
MNRAS 498, 5798–5803 (2020) doi:10.1093/mnras/staa2663
Advance Access publication 2020 September 11

Measuring the spectral index of turbulent gas with deep learning from
projected density maps

Piero Trevisan ,1‹ Mario Pasquato ,2,3 Alessandro Ballone 1,2,3 and Michela Mapelli 1,2,3

1Physics and Astronomy Department Galileo Galilei, University of Padova, Vicolo dell’Osservatorio 3, I-5122 Padova, Italy
2INAF, Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova, Italy
3INFN – Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy

Accepted 2020 August 24. Received 2020 August 20; in original form 2020 April 16

ABSTRACT
Turbulence plays a key role in star formation in molecular clouds, affecting star cluster primordial properties. As modelling
present-day objects hinges on our understanding of their initial conditions, better constraints on turbulence can result in windfalls
in Galactic archaeology, star cluster dynamics, and star formation. Observationally, constraining the spectral index of turbulent
gas usually involves computing spectra from velocity maps. Here, we suggest that information on the spectral index might be
directly inferred from column density maps (possibly obtained by dust emission/absorption) through deep learning. We generate
mock density maps from a large set of adaptive mesh refinement turbulent gas simulations using the hydro-simulation code
RAMSES. We train a convolutional neural network (CNN) on the resulting images to predict the turbulence index, optimize
hyperparameters in validation and test on a holdout set. Our adopted CNN model achieves a mean squared error of 0.024 in
its predictions on our holdout set, over underlying spectral indexes ranging from 3 to 4.5. We also perform robustness tests by
applying our model to altered holdout set images, and to images obtained by running simulations at different resolutions. This
preliminary result on simulated density maps encourages further developments on real data, where observational biases and
other issues need to be taken into account.

Key words: hydrodynamics – turbulence – methods: numerical – methods: statistical.

1 IN T RO D U C T I O N

Machine learning is finding ever new applications in astronomy, rang-
ing from exoplanets (e.g. Davies et al. 2015) and variable stars (e.g.
Armstrong et al. 2015) to cosmic ray propagation (e.g. Jóhannesson
et al. 2016), the chaotic three-body problem (Breen et al. 2019), star
clusters (Pasquato & Chung 2016; Pang et al. 2020), and black holes
(Askar et al. 2019). The subfield of deep learning (DL) has recently
found successful application to astronomical problems involving
images using convolutional neural networks (CNN; Fukushima &
Miyake 1982; LeCun et al. 1989, 1998), for example in detecting
gravitational lenses (Hezaveh, Perreault Levasseur & Marshall 2017).
Turbulence has a strong impact on the properties of all phases
of the interstellar medium (e.g. see the reviews by Elmegreen &
Scalo 2004; Scalo & Elmegreen 2004; Hennebelle & Falgarone
2012), likely playing a fundamental role in regulating star formation
in molecular clouds (Mac Low & Klessen 2004; Krumholz &
McKee 2005; Ballesteros-Paredes et al. 2007; Federrath & Klessen
2012; Hopkins 2013; Semenov, Kravtsov & Gnedin 2016; Burkhart
2018), and also affecting cosmic ray propagation (see Grenier,
Black & Strong 2015, and references therein), accretion disc physics
(Shakura & Sunyaev 1973), and the intergalactic medium (see e.g.
Evoli & Ferrara 2011; Iapichino et al. 2011). Koch et al. (2019)
review several techniques used to constrain turbulence properties in
observations. The most widespread ones are based on the analysis

� E-mail: pierotrevisan.pt@gmail.com

of power spectra and correlation of the density and/or velocity
(e.g. Scalo 1984; Stanimirovic et al. 1999; Lazarian & Pogosyan
2000a; Esquivel & Lazarian 2005; Padoan et al. 2006; Burkhart
et al. 2009; Chepurnov et al. 2010), wavelet decomposition of the
density/velocity field (e.g. Gill & Henriksen 1990; Stutzki et al.
1998; Ossenkopf, Klessen & Heitsch 2001; Ossenkopf, Krips &
Stutzki 2008), probability distribution functions of the density (e.g.
Vazquez-Semadeni 1994; Miesch & Scalo 1995; Vázquez-Semadeni,
Ballesteros-Paredes & Rodrı́guez 1997; Ostriker, Stone & Gammie
2001; Federrath, Klessen & Schmidt 2008; Kainulainen et al. 2011;
Schneider et al. 2015), or principal component analysis of the
density+velocity (e.g. Brunt & Heyer 2002a, b; Roman-Duval et al.
2011). Recently Peek & Burkhart (2019) have shown that a CNN
can distinguish between different levels of magnetization in density
maps of turbulent magnetized gas. This suggests that mock images
representing just density information are already enough to constrain
the physics of turbulent gas. In the following, we show that this
includes the spectral index of turbulence.

