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Abstract: In the present study, we used a mouse model of Alzheimer’s disease (AD) (3×Tg-AD mice)
to longitudinally analyse the expression level of PDIA3, a protein disulfide isomerase and endo-
plasmic reticulum (ER) chaperone, in selected brain limbic areas strongly affected by AD-pathology
(amygdala, entorhinal cortex, dorsal and ventral hippocampus). Our results suggest that, while in
Non-Tg mice PDIA3 levels gradually reduce with aging in all brain regions analyzed, 3×Tg-AD mice
showed an age-dependent increase in PDIA3 levels in the amygdala, entorhinal cortex, and ventral
hippocampus. A significant reduction of PDIA3 was observed in 3×Tg-AD mice already at 6 months
of age, as compared to age-matched Non-Tg mice. A comparative immunohistochemistry analysis
performed on 3×Tg-AD mice at 6 (mild AD-like pathology) and 18 (severe AD-like pathology) months
of age showed a direct correlation between the cellular level of Aβ and PDIA3 proteins in all the brain
regions analysed, even if with different magnitudes. Additionally, an immunohistochemistry analysis
showed the presence of PDIA3 in all post-mitotic neurons and astrocytes. Overall, altered PDIA3
levels appear to be age- and/or pathology-dependent, corroborating the ER chaperone’s involvement
in AD pathology, and supporting the PDIA3 protein as a potential novel therapeutic target for the
treatment of AD.

Keywords: Alzheimer’s disease; disulfide isomerase isoform A3; limbic brain regions; chaperone;
3×Tg-AD mice; β-amyloid; ageing; longitudinal study; neuroinflammation

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that is clinically associated
with progressive cognitive impairment [1]. AD brain histology is characterized by the accu-
mulation of amyloid β-peptide (Aβ) plaques and neurofibrillary tangles (NFTs) composed
of hyperphosphorylated tau protein [1].

Currently available medications only offer limited and transient benefits to a small
proportion of AD patients; therefore, there is an urgent need for the development of
therapeutic strategies that target novel mechanisms.

The stress response of the endoplasmic reticulum (ER) is considered a crucial process
in the etiopathology of AD (for review, see [2]). The increase of pathogenic aberrant proteins
and the dysregulation of intracellular calcium homeostasis are key processes underlying
the induction of ER stress, which leads to cell death. Several in vitro studies have suggested
that Aβ oligomers or fibrils induce ER stress in primary cultures of neuronal cells, a variety
of different cell lines, and in brain slices [3–5]. Moreover, further investigations aimed to
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understand the molecular mechanisms that underlie the connection between extracellular
Aβ and intracellular ER. The most likely mediator between Aβ levels and ER stress is
calcium; one of the proposed hypotheses is that Aβ binds glutamatergic receptors that
in turn are able to induce ER stress-dependent cell death by altering cytosolic calcium
homeostasis [6].

In this scenario, a pivotal role is played by the mechanisms promoting the clear-
ance of neurotoxic and/or misfolded proteins, also representing an approach that may
limit the onset and slow the progression of AD. Among these mechanisms, chaperone-
mediated autophagy (CMA), which involves the translocation of non-membrane bound,
chaperone-captured substrates across the lysosomal membrane, is an interesting target for
potential therapies.

A variety of studies are exploring the involvement of the protein disulfide isomerase
isoform A3 (PDIA3) in the response to several types of stress in different neurodegenerative
diseases, including AD, Parkinson’s disease, and Prion Diseases [7–11].

PDIA3, also known as ERp57, GRP58, and 1,25D3-MARRS, is a member of the protein
disulfide isomerase family, composed of 505 amino acids, with a molecular weight of 57 kDa,
and a structure characterized by four thioredoxin-like domains: a, b, b’ and a’ [12–14].
PDIA3 is predominantly localized in the ER, where it is involved in the correct folding
of newly synthetized glycoproteins and in the assembly of the major histocompatibility
complex (MHC) class I molecules, maintenance of calcium homeostasis, endoplasmic-
reticulum-associated protein degradation (ERAD), and modulation of proliferation and
apoptosis through the unfolded protein response (UPR) [15–20]. PDIA3 is also present
in the cytosol, where it can interact, among other proteins, with the mammalian target
of rapamycin (mTOR), which results up-regulated in selected neurons of AD brains that
are predicted to develop tau pathology [21]; finally, PDIA3 is also present in the nucleus,
where it can directly bind to DNA regions rich in A/T, regulating gene expression [22].
Furthermore, many studies have showed that PDIA3 can be found on the cell surface,
where it binds 1α, 25-dihydroxycholecalciferol, followed by the activation of a fast response
pathway [23,24].

The available evidence indicates multiple distinct functional roles for PDIA3 under
physiological and disease states. In particular, PDIA3 seems to play a role in cell protection
against oxidative stress through its redox and chaperone activities. During cellular stress
PDIA3, as well as other PDIs, can prevent the neurotoxicity associated with ER stress
and protein misfolding, and the development of diseases related to unfolded/misfolded
proteins’ accumulation, including Aβ [11,25–27]. On the other hand, it has also been
reported that PDIA3 chemical modification, induced by NO or reactive oxygen species,
can negatively influence its putative protective effect. In fact, it has been reported that
S-nitrosylation of PDIs results in protein inhibition and leads to ER stress, which can induce
apoptosis [28–30], while the oxidation of PDIA3 was reported to be associated with AD [31].

Although the role for PDIs in contributing to AD pathology has been supported by an
increased expression of PDIs in AD brains and their co-localization with neurofibrillary
tangles in AD patients [32], pathophysiologically relevant amounts of S-nitrosylated PDIs
were also noted [33–35].

In line with the latter observation, it has been reported that diosgenin, a plant-derived
steroidal saponin structurally similar to calcitriol, an endogenous PDIA3 ligand, acts as
an exogenous activator of PDIA3, improving memory performance in the object recogni-
tion test by reducing amyloid plaques and neurofibrillary tangles in the cerebral cortex
and hippocampus of 5XFAD mice, an engineered mouse model of AD harboring five
familial AD mutations [36]. Likewise, the diosgenin derivative caprospinol (diosgenin 3-
caproate), reduces amyloid deposits and improves memory dysfunction in Aβ1-42-infused
rats, another preclinical AD model [37]. Furthermore, it has been demonstrated that PDIA3
expression levels significantly increased after Aβ1-42 treatment in HMO6 cells, an immor-
talized human microglial cell line, and in microglial cells from 5XFAD mouse brains [38].
Recently, PDIA3 has been reported to protect neuronal cells from Aβ-induced toxicity [39].
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These observations strongly suggest an important link between PDIA3 signaling and AD;
however, despite these promising observations, data are still sparse, and the relationship
between alterations of PDIA3 expression and the development of AD neuropathology
remains unclear.

