overturning spectra for different slenderness ratio: (a) pulse amplitude normalized with respect to

the minimum uplift acceleration of the blocks considered monolithic; (b) pulse amplitude normalized with respect to the minimum uplift

acceleration of the upper block alone; (c) pulse amplitude normalized with respect to the minimum uplift acceleration of the slenderest

configuration.

the slenderness ratio (R, > 1), the minimum overturning
acceleration decreases as well.

The results in Figure 10 highlight a useful phenomenon.

The response of the system is governed by the slenderest
configuration between (a) the whole system considered as
monolithic and (b) the upper block alone. If the smaller
slenderness is assumed to normalize the pulse amplitude,
all the curves collapse into one (Figure 10c), allowing the
response of the system to be described by considering only
one slenderness parameter and ignoring the interaction
between the two blocks. Thus, the slenderness o, can be
defined as in Equation (20). The same criterion can be

applied to the frequency parameter of the system, and a
parameter p, can be defined in the same way as for «.

ifR,>1 > >a—>a,=a;, py=p
' a 2 S N (20)
ifR,<l—-ay<a—a;=0ay ps=ps

To validate the previous findings and to better under-
stand the linear isolator amplification, the response in
terms of shock spectra for an LMDS oscillator subjected
to a full sine pulse is compared to the minimum accel-
eration overturning spectrum (Figure 11). Based on the
results presented above, the spectra (Figure 11b) built for
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Comparison between the ground motion amplification of the LMDS oscillator and the normalized minimum overturning

acceleration of the system: (a) LMDS oscillator shock spectra for the full sine-pulse ground motion in terms of frequencies; (b) minimum

acceleration overturning spectra normalized with respect to the slenderest configuration.

the investigated system are normalized with respect to
the slenderest configuration (the two blocks considered as
monolithic in this case). Further, to facilitate comparisons,
the shock spectrum (Figure 11a) is expressed in terms of the
ratio between the frequency of the pulse and the frequency
of the LMDS oscillator. When the two spectra are com-
pared, the correlation between the dynamic amplification
of the LMDS oscillator and the minimum nondimensional
overturning acceleration is evident, especially now that the
response of the system has been normalized with respect
to the proper configuration. Thus, some specific peaks of
the response are investigated for both spectra (points A, B,
and C in Figure 1la,b) to prove the exact correspondence
between the LMDS oscillator amplification and overturn-
ing acceleration. When the peak amplification (Figure 11a)
is compared to the minimum overturning acceleration
(Figure 11b) in points A, B, and C, it is possible to observe
that these two values are approximately the reciprocal of
each other.

These final observations lead to three considerations: (a)
The minimum overturning acceleration is an exact func-
tion of the LMDS oscillator dynamic amplification, and it is
governed by the ratio between the pulse frequency (period)
and the frequency (period) of the linear isolator; (b) the
final behavior depends on the envelope of the maximum
response between the positive and negative amplifica-
tion of the LMDS oscillator; and (c) the correspondence
between ag and ap further justifies the normalization
with respect to the more slender configuration. Indeed,
when the response of the system is normalized using the
characteristics of the upper block (Figure 7b), it is possible
to observe a slight difference between the minimum over-
turning acceleration and the amplification of the LMDS
oscillator (Figure 11a).

The influence of the mass ratio y; on the response of
the system is also investigated here; for this purpose, the

” (b)

ap/g tan(r»s) (-)

w, /By () w,lw, )
FIGURE 12 Minimum acceleration overturning spectra for
different mass ratios: (a) pulse frequency normalized with respect to
the frequency parameter of the slenderest configuration; (b) pulse
frequency normalized with respect to the frequency of the isolator.

response of the system varying the mass ratios is analyzed
(Figure 12).

Minimum acceleration overturning spectra (Figure 12a)
are obtained, assuming a constant value of T, = 2 s, for
various mass ratios ranging from y; = 0.9 (light isolator
mass) to y;, = 0.001 (very heavy isolator mass). The results
show that this parameter has little effect on the response
of the system, which remains approximately constant for
different mass ratios.

