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a b s t r a c t

We deal with the problem of pricing in a multi-period binomial market model, allowing for frictions in
the form of bid–ask spreads. We introduce and characterize time-homogeneous Markov multiplicative
binomial processes under Dempster-Shafer uncertainty together with the induced conditional Choquet
expectation operator. Given a market formed by a frictionless risk-free bond and a non-dividend
paying stock with frictions, we prove the existence of an equivalent one-step Choquet martingale
belief function. We then propose a dynamic Choquet pricing rule with bid–ask spreads showing that
the discounted lower price process of a European derivative contract on the stock is a Choquet super-
martingale. We finally provide a normative justification in terms of a dynamic generalized no-arbitrage
condition relying on the notion of partially resolving uncertainty due to Jaffray.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Introduction

One of the main hypotheses of classical no-arbitrage pricing
heory is the absence of frictions in the market, which essentially
aterializes in the linearity and time-consistency of the dynamic
ricing rule. In turn, this translates in a discounted conditional
xpectation representation of prices that relies on martingale
heory (see, e.g., Harrison and Kreps, 1979; Harrison and Pliska,
981). Despite this simplifying assumption, it is well-known that
eal markets show frictions, most evidently in the form of bid–ask
preads (see, e.g., Amihud and Mendelson, 1986, 1991). Therefore,
everal researches faced the problem of modeling frictions in a
ricing problem (see, e.g., Bion-Nadal, 2009; Jouini, 2000; Jouini
nd Kallal, 1995; Roux, 2011).
The majority of the quoted approaches takes probability the-

ry as the natural environment, eventually switching to sets of
robability measures for expressing lower/upper prices (Beissner
nd Riedel, 2019). On the other hand, a different way for dealing
ith the problem is to abandon the probabilistic setting and refer
o the purely non-additive framework of Choquet theory (Cho-
uet, 1954) leading to non-linear pricing rules. Indeed, starting
rom Chateauneuf et al. (1996), a stream of research explored
his path in pricing (Cerreia-Vioglio et al., 2015; Chateauneuf and
ornet, 2022a,b; Cinfrignini et al., 2023; Kast et al., 2014), thanks
o its connection with decision theory (see, e.g., Aouani et al.,
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2021; Chateauneuf, 1991). Most of such proposals focus on the
single period case.

By following the ideas developed in Chateauneuf et al. (1996)
and Cerreia-Vioglio et al. (2015), we consider Choquet pricing
rules relying on the Dempster-Shafer theory of evidence (Demp-
ster, 1967; Shafer, 1976) as basic framework for modeling uncer-
tainty. In this context, as well as in decision theory and artificial
intelligence, several proposals are available for introducing con-
ditioning (see Coletti et al., 2016; Denneberg, 2002; Eichberger
et al., 2007; Gilboa and Schmeidler, 1993; Horie, 2013) and a
suitable notion of expectation (see Wang and Klir, 2009). Here,
we refer to the product (or geometric) conditioning rule proposed
in Suppes and Zanotti (1977) and to the Choquet integral (Den-
neberg, 1994; Grabisch, 2016). The choice of the conditioning
rule has a direct impact both on computational aspects and bid–
ask pricing intervals (see Remark 1). The product conditioning
rule takes the non-additive setting as reference, by relegating the
probabilities in the core of a belief function to a marginal role.
A different approach would be to refer to the so-called Bayesian
conditioning rule for belief functions (Fagin and Halpern, 1991),
which, however, gives rise to computational difficulties and to the
so-called dilation effect on bid–ask price intervals.

We define a time-homogeneous Markov multiplicative bino-
mial process (namely, a DS-multiplicative binomial process) by
fixing the structure of its set of t-step transition belief functions,
for which we show the existence of a consistent global belief
function. In turn, this allows us to introduce a corresponding
conditional Choquet expectation operator. We stress that our
notion of DS-multiplicative binomial process differs from other
proposals that aim to introduce ‘‘imprecision’’ in a Markov pro-

cess (see, e.g., Kast et al., 2014; Krak et al., 2019; Nendel, 2021;

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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kulj, 2016; T’Joens et al., 2021). To the best of our knowledge,
he notion of DS-multiplicative binomial process is new, even if
t is based on concepts already known in the literature, such as
he product conditioning rule for belief function. Indeed, other
roposals usually refer to more general non-additive uncertainty
easures and to different notions of conditioning. Moreover, a
istinguishing feature of our approach is that we look for a global
elief function that generates all the local transition belief func-
ions via the product conditioning rule. On the other hand, many
ther proposals only pay attention to local transition models. In
urn, this makes our Theorem 1 the main result of this paper
ince it does not follow from previous results in the literature and
uarantees the soundness of all the proposed theory.
We show that the introduced DS-multiplicative binomial pro-

ess is completely determined by the choice of only two param-
ters that characterize the one-step transition belief function. In
urn, this allows us to provide a closed form expression for the
onditional Choquet expectation of any function of a variable of
he process. We also show that the conditional Choquet expecta-
ion operator generally fails the linearity and tower properties,
hich are recovered in the particular case the two parame-
ers sum up to 1: in this case we get back to the classical
ultiplicative binomial process appearing in Cox et al. (1979).
Then, we consider a market formed by a frictionless risk-

ree bond (whose price is modeled by a deterministic process)
nd a non-dividend paying stock with frictions (whose lower
rice is modeled by a DS-multiplicative binomial process). In this
arket we prove an analog of the classical theorem of change
f measure relying on the notion of equivalent one-step Choquet
artingale belief function. With such a global belief function, the
iscounted lower price process of the stock turns out to be a
ne-step Choquet martingale, though it is only a Choquet super-
artingale when more than one steps are considered. Also this
eries of results is, to the best of our knowledge, new.
Next, assuming that the payoff of a European derivative only

epends on the lower price of the stock, we propose a dynamic
ricing rule that accounts for bid–ask spreads. The derivative
ower price process is defined as a one-step discounted con-
itional Choquet expectation, while the upper price process is
efined one-step-wise through duality. For this pricing rule, the
ower price process is shown to be always dominated by the
pper price process and its discounted version turns out to be
Choquet super-martingale.
Finally, we provide a normative justification of the proposed

ynamic lower pricing rule by referring to a dynamic generalized
o-arbitrage condition. Such condition, introduced in Cinfrignini
t al. (2023) in the single period case, is based on the partially
esolving uncertainty principle due to Jaffray (1989). Given the
istory up to time n, by partially resolving uncertainty we mean
hat at time n+1 the market agent may not be able to determine
hich one between the two mutually exclusive events ‘‘up’’ and

‘down’’ for the stock has occurred. Thus, he/she needs to consider
he set of all the possible pieces of information he/she may
cquire once uncertainty is resolved at time n + 1 that reduce
o ‘‘up’’, ‘‘down’’, and ‘‘up or down’’. In other terms, random
uantities are extended to the three pieces of information that an
gent may acquire. We assume that the agent adopts a systemat-
cally pessimistic behavior under partially resolving uncertainty as
e/she systematically considers the minimum value of a random
uantity X defined on ‘‘up’’ and ‘‘down’’, when the piece of

information ‘‘up or down’’ is acquired. We further show that the
resulting lower pricing rule satisfies time-consistency in the sense
of Cheridito and Stadje (2009).