Therefore, the aim of the present study was to evaluate whether brain PDIA3 expres-
sion is altered in a murine triple transgenic model of AD (3×Tg-AD) in comparison with
their wild-type littermates (Non-Tg). Consequently, by studying the temporal expression
of PDIA3 in Non-Tg mice, our study allowed us also to analyze the impact of aging on
PDIA3 expression. 3×Tg-AD mice, which harbor three mutant human genes [40], mimic
the critical aspects of AD-neuropathology observed in human AD patients [40–45]. To
investigate whether the temporal and regional patterns of such possible alterations may
overlap with those of Aβ and tau pathology in this AD model, brain PDIA3 expression was
analyzed at two different stages (mild and severe) of AD-like pathology [40]. In particular,
the brains of 6- (mild pathology) and 18- (severe pathology) month-old mice were analyzed
by dot blot analysis and double-immunofluorescence, followed by the semi-quantitative
analysis of the respective signals. We focused our investigations on the amygdala, hip-
pocampus (dorsal and ventral), and entorhinal cortex, all brain regions strongly affected by
the AD-pathology, and whose alterations have major functional impacts on AD symptoms.
A triple-immunostaining was also performed to investigate the sub-cellular localization
of PDIA3.

Taken together, the expression and the localization pattern of PDIA3 may help us
to highlight the role of PDIA3 in both aging and Alzheimer’s condition, thus supporting
the idea that it might represent a novel molecular target for the development of a more
efficacious pharmacological approach to AD pathology.

2. Results
2.1. Alteration of PDIA3 Protein Expression in the Limbic Brain Regions

To evaluate the impact of aging and genotype on PDIA3 expression, different brain
regions of the limbic system (amygdala, entorhinal cortex, dorsal and ventral hippocampus)
were evaluated in both adult and aged Non-Tg and 3×Tg-AD mice by dot blot assay. An
overall analysis by two-way ANOVA, with genotype (3×Tg-AD vs. Non-Tg) and age
(6 months of age vs. 18 months of age) as between-subject factors, indicated that both
factors may contribute to the alteration of PDIA3 protein expression in the limbic brain
regions (Table 1).

Table 1. Results from the statistical analysis of data obtained from the dot blot analysis.

Brain Region Genotype (G) Age (A) Interaction (G × A)

Amygdala F(1,35) = 0.192, n.s. F(1,35) = 0.622, n.s. F(1,35) = 13.657, p < 0.001
Entorhinal cortex F(1,35) = 12.781, p < 0.01 F(1,35) = 0.433, n.s. F(1,35) = 7.787, p < 0.01

Dorsal hippocampus F(1,35) = 0.826, n.s. F(1,35) = 14.961, p < 0.001 F(1,35) = 1.013, n.s.
Ventral hippocampus F(1,35) = 3.789, n.s. F(1,35) = 1.619, n.s. F(1,35) = 10.287, p < 0.01

Two-way analysis of variance (ANOVA) with genotype (3×Tg-AD vs. Non-Tg) and age (6 vs. 18 months of age)
as between-subject factors (n = 3 per group). F(1,35) = F value with (1,35) degrees of freedom; n.s. = not significant.

To better define the aging and genotype contribution to PDIA3 expression, mice groups
with the same genotype and differing by age, or mice groups differing both in genotype
and age, were compared.

As first, the impact of aging on PDIA3 expression has been evaluated in adult and
aged Non-Tg mice. We observed a significant decrease of PDIA3 levels in the amygdala
(−38%, p < 0.05, Figure 1A), dorsal hippocampus (−20%, p < 0.001, Figure 1C) and ventral
hippocampus (−40%, p < 0.01, Figure 1D) of 18-month-old Non-Tg mice, as compared to
6-month-old Non-Tg mice; a trend toward a decrease was also observed in the entorhinal
cortex (−14%, n.s., Figure 1B).
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Figure 1. PDIA3 protein expression in Non-Tg and 3×Tg-AD mice. PDIA3 protein levels were
detected by dot blot assay in different brain regions of the limbic system collected from 6- and
18-month-old Non-Tg and 3×Tg-AD mice. The limbic regions considered include: (A) amygdala;
(B) entorhinal cortex; (C) dorsal hippocampus; (D) ventral hippocampus. Protein levels of all mice
were normalized to those measured in 6-month-old Non-Tg mice, which were used as a control group.
Data are expressed as means ± SEM. All data were analyzed by two-way ANOVA; Tukey’s test was
used as a post hoc test to perform multiple comparisons (* p < 0.05; ** p < 0.01; *** p < 0.001).

To investigate whether the progression of AD-like pathology may be paralleled by
an altered expression of PDIA3 over time, we evaluated its levels at the mild and severe
stages of the disease. Interestingly, 18-month-old 3×Tg-AD mice showed a significant
increase of PDIA3 levels in the amygdala (+130%, p < 0.01, Figure 1A) and entorhinal
cortex (+38%, p < 0.05, Figure 1B), while only a trend toward an increase was observed in
the ventral hippocampus (+31%, n.s., Figure 1D), as compared to 6-month-old 3×Tg-AD
mice; surprisingly, a significant decrease was observed in the dorsal hippocampus (−34%,
p < 0.001, Figure 1C).
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Finally, to evaluate the effect of mild AD-pathology on the PDIA3 levels, 6-month-
old 3×Tg-AD mice were compared to age-matched Non-Tg mice. A statistical analysis
revealed that PDIA3 expression was significantly reduced in the amygdala (−55%, p < 0.01,
Figure 1A), entorhinal cortex (−41%, p < 0.001, Figure 1B), and ventral hippocampus (−46%,
p < 0.01, Figure 1D) of 6-month-old 3×Tg-AD mice; surprisingly no significant effect was
observed in the dorsal hippocampus (Figure 1C).

2.2. Aβ/APP-PDIA3 Double-Fluorescent Immunostaining

Since PDIA3 is deregulated in many neurodegenerative diseases, we conducted a
longitudinal study to evaluate whether the altered PDIA3 expression observed over time in
3×Tg-AD mice by a dot blot analysis, was related to a different cellular distribution in the
limbic areas analyzed. Additionally, a comparison with the expression and distribution of
Aβ/APP was carried out. Therefore, we performed a double-fluorescent immunostaining
on the selected limbic areas of both 6- and 18-month-old 3×Tg-AD mice, referred to as the
mild and severe pathology groups, respectively.