2 ME T H O D S

2.1 Set of hydrosimulations

We ran 1000 simulations with RAMSES1 (Teyssier 2002), an Adaptive
Mesh Refinement (AMR) code for self-gravitating magnetized fluid

1https://www.ics.uzh.ch/∼teyssier/ramses/RAMSES.html

C© 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/4/5798/5904081 by Salsano Lib user on 02 M
ay 2024

http://orcid.org/0000-0001-9511-4649
http://orcid.org/0000-0003-3784-5245
http://orcid.org/0000-0003-4893-2993
http://orcid.org/0000-0001-8799-2548
mailto:pierotrevisan.pt@gmail.com
https://www.ics.uzh.ch/~teyssier/ramses/RAMSES.html


DL to measure turbulence index 5799

Figure 1. Projected density map along the z-axis for the simulation with
the lowest n = 3.0013. Pixel intensity values are normalized to 1. The
density to pixel intensity transformation is logarithmic. The generated image
is 1000 × 1000 pixels in size, in one channel (grey-scale).

flows. The computational domain consists of a 10 × 10 × 10 pc box
with periodic boundaries, completely filled with uniform density gas
(6.77 × 10−22 g cm−3; for a total mass of 104 M�). The gas was kept
isothermal at T = 10 K throughout the simulation. At the beginning
of the simulation, we injected a divergence free, mildly supersonic
(Mach number M = √

2) velocity field with power-spectrum index
n extracted uniformly between 3.0 and 4.5. This range of spectra
includes both the index predicted by Kolmogorov (11/3) and Burgers
(4.0) turbulence. We chose to extend the range further out rather than
limiting it between these two values to increase the variability of
the training set and also in consideration of turbulence models that
predict very different values of the spectral index, such as Iroshnikov–
Kraichnan turbulence (Iroshnikov 1963; Kraichnan 1966). Then, we
let the system evolve for 0.5 Myr, solving Euler’s equation with a
Lax–Friedrichs Riemann Solver, without self-gravity or magnetic
fields. The AMR strategy in RAMSES allowed us to perform our
simulations with a relatively low number of cells (compared to a
uniform grid), leading to an affordable computational cost for the
whole large set of simulations needed for training. AMR might
not seem the best choice to study turbulence, since the smallest
scales will not be resolved throughout the whole computational
domain. However, a ‘smart’ refinement criterion allows to have high
resolution on the regions of the computational domain that are more
physically meaningful. In these simulations, we were interested in
how the velocity field shapes the density by means of gas collision.
Hence, we chose the refinement criteria based on the gradient of the
velocity: for each cell i, the gradient of velocity v is computed using
the six nearest-neighbouring cells. If this gradient, times the local
mesh spacing �xl at level of refinement l, exceeds a fraction of the
central cell variable

∇vi ≥ Cv

vi

�xl
, (1)

Figure 2. Projected density map along the z-axis for the simulation with
the highest n = 4.4997. The colour map and resolution is the same as in
Fig. 1.

where Cv is a free parameter, then the cell is refined to level l
+ 1 (Teyssier 2002). For our set of simulations, we chose Cv =
1.35. We adopted this fixed value for all simulations, after testing
that this choice allowed to effectively resolve the turbulence for
all values of n with a reasonably high number (always >105) of
cells. We set the minimum and maximum refinement levels as 5 and
8, respectively. This meant a spatial resolution of 2−5 = 1/32 of
the box side (≈0.3 pc) for the least resolved cells and a resolution
of 2−8 = 1/256 of the box side (≈0.04 pc) for the most resolved
ones.