The paper is structured as follows. Section 2 recalls the nec-
ssary preliminaries on Dempster-Shafer theory, Choquet in-

egration and the classical binomial pricing model. Section 3

2

introduces time-homogeneous Markov multiplicative processes
under Dempster-Shafer uncertainty (namely, DS-multiplicative
binomial processes) and defines the induced conditional Choquet
expectation operator. Section 4 considers a market composed by
a frictionless risk-free bond and a non-dividend paying stock with
frictions, and proves an analog of the classical theorem of change
of measure relying on the notion of equivalent one-step Choquet
martingale belief function. Section 5 proposes a dynamic pricing
rule with bid–ask spreads according to which the discounted
lower price process of a European derivative contract on the
stock is a Choquet super-martingale. Section 6 shows that the
dynamic lower pricing rule of Section 5, though not consistent
with the classical one-step no-arbitrage condition, is consistent
with a generalized one-step no-arbitrage condition that relies
on the notion of partially resolving uncertainty due to Jaffray.
Moreover, the same section deals with the time-consistency of
the proposed dynamic lower pricing rule, and its connection with
dynamic risk measures. Finally, Appendix gathers the proofs of
results presented in the previous sections.

2. Preliminaries

2.1. Non-additive measures and integrals

LetΩ = {ω1, . . . , ωd} be a finite non-empty set of states of the
world and take F = P(Ω), where the latter denotes the power
set of Ω . Let RΩ denote the set of all random variables on Ω and
1E the indicator of event E, for every E ∈ F . In what follows, for
every a ∈ R, we identify a1Ω with a.

The reference framework is the Dempster-Shafer theory of ev-
idence (see Dempster, 1967; Shafer, 1976) where a belief function
is a mapping ν : F → [0, 1] satisfying:

(i) ν(∅) = 0 and ν(Ω) = 1;

(ii) ν
(⋃k

i=1 Ei
)

≥

∑
∅̸=I⊆{1,...,k}

(−1)|I|+1ν

(⋂
i∈I

Ei

)
, for every k ≥ 2

and every E1, . . . , Ek ∈ F .

Condition (ii) is called complete monotonicity and together with
(i) it implies monotonicity: ν(A) ≤ ν(B) when A ⊆ B, with
A, B ∈ F . In other terms, by belief function we mean a completely
monotone normalized capacity (Choquet, 1954; Grabisch, 2016).
The function ν is associated with a dual set function ν on F called
plausibility function and defined, for every A ∈ F , as ν(A) =

− ν(Ac).
Notice that, if condition (ii) is asked to hold for k = 2,

then ν is termed 2-monotone (also called supermodular or convex)
normalized capacity (Grabisch, 2016). Thus, belief functions are
particular 2-monotone normalized capacities.

Both ν and ν are completely characterized by the Möbius
inverse of ν (see, e.g., Grabisch, 2016; Shafer, 1976) that goes
also under the name of basic probability assignment. Such function
µ : F → [0, 1] satisfies µ(∅) = 0 and

∑
B∈F

µ(B) = 1, and, for all

A ∈ F , it holds that

ν(A) =

∑
B⊆A

µ(B) and ν(A) =

∑
B∩A̸=∅

µ(B). (1)

Every belief function induces a non-empty, closed and convex
set of probability measures on F called core (see, e.g., Grabisch,
2016):

core(ν) = {P : P is a probability measure on F , P ≥ ν}. (2)

Note that ν = min core(ν) and ν = max core(ν), where minima
and maxima are pointwise on F . Therefore, belief and plausibil-
ity functions are particular coherent lower and upper probabili-
ties (Walley, 1991; Williams, 2007). We also recall that probabil-
ity measures are particular belief functions.
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A belief function ν, being a particular coherent lower probabil-
ty, can be the lower envelope of possibly infinitely many closed
nd convex sets of probability measures on F (see, e.g., Walley,
991), where we refer to the space [0, 1]F endowed with the
roduct topology. The set core(ν) turns out to be the largest of
uch sets and, since ν is (at least) 2-monotone, the extreme points
f core(ν) can be given a combinatorial characterization (see,
.g., Grabisch, 2016). Moreover, since property (ii) is preserved
nder pointwise limits on F , the set of belief functions on F is a
losed and convex subset of [0, 1]F .
In decision theory (see Etner et al., 2012; Gilboa and Mari-

nacci, 2016) the term ambiguity refers to situations related to
partially determined probability measures, like the celebrated
Ellsberg’s paradox (Ellsberg, 1961). Our motivation for sticking
to Dempster-Shafer theory is that belief functions are sufficiently
expressive to address these problems and are close enough to
probability theory.

The problem of conditioning for belief functions has been
deeply investigated in the literature and several proposals have
been considered (see, e.g., Dempster, 1967; Suppes and Zanotti,
1977 and Coletti et al., 2016; Coletti and Vantaggi, 2008 for
a deeper discussion). In this work we refer to the product (or
geometric) conditioning rule: for every E,H ∈ F with ν(H) > 0

(E|H) =
ν(E ∩ H)
ν(H)

. (3)

Let us stress that, for every H ∈ F with ν(H) > 0, ν(·|H) is a
belief function on F , thus it induces a core as in (2), denoted by
core(ν(·|H)).

The product conditioning rule imposes to focus just on the
‘‘evidence’’ implying H , while that compatible with Hc is not
aken into account. As a consequence, a conditional belief func-
ion cannot be seen as the lower envelope of a family of condi-
ional probabilities under the product conditioning rule.

Given ν(·|H) on F , then it uniquely extends to a conditional
completely monotone functional defined on RΩ through the Cho-
uet integral (see, e.g., Denneberg, 1994; Grabisch, 2016) by set-
ing, for all X ∈ RΩ ,

C
∫

X(ω)dν(ω|H) =

d∑
i=1

(
X(ωσ (i)) − X(ωσ (i+1))

)
ν(Eσi |H), (4)

here σ is a permutation of Ω such that X(ωσ (1)) ≥ · · · ≥

(ωσ (d)), Eσi = {ωσ (1), . . . , ωσ (i)} for i = 1, . . . , d, and X(ωσ (d+1)) =

. Notice that, by identifying ν(·|Ω) with ν(·), Eq. (4) covers also
he definition of the unconditional Choquet integral c

∫
Xdν.

We actually have that (see Proposition 3 in Schmeidler, 1986)
he above Choquet integral can be given a lower expectation
nterpretation locally on H , by referring to core(ν(·|H)), as it holds
hat

C X(ω)dν(ω|H) = min
P∈core(ν(·|H))

∫
X(ω)dP(ω), (5)

here the integrals in the minimum are of Stieltjes type. In
he particular case ν reduces to a probability measure, then the
onditional Choquet integral reduces to a conditional Stieltjes
ntegral.

emark 1. Besides the product conditioning rule for belief func-
ions, two other popular choices are the Dempster’s rule (Demp-
ter, 1967) and the Bayesian rule (Fagin and Halpern, 1991): for
very E,H ∈ F with ν(H) > 0 define

D(E|H) = 1 −
ν(Ec

∩ H)
ν(H)

=
ν((E ∩ H) ∪ Hc ) − ν(Hc )

1 − ν(Hc )
,

νB(E|H) = min
{
P(E ∩ H)

: P ∈ core(ν)
}

=
ν(E ∩ H)

.