Representative microphotographs of Aβ/APP-PDIA3 double-fluorescent immunos-
taining (green and red stain, respectively) and a scatterplot analysis of Aβ/APP vs. PDIA3
protein levels in the amygdala, entorhinal cortex, and dorsal and ventral hippocampus
brain regions are shown in Figures 2–5, respectively. In Table 2 the results from the Pear-
son’s correlation analysis of the data obtained from double immunofluorescent staining
are summarized.

As previously reported [43,44,46], we observed in 3×Tg-AD mice an age-dependent
increase of the Aβ levels in all brain areas investigated in this study. Interestingly, a
scatterplot analysis indicated a direct correlation between PDIA3 expression and the build-
up of Aβ pathology, but with different magnitudes among the different considered brain
regions. A Pearson correlation test revealed a strong positive correlation in the basolateral
amygdala (r = 0.8132, p < 0.001; Figure 2C) and the dorsal CA1 region of the hippocampus
(r = 0.8457, p < 0.001; Figure 4C), whilst a moderate but still positive correlation was
observed in the entorhinal cortex (r = 0.6606, p < 0.001; Figure 3C) and in the ventral CA1
region of the hippocampus (r = 0.3378, p < 0.01; Figure 5C).

2.3. PDIA3-NeuN-GFAP Triple-Fluorescent Immunostaining

Previous studies have reported that PDIA3 transcript is abundantly expressed in all
cerebral cell types [47], therefore we profiled the pattern of PDIA3 expression in both
NeuN-positive differentiated neurons and GFAP-positive astrocytes of 6- and 18-month-old
3×Tg-AD mice, referred to as the mild and severe AD-pathology groups, respectively.
In particular, the qualitative analysis performed under the microscope allow us to dis-
tinguish the localization of our markers (PDIA3-positive cells: red; NeuN-positive differ-
entiated neurons: green; GFAP-positive astrocytes: blue) in different limbic areas from
3×Tg-AD mice. Observing the subcellular expression patterns of PDIA3, it seems that
its nuclear localization was increased in aged 3×Tg-AD mice, thus suggesting a possible
redistribution of PDIA chaperones during the progression of the neuropathology ( 6A–9A).
Moreover, we observed that PDIA3 (red) co-localized with NeuN-positive differentiated
neurons (green) in all brain regions of 3×Tg-AD mice at both time points considered
(Figures 6A, 7A, 8A and 9A). Likewise, PDIA3 (red) co-localized with GFAP-positive as-
trocytes (blue), whose expression increased in an age-dependent fashion in the 3×Tg-AD
mice (Figures 6A,B, 7A,B, 8A,B and 9A,B; yellow arrows).



Int. J. Mol. Sci. 2023, 24, 3005 6 of 23Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 25 
 

 

 

Figure 2. Aβ/APP-PDIA3 protein levels observed in the basolateral amygdala of 3×Tg-AD mice: (A) 

The brain diagram illustrates the site where the representative microphotographs of the basolateral 

amygdala were taken; (B) Representative microphotographs of Aβ/APP-PDIA3 double-fluorescent 

immunostaining (green and red, respectively) performed on brain slices of basolateral amygdala 

collected from 6- and 18-month-old 3×Tg-AD mice. Hoechst (blue) was used as fluorescent counter-

stain. Original magnification: 20×; scale bar was set at 100 µm; (C) Scatterplot of Aβ/APP vs. PDIA3 

protein levels in the basolateral amygdala of 6- and 18-month-old 3×Tg-AD mice. Aβ/APP and 

PDIA3 levels refers to the results obtained by the semiquantitative analyses of the fluorescence sig-

nals as optical densities within the same cell and under the same exposure conditions. Open circles: 

6-month-old 3×Tg-AD mice; closed circles: 18-month-old 3×Tg-AD mice. Data are expressed as 

mean optical densities ± SEM. Statistical significance threshold was set at p < 0.05. 

Figure 2. Aβ/APP-PDIA3 protein levels observed in the basolateral amygdala of 3×Tg-AD mice:
(A) The brain diagram illustrates the site where the representative microphotographs of the basolateral
amygdala were taken; (B) Representative microphotographs of Aβ/APP-PDIA3 double-fluorescent
immunostaining (green and red, respectively) performed on brain slices of basolateral amygdala
collected from 6- and 18-month-old 3×Tg-AD mice. Hoechst (blue) was used as fluorescent coun-
terstain. Original magnification: 20×; scale bar was set at 100 µm; (C) Scatterplot of Aβ/APP vs.
PDIA3 protein levels in the basolateral amygdala of 6- and 18-month-old 3×Tg-AD mice. Aβ/APP
and PDIA3 levels refers to the results obtained by the semiquantitative analyses of the fluorescence
signals as optical densities within the same cell and under the same exposure conditions. Open
circles: 6-month-old 3×Tg-AD mice; closed circles: 18-month-old 3×Tg-AD mice. Data are expressed
as mean optical densities ± SEM. Statistical significance threshold was set at p < 0.05.



Int. J. Mol. Sci. 2023, 24, 3005 7 of 23
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 25 
 

 

 

Figure 3. Aβ/APP-PDIA3 protein levels observed in the entorhinal cortex of 3×Tg-AD mice: (A) The 

brain diagram illustrates the site where the representative microphotographs of the entorhinal cor-

tex were taken; (B) Representative microphotographs of Aβ/APP-PDIA3 double-fluorescent im-

munostaining (green and red, respectively) performed on brain slices of entorhinal cortex collected 

from 6- and 18-month-old 3×Tg-AD mice. Hoechst (blue) was used as fluorescent counterstain. Orig-

inal magnification: 20×; scale bar was set at 100 µm; (C) Scatterplot of Aβ/APP vs. PDIA3 protein 

levels in the entorhinal cortex of 6- and 18-month-old 3×Tg-AD mice. Aβ/APP and PDIA3 levels 

refers to the results obtained by the semiquantitative analyses of the fluorescence signals as optical 

densities within the same cell and under the same exposure conditions. Open circles: 6-month-old 

3×Tg-AD mice; closed circles: 18-month-old 3×Tg-AD mice. Data are expressed as mean optical den-

sities ± SEM. Statistical significance threshold was set at p < 0.05. 