2.2 Mock image generation

For each simulation, we took snapshots of the column density
projected on to three perpendicular axes of the computational
domain, allowing us to increase the number of images obtained
from each simulation. However, we took care that each set of
three resulting images with the same index ended up together
either into the training set or into the holdout set, so that our
models are tested not just on previously unseen images, but on
unseen simulations. Images were generated from a given snapshot
by integrating through the entire density cube along three orthogonal
directions resulting in column density maps (as could be obtained
e.g. by dust emission/absorption). This is a first step towards the use
of machine-learning models for future, more sophisticated analyses,
taking into further account the velocity information (coming, in real
observations, from molecular tracers). Integrated column density
maps represent a harder problem for our CNNs because integration
strongly reduces the imprint of the velocity field by removing velocity
information (see e.g. Lazarian & Pogosyan 2000b, 2004, 2006, 2008;
Lazarian et al. 2018). To illustrate the results of our image generation
procedure, Figs 1 and 2 show two images with low and high n,
respectively.

MNRAS 498, 5798–5803 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/4/5798/5904081 by Salsano Lib user on 02 M
ay 2024



5800 P. Trevisan et al.

2.3 Deep learning: neural network architecture

Since the deep CNN AlexNet (Krizhevsky, Sutskever & Hinton 2012)
won the 2012 ImageNet competition (Russakovsky et al. 2015),
CNNs have been successfully applied to a large variety of computer
vision tasks, such as e.g. object detection (Girshick et al. 2014),
where they routinely outperform other machine-learning approaches
(see e.g. Goodfellow, Bengio & Courville 2016, for more details).

We implemented our neural networks in Keras (Chollet 2015), on
top of TensorFlow (Abadi et al. 2015). All our code is written in
PYTHON and can be found at https://gitlab.com/Piero3/
turbolencenn.

The neural network architecture we chose is as follows:

(i) Two 5 × 5 convolutional layers with 32 filters and same padding
resulting in a 128 × 128 × 32 output.

(ii) A max pooling layer with 2 × 2 filter size and stride 2, resulting
in an 64 × 64 × 32 output.

(iii) A dropout layer with a variable ratio of dropped units (either
0 or 1/3).

(iv) Two 5 × 5 convolutional layers with 64 filters and same
padding resulting in a 64 × 64 × 64 output.

(v) A max pooling layer with 2 × 2 filter size and stride 2, resulting
in an 32 × 32 × 64 output.

(vi) A dropout layer with a variable ratio of dropped units (either
0 or 1/3).

(vii) A fully connected (dense) layer with 64 neurons with rectified
linear unit activation.

(viii) A dropout layer with a variable ratio of dropped units (either
0 or 1/3).

(ix) A single neuron with a linear activation with relative squared
error loss as cost function.

This architecture was chosen after some trial-and-error exper-
imentation starting from a very shallow initial configuration and
progressively adding more layers. Afterwards, we performed a grid
search over the few hyperparameters that we decided to explicitly
optimize, as discussed below.

2.4 Deep learning: hyperparameter optimization

We train our neural networks on 896 simulations corresponding
each to a different spectral turbulence index. Each simulation is
projected on three independent directions, obtaining three column
density map images. The remaining 104 simulations are set aside to
perform a blind test of the accuracy of the trained networks; these
simulations were also never used during the initial tests we conducted
to determine the overall network architecture. We optimized the
hyperparameters of our nets using an 80 per cent–20 per cent train-
validation random split. We trained our network for different choices
of the dropout ratio: either 1/3 for all dropout layers or zero
(corresponding to no dropout), and we compared four optimizers:
AdaDelta (Zeiler 2012), AdaGrad (Duchi, Hazan & Singer 2011),
RMSprop (Tieleman & Hinton 2012), and Adam (Kingma & Ba
2014a). We train our CNNs for either 500 epochs (if the dropout is
set to 1/3) or for 100 epochs (if trained with no dropout). This is done
to reduce overfitting for models without dropout in a sort of early
stopping scheme (e.g. see Prechelt 1998). We also consider different
batch sizes: (32, 64, 128, and 256). We show the resulting training
and validation mean squared error (MSE) loss in Table 1, where each
training run is sorted by increasing validation MSE. In this phase,
we used an 80–20 per cent train-validation split.

Table 1. Summary of our hyperparameter optimization: each row corre-
sponds to a different combination of hyperparameters. The MSE loss after
either 500 training epochs (models trained with dropout) or 100 epochs
(models without dropout) is reported for the training set and for the validation
set (last two columns) as a function of the dropout fraction (first column), the
optimizer (second column), and the batch size used in training (third column).