The response of the system to different y;, is then investi-
gated for different periods of the base isolator (Figure 11b).
As previously observed (Figure 8), if the pulse frequency
is normalized with respect to the frequency of the base
isolator, the normalized minimum acceleration overturn-
ing spectra collapse into one; the mass ratio has no effect
also in this case, and the response is approximately the
same for different T, and different y; (Figure 12b). In
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(a) Three-dimensional normalized minimum acceleration overturning spectra for the isolated and for the nonisolated

system; (b) minimum acceleration overturning spectra for the isolated (for T}, = 3.0 s), numerical, and closed form, as well as for the

nonisolated system; (c) values in terms of normalized pulse frequency, period of the isolator, and normalized minimum overturning

acceleration for the points A, B, and C.

conclusion, the results indicate that the ratio between
the mass of the blocks and the total mass (including the
isolator) does not significantly influence the response.
Once the influence of parameters such as the damping
ratio (Figure 7) and the mass ratio (Figure 12) is under-
stood, and the response of the system is reduced to only one
slenderness parameter g, a three-dimensional overturn-
ing spectrum is derived. The spectrum is built subjecting
the system to a wide range of pulses that differ in ampli-
tude and frequency, while also varying the period of the
isolator. The spectrum (Figure 13a) confirms the previous
observations, that is, that increasing the period of the iso-
lator increases the safety level of the system. Figure 13
also shows the analytical overturning spectrum when the
system is considered as monolithic and placed on a rigid
foundation. The surface describing the response of the
nonisolated system obviously does not depend on the
period of the isolator, so it remains constant for any Typ.
When the two surfaces, that is, the isolated and noniso-
lated responses, are compared, a region can be identified in
which the response of the system standing on a rigid foun-
dation is safer than when it is isolated. This region is larger

for small periods T}, where the isolation is almost ineffec-
tive, and it shrinks as the period of the isolator increases (as
does the isolator efficiency). Further, the efficiency of the
base isolation is determined not only by its period, but also
by the frequency of the pulse and the frequency parameter
of the rocking object.

Three cases are investigated here (points A, B, and C
in Figure 13a,b), using the three-dimensional overturning
spectrum (Figure 13a) and the two-dimensional overturn-
ing spectra (Figure 13b) for a constant period T}, = 3.0 s.
In the case of a long period pulse or a small block (point
A), the response of the system is safer in the nonisolated
case; indeed, the amplification of the linear isolator is par-
ticularly evident in this region. Decreasing the pulse period
or increasing the size of the block (point B) increases iso-
lator effectiveness, and the isolated system becomes safer
than the nonisolated. In the case of a large block or a short
period pulse (point C), the beneficial effect of the base
isolation device further increases, which means that the
minimum overturning acceleration increases as well. The
outcomes demonstrate that the dynamic response of the
system is systematic. For this reason, the closed-form fit of
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the overturning spectrum in Figure 13b can have practical
applications, and it is presented as follows:

2
 — 099213822 + 1.227(2)
g tan(ay) Ds Ps
3 4 @D
- 0.176<ﬁ) + 0.0114(‘ﬁ>
Ds Ds

To maximize efficiency of the base isolation technology,
the response of the system should be moved as far away
as possible from the region where the ground motion is
amplified by the linear isolator. This outcome could be
obtained by increasing the period of the isolator. For exam-
ple, assuming T, = 0.8 s (Makris, 2000) and p = 3.1 rad/s
(as for the system in Figure 5a), the isolator is effective for
Tp > 2.0 s. Nevertheless, for long period pulses or small
blocks the minimum overturning acceleration of the iso-
lated system can be lower than the nonisolated system.
Assuming T, = 0.8 s and using a very small block (i.e.,
a household brick for which p ~ 8.0 rad/s), the isolator
becomes efficient only for T, > 5.0 s. This potentially dan-
gerous phenomenon disappears for small periods of the
pulse or for large blocks. Indeed, assuming a large block
(i.e., a computer server p ~ 2.7 rad/s) and considering
the same period pulse of the previous example, the isola-
tor becomes efficient for T}, > 1.6 s. Therefore, the safety
level of the system may be enhanced by increasing the size
of the lower block (pedestal) while keeping o, constant.
This solution might become impractical if the upper block
needs to remain at a reasonable height, such as for an art
object in an exhibition. In that case, a possible alternative
is restraining the upper block to a squat lower block, but
this solution might involve large internal stresses that may
be incompatible with brittle historical artifacts (Sorace &
Terenzi, 2015).