Figure 3. Aβ/APP-PDIA3 protein levels observed in the entorhinal cortex of 3×Tg-AD mice: (A) The
brain diagram illustrates the site where the representative microphotographs of the entorhinal
cortex were taken; (B) Representative microphotographs of Aβ/APP-PDIA3 double-fluorescent
immunostaining (green and red, respectively) performed on brain slices of entorhinal cortex collected
from 6- and 18-month-old 3×Tg-AD mice. Hoechst (blue) was used as fluorescent counterstain.
Original magnification: 20×; scale bar was set at 100 µm; (C) Scatterplot of Aβ/APP vs. PDIA3
protein levels in the entorhinal cortex of 6- and 18-month-old 3×Tg-AD mice. Aβ/APP and PDIA3
levels refers to the results obtained by the semiquantitative analyses of the fluorescence signals
as optical densities within the same cell and under the same exposure conditions. Open circles:
6-month-old 3×Tg-AD mice; closed circles: 18-month-old 3×Tg-AD mice. Data are expressed as
mean optical densities ± SEM. Statistical significance threshold was set at p < 0.05.
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Figure 4. Aβ/APP-PDIA3 protein levels revealed in the dorsal CA1 region of hippocampus of
3×Tg-AD mice: (A) The brain diagram illustrates the site where the representative microphotographs
of the dorsal CA1 region of hippocampus were taken; (B) Representative microphotographs of
Aβ/APP-PDIA3 double-fluorescent immunostaining (green and red, respectively) performed on
brain slices of dorsal CA1 region of hippocampus collected from 6- and 18-month-old 3×Tg-AD
mice. Hoechst (blue) was used as fluorescent counterstain. Original magnification: 20×; scale bar
was set at 100 µm; (C) Scatterplot of Aβ/APP vs. PDIA3 protein levels in the dorsal CA1 region of
hippocampus of 6- and 18-month-old 3×Tg-AD mice. Aβ/APP and PDIA3 levels refers to the results
obtained by the semiquantitative analyses of the fluorescence signals as optical densities within the
same cell and under the same exposure conditions. Open circles: 6-month-old 3×Tg-AD mice; closed
circles: 18-month-old 3×Tg-AD mice. Data are expressed as mean optical densities ± SEM. Statistical
significance threshold was set at p < 0.05.
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Figure 5. Aβ/APP-PDIA3 protein levels observed in the ventral CA1 region of hippocampus of
3×Tg-AD mice: (A) The brain diagram illustrates the site where the representative microphotographs
of the ventral CA1 region of hippocampus were taken; (B) Representative microphotographs of
Aβ/APP-PDIA3 double-fluorescent immunostaining (green and red, respectively) performed on
brain slices of ventral CA1 region of hippocampus collected from 6- and 18-month-old 3×Tg-AD
mice. Hoechst (blue) was used as fluorescent counterstain. Original magnification: 20×; scale bar
was set at 100 µm; (C) Scatterplot of Aβ/APP vs. PDIA3 protein levels in the ventral CA1 region of
hippocampus of 6- and 18-month-old 3×Tg-AD mice. Aβ/APP and PDIA3 levels refers to the results
obtained by the semiquantitative analyses of the fluorescence signals as optical densities within the
same cell and under the same exposure conditions. Open circles: 6-month-old 3×Tg-AD mice; closed
circles: 18-month-old 3×Tg-AD mice. Data are expressed as mean optical densities ± SEM. Statistical
significance threshold was set at p < 0.05.
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Table 2. Results from the Pearson’s correlation analysis of data obtained from the double immunoflu-
orescence analysis.

Amygdala Entorhinal Cortex Dorsal Hippocampus Ventral Hippocampus

Pearson correlation
coefficient (r) 0.8132 0.6606 0.8457 0.3378

p value <0.001 <0.001 <0.001 <0.01

Pearson’s correlation analysis (PDIA3 vs. Aβ) in 3×Tg-AD mice of 6- and 18-month-old (n = 3 per group). (r):
Pearson correlation coefficient.
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Figure 6. PDIA3-NeuN-GFAP protein levels observed in the basolateral amygdala of 3×Tg-AD mice:
(A) Representative microphotographs of PDIA3-NeuN-GFAP triple-fluorescent immunostaining (red,
green, and blue, respectively) performed on brain slices of the basolateral amygdala collected from 6-
and 18-month-old 3×Tg-AD mice. The white arrows indicate the PDIA3 single-positive cells while
the yellow arrows indicate the PDIA3-GFAP co-localization. Original magnification: 20×; scale bar
was set at 100 µm; (B) Representative microphotographs of PDIA3-GFAP co-localization in astrocytes
from basolateral amygdala of 18-month-old 3×Tg-AD mice.
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Figure 7. PDIA3-NeuN-GFAP protein levels observed in the entorhinal cortex of 3×Tg-AD mice: (A) 

Representative microphotographs of PDIA3-NeuN-GFAP triple-fluorescent immunostaining (red, 

green, and blue, respectively) performed on brain slices of entorhinal cortex collected from 6- and 

18-month-old 3×Tg-AD mice. The white arrows indicate the PDIA3 single-positive cells while the 
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Figure 7. PDIA3-NeuN-GFAP protein levels observed in the entorhinal cortex of 3×Tg-AD mice:
(A) Representative microphotographs of PDIA3-NeuN-GFAP triple-fluorescent immunostaining (red,
green, and blue, respectively) performed on brain slices of entorhinal cortex collected from 6- and
18-month-old 3×Tg-AD mice. The white arrows indicate the PDIA3 single-positive cells while the
yellow arrows indicate the PDIA3-GFAP co-localization. Original magnification: 20×; scale bar was
set at 100 µm; (B) Representative microphotographs of PDIA3-GFAP co-localization in astrocytes
from entorhinal cortex of 18-month-old 3×Tg-AD mice.
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Figure 8. PDIA3-NeuN-GFAP protein levels observed in the dorsal CA1 region of the hippocampus 
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of hippocampus collected from 6- and 18-month-old 3×Tg-AD mice. The white arrows indicate the 

PDIA3 single-positive cells while the yellow arrows indicate the PDIA3-GFAP co-localization. Orig-

inal magnification: 20×; scale bar was set at 100 µm; (B) Representative microphotographs of PDIA3-

GFAP co-localization in astrocytes from dorsal CA1 region of hippocampus of 18-month-old 3×Tg-

AD mice. 