Dropout Optimizer Batch size Epochs Train Val.
loss loss

0.33 adadelta 64 500 0.005 0.012
0.33 adadelta 32 500 0.006 0.014
0.33 adam 64 500 0.018 0.014
0.33 adam 256 500 0.014 0.014
0.00 adam 32 100 0.001 0.014
0.33 rmsprop 256 500 0.015 0.016
0.33 rmsprop 32 500 0.021 0.016
0.00 adam 128 100 0.002 0.016
0.00 adam 64 100 0.001 0.016
0.33 rmsprop 128 500 0.020 0.017
0.00 rmsprop 32 100 0.005 0.018
0.00 adadelta 32 100 0.005 0.021
0.00 rmsprop 64 100 0.013 0.021
0.00 adadelta 64 100 0.010 0.022
0.00 adagrad 64 100 0.008 0.023
0.33 adam 128 500 0.014 0.024
0.33 adam 32 500 0.022 0.024
0.00 adagrad 32 100 0.002 0.027
0.00 adagrad 256 100 0.027 0.034
0.00 adagrad 128 100 0.022 0.039
0.00 adadelta 128 100 0.035 0.047
0.00 rmsprop 128 100 0.018 0.052
0.00 rmsprop 256 100 0.025 0.063
0.00 adadelta 256 100 0.095 0.085
0.33 adadelta 128 500 0.190 0.190
0.33 adadelta 256 500 0.190 0.190
0.33 rmsprop 64 500 0.190 0.190
0.33 adagrad 128 500 0.242 0.470
0.33 adagrad 32 500 0.535 0.534
0.33 adagrad 64 500 0.284 0.763
0.33 adagrad 256 500 0.295 0.980
0.00 adam 256 100 3.622 3.511

Our best-performing model (in terms of validation loss) is the
result of training with the Adadelta optimizer (Kingma & Ba 2014b)
for 500 epochs with a batch size of 64 and 1/3 dropout. The validation
MSE loss at the end of training is 1.2 × 10−2. However, this model
is clearly overfitting, as the validation loss is much higher than the
training loss. The best model that is not overfitting (as shown by it
having a higher training loss than validation loss) is the third best in
terms of validation loss, achieving a final MSE of 1.4 × 10−2, and is
the result of training with the Adam optimizer for 500 epochs with a
batch size of 64 and 1/3 dropout. We adopt this latter model and use
it in the following. The evolution of the training and validation loss
for this model is shown in Fig. 3.

At this point, our CNN never saw our holdout set of 312 column
density snapshots (corresponding to 104 different indexes). This also
holds true for our previous, informal optimization that yielded the
CNN architecture we adopted in the first place.

2.5 Deep learning: data augmentation

Since running hydrodynamic simulations can be very time consum-
ing and computationally expensive, we augmented the training data-
set by applying transformations such as cropping, reflections, and

MNRAS 498, 5798–5803 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/4/5798/5904081 by Salsano Lib user on 02 M
ay 2024

https://gitlab.com/Piero3/turbolencenn


DL to measure turbulence index 5801

Figure 3. Evolution of the training loss (solid blue curve) and validation loss
(dashed orange curve) during training for the adopted CNN.

rotations. To perform the data augmentation we used the PYTHON

library Augmentor.2 With this process we artificially enlarged our
data-set from 2688 to 20000 images. The number of combinations
of cropping plus reflections and rotations guarantees that we do not
have two identical examples in our training data-set or across the
training/validation split. The holdout set, which was used neither in
training nor in validation, did not undergo augmentation.

3 R ESULTS

We re-trained our adopted CNN (trained with 1/3 dropout fraction,
the Adam optimizer, batch size of 64; see third row of Table 1)
for 500 epochs on the whole new training data-set, described in
Section 2.5. After training, we tested our CNN on our holdout
set of 312 images resulting from simulations made with the same
ingredients of the training simulations. The 312 images correspond
to 104 simulations with different turbulence index, seen from three
different perpendicular directions. On this set, we did not perform
any augmentation process (crop, flip, rotation) as opposed to what
we did in training. The predictions of our adopted CNN are shown in
Fig. 4. We obtained an MSE between our predictions and the actual
spectral turbulence indexes of 0.024.