P(H) ν(E ∩ H) + ν(Ec ∩ H)

3

s shown in Coletti et al. (2016), we have that, for all E ∈ F , it
olds that

B(E|H) ≤ min{ν(E|H), νD(E|H)},

hich implies that, for all X ∈ RΩ , it holds that

C X(ω)dνB(ω|H) ≤ min
{
C
∫

X(ω)dν(ω|H), C
∫

X(ω)dνD(ω|H)
}
,

while no dominance relation generally holds between ν(·|H)
nd νD(·|H). An axiomatic decision-theoretic characterization of
oth the product and the Dempster’s conditioning rules has been
ecently provided for conditional preferences in a generalized
nscombe–Aumann setting (Petturiti and Vantaggi, 2022). We
otice that, though νB(·|H) can be interpreted as the lower en-
elope of conditional probabilities computed with respect to
ore(ν), it generally produces a dilation with respect to both
(·|H) and νD(·|H), when computing Choquet integrals. The last
spect is particularly relevant in the bid–ask pricing problem.

The choice of the product conditioning rule is motivated by
he bid–ask pricing model we develop in the next sections, as
his conditioning rule assures that the core of the updated belief
unction never reduces to a singleton, provided ν is not additive.
hat is, ambiguity ‘‘never vanishes’’, which is natural given the
nterpretation in terms of bid–ask spreads and financial frictions.
ote that this feature could be questionable in decision models,
here (from a normative point of view) it seems more natural
o assume an updating rule for which ambiguity vanishes as in-
ormation accumulates (Marinacci, 2002; Marinacci and Massari,
019) (see Section 3 for a deeper discussion). As shown in Pet-
uriti and Vantaggi (2022), the choice of the product conditioning
ule may give rise to dynamically inconsistent preferences and
his has an impact on the ensuing notion of time-consistency in
ricing. We discuss the time-consistency issue in Section 6.2 in
ore detail.

.2. The classical binomial pricing model

The classical binomial pricing model (see, e.g., Černý, 2009;
liska, 1997) builds upon the assumption of a perfect (frictionless
nd competitive) market under the classical no-arbitrage princi-
le. The market is composed by two assets: a risk-free bond and
risky stock that does not pay dividends, both considered over a
iscrete set of times {0, . . . , T }, for a finite horizon T ∈ N.
In particular, the hypothesis of absence of frictions in the mar-

et implies that the bid and ask prices of securities in the market
lways coincide. The price evolution of the bond is expressed
y the deterministic process {B0, . . . , BT } with B0 = 1, and for
= 1, . . . , T ,

n = (1 + r)Bn−1, (6)

here r is the risk-free interest rate over each period. On the
ther hand, the price evolution of the stock is expressed by the
tochastic process {S0, . . . , ST } with S0 = s0 > 0 and, for n =

, . . . , T ,

n =

{
uSn−1 if ‘‘up’’,
dSn−1 if ‘‘down’’, (7)

here u > d > 0 are the ‘‘up’’ and ‘‘down’’ coefficients. Such a
rocess will be called in what follows a multiplicative binomial
rocess. The process above gives rise to a filtered measurable
pace (Ω,F, {Fn}

T
n=0), where Ω = {1, . . . , 2T

} and Fn is the alge-
ra generated by random variables {S0, . . . , Sn}, for n = 0, . . . , T ,

with F0 = {∅,Ω} and FT = F = P(Ω).
The trajectories of {S0, . . . , ST } can be represented graphically

on a binomial tree. In particular, every state ω ∈ Ω is identified
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ith the path corresponding to the T -digit binary expansion of
umber ω − 1.
As usual, for every 0 ≤ n ≤ T , a random variable X :

Ω → R is said to be Fn-measurable if it is constant on the atoms
of the algebra Fn. Notice that, all random variables in RΩ are
FT -measurable.

In the classical binomial pricing model, the returns over each
period S1

S0
, . . . ,

ST
ST−1

are assumed to be i.i.d. random variables,
with range {u, d} and probability distribution bu, 1 − bu, with
u ∈ (0, 1). In turn, the i.i.d. hypothesis on the returns gives rise
o a unique real-world probability measure P on F , strictly positive
n F \ {∅}, which is completely determined by the parameter
u. Therefore, both the bond and stock price processes are as-
umed to be defined on the real-world filtered probability space
Ω,F, {Fn}

T
n=0, P). Under such P , the process {S0, . . . , ST } satisfies

oth the classical Markov and time-homogeneity properties (see,
.g., Černý, 2009; Pliska, 1997).
A trading strategy is a bivariate stochastic process {λ0, . . . ,

T−1} with λn = (λ0n, λ
1
n), where λ0n and λ1n are Fn-measurable

random variables expressing, respectively, the number of units
of bond and stock to buy (if positive) or short-sell (if negative) at
time n up to time n + 1. The trading strategy is self-financing if,
for n = 1, . . . , T − 1, it satisfies

λ0n−1Bn + λ1n−1Sn = λ0nBn + λ1nSn. (8)

Given a self-financing trading strategy {λ0, . . . ,λT−1}, we can
introduce the corresponding price process {Πλ

0 , . . . ,Π
λ
T } by set-

ting

Πλ
n = λ0nBn + λ1nSn, for n = 0, . . . , T − 1, (9)

Πλ
T = λ0T−1BT + λ1T−1ST . (10)

A self-financing strategy {λ0, . . . ,λT−1} is an arbitrage oppor-
unity in the classical sense (see, e.g., Černý, 2009; Munk, 2013) if
he corresponding price process {Πλ

0 , . . . ,Π
λ
T } satisfies one of the

ollowing two conditions, where comparisons are intended over
:

(a) Πλ
0 < 0 and Πλ

T = 0;
(b) Πλ

0 ≤ 0 and Πλ
T ≥ 0 with Πλ

T ̸= 0.

The additive formulation of the market above is shown to be
ynamically complete (see, e.g., Černý, 2009; Pliska, 1997), in the
ense that every derivative whose payoff depends only on the
tock price history can be replicated by a self-financing strategy.
n particular, every simple European-type derivative with pay-
ff YT = ϕ(ST ) can be replicated by a self-financing strategy
λ0, . . . ,λT−1} whose value process {Πλ

0 , . . . ,Π
λ
T } is such that

T = Πλ
T . Thus, setting

n = Πλ
n , for n = 0, . . . , T − 1, (11)

he value of the derivative can be determined via a replication
rgument. The resulting process {Y0, . . . , YT } is interpreted as the
rice evolution of the derivative.
In this classical setting, the condition u > 1 + r > d > 0 is

ecessary and sufficient to the absence of arbitrage opportunities
nd, together with dynamic completeness, implies the existence
f a unique risk-neutral probability measure P̂ , completely speci-
ied by the parameter b̂u =

(1+r)−d
u−d , still assuring i.i.d. returns. The

measure P̂ is an ‘‘artificial’’ probability measure that comes from
the model and shares with the real-world probability measure
P only the strict positivity on F \ {∅}. We have that, for n =

, . . . , T − 1

n =
1

1 + r
Ê[Yn+1|Fn], (12)

here Ê denotes the expectation with respect to P̂ , and P̂ is also
alled equivalent martingale measure for this last property.
4

3. DS-multiplicative binomial processes

The aim of this section is to define a multiplicative binomial
process in the Dempster-Shafer framework, i.e., by replacing the
probability measure P with a belief function ν. This will be the
basis for addressing bid–ask pricing in the next sections.