Figure 8. PDIA3-NeuN-GFAP protein levels observed in the dorsal CA1 region of the hippocampus
of 3×Tg-AD mice: (A) Representative microphotographs of PDIA3-NeuN-GFAP triple-fluorescent
immunostaining (red, green, and blue, respectively) performed on brain slices of dorsal CA1 region
of hippocampus collected from 6- and 18-month-old 3×Tg-AD mice. The white arrows indicate
the PDIA3 single-positive cells while the yellow arrows indicate the PDIA3-GFAP co-localization.
Original magnification: 20×; scale bar was set at 100 µm; (B) Representative microphotographs of
PDIA3-GFAP co-localization in astrocytes from dorsal CA1 region of hippocampus of 18-month-old
3×Tg-AD mice.
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Figure 9. PDIA3-NeuN-GFAP protein levels observed in the ventral CA1 region of the hippocampus
of 3×Tg-AD mice: (A) Representative microphotographs of PDIA3-NeuN-GFAP triple-fluorescent
immunostaining (red, green, and blue, respectively) performed on brain slices of ventral CA1 region
of hippocampus collected from 6- and 18-month-old 3×Tg-AD mice. The white arrows indicate
the PDIA3 single-positive cells while the yellow arrows indicate the PDIA3-GFAP co-localization.
Original magnification: 20×; scale bar was set at 100 µm; (B) Representative microphotographs of
PDIA3-GFAP co-localization in astrocytes from ventral CA1 region of hippocampus of 18-month-old
3×Tg-AD mice.

Interestingly, we also observed PDIA3-positive staining in a number of GFAP- and NeuN-
negative cells from all the limbic areas considered in this study (Figures 6A, 7A, 8A and 9A;
white arrows). Based on the morphologies and dimensions of PDIA3-positive cells, we
hypothesized that these cells may refer to microglial cells and/or immature/suffering
neurons. To this regard, it has been previously demonstrated that NeuN staining can be
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altered or lost in immature and/or suffering neurons [48]. Future studies are needed to
confirm such a hypothesis.

3. Discussion

The results of the present study demonstrate that PDIA3 expression is modulated
in an age- and pathology-dependent fashion in the limbic brain regions of Non-Tg and
3×Tg-AD mice; moreover, we analyzed for the first time the expression pattern of PDIA3
in a number of brain cell populations derived from 6 month- (the stage of mild pathology)
and 18 month-old (the stage of severe pathology) 3×Tg-AD mice.

Given the known potential roles of PDIA3 in aging, as well as in neurodegenerative
diseases, we longitudinally analyzed the changes of PDIA3 protein levels in some limbic
brain regions of Non-Tg and 3×Tg-AD mice, which develop both Aβ and tau pathologies in
an age-dependent manner. To our knowledge, only a few studies have evaluated the PDIA3
expression in AD [11,31,36,38,49,50], but none of them have performed a longitudinal study
in an animal model of AD.

The first interesting result obtained from the present study is the reduction of the
PDIA3 protein level in the amygdala, entorhinal cortex, and hippocampus of Non-Tg mice
at 18 months of age as compared to 6-month-old mice. Moreover, except for in the dorsal
hippocampus, 6-month-old 3×Tg-AD mice showed lower levels of PDIA3, as compared to
age-matched wild-type littermates. Altogether these data suggest that per se PDIA3 levels
gradually reduce with age, and such a reduction might be accelerated by the occurrence of
an AD-like pathology. Indeed, an age-related failure of the complex systems responsible
for handling protein misfolding, results in the accumulation of misfolded and aggregated
proteins, and consequent conformational diseases [6]. In this context, our data are in line
with previous studies showing the effects of aging on chaperones’ concentrations in the ER
of rat hepatocytes [51]. In particular, the authors clearly indicate that, even in the liver (an
organ whose functional capacity is well-conserved throughout life) there are significant
and specific declines associated with aging, which are due to a specific loss of the capacity
of the ER chaperones to fold nascent proteins into their functional configurations [51]. This
assumption is consistent with the concept that a major factor in the physiological deficits
seen with aging could be due to a decreased capacity of the ER chaperones to process newly
synthesized membrane and secretory proteins.

The ER stress response is regarded as an important process also in the etiology of
AD [2]. The accumulation of misfolded proteins is considered a fundamental mechanism
that underlies the induction of ER stress, leading to neuronal cell death [6]. As described
by several authors, Aβ peptides are also produced in physiological conditions during the
post-translational processing of the amyloid precursor protein (APP) [52–55], but their
levels are kept low by the protein quality control mechanisms [56–59]. During aging, but
mainly in neurodegenerative disorders such as AD, these proteostasis mechanisms become
less efficient [51,60]. Therefore, free Aβ monomers are more prone to self-aggregate into
amyloid fibrils and thus to form insoluble deposits, which are the major constituent of the
amyloid plaques. The ER chaperones are a group of proteins acting as carriers to keep
the Aβ in solution, thus avoiding its deposition [2,5,28,61,62]. To this regard, Erickson
and colleagues observed, in the cerebrospinal fluid of healthy individuals, that most of
the Aβ peptides produced during the APP processing were sequestered by PDIA3 and
calreticulin chaperones [11]. These findings suggest that PDIA3, by acting as a molecular
carrier for Aβ monomers, may prevent their self-aggregation and, in turn, the formation
of insoluble aggregates. Therefore, the authors suggest that Aβ deposition during AD
may be due to a faulty post-translational processing of APP by ER chaperones, which
fail to form complexes with Aβ monomers [11]. In support of this hypothesis, it has
been demonstrated that pharmacological stimulation of cortical and hippocampal axonal
regrowth in transgenic mice co-expressing multiple AD-related mutations, is dependent
upon the activation of PDIA3, which results in an overall reduction of AD neuropathology
and increased performance in object recognition tasks in these murine models [36]. In this
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regard, we could hypothesize that the significant reduction of PDIA3 expression observed
in the limbic brain regions of 3×Tg-AD mice at 6 months of age, as compared to age-
matched Non-Tg mice, may underlie and/or contribute to the formation of intracellular
Aβ oligomers.

A possible explanation for the observed reduced level of PDIA3 in the limbic brain
regions of 3×Tg-AD mice at 6 months of age, as compared to age-matched Non-Tg mice, is
the role of PDIA3 as a molecular carrier for Aβ monomers, preventing the formation of
insoluble aggregates. Aβ peptides produced during the APP processing, and sequestered by
PDIA3 and calreticulin chaperones, can be eliminated through the cerebrospinal fluid [11],
thus reducing PDIA3 levels. Furthermore, it has been shown that short-term Aβ25-35
treatment of human neuroblastoma cells induces PDIA3 decreases in intracellular protein
levels, different intracellular localization, and PDIA3 secretion in the cultured medium [39].