3.1 Robustness tests: low-pass filter

While our model performs well in the idealized setting we consid-
ered, it is expected that regression accuracy will drop in realistic
conditions, e.g. when attempting to predict the spectral index of
turbulent gas from actual observations. As a first test of robustness
under less than ideal conditions we degrade the density maps in
our holdout set and measure the resulting drop in performance of
our model. We apply Fourier transform to our images and remove
high-spatial frequencies (low-pass filter) at different cut-offs. A low-
pass filter blurs out the fine spatial structure of the density map,
which has a similar effect to reducing the resolution of the image
or convolving with an instrumental point spread function, as shown
in Fig. 5. Mesh artefacts (e.g. sharp discontinuities in density at cell
boundaries) are largely removed by low-pass filtering, as the typical
cell size is on the small end of the spatial frequency range for our
images.

2https://github.com/mdbloice/Augmentor

Figure 4. Prediction of the adopted CNN model on the 312 test images in
the holdout set. The CNN was not shown these images in training nor in
validation, neither was it shown images derived from the same simulations
as these. Top panel: power spectrum indexes predicted from the CNN plotted
versus the actual indexes labelled as test indexes. Bottom panel: the residuals
are plotted versus the test indexes. The vertical line at n = 11/3 and n = 4.0
corresponds to Kolmogorov and Burgers index, respectively.

Figure 5. Typical input for our low-pass filter experiment. Spatial frequen-
cies above a threshold are cut-off in Fourier space. Different cut-offs were
experimented with.

Fig. 6 shows the MSE of our adopted model on the test set low
passed at various cut-off spatial frequencies. The rightmost point
corresponds to the unaltered images. As we move left and the cut-
off is lowered, MSE increases (performance drops) but not abruptly
so. In particular, the relevant mesh frequencies do not stand out
as discontinuity points in this graph. This suggests that the model
is not picking up on high-frequency mesh artefacts to make its
predictions.

MNRAS 498, 5798–5803 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/4/5798/5904081 by Salsano Lib user on 02 M
ay 2024

https://github.com/mdbloice/Augmentor


5802 P. Trevisan et al.

Figure 6. MSE as a function of the spatial frequency cut-off (in 1/pixels) of
the low-pass filter, i.e. frequencies below the cut-off are kept, so the leftmost
point corresponds to retaining the original image.

Figure 7. Predicted spectral indexes as a function of the actual indexes for
three projections of the four simulations we reran with different resolution.
The original simulations are shown as blue dots, AMR simulations with lower
(higher) resolution limit in yellow (green), and uniform grid simulations in
red. The diagonal line is the identity.

3.2 Robustness tests: resolution convergence

Perhaps a more stringent requirement than performing well on im-
ages with a different resolution would be to make correct predictions
on simulations run at a different resolution. Due to the computational
costs of hydrodynamic simulations, we selected only four simulations
corresponding to indexes near to the range extremes 3.0 and 4.5
and to the Kolmogorov (11/3) and Burgers regime (4.0). We re-
ran these simulations with different AMR resolution limits, namely
2−7 the box side (thus lowering the maximum attainable resolution
with respect to the original) and 2−9 the box side (increasing the
maximum resolution). We also run a simulation with a fixed, uniform
mesh with cells 2−8 the box side. The predictions of our best CNN
model, which is trained only on simulations run with AMR and
maximum resolution corresponding to 2−8 the box side, are shown
in Fig. 7 as a function of the actual spectral indexes. As usual, we
calculated our predictions on three independent projections of each
simulation, so each index corresponds to three points in the plot. We
see that prediction accuracy is as high as on the original simulations
for the new, higher, and lower resolution AMR simulations, while

it drops somewhat for the uniform mesh. This simple qualitative
test suggests that the model predictions are robust with respect to
changes in resolution, even though making a quantitative statement
in this regard would require rerunning a larger sample of simulations.

4 D I SCUSSI ON AND C ONCLUSI ONS

We have trained a CNN to predict the spectral index of turbulence
of mock column density maps generated by simulations of turbulent
gas. Our neural network model accomplishes this task by using only
pixel-level information from images.

With a fixed five-layer feedforward network architecture, we
obtain a performance of 0.024 in terms of MSE on an holdout test
set unseen in training, spanning spectral indexes from n = 3 to n =
4.5. This is an encouraging result as it suggests that plain density
maps contain sufficient information for an accurate prediction of the
spectral index of turbulence. Moreover, our images are generated
by fully projecting the density distribution of the gas along the line
of sight, essentially disregarding velocity information. With this in
mind, even though the MSE we obtain is still at face value too high for
observational applications (Kolmogorov and Burgers indexes differ
only at the 2σ level), we expect to reduce it by averaging predictions
obtained on independent regions of a given cloud.