Consider a discrete-time finite-horizon stochastic process {S0,
. . . , ST } with T ∈ N, that is assumed to be a multiplicative
binomial process defined on the filtered measurable space (Ω,F,
{Fn}

T
n=0), as in Section 2.2.

From now on, we consider a filtered belief space (Ω,F,
{Fn}

T
n=0, ν) with a fixed belief function ν defined on F .

For n = 1, . . . , T , denote

n = {ak = ukdn−k
: k = 0, . . . , n}, (13)

or which we have a0 < a1 < · · · < an and, for i ≤ j, let

ai, aj] = {ak ∈ An : ai ≤ ak ≤ aj}. (14)

or every s > 0 and A ∈ P(An), denote

s = {aks : ak ∈ A}, (15)

here As = ∅ if A = ∅. In particular, each random variable Sn
akes values sn in Sn = Ans0.

efinition 1. Given a filtered belief space (Ω,F, {Fn}
T
n=0, ν), the

process {S0, . . . , ST } is said to satisfy the:

Markov property: if for every 0 ≤ n ≤ T − 1 and 1 ≤ t ≤ T − n,
A ∈ P(At ), and s0 ∈ S0, . . . , sn ∈ Sn on a trajectory with
positive belief it holds that

ν(Sn+t ∈ Asn|S0 = s0, . . . , Sn = sn) = ν(Sn+t ∈ Asn|Sn = sn);

Time-homogeneity property: if for every 0 ≤ n ≤ T − 1 and
1 ≤ t ≤ T − n, A ∈ P(At ), and s0 ∈ S0, . . . , sn ∈ Sn on a
trajectory with positive belief it holds that

ν(Sn+t ∈ Asn|S0 = s0, . . . , Sn = sn) = βt (A),

where βt : P(At ) → [0, 1] is a fixed belief function.

f the process satisfies both the properties above is called a DS-
ultiplicative binomial process (where DS reads ‘‘Dempster-
hafer’’).

In the particular case where the process {S0, . . . , ST } satis-
ies the Markov property, then the time-homogeneity property
educes to

(Sn+t ∈ Asn|Sn = sn) = βt (A). (16)

he properties above are called one-step if they hold only for
= 1.
Since the purpose of process {S0, . . . , ST } is to model a stock

rice evolution, the ratio behind the Markov property is to assure
eak market efficiency. On the other hand, the time-homogeneity
roperty rests upon the family of transition belief functions {βt :

= 1, . . . , T }, that are considered as partially specified ran-
omizing devices used to evaluate the t-step evolution of the
tock. Every βt conveys ambiguity in analogy to an Ellsberg’s
artially specified urn (Ellsberg, 1961). Under this interpretation,
t is important to notice that the resulting evolution is not subject
o learning as in Marinacci (2002), Marinacci and Massari (2019).
ndeed, at each node of the tree, the future stock evolution will be
etermined with the same set of partially specified randomizing
evices, i.e., ambiguity does not fade away as time passes by.
The first issue to face is the existence of a belief function
on F that makes the process {S0, . . . , ST } Markov and time-

homogeneous (i.e., a DS-multiplicative binomial process). Notice
that a DS-multiplicative binomial process singles out a family of
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elief functions {βt : t = 1, . . . , T } defined on the family of
ower sets {P(At ) : t = 1, . . . , T } that, in turn, are determined
y the particular ν that is chosen. Let us point out that, if ν is
ot additive, then we need the entire family of βt ’s since the
sual Chapman–Kolmogorov equations (see, e.g., Çinlar, 1975) do
ot apply due to the lack of additivity. Such βt ’s are actually t-step

transition belief functions.
In general, we can have infinitely many belief functions on F

that make the process {S0, . . . , ST } a DS-multiplicative binomial
rocess (see, e.g., Cinfrignini et al., 2022 for a related discussion).
ctually, some choices of ν on F could lead to a lack of interpre-

tation for the family {βt : t = 1, . . . , T } induced by ν, and to a
arge amount of parameters that could make difficult a calibration
rocedure. This is why, in what follows we restrict to a particular
amily of t-step transition belief functions that guarantee a clear
nterpretation and a nice parameterization.

Let bu, bd be two strictly positive numbers with bu + bd ≤ 1
orresponding, for every 0 ≤ n ≤ T − 1, and s0 ∈ S0, . . . , sn ∈ Sn
n a trajectory with positive belief, to

(Sn+1 = usn|S0 = s0, . . . , Sn = sn) = bu, (17)
ν(Sn+1 = dsn|S0 = s0, . . . , Sn = sn) = bd, (18)

hat can be interpreted as one-step ‘‘up’’ and ‘‘down’’ conditional
eliefs. In case bu + bd = 1, conditions (17) and (18) determine
unique additive belief function that satisfies time-homogeneity
nd Markov properties. On the other hand, if bu + bd < 1 we

need to characterize ν by means of the t-step transition belief
functions βt ’s. For that, for t = 1, . . . , T , we consider the belief
function βt : P(At ) → [0, 1] defined, for all A ∈ P(At ), as

βt (A) =

∑
ak∈A

(
t
k

)
bkub

t−k
d +

∑
[ak,ak+j]⊆A

j≥1

(
t − j
k

)
bkub

t−j−k
d (1− (bu + bd)).

(19)

otice that (19) is consistent with (17) and (18) as it holds that
1(∅) = 0, β1({u}) = bu, β1({d}) = bd, and β1(A1) = 1. This
eads to a clear interpretation where ambiguity that amounts to
he excessive weight to unity (1 − (bu + bd)) is attached to the
ntire frame of evidence A1 = {d, u}.

roposition 1. The function βt : P(At ) → [0, 1] defined as
n Eq. (19) is a belief function on P(At ).

The belief function βt in (19) generalizes the binomial distri-
ution with parameters t and bu, to which it reduces in case bu +

d = 1, since the second summation vanishes. On the other hand,
f bu + bd < 1, then the second summation takes into account a
contribution of intervals contained in A which receive a binomial-
ike weighting deflated by the excessive weight to unity (1−(bu+
bd)). More in detail, we have that intervals of length j contribute
by weights mimicking the binomial distribution with parameters
t − j and bu, multiplied by the deflator (1 − (bu + bd)). Looking
at the binomial tree representation of process {S0, . . . , ST } we
get that, starting from a node sn at time n and looking ahead
of t steps, the interval [ak, ak+j] of length j represents the set
of all trajectories starting at node sn and continuing for t steps
that have a fixed state sn+t−j at time n + t − j. Indeed, all the
continuations of partial trajectory sn, . . . , sn+t−j for the remaining
j times will end in a state belonging to [ak, ak+j]sn. Therefore,
interpreting such weights as evidence in the spirit of Dempster-
Shafer theory (Shafer, 1976), βt (A) is obtained by summing the
binomial-like weights of all partial trajectories with decreasing
length starting from node sn, that support the evidence of having
a final state of the process after t steps belonging to Asn.