Therefore, as previously reported [36], our data further support the view that ex-
ogenous activation of PDIA3 may be a promising therapeutic option in the early phase
of AD.

As 3×Tg-AD mice develop both Aβ and tau pathologies in an age-dependent manner,
we investigated the expression of PDIA3 over time, comparing the levels of PDIA3 at
6 months of age versus 18 months of age. The latter is characterized by an extensive Aβ

plaque burden and tau pathology, along with signs of activated microglia and inflamma-
tion [40,41,63]. Interestingly, 18-month-old 3×Tg-AD mice showed a significant increase of
PDIA3 levels in the amygdala and entorhinal cortex compared to 6-month-old 3×Tg-AD
mice, whilst a trend toward an increase was observed in the ventral hippocampus. These
results demonstrated that the significant increase of PDIA3 expression is paralleled by
the progression of AD-like pathology in an age-dependent manner. Further confirmation
of these findings was obtained by the scatterplot of Aβ protein levels versus PDIA3 pro-
tein levels showing a direct correlation in all the brain regions considered in our study
(Figures 2C, 3C, 4C, 5C and Table 2). The severe AD-like pathology in 18-month-old 3×Tg-
AD mice is characterized by glutamatergic alterations and mitochondrial impairment, as
well as by marked activation of microglia accompanied by elevated mTOR protein levels
and activation [44,63,64].

The mTOR signaling pathway has received much attention for its role in neurodegener-
ative disorders. In particular, mTOR was reported to be up-regulated in selected neurons of
AD brains that are predicted to develop tau pathology, suggesting that chronic high levels
of mTOR signaling may exert detrimental effects in AD brains [41,65–68]. In accordance
with these findings, several studies focused on AD research have demonstrated that Aβ can
enhance mTOR signaling, while rapamycin and its analogs, which act as mTOR complex
1 (mTORC1) inhibitors, significantly reduce intracellular Aβ levels [41,69–71]. Qian and
colleagues have demonstrated that mTORC1 serves as a sensor of protein misfolding,
helping to maintain the right balance of protein synthesis and degradation [72].

PDIA3, a redox-sensitive molecular chaperone, is involved in the redox-sensing mecha-
nism by which mTORC1 responds to changes in the cellular redox conditions. In particular,
it has been demonstrated that PDIA3 facilitates the assembly of mTORC1 and its ability
to sense oxidizing agents [73]. Therefore, the neuronal stress conditions, triggered by the
severe pathology in 18-month-old 3×Tg-AD mice, could increase the PDIA3 expression lev-
els as well as the PDIA3-dependent redox-sensor activity on mTORC1, further contributing
to its dysregulation, and thus worsening the AD-like neuropathology.

The mechanism by which PDIA3 regulates the assembly of mTORC1 could be depen-
dent on its ability to catalyze the formation and/or isomerization of disulfide bonds [74–76].
In this regard, Sarvassov and Sabatini demonstrated that thiol oxidants decrease the interac-
tion between Raptor and mTOR, whereas a reducing reagent stabilizes this complex [77]. In
addition, it has been demonstrated that an elevated oxidative stress modifies mTORC1 and
prevents its binding to the FKBP12-rapamycin complex, ultimately leading to rapamycin
resistance [78]. Collectively, these studies suggest the regulation of the mTOR pathway by a
redox-sensitive mechanism that can be based on the interaction between mTOR and PDIA3.
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In line with this hypothesis, Ramírez-Rangel and colleagues demonstrated, by in vitro
analyses performed on HEK293T and COS-7 cells, that PDIA3 overexpression was able to
interfere with the signaling pathway of mTOR [73]. In particular, they observed that PDIA3
overexpression was able to increase the levels of mTORC1 and its activity. Moreover, they
showed that in the presence of oxidizing agents, PDIA3 interacted with mTORC1 by acting
as a critical component of a redox-sensing mechanism, which was able to modulate the
mTOR signaling pathway [73].

An association between several ER stress markers, as well as unfolded protein response
(UPR) proteins and the accumulation of NFTs, has been observed in post-mortem brain
tissues from tauopathy patients, with a positive relationship between the severity of the
protein aggregation and the disease status [79]. Recently, it has been reported that a
small molecule, SB1617, can suppress abnormal tau protein aggregation through PDIA3
inhibition and the enhancement of the protein kinase-like endoplasmic reticulum kinase
(PERK) signaling pathway [80]. NFTs accumulation occurs during the late stage of AD
pathology. Thus, the inhibition of PDIA3 may be an effective strategy for regulating
tauopathies and modulating AD progression.

Finally, in our experimental paradigm, we profiled the pattern of PDIA3 expression in
both astrocytes (GFAP-positive cells) and differentiated neurons (NeuN-positive cells) by
performing a triple-fluorescent immunostaining in the same limbic areas. Interestingly, our
results showed, for the first time, the immunostaining profile of PDIA3 in all post-mitotic
neurons, in most of the GFAP-positive cells, but also in a number of GFAP- and NeuN-
negative cells found in the considered limbic areas (Figures 6A,B, 7A,B, 8A,B and 9A,B).
In this regard, we hypothesized that those cells could be microglial cells and/or imma-
ture/suffering neurons [48]. These unrecognized cells appeared in both 6- and 18-month-
old 3×Tg-AD mice (Figures 6A, 7A, 8A and 9A, white arrows), which are respectively
characterized by a mild and severe neuropathology. Therefore, these findings could be
explained by the presence of neuroinflammatory processes associated with AD, or by the
loss of NeuN staining, which can result in alterations to, or the loss of, immature and/or
suffering neurons, as demonstrated by Lavezzi and colleagues [48]. Moreover, in support
of the first hypothesis, it was also observed that Aβ secretion is correlated to the activation
of microglial cells, which are generally recruited during chronic inflammatory processes,
typical of AD [38,81]. In addition, it has also been observed that PDIA3 was over-expressed
in microglial cells stimulated by Aβ, probably to help the folding of newly synthesized
glycoproteins in the ER [38].

Because the expression profile of PDIA3 in the brains of 3×Tg-AD mice is still poorly
understood, further investigations are required to prove our hypothesis about the involve-
ment of PDIA3 in AD and its different modulation during the progression of the disease.