To ascertain that our model is indeed using relevant physical infor-
mation to obtain its predictions we ran a series of tests by degrading
our test images by censoring high-spatial frequencies and measuring
the resulting drop in performance. We find that blurring out the
fine spatial structure of our images (including any mesh artefacts
such as abrupt changes in density at projected cell boundaries) in
this way progressively lowers our model’s performance, but we
do not observe sharp jumps at mesh frequencies, suggesting that
the model is not using simulation artefacts to drive its predictions.
Additionally, we re-run a handful of simulations with different mesh
resolutions, obtaining accurate predictions on the derived images,
further supporting the robustness of our results. Possible future
developments of this work along these lines are related to using
machine learning interpretability techniques on our trained model to
reveal explanations as to why a given prediction is cast: intelligible
explanation is as important as accuracy in scientific applications.

While these checks suggest that the model is not picking up subtle
clues from simulation artefacts, there are still several issues that
we need to address before applying this model to actual data: first
of all, we need to first identify which observational data are more
suitable to be adopted for this analysis. For example, previous theory
and numerical studies have shown that in the case of optically thick
tracers the spectral index saturates to −3 (Lazarian & Pogosyan 2004;
Burkhart et al. 2013), so our CNN might never be able to predict either
the density or velocity spectral index. Moreover, the simulations we
considered are highly idealized, lacking important physical ingredi-
ents such as magnetic fields, relevant chemical reaction networks, and
self-gravity. For this proof-of-concept work, we justify this choice
based on the much higher computational resources needed to model
these ingredients. However, the entity of the bias affecting a deep
learning model trained on simplified simulations when applied to real
data is still in need of quantification: a first check could be to run a
limited number of more physically realistic simulations and evaluate
the accuracy of our model predictions on them. Irrespective of the
sophistication of their physics, another limitation of simulations is
their resolution, which even with AMR cannot fully cover the range
of scales spanned by turbulent gas in real systems. However, these
issues are shared with any modelling that relies on simulations and
are not directly related to our machine-learning approach, which

MNRAS 498, 5798–5803 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/4/5798/5904081 by Salsano Lib user on 02 M
ay 2024



DL to measure turbulence index 5803

incidentally yields accurate results even on simulations run with a
different resolution with respect to the one used in training.

Our CNN approach has different strengths and weaknesses, as
opposed to more time-tested approaches such as directly fitting the
density power spectrum (obtained e.g. by fast-Fourier transforming
an image). For example the latter method, while simpler and easier
to interpret, requires some discretion in determining the power-law
region of the spectrum to consider, e.g. by setting fiduciary cut-offs
in spatial frequencies above and below which the spectrum data is
disregarded. Additionally, our networks can be easily repurposed to
predicting different physical quantities of the turbulent gas, which
may not be immediately accessible to spectral methods.

AC K N OW L E D G E M E N T S

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 664931. AB and MM
acknowledge financial support by the European Research Council
for the ERC Consolidator grant DEMOBLACK, under contract no.
770017. MP wishes to thank Prof. David W. Hogg, Dr. Gregor Seidel,
and Prof. Stella Offner for feedback and discussion.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request
to the corresponding author.

REFERENCES

Abadi M. et al., 2015, TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems

Armstrong D. et al., 2015, MNRAS, 456, 2260
Askar A., Askar A., Pasquato M., Giersz M., 2019, MNRAS, 485, 5345
Ballesteros-Paredes J., Klessen R. S., Mac Low M. M., Vazquez-Semadeni

E., 2007, in Reipurth B., Jewitt D., Keil K., eds, Protostars and Planets
V. p. 63

Breen P. G., Foley C. N., Boekholt T., Portegies Zwart S., 2019,
preprint(arXiv:1910.07291)

Brunt C. M., Heyer M. H., 2002a, ApJ, 566, 276
Brunt C. M., Heyer M. H., 2002b, ApJ, 566, 289
Burkhart B., 2018, ApJ, 863, 118
Burkhart B., Falceta-Gonçalves D., Kowal G., Lazarian A., 2009, ApJ, 693,