6 | CONCLUSION

A dynamic two rigid body rocking model isolated at
the base was developed. The friction was assumed large
enough to prevent any sliding, the two blocks can rock
only about the corners and the impacts are assumed
to be instantaneous. Then, the computational method
used to solve the governing equations was presented in
terms of pseudocode, emphasizing the events marking the
transition between the five possible patterns.

The model was used to derive rocking spectra for two-
block systems subjected to sine-pulse ground motion,
described by its amplitude and frequency. The main
findings, can be summarized as follows:

1. The base isolation device is effective for long period
devices.
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2. As an alternative or concurrent approach to the design
of a long period device, the size of the system could
be increased to enhance the effectiveness of the base
isolation.

3. Depending on the size of the system, if long period
pulses are expected, it could be impossible to deliver an
effective base isolation with current technologies.

4. The amplification caused by the isolator depends on the
ratio between the pulse period and the period of the
isolator, and the amplification of the LMDS oscillator,
which can be obtained using shock spectra for specific
pulses, is the reciprocal of the normalized minimum
overturning acceleration of the system.

5. Overturning spectra can be obtained assuming the iso-
lator period to be constant or assuming a constant
ratio of the periods (between the pulse and that of the
isolator). The latter type of spectra must be carefully
interpreted because each frequency of the pulse corre-
sponds to a different isolator period, meaning that T, is
constantly varying along the x-axis.

6. Minimum overturning acceleration spectra can be used
to describe the response of the system; when the fre-
quency of the impulse is normalized with respect to
the frequency of the isolator, the response for different
isolator periods collapses to a single curve.

7. The response of two stacked rocking blocks can be
understood using only one configuration, the slender-
est between the two blocks considered as monolithic
and the upper block alone. This means that, using the
proper configuration, the response of the two-block sys-
tem to sine-pulse ground motion can be approximated
well by neglecting block interaction.

Potential future developments involve the consideration
of alternative excitations, such as symmetric and anti-
symmetric Ricker wavelets and recorded accelerograms,
in order to consider either more dangerous or more real-
istic excitations. Additionally, the no-sliding hypothesis
and homogeneous density assumption could be removed,
while configurations involving three or more bodies could
be investigated.
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APPENDIX A
Here, for brevity, only the equation of motion for pattern
1 (Figure 2) is described, as an example of a pattern with
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three DOFs. Once the equations of motion are obtained
deriving the Lagrangian equation, they can be expressed
in matrix form as follows:

My My, My 6, Fy
Mg =F; | My My My 6, =1F,
M3y M3; M3 iy, Fj3

where M is the mass matrix, ¢ is the generalized coordi-
nates acceleration vector, and F is the vector where the
known terms and the low-order derivative, such as veloc-
ities and displacements, are contained. M, and Fy for
pattern 1 are described next. The mass terms are defined
as follows:

My, = Iy + himy —2bibym, + bim,
+ 4himy + bim
My, = My = my((byby — b2 + 2h; hy) cos(6; —6,)
+ Sg(b hy — by(2hy + hy)) sin(8; — 92))
M3 = M3, = (hy)(2m; — my) cos(6,)
+ Sg(b,m, — bym) sin(6;)
My, = Iy + (b5 + h3)my; Mys = m+my,

My = M3; = —myh; cos (6,) — Sg (bym; sin (65))
where Sj is the sign function:
So =lif9>001'59 =—1if6<0

where 0 =6, for patterns 1, 2, and 3, while 6 =6, for
pattern 4.
Vector F has the following components:

F; = my (Sg(+b1hy, — by(2hy + hy)) cos(6; — 6,)
— (byby — b2 + 2hy hy) sin(6; — 65,)) 62
+ (hy(m; + 2m,) cos(6,)
— Sg(bymy — bym) sin(6))) X,
+ (Sg(bymy — bym) cos(6,)
+ hy(m; + 2m;) sin(6,))(Jg + 8)
F, = my (Sg(b,(2h; + hy) — b1 hy) cos(6; — 6,)
+ (byby — b2 + 2k, hy) sin(6,; — 6,)) 62
+ Sg(bym, sin(6,) — myh, cos(6,))X,

+ (myh; sin(8,) — Sgmyb, c0s(6,))(Jg + &)
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F5 = (Sg(bym — bym,) cos(6,) — hy(m; + 2m,) sin(@l))éf
+ (Sgbym, cos(6,) — hym, sin(6,)) 62

— Cbl'l2

b ubkb — (m + mb))'c'g

The equations of motion, obtained using the variational
principle, are second-order differential equations, but the
employed numerical integration procedure requires to
reduce the problem to a first-order differential equation.
In case of pattern 1 (applicable also for pattern 2), the state
vector y can be expressed as follows:

y(@) 01
y(2) 6,
y(3) 0,
Yy =X c=3. (
y4) 0,
y(5) u
y(6) u

Using the time derivative vector y, the equations of
motion can be reassembled as:

e 3

100000 | [y y(2)

0M;; 0 My, 0 Mi3| |¥(2) F,
oo1000]||y® |ye
< e 3 c = 3 -
0 My 0 My 0 Mys| |¥(4) F,

oooo10]||y®l |ye
0 M3; 0 M3, 0 M33| |y (6) Fj3

APPENDIX B

Here, a pattern change due to acceleration thresholds
exceeded is investigated. For conciseness, only the pattern
change from 3a to 1a is reported. In this case, the thresh-
old acceleration that causes the pattern change is defined
as follows:

%31 = (6 Iz + (2hy + hy)(—(b,6%) + 6hy)m,
+ by (b,0 + 62hy)my + my(—(iiyh,)
+ by(g + Jg)) cos(8) — my(byiiy,
+ hy(g + Jiy)) sin(8)) /(my(h, cos(6) + b, sin(6))).

Further, all the possible pattern changes due to acceler-
ation thresholds exceeded are listed in Table Bl1.

@ DESTRO BISOL ET AL.

TABLE B1 Pattern change due to acceleration thresholds
exceeded.
From Event To From Event To
3a X1 < X,(0) la 3b X312 X,(0) 1b
3a X3, 2 X,(1)  2a 3b X3, < X,(1)  2b
4a X1 < Xg(t)  la 4b ¥ > %) 1b
4a Xap 2 X,(0) 2b 4b ¥ap < X,(0) 2a
¥o3 < X, () 32 0 Xo3 > %,(1)  3b
¥ou < X,(6) 42 O Xou > X,(1)  4b
APPENDIX C

As previously observed, during the motion of the system,
impacts can occur implying a change in pattern. In this
section, all the possible pattern changes due to impacts are
listed. Following any kind of impact, the system can switch
toward two different pattern categories: (a) primary, where
the two blocks are moving with different velocities; and (b)
secondary, where the lower block is at rest or the system
is moving monolithically (interface between upper and
lower block is closed). As described in Table C1, for all pos-
sible (positive) pattern changes, it is necessary to evaluate
the postimpact velocities for the primary transition (type
a), then a kinematic check is performed to exclude the pos-
sibility of interpenetration between the two blocks. If the
kinematic control is not satisfied, the secondary pattern
change (type b) must be used.

The postimpact velocities can be obtained solving the
linear system in Equation (14). Especially for the cases
where three DOFs are involved, the governing equations
are large, hence only one pattern transition is described
here with respect to the investigated system and for specific
rotations. The postimpact velocities for every possible pat-
tern change are presented in Destro Bisol et al. (2023). The
transition from pattern 2a (2b) to pattern 1b (1a) is studied
here. In this pattern change, the lower body impacts with
the base isolation and the rotation of the lower block is 0,
while the upper block has negative (positive) rotation.