4. Materials and Methods
4.1. Animals

6- and 18-month-old male Non-Tg and 3×Tg-AD mice were used in this study. The
3×Tg-AD mice, harboring PS1M146V, APPswe, and taup301L transgenes, were genetically
engineered by LaFerla and colleagues at the Department of Neurobiology and Behavior,
University of California, Irvine. Colonies of 3×Tg-AD and Non-Tg mice were established
at the vivarium of the Puglia and Basilicata Experimental Zooprophylactic Institute (Foggia,
Italy). The 3×Tg-AD mice background strain is C57BL6/129SvJ hybrid, and genotypes
were confirmed from tail biopsy. The housing conditions were controlled (temperature
22 ◦C, light from 07:00–19:00, humidity 50–60%), and fresh food and water were freely
available. The study was performed in accordance with the guidelines released by the
Italian Ministry of Health (D.L. 26/2014) and the European Directive 2010/63/EU. All
efforts were made to minimize the number of animals used in the study and their suffering.

For the aim of the study, one cohort each of 6- and 18-month-old animals were sac-
rificed by cervical dislocation, the brains were rapidly excided and freshly dissected to
isolate the entorhinal cortex, dorsal and ventral hippocampus, and amygdala following a
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previously published protocol [82]. Soon after collection, all tissue samples were frozen on
dry ice and stored at −80 ◦C until dot blotting analysis was performed.

A second cohort of 6- and 18-month-old mice were intracardially perfused with saline,
followed by fixative solution (4% paraformaldehyde in 0.1 M PBS, pH 7.4) at a flow rate
of 36 mL min−1. Then their brains were collected, post-fixed in 4% paraformaldehyde
solution for 48 h and immersed in a sucrose PBS solution (25% sucrose in 0.1 M PBS, pH
7.4) overnight at 4 ◦C. The brains were then snap frozen in 2-methylbutane (−50 ◦C) (59060;
Sigma-Aldrich SRL, Milan, Italy) and stored at −80 ◦C until an immunohistochemistry
study was performed.

4.2. Protein Isolation and Blotting Analysis

After collection of the cerebral areas, tissues were lysed in Ripa Buffer (50 mM Tris-
HCl pH 7.4, NaCl 150 mM, 1% NP-40, 0.5% sodium deoxycholate, 2 mM EDTA, 0.1% SDS,
1 mM DTT, 2X Protease Inhibitor Cocktail, 2 mM sodium orthovanadate) and the extracted
proteins were quantified by a Bradford assay. Directly, 5 µg of proteins were spotted on
nitrocellulose membranes using a dot blot apparatus. The membranes were blocked with
1% w/v Bovine Serum Albumin (Sigma-Aldrich) in PBS. The membranes were incubated
with anti-PDIA3 rabbit polyclonal primary antibody (ABE1032, Merk Millipore, Milan,
Italy, 1:1000 dilution) for 60 min, washed with TBST (50 mM Tris-HCl, pH 7.5, 150 mM
NaCl, Tween 20), and then incubated with anti-rabbit peroxidase-conjugated secondary
antibody (Jackson ImmunoResearch, Cambridge, UK, 1:5000 dilution) for an additional
60 min. After washing in TBST, the membranes were developed by chemiluminescence
with ECL substrates (Immunological Sciences, Roma, Italy) and the signal was detected by
ChemiDoc™ Imaging Systems (BioRad, Segrate, Italy). After stripping in glycine solution,
0.1 M pH 3.0, for 15 min, and neutralization with PBS, the membranes were blocked with
1% w/v I-block (Invitrogen, Thermo Fisher Scientific, Monza, Italy) in TBS (50 mM Tris-
HCl, pH 7.5, 150 mM NaCl) for preparing the membrane to the next detection. Then, the
membranes were incubated with anti-β-actin mouse monoclonal primary antibody (A1978,
Sigma-Aldrich, 1:2000 dilution) for 60 min, washed in 1% w/v I-block and incubated with
anti-mouse alkaline phosphatase-conjugated secondary antibody (Jackson ImmunoRe-
search, 1:5000 dilution) for an additional 60 min. After washing in 1% w/v I-block in TBS
solution, the membranes were stained by colorimetric detection using alkaline phosphatase
substrates (Sigma-Aldrich). The PDIA3 and β-actin protein expression was analyzed using
Image Lab™ Software (BioRad). The β-actin immunostaining was used as house-keeping
protein for normalization.

4.3. Double-Immunofluorescence

For double fluorescence immunostaining, 20-µm-thick brain coronal sections were
obtained using a cryostat (Microm™ HM550, Thermo Fisher Scientific, Ann Arbor, MI,
USA), and were mounted on positively charged slides, which were stored at −20◦ C until
being further processed. The brain sections were incubated with 90% formic acid for 7 min
followed by PBS washes. Then, brain sections were blocked with a PBS solution containing
5% normal goat serum and 0.3% Triton X-100, followed by overnight incubation with puri-
fied anti-β-amyloid/APP 1–16 monoclonal primary antibody (6E10, 803002, BioLegend®,
San Diego, CA, USA, 1:1500 dilution) and with anti-PDIA3 rabbit polyclonal primary
antibody (ABE1032, Millipore, Milan, Italy, 1:800 dilution) at 4 ◦C. After removing the
primary antibodies, the slides were incubated with both Alexa Fluor 594 goat anti-rabbit
(A-11012, Thermo Fisher Scientific, 1:250 dilution) and Alexa Fluor 488 goat anti-mouse
(A-11001, Thermo Fisher Scientific, 1:250 dilution) secondary antibodies for 1.5 h at room
temperature. After washing off the excess secondary antibodies, the slides were incubated
with Hoechst, Sigma-Aldrich (1:5000 dilution) for the detection of cell nuclei. The slides
were then mounted by using an anti-fade medium (Fluoromount, F4680, Sigma-Aldrich).
The specificity of the immunofluorescent staining for Aβ/APP and PDIA3 was confirmed
on a separate set of slides by processing the brain slices as previously described and by
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excluding the incubation with the primary antibodies. The slices were observed under
a Nikon 80i Eclipse microscope equipped with a Qicam 12-bit Fast 1394 digital camera,
and NIS-elements BR software (Nikon, Tokyo, Japan), and images were acquired for the
semi-quantitative analyses of Aβ/APP and PDIA3 expression, which were performed by
using the freeware software ImageJ 1.45 s, and were expressed as optical densities.