250
Burkhart B., Lazarian A., Ossenkopf V., Stutzki J., 2013, ApJ, 771, 123
Chollet F., 2015, Project Title. https://github.com/fchollet/keras
Chepurnov A., Lazarian A., Stanimirović S., Heiles C., Peek J. E. G., 2010,

ApJ, 714, 1398
Davies G. et al., 2015, MNRAS, 456, 2183
Duchi J., Hazan E., Singer Y., 2011, J. Mach. Learn. Res., 12, 2121
Elmegreen B. G., Scalo J., 2004, ARA&A, 42, 211
Esquivel A., Lazarian A., 2005, ApJ, 631, 320
Evoli C., Ferrara A., 2011, MNRAS, 413, 2721
Federrath C., Klessen R. S., 2012, ApJ, 761, 156
Federrath C., Klessen R. S., Schmidt W., 2008, ApJ, 688, L79
Fukushima K., Miyake S., 1982, Competition and Cooperation in Neural

Nets. Springer, Berlin-Heidelberg, p. 267
Gill A. G., Henriksen R. N., 1990, ApJ, 365, L27
Girshick R., Donahue J., Darrell T., Malik J., 2014, Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, IEEE Computer
Society, Massachusetts Ave., NW Washington, DC United States. p. 580

Goodfellow I., Bengio Y., Courville A., 2016, Deep Learning. MIT Press,
Cambridge, MA

Grenier I. A., Black J. H., Strong A. W., 2015, ARA&A, 53, 199
Hennebelle P., Falgarone E., 2012, A&A Rev., 20, 55
Hezaveh Y. D., Perreault Levasseur L., Marshall P. J., 2017, Nature, 548, 555
Hopkins P. F., 2013, MNRAS, 430, 1653
Iapichino L., Schmidt W., Niemeyer J. C., Merklein J., 2011, MNRAS, 414,

2297
Iroshnikov P. S., 1963, Atron. Zh., 40, 742
Jóhannesson G. et al., 2016, ApJ, 824, 16
Kainulainen J., Beuther H., Banerjee R., Federrath C., Henning T., 2011,

A&A, 530, A64
Kingma D. P., Ba J., 2014a, preprint(arXiv:1412.6980)
Kingma D. P., Ba J., 2014b, preprint(arXiv:1412.6980)
Koch E. W., Rosolowsky E. W., Boyden R. D., Burkhart B., Ginsburg A.,

Loeppky J. L., Offner S. S. R., 2019, AJ, 158, 1
Kraichnan R. H., 1966, Phys. Fluids, 9, 1728
Krizhevsky A., Sutskever I., Hinton G. E., 2012, Advances in Neural

Information Processing Systems, San Diego, CA. p. 1097
Krumholz M. R., McKee C. F., 2005, ApJ, 630, 250
Lazarian A., Pogosyan D., 2000a, ApJ, 537, 720
Lazarian A., Pogosyan D., 2000b, ApJ, 537, 720
Lazarian A., Pogosyan D., 2004, ApJ, 616, 943
Lazarian A., Pogosyan D., 2006, ApJ, 652, 1348
Lazarian A., Pogosyan D., 2008, ApJ, 686, 350
Lazarian A., Yuen K. H., Ho K. W., Chen J., Lazarian V., Lu Z., Yang B., Hu

Y., 2018, ApJ, 865, 46
LeCun Y., Boser B., Denker J. S., Henderson D., Howard R. E., Hubbard W.,

Jackel L. D., 1989, Neural Comput., 1, 541
LeCun Y., Bottou L., Bengio Y., Haffner P., 1998, Proc. IEEE, 86, 2278
Mac Low M.-M., Klessen R. S., 2004, Rev. Mod. Phys., 76, 125
Miesch M. S., Scalo J. M., 1995, ApJ, 450, L27
Ossenkopf V., Klessen R. S., Heitsch F., 2001, A&A, 379, 1005
Ossenkopf V., Krips M., Stutzki J., 2008, A&A, 485, 917
Ostriker E. C., Stone J. M., Gammie C. F., 2001, ApJ, 546, 980
Padoan P., Juvela M., Kritsuk A., Norman M. L., 2006, ApJ, 653, L125
Pang X., Li Y., Tang S.-Y., Pasquato M., Kouwenhoven M. B. N., 2020,

Different Fates of Young Star Clusters After Gas Expulsion
Pasquato M., Chung C., 2016, A&A, 589, A95
Peek J. E. G., Burkhart B., 2019, preprint(arXiv:1905.00918)
Prechelt L., 1998, Neural Netw., 11, 761
Roman-Duval J., Federrath C., Brunt C., Heyer M., Jackson J., Klessen R.