The following theorem states that there exists a strictly posi-
tive belief function ν : F → [0, 1] meeting all the desiderata.
5

Theorem 1. There exists a belief function ν : F → [0, 1] such
that a multiplicative binomial process on the filtered belief space
(Ω,F, {Fn}

T
n=0, ν) meets the following properties:

(i) ν(B) > 0, for every B ∈ F \ {∅};
(ii) {S0, . . . , ST } is a DS-multiplicative binomial process whose

transition belief functions {βt : t = 1, . . . , T } satisfy (19).

The extent of Theorem 1 is deeply connected to the product
conditioning rule for belief functions we adopt. To the best of
our knowledge, this is the first time that imprecise stochastic
processes are introduced in Dempster-Shafer theory by relying
on the product conditioning rule. Moreover, still to the best of
our knowledge, the notion of DS-multiplicative binomial process
endowed with the transition belief functions satisfying (19) is
new. Therefore, the proof of Theorem 1, which is reported in
Appendix, does not follow from previous results already known
in the literature.

Assumption 1. From now on, we assume the belief function ν
meeting conditions (i)–(ii) of Theorem 1 to be fixed. Therefore,
we always refer to transition belief functions {βt : t = 1, . . . , T }

satisfying (19).

Every DS-multiplicative binomial process can be associated
with an additive binomial process through a logarithmic trans-
formation. In detail, we consider the process {R0, . . . , RT } where

Rn = ln
Sn
S0
, for n = 0, . . . , T . (20)

Setting lu = ln u and ld = ln d, we have that R0 = 0 and Rn ranges
in the set

Rn = {rk = klu + (n − k)ld : k = 0, . . . , n}. (21)

The process {R0, . . . , RT } is still a time-homogeneous Markov
process under ν, since it satisfies, for every 0 ≤ n ≤ T − 1 and
1 ≤ t ≤ T − n, and B ∈ P(Rt ),

ν(Rn+t ∈ B|R0 = 0, . . . , Rn = rn) = ν(Rn+t ∈ B|Rn = rn)
= βt (exp(B)). (22)

From a financial point of view, if {S0, . . . , ST } is used to model the
price evolution of a stock, then {R0, . . . , RT } is the corresponding
log-return process. We also notice that {R0, . . . , RT } is an example
of DS-random walk as introduced in Cinfrignini et al. (2022).

Definition 2. Let {S0, . . . , ST } be a DS-multiplicative binomial
process on the filtered belief space (Ω,F, {Fn}

T
n=0, ν). Then, for

every random variable X ∈ RΩ , define

C[X |Sn = sn] = C
∫

X(ω)dν(ω|Sn = sn),

C[X |S0 = s0, . . . , Sn = sn] = C
∫

X(ω)dν(ω|S0 = s0, . . . , Sn = sn).

In turn, we define the random variables C[X |Sn] and
C[X |S0, . . . , Sn] setting, for all ω ∈ {Sn = sn},

C[X |Sn](ω) := C[X |Sn = sn], (23)

and, for all ω ∈ {S0 = s0, . . . , Sn = sn},

C[X |S0, . . . , Sn](ω) := C[X |S0 = s0, . . . , Sn = sn]. (24)

We also simply write

C[X |Fn] := C[X |S0, . . . , Sn], (25)

which is easily seen to be Fn-measurable. The operator C[·|Fn]

will be referred to as conditional Choquet expectation, in the fol-
lowing. The properties of the Choquet integral with respect to a
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elief function (see, e.g., Denneberg, 1994; Grabisch, 2016) imply
hat C[·|Fn] is a positively homogeneous, completely monotone,
omonotone additive and superadditive conditional functional on
Ω , which further satisfies the following property.

roposition 2. The conditional Choquet expectation C[·|Fn] asso-
iated with the filtered belief space (Ω,F, {Fn}

T
n=0, ν) satisfies:

(conditional constant) for all Fn-measurable X ∈ RΩ and all
Y ∈ RΩ ,

C[X |Fn] = X,

and, if X ≥ 0,

C[XY |Fn] = XC[Y |Fn].

In the particular case bu+bd = 1, the belief function ν reduces
to a probability measure P and C[·|Fn] becomes a classical con-
ditional expectation E[·|Fn]. In this case, the conditional constant
property in Proposition 2 holds for all Fn-measurable X ∈ RΩ ,
without any sign restriction. Moreover, as is well-known, E[·|Fn]

satisfies the tower property, that is, for 0 ≤ n ≤ T − 1 and
1 ≤ t ≤ T − n, we have that

E[E[X |Fn+t ]|Fn] = E[X |Fn],

for all X ∈ RΩ .
On the other hand, if bu + bd < 1, it is easy to verify that the

conditional Choquet expectation C[·|Fn] may fail to satisfy the
tower property

C[C[X |Fn+t ]|Fn] = C[X |Fn], (26)

as the following example shows.

Example 1. Let T = 2, u > d > 0, s0 > 0, bu, bd > 0, bu+bd ≤ 1,
and consider the DS-multiplicative binomial process {S0, S1, S2}
and the random variable X on Ω = {1, 2, 3, 4} reported below

Ω Binary ω − 1 S0 S1 S2 X
4 11 s0 us0 u2s0 1
3 10 s0 us0 uds0 1
2 01 s0 ds0 uds0 1
1 00 s0 ds0 d2s0 0

Taking n = 0 and t = 1, we have that

C[X |F0](ω) = bubd + bu, for all ω ∈ Ω,

C[X |F1](ω) =

{
1, for all ω ∈ {3, 4},
bu, for all ω ∈ {1, 2},

C[C[X |F1]|F0](ω) = 2bu − b2u, for all ω ∈ Ω,

hence, C[X |F0] = C[C[X |F1]|F0] holds if and only if bu + bd = 1.

We stress that the failure of the tower property (26) im-
plies some important consequences, like the failure of the usual
dynamic programming approach.

If ϕ(x) is a real-valued function of one real variable defined on
the range of Sn+t , then the following proposition characterizes the
conditional Choquet expectation when X = ϕ(Sn+t ).