4.4. Triple-Immunofluorescence

For the triple fluorescence immunostaining, each 20-µm-thick brain coronal section
was mounted on a slide and stored at −20 ◦C. After several washes with PBS, and then
with 0.1% Triton X-100 in PBS (PBS/Triton 0.1%), the slides were incubated for 10 min into a
sodium citrate buffer (10 mM sodium citrate/0.05% Triton X-100, pH 6) pre-heated at 95 ◦C
for antigen retrieval. The slides were then cooled at room temperature in a water bath and
washed with PBS/Triton 0.1%. Before the incubation with primary antibodies, the brain
sections were incubated in a blocking solution containing 10% BSA and 0.3% Triton X-100
in PBS (PBS/Triton 0.3%). Thereafter, the slides were incubated for 16 h at 4 ◦C with the
three primary antibodies: anti-GFAP chicken polyclonal antibody (ab4674, Abcam, Cam-
bridge, UK, 1:1000 dilution), anti-NeuN mouse monoclonal antibody (ab104224, Abcam,
1:1000 dilution), and anti-PDIA3 rabbit polyclonal antibody (1:800 dilution) diluted in a
solution containing 10% BSA in PBS/Triton 0.3%. After washing off the excess antibodies,
the sections were incubated with secondary antibodies: DyLight 350 goat anti-chicken
(SA5-10069, Thermo Fisher Scientific, 1:250 dilution), Alexa Fluor 488 goat anti-mouse
(1:700 dilution), and Alexa Fluor 594 goat anti-rabbit (1:700 dilution) for 1.5 h at room
temperature. After washing off the excess secondary antibodies, the slides were mounted
with the anti-fade medium. The specificity of the immunofluorescent staining for GFAP,
NeuN and PDIA3 was confirmed as described in the previous paragraph. The slices were
then observed under a Nikon 80i Eclipse microscope equipped with a Qicam 12-bit Fast
1394 digital camera, and NIS-elements BR software (Nikon, Tokyo, Japan).

4.5. Statistical Analysis

The Aβ and PDIA3 optical density values were analyzed by two-way ANOVA, with
genotype (3×Tg-AD vs. Non-Tg) and age (6 months of age vs. 18 months of age) as
between-subject factors. Tukey’s Honestly Significant Difference (HSD) test was used for
multiple post hoc comparisons, when required. The statistical significance threshold was
set at p < 0.05.

The correlation analysis between Aβ/APP and PDIA3 protein levels was performed
on the respective optical densities measured on double immunofluorescent slices and
expressed as a percentage of those measured in 6-month-old 3×Tg-AD mice, by using the
Pearson correlation test. These analyses were performed by using the SPSS STATISTICS
software version 22.

5. Conclusions

The results of our study demonstrate that PDIA3 levels in the limbic regions of both 6-
and 18-month-old Non-Tg and 3×Tg-AD mice are modulated in an age- and pathology-
dependent fashion. Moreover, by analyzing the expression pattern of PDIA3 in 6- and
18-month-old 3×Tg-AD mice, we observed, for the first time, the expression of PDIA3 in
differentiated neurons and astrocytes from the basolateral amygdala, entorhinal cortex, and
dorsal and ventral CA1 regions of the hippocampus.

To our knowledge, this is the first study demonstrating that PDIA3 has a dual ex-
pression profile in 3×Tg-AD mice, probably due to its different modulation during the
progression of Aβ and tau pathology developed by this AD model. In particular, during
the mild phase of AD-like pathology (6 months of age) the reduced levels of PDIA3 might
be associated with the decreased capacity of the ER to process the intraneuronal Aβ im-
munoreactivity; conversely, in the late phase of the disease (18 months of age) the increased
levels of PDIA3 might be related to the progression of AD.
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The age-dependent increase in ROS and NO levels can lead to protein oxidation, and
specific cellular degrading systems play a role in the removal of the oxidized proteins [83].
PDIA3 modifications hamper protein redox and chaperone activities and, moreover, a
proteasome-dependent turnover of protein disulfide isomerase in oxidatively stressed cells
has been reported [84]. The consequent decreased capacity of the ER chaperones to process
newly synthesized membrane and secretory proteins could lead to the accumulation of
misfolded proteins, providing a basis for many senescence-associated alterations, including
neuronal cell death. On the other hand, PDIA3 can up-regulate the mTOR signaling path-
way [73]. Additionally, the increase in Aβ developed with AD pathology can lead/leads to
up-regulation of the mTOR signaling pathway and could promote, as a stress response, the
expression of PDIA3 and its redox and chaperone activities. An increased level of PDIA3
has been also observed in microglial and neuronal cells stimulated by Aβ [38,39], and
prolonged mTORC1 activation might cause metabolic dysregulation [85]. PERK is one of
the three ER stress sensors on the ER membrane. Although PERK is a controversial target in
the context of neurodegenerative diseases, PDIA3 has been reported as an inhibitor of the
PERK signaling pathway, suppressing PERK activation via PDI reduction [86]. As stated
above, the inhibition/suppression of PDIA3, leading to conditional stimulations of the
PERK signaling pathway, showed beneficial effects on mice with tauopathies [80].

Consistent with these notions, it is possible that the accumulation of misfolded proteins
might fuel aging processes by modulating the mTORC1 signaling pathway [72]. In these
conditions, PDIA3 will accumulate with Aβ in neuronal cells during the progression of
AD, leading to chronic inflammation and neuronal cell apoptosis. This is in agreement
with the observation of PDIA3-positive microglia cells, generally recruited during chronic
inflammatory processes, in the limbic regions of both 6- and 18-month-old 3×Tg-AD
mice. Therefore, during the mild stage of AD the use of PDIA3-positive modulators, such
as diosgenin [36], which stimulates the expression and/or the activity of PDIA3, may
delay the onset of the pathology. On the other hand, the use of PDIA3 inhibitors, such as
punicalagin [87], in the late phase of AD, might reduce the PDIA3-dependent pro-apoptotic
effects and thus slow down the disease progression. Very recently it has been reported
that 16F16, a PDIA3 inhibitor, enhances the antiproliferative effect of the mTOR inhibitor
everolimus in liver cancer [88].

This is a preliminary study aimed at analyzing the distribution of PDIA3 in several
brain areas and correlating this with AD-like pathological hallmarks. Despite the limited
observations within the time windows in various phases of pathology, and the use of a
single genetic mouse model of AD, this work provides information on the multiple roles
of PDIA3 and opens a new perspective on its relationship with neurological diseases,
suggesting PDIA3 as a potentially valid therapeutic target.

The comprehension of the early molecular mechanisms involved in AD etiopathogen-
esis is fundamental to developing new prevention strategies and to improving therapeutic
options. Despite the limits of our preclinical experimental study, and avoiding any simplis-
tic extrapolation of data from the animal model to the human condition, the results of this
research suggest that the pharmacological modulation of PDIA3 may have an important
impact on the onset and/or progression of AD.
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