S., 2011, ApJ, 740, 120
Russakovsky O. et al., 2015, Int. J. Comput. Vis., 115, 211
Scalo J. M., 1984, ApJ, 277, 556
Scalo J., Elmegreen B. G., 2004, ARA&A, 42, 275
Schneider N. et al., 2015, A&A, 578, A29
Semenov V. A., Kravtsov A. V., Gnedin N. Y., 2016, ApJ, 826, 200
Shakura N. I., Sunyaev R. A., 1973, A&A, 500, 33
Stanimirovic S., Staveley-Smith L., Dickey J. M., Sault R. J., Snowden S. L.,

1999, MNRAS, 302, 417
Stutzki J., Bensch F., Heithausen A., Ossenkopf V., Zielinsky M., 1998, A&A,

336, 697
Teyssier R., 2002, A&A, 385, 337
Tieleman T., Hinton G., 2012, COURSERA: Neural Networks for Machine

Learning, 4, 26
Vazquez-Semadeni E., 1994, ApJ, 423, 681
Vázquez-Semadeni E., Ballesteros-Paredes J., Rodrı́guez L. F., 1997, ApJ,

474, 292
Zeiler M. D., 2012, preprint(arXiv:1212.5701)

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 498, 5798–5803 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/4/5798/5904081 by Salsano Lib user on 02 M
ay 2024

http://dx.doi.org/10.1093/mnras/stv2836
http://dx.doi.org/10.1093/mnras/stz628
http://dx.doi.org/10.1086/338031
http://dx.doi.org/10.1086/338032
http://dx.doi.org/10.3847/1538-4357/aad002
http://dx.doi.org/10.1088/0004-637X/693/1/250
http://dx.doi.org/10.1088/0004-637X/771/2/123
https://github.com/charlespwd/project-title
http://dx.doi.org/10.1088/0004-637X/714/2/1398
http://dx.doi.org/10.1093/mnras/stv2593
http://dx.doi.org/10.1146/annurev.astro.41.011802.094859
http://dx.doi.org/10.1086/432458
http://dx.doi.org/10.1111/j.1365-2966.2011.18343.x
http://dx.doi.org/10.1088/0004-637X/761/2/156
http://dx.doi.org/10.1086/595280
http://dx.doi.org/10.1086/185880
http://dx.doi.org/10.1146/annurev-astro-082214-122457
http://dx.doi.org/10.1038/nature23463
http://dx.doi.org/10.1093/mnras/sts704
http://dx.doi.org/10.1111/j.1365-2966.2011.18550.x
http://dx.doi.org/10.3847/0004-637X/824/1/16
http://dx.doi.org/10.1051/0004-6361/201016383
http://dx.doi.org/10.3847/1538-3881/ab1cc0
http://dx.doi.org/10.1063/1.1761928
http://dx.doi.org/10.1086/431734
http://dx.doi.org/10.1086/309040
http://dx.doi.org/10.1086/309040
http://dx.doi.org/10.1086/422462
http://dx.doi.org/10.1086/508012
http://dx.doi.org/10.1086/591238
http://dx.doi.org/10.3847/1538-4357/aad7ff
http://dx.doi.org/10.1103/RevModPhys.76.125
http://dx.doi.org/10.1086/309661
http://dx.doi.org/10.1051/0004-6361:20011324
http://dx.doi.org/10.1051/0004-6361:20079106
http://dx.doi.org/10.1086/318290
http://dx.doi.org/10.1086/510620
http://dx.doi.org/10.1051/0004-6361/201425181
http://dx.doi.org/10.1088/0004-637X/740/2/120
http://dx.doi.org/10.1086/161726
http://dx.doi.org/10.1146/annurev.astro.42.120403.143327
http://dx.doi.org/10.1051/0004-6361/201424375
http://dx.doi.org/10.3847/0004-637X/826/2/200
http://dx.doi.org/10.1046/j.1365-8711.1999.02013.x
http://dx.doi.org/10.1051/0004-6361:20011817
http://dx.doi.org/10.1086/173847
http://dx.doi.org/10.1086/303432