Proposition 3. Let {S0, . . . , ST } be a DS-multiplicative binomial
process on the filtered belief space (Ω,F, {Fn}

T
n=0, ν). Then, for

every 0 ≤ n ≤ T − 1 and 1 ≤ t ≤ T − n, and every real-valued
function of one real variable ϕ(x) defined on the range of Sn+t , we
have that

C[ϕ(Sn+t )|Sn = sn] =

t∑
h=0

ϕ(ahsn)
(
t
h

)
bhub

t−h
d

+

t∑ t−j∑[
min

ai∈[ah,ah+j]
ϕ(aisn)

](
t − j
h

)
bhub

t−j−h
d (1 − (bu + bd))
j=1 h=0

6

and C[ϕ(Sn+t )|S0 = s0, . . . , Sn = sn] = C[ϕ(Sn+t )|Sn = sn]. In
particular, if ϕ(x) is non-decreasing

C[ϕ(Sn+t )|Sn = sn] =

t∑
h=0

ϕ(uhdt−hsn)
(
t
h

)
bhub

t−h
d

+

t−1∑
h=0

ϕ(uhdt−hsn)
t−h∑
j=1

(
t − j
h

)
bhub

t−j−h
d (1 − (bu + bd)),

while, if ϕ(x) is non-increasing

C[ϕ(Sn+t )|Sn = sn] =

t∑
h=0

ϕ(uhdt−hsn)
(
t
h

)
bhub

t−h
d

+

t−1∑
h=0

ϕ(ut−hdhsn)
t−h∑
j=1

(
t − j
h

)
bt−j−h
u bhd(1 − (bu + bd)).

In Denk et al. (2018), non-linear expectations are used to intro-
duce a suitable version of the Chapman–Kolmogorov equations,
thus, it is interesting to verify if C[·|Fn] can be used to derive
an analogous result. In our setting, the Chapman–Kolmogorov
equations are vacuous for T = 1. For T ≥ 2, we say that
the DS-multiplicative binomial process {S0, . . . , ST } satisfies the
Chapman–Kolmogorov equations if, for every 0 ≤ n ≤ T − 2 and
1 ≤ t < w ≤ T − n, it holds that

C[1{Sn+w∈ASn}|Fn] = C[C[1{Sn+w∈ASn}|Fn+t ]|Fn], (27)

or all A ⊆ Aw , where {Sn+w ∈ ASn} :=
⋃

sn∈Sn
{Sn+w ∈ Asn}. Let us

otice that, due to the Markov and time-homogeneity properties,
q. (27) can be rewritten explicitly as

w(A) = C[C[1{Sn+w∈ASn}|Fn+t ]|Fn].

Except for the case bu+bd = 1, the following example shows that
the Chapman–Kolmogorov equations may fail when bu + bd < 1,
and this happens yet for w = t + 1. In turn, the failure of (27) is
due to the failure of the tower property (26).

Example 2. Consider the process {S0, S1, S2} and the random
variable X of Example 1. Taking n = 0, t = 1, w = 2
and A = {u2, ud}, noticing that X = 1{S2∈AS0}, we have that
[1{S2∈AS0}|F0] = C[C[1{S2∈AS0}|F1]|F0] holds if and only if bu +

d = 1.

. Equivalent one-step Choquet martingale belief functions

As usual, given the filtered belief space (Ω,F, {Fn}
T
n=0, ν), a

rocess {X0, . . . , XT } defined on such space is said to be adapted
if Xn is Fn-measurable, for n = 0, . . . , T .

Definition 3. An adapted process {X0, . . . , XT } on the filtered
belief space (Ω,F, {Fn}

T
n=0, ν) is said to be a:

one-step Choquet martingale if, for n = 0, . . . , T − 1, it holds
that

C[Xn+1|Fn] = Xn.

one-step Choquet super[sub]-martingale if, for n = 0, . . . , T −

1, it holds that

C[Xn+1|Fn] ≤ [≥]Xn.

Choquet martingale if, for every 0 ≤ n ≤ T − 1 and 1 ≤ t ≤

T − n, it holds that

C[Xn+t |Fn] = Xn.

Choquet super[sub]-martingale if, for every 0 ≤ n ≤ T − 1 and
1 ≤ t ≤ T − n, it holds that

C[X |F ] ≤ [≥]X .
n+t n n
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Using the process {B0, . . . , BT } as numeraire, we can define the
iscounted process {S∗

0 , . . . , S
∗

T } setting, for n = 0, . . . , T

∗

n =
Sn
Bn

=
Sn

(1 + r)n
, (28)

which is trivially seen to be adapted.
The following theorem is the analog in the Dempster-Shafer

theory of the classical theorem of change of measure for the prob-
abilistic binomial pricing model (Černý, 2009; Pliska, 1997). In
what follows, analogously to probability theory, a belief function
ν : F → [0, 1] is said to be equivalent to the belief function
ν if, for all A ∈ F , ν(A) = 0 ⇐⇒ ν̂(A) = 0. In particular,
since the reference belief function ν is strictly positive on F \{∅},
an equivalent ν̂ will satisfy the same property. In what follows
C[·|Fn] denotes the conditional Choquet expectation with respect
to ν̂.

Theorem 2. The condition u > 1 + r > d > 0 is necessary
and sufficient to the existence of a belief function ν̂ : F → [0, 1]
equivalent to ν such that the discounted process {S∗

0 , . . . , S
∗

T } on
the filtered belief space (Ω,F, {Fn}

T
n=0, ν̂) satisfies the following

properties:

(a) it is a DS-multiplicative binomial process with transition belief
functions {̂βt : t = 1, . . . , T } satisfying (19) with parameters

u∗
=

u
1 + r

, d∗
=

d
1 + r

, b̂u =
(1 + r) − d

u − d
and b̂d ∈ (0, 1−b̂u],

(b) it is a one-step Choquet martingale, i.e., for n = 0, . . . , T − 1
it holds that

Ĉ[S∗

n+1|Fn] = S∗

n ,

(c) it is a Choquet super-martingale, i.e., for every 0 ≤ n ≤ T − 1
and 1 ≤ t ≤ T − n, it holds that

Ĉ[S∗

n+t |Fn] ≤ S∗

n .

Let us stress that, due to the time-homogeneity and Markov
properties of the process {S∗

0 , . . . , S
∗

T } and the fact that {S∗
n =

s∗n} = {Sn = sn}, properties (b) and (c) of Theorem 2 reduce to

(b’) for n = 0, . . . , T − 1 it holds that

Ĉ[S∗

n+1|S
∗

n ] = S∗

n ,

(c’) for every 0 ≤ n ≤ T − 1 and 1 ≤ t ≤ T − n, it holds that

Ĉ[S∗

n+t |S
∗

n ] ≤ S∗

n .

We also have that the original process {S0, . . . , ST } continues to
be a DS-multiplicative binomial process, seen in the new filtered
belief space (Ω,F , {Fn}

T
n=0, ν̂).

Following the usual terminology of mathematical finance (see,
e.g., Černý, 2009; Pliska, 1997), the belief function ν̂ singled out
by the choice of b̂u and b̂d as in Theorem 2, will be called an
equivalent one-step Choquet martingale belief function or, simply,
risk-neutral belief function. By contrast, the original belief function
ν will be called real-world belief function. We stress that there are
actually infinitely many risk-neutral belief functions, depending
on the choice of b̂d ∈ (0, 1 − b̂u]. The adjective risk-neutral for
such a belief function ν̂ is justified by the fact that the Choquet
expectation at time n of the return of the stock over the period
[n, n + 1] coincides with the risk-free return 1 + r , that is

C
[
Sn+1

Sn
|Fn

]
= 1 + r. (29)

The following corollary is an immediate consequence of the
roof of Theorem 2.
 w

7

Corollary 1. If T > 1 and u > 1 + r > d > 0, then the discounted
process {S∗

0 , . . . , S
∗

T } satisfying the properties (a)–(c) of Theorem 2
urther satisfies the property:

(d) it is a Choquet martingale, i.e., for every 0 ≤ n ≤ T − 1 and
1 ≤ t ≤ T − n, it holds that

Ĉ[S∗

n+t |Fn] = S∗

n ,

f and only if b̂d = 1 − b̂u, that is ν̂ is a probability measure.

It is easily seen that our model subsumes the classical binomial
ricing model reported in Section 2.2, which can be recovered
hen b̂d = 1− b̂u. Giving up on additivity, i.e., for b̂d ∈ (0, 1− b̂u),

we can model bid–ask spreads, but the price we pay is the loss
of the tower property (26) that further implies that composing t
times a one-step model we do not get the same results of a t-step
model.

We point out that we do not require the one-step Choquet
martingale property under the real-world belief function ν, but
we can always obtain a representation of {S0, . . . , ST } as a one-
step Choquet martingale, if we switch to a risk-neutral belief
function ν̂. This last fact will be justified through a suitable
dynamic no-arbitrage condition in Section 6.1.

5. A dynamic pricing rule with bid–ask spreads

Consider the market introduced in Section 4, described by the
processes

{B0, . . . , BT } and {S0, . . . , ST },

defined on the real-world filtered belief space (Ω,F, {Fn}
T
n=0, ν).

We face the problem of finding the lower price of a simple
European-type derivative contract with maturity T , whose under-
lying asset is the stock. Such a contract has payoff at the maturity
T given by

YT = ϕ(ST ), (30)

where ϕ is a suitable contract function defined on the range of ST .
Let b̂u and b̂d as in Theorem 2, determining the risk-neutral belief
function ν̂ and the corresponding risk-neutral filtered belief space
(Ω,F, {Fn}

T
n=0, ν̂).

We define a lower price process for the derivative contract by
setting, for n = 0, . . . , T − 1,

Yn =
1

1 + r
Ĉ[Yn+1|Fn], (31)

here Ĉ[·|Fn] denotes the conditional Choquet expectation with
espect to ν̂. We actually have that, since YT = ϕ(ST ), then
n = ϕn(Sn) where ϕn is a function on the range of Sn, for n =

, . . . , T − 1, and ϕT = ϕ, that is all random variables Yn’s turn
ut to be functions of the corresponding random variables Sn’s.
n particular, by the time-homogeneity and Markov properties of
he process {S0, . . . , ST } under the risk-neutral belief function ν̂,
e get that

n =
1

1 + r
Ĉ[Yn+1|Sn]. (32)

The above construction defines a process {Y0, . . . , YT }, still
adapted to the risk-neutral filtered belief space (Ω,F, {Fn}

T
n=0,

ν).
Using again the process {B0, . . . , BT } as numeraire, we can de-

fine the discounted process {Y ∗

0 , . . . , Y
∗

T } setting, for n = 0, . . . , T

Y ∗

n =
Yn

Bn
=

Yn

(1 + r)n
, (33)

hich is trivially seen to be adapted.
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heorem 3. The discounted process {Y ∗

0 , . . . , Y
∗

T } on the risk-
neutral filtered belief space (Ω,F, {Fn}

T
n=0, ν̂) satisfies the proper-

ies:

(a) it is a one-step Choquet martingale, i.e., for n = 0, . . . , T − 1,
it holds that

Ĉ[Y ∗

n+1|Fn] = Y ∗

n ,

(b) it is a Choquet super-martingale, i.e., for every 0 ≤ n ≤ T − 1
and 1 ≤ t ≤ T − n, it holds that

Ĉ[Y ∗

n+t |Fn] ≤ Y ∗

n ,

(c) it is a Choquet martingale, i.e., for every 0 ≤ n ≤ T − 1 and
1 ≤ t ≤ T − n, it holds that

Ĉ[Y ∗

n+t |Fn] = Y ∗

n ,

when b̂d = 1 − b̂u.

We stress that the condition b̂d = 1 − b̂u is sufficient for the
iscounted process {Y ∗

0 , . . . , Y
∗

T } to be a Choquet martingale but
t is not necessary. To see this, it is enough to take a constant con-
ract function ϕ defined on the range of ST , for which {Y ∗

0 , . . . , Y
∗

T }

is a Choquet martingale, independently of b̂d ∈ (0, 1 − b̂u].
From a financial point of view, the undiscounted process

{Y0, . . . , YT } can be interpreted as the lower price evolution of
the derivative with payoff YT = ϕ(ST ). In turn, such process can
be associated with an upper price process {Y 0, . . . , Y T } under the
assumption that Y T = YT = ϕ(ST ), by setting for n = 0, . . . , T −1,

Y n = −
1

1 + r
Ĉ[−Y n+1|Fn]. (34)

he pair of processes {Y0, . . . , YT } and {Y 0, . . . , Y T } can thus
e used to model the time evolution of bid–ask spreads in a
arket with frictions. We point out that, in the single-period
ase, working with lower prices and upper prices is completely
quivalent. Nevertheless, in our setting, due to the product con-
itioning rule for belief functions, the main focus is on lower
rices, since we pay attention to ν only, and the upper prices
re generated through duality. A different approach would be to
onsider the dual plausibility function ν and the Dempster’s rule
of conditioning, but this would lead to a different model (see
Remark 1).

Since our model subsumes the classical binomial pricing
model reported in Section 2.2, the choice b̂d = 1 − b̂u, which
expresses absence of frictions in the market, turns out to be
consistent. In this particular case lower and upper price processes
coincide, and we can simply speak of a price process.

Proposition 4. The following statements hold:

(i) Yn ≤ Y n, for n = 0, . . . , T ;
(ii) if ϕ is non-decreasing then the lower price process {Y0, . . . , YT }

does not depend on the choice of b̂d ∈ (0, 1 − b̂u];
(iii) if ϕ is non-increasing then the upper price process {Y 0, . . . ,

Y T } does not depend on the choice of b̂d ∈ (0, 1 − b̂u].

The following toy example shows the explicit computation of
bid–ask price processes for a European put option.

Example 3. Let T = 3, r = 0.04, S0 = e100, u = 1.2, d = 0.8,
and consider a European put option on the stock with maturity T
and strike price K = e100, whose final payoff is

PT = max{K − ST , 0}.

In this case we have b̂u = 0.6 and b̂d ∈ (0, 0.4]. Fig. 1
shows the binomial tree representation of lower and upper price
processes {P , P , P , P } and {P , P , P , P } for b̂ = 0.4 · 0.999.
0 1 2 3 0 1 2 3 d

8

Fig. 1. Binomial tree representation of lower and upper price processes
{P0, P1, P2, P3} and {P0, P1, P2, P3} for b̂d = 0.4 · 0.999.

Fig. 2. Bid–ask spread P0 − P0 as a function of ϵ ∈ (0, 1].

Setting b̂d = 0.4ϵ, we have that

P0 =
11.136ϵ2 − 1.3312ϵ3

(1.04)3
and

P0 =
3 · 0.6 · 0.42

· 23.2 + 0.43
· 48.8

(1.04)3
,

where P0 does not depend on ϵ by Proposition 4. Fig. 2 shows the
raph of the bid–ask spread P0 − P0 as a function of ϵ ∈ (0, 1].

We point out that another possibility for defining a lower price
rocess is to set Y T = ϕ(ST ) and, for n = 0, . . . , T − 1, define

Y n =
1

(1 + r)T−n Ĉ[Y T |Fn]. (35)

The resulting lower price process {Y 0, . . . , Y T } coincides with
{Y , . . . , Y } if b̂ = 1 − b̂ , while in general we have Y ≤ Y ,
0 T d u n n
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Ĉ

p
a
f
i
i
o

6

6
c

t
w
t
t
e
p

b
l
e
t
m
c
m

p
a
f
a
Ĉ
f

w
Y
s

{
w
c

λ

T
s
h

Y

T
t
o

a

A

A

i

y virtue of Theorem 2. The fact that {Y 0, . . . , Y T } gives rise to
a greater dilation in lower prices makes us favor the one-step
approach given by (31). On the other hand, the lower price pro-
cess defined through (35) assures that a dynamic version of the
put–call parity relation introduced in Cerreia-Vioglio et al. (2015)
(see also Bastianello et al., 2022) is satisfied. Indeed, denoting
by CT = max{ST − K , 0} and PT = max{K − ST , 0} the payoffs
f European call and put options on ST with strike price K , the
ecomposition

T − PT = ST − K (36)

nd the comonotonic additivity of Ĉ[·|Fn] imply that

[CT |Fn] + Ĉ[−PT |Fn] = Ĉ[ST |Fn] − K (37)

which, after discounting, reduces to

Cn +
Ĉ[−PT |Fn]

(1 + r)T−n = Sn −
K

(1 + r)T−n , (38)

where Cn, Sn refer to (35). Let us stress that, since the lower stock
rice process under ν̂ is only a Choquet super-martingale, we
ctually have that Sn ≤ Sn. However, under ambiguity, different
orms of put–call parity relations arise: for instance, the form
ntroduced in Chateauneuf et al. (1996) is generally not satisfied
n our framework (see also Bastianello et al., 2022), as it holds
nly when ν̂ is additive, i.e., in absence of frictions.

. Discussion

.1. A dynamic no-arbitrage condition under partially resolving un-
ertainty

The construction carried out in the previous section subsumes
he classical linear formulation, obtained when we restrict to
ork with additive belief functions. In this case, we get back
o probability theory where the conditional Choquet expecta-
ion operator defined in (24) reduces to the classical conditional
xpectation operator, which is linear and satisfies the tower
roperty.
The classical construction recalled in Section 2.2 is intrinsically

ased on the additivity of ν and ν̂. Indeed, in case of additive be-
ief functions, the one-step Markov and time-homogeneity prop-
rties imply the general Markov and time-homogeneity proper-
ies. The same also holds for the one-step martingale and general
artingale properties. From a normative point of view, additivity
an be justified in order to ensure price linearity which is a
aterialization of absence of frictions in the market.
On the other hand, real markets are quite far from being

erfect as they can show frictions, mainly in the form of bid–
sk spreads (Amihud and Mendelson, 1986, 1991). If we allow
rictions in the market, i.e., we give up on the additivity of ν
nd ν̂, the above construction necessarily breaks down since
[·|Fn] is not linear and does not satisfy the tower property. In
inancial terms, the lack of linearity of Ĉ[·|Fn] translates in the
lack of duality between the direct definition of the lower price
process {Y0, . . . , Yn} as a discounted Choquet expectation and
the replicating portfolio representation. Furthermore, the failure
of the tower property implies that working on single periods
[n, n + 1] is not equivalent to working on larger periods.

Here, we provide a detailed analysis of implications due to the
lack of additivity. If we assume ν and ν̂ are non-additive belief
functions, i.e., bd ∈ (0, 1−bu) and b̂d ∈ (0, 1−b̂u), then we can still
define the lower price process {Y0, . . . , YT } of a simple derivative
ith payoff YT = ϕ(ST ) through (31), for which we have that
n = ϕn(Sn) with ϕn : Sn → R. In order to have a replicating
trategy, in every period [n, n + 1], working conditionally on the
9

history of the stock lower price process up to time n, the random
vector λn = (λ0n, λ

1
n) must be chosen by solving the linear system

λ0n(1 + r)Bn + λ1nuSn = ϕn+1(uSn),
λ0n(1 + r)Bn + λ1ndSn = ϕn+1(dSn),

(39)

hich has a unique solution. In turn, the replication constraint
an be compactly rewritten as
0
nBn+1 + λ1nSn+1 = Yn+1. (40)

he lack of linearity of Ĉ[·|Fn] implies that the resulting trading
trategy {λ0, . . . ,λT } is generally not self-financing as we may
ave

n =
1

1 + r
Ĉ[Yn+1|Fn]

=
1

1 + r
Ĉ[λ0nBn+1 + λ1nSn+1|Fn]

=
1

1 + r

(
λ0n(1 + r)Bn + Ĉ[λ1nSn+1|Fn]

)
= λ0nBn +

1
1 + r

Ĉ[λ1nSn+1|Fn]

̸= λ0nBn + λ1nSn = Πλ
n ,

where Ĉ[λ1nSn+1|Fn] ̸= λ1nĈ[Sn+1|Fn] unless λ1n ≥ 0. This shows
that we generally lose the replicating strategy representation of
the lower price process.

On the other hand, by virtue of Theorem 3, the failure of the
tower property of Ĉ[·|Fn] implies that the discounted process
{Y ∗

0 , . . . , Y
∗

T } is only a one-step Choquet martingale and a Choquet
super-martingale, but it is generally not a Choquet martingale. In
particular, we only have that

Y0 ≥
1

(1 + r)T
Ĉ[YT |F0]. (41)

We now investigate further how the choice of b̂d ∈ (0, 1− b̂u)
can be justified from a normative point of view. Indeed, as already
highlighted, the classical no-arbitrage principle is inconsistent
with this choice, as the only admissible choice is to set b̂d = 1−b̂u.
o see this, we reformulate the no-arbitrage condition restricting
o every single period [n, n+1]. At this aim, working conditionally
n the history {S0 = s0, . . . , Sn = sn}, we can define the events

U(sn) = {Sn+1 = usn} and D(sn) = {Sn+1 = dsn}, which are
functions of the value Sn can take, thus we can write U(Sn) and
D(Sn) to stress this fact. In turn, the one-period market formed
by the bond and the stock over [n, n + 1] can be augmented by
dding the artificial securities whose payoff at time n + 1 is
u
n+1 = 1U(Sn) and Ad

n+1 = 1D(Sn), (42)

that turn out to be Arrow–Debreu securities (Černý, 2009). Pricing
through (31), the prices at time n of Arrow