The postimpact velocities are calculated for two dif-
ferent values of the upper block rotation. In the for-
mer, 8, = —0.001 rad is assumed, while in the latter
6, = —0.100 rad is assumed. The postimpact velocities,
for the former (left) and for the latter case (right), can be
calculated as:

67 = 0.3306 67 = 0.2466
67 =0, +0.5186; ; 4 6 =6, +0.7586]
Ij =u_—0. 6849— ; =u_—0. 7319—

Although not the central scope of this work, some
observations on the previous equations can be made. The
velocity reduction of the isolator depends only on the
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Kinematic assumption

DESTRO BISOL ET AL.

TABLE C1 Pattern change due to impacts.
From Event To check
la 6, =6, 2a 6F > 0F
2a 6, =6, la 6F < 6F
4a 6, =6, 1b o7 <0
la 6,=0 2b 67 <0
2a 6, = 1b 6F <0
3a 6, = 1b 6F > 07

preimpact angular velocity of the lower block. Similarly to
what was observed by Psycharis (1990) for this type of pat-
tern change of two stacked blocks on a rigid foundation,
the variation of angular velocity of the lower block is in
general a reduction and this is large in comparison with
the single block on a rigid foundation (Housner, 1963). Fur-

Assumption To
false — 6 =07 3a
false — 6+ =05 3a
false — 67 =0 4b
false — 6 =0 4a
false — GI' =0 4b
false — @I’ = 6;’ 3b

ther, an increase in terms of angular velocity is observed for
the upper block, again similarly to what was presented by
Psycharis (1990). It is also possible to observe that, increas-
ing the rotation 6,, the postimpact velocities of the isolator
and of the upper body decrease, while that of the upper
body increases.
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APPENDIX D
TABLE D1 List of symbols.

D Dissipation function

H,(H,,) Angular momentum of the entire system
(upper block alone)

I Mass moment of inertia of the i-th block with
respect to its centroid G

M Total mass of the system

M;(M;) External (internal) moment vector

Pr, Position vector transformation matrix of the
i-th block

R(R,) Size parameter for the monolithic system
(upper block alone)

Ry Period ratio T,/ T

R, Slenderness ratio o, /a

Sy, Displacement vector transformation matrix of
the i-th block

T Kinetic energy

Ty Period of the isolator

T, Period of the pulse

14 Potential energy

W e Virtual work of nonconservative forces

ag External acceleration vector

ag ,(ag, ) Normal (tangential) acceleration vector of the
i-th center of mass

a, Amplitude of the pulse

Apeak Maximum acceleration of the LMDS oscillator

b; Half thickness of the i-th block

Ch Viscous damping of the isolator

dpo Coordinates vector of the generic point P with
respect to the center of rotation Q

g Gravitational acceleration

8sys,x

m;
p(p2)
Prr
DPs

Sp

Uy

%, ()
Xk
a(ay)
A

Vb
6:(6)

&

@ DESTRO BISOL ET AL.

Linear momentum in the horizontal direction

Height of the center of mass of the monolithic
system

Half height of the i-th block

Stiffness of the isolator
Total mass of the blocks

Mass of the isolator

Mass of the i-th block

Frequency parameter for the monolithic system
(upper block alone)

Position vector of the generic point P with
respect to the center of rotation R

Frequency parameter of the slenderest
configuration

Displacement vector of the generic point P
Horizontal displacement of the isolator
Velocity vector of the generic point P

Horizontal (vertical) component of the seismic
ground acceleration

Threshold acceleration for the transition from
pattern j to pattern k

Slenderness for the monolithic system (upper
block alone)

Slenderness of the slenderest configuration

Mass ratio m/M
Rotation of the i-th block

Angular velocity (acceleration) vector of the i-th
block

Damping ratio of the isolator

Circular frequency of the pulse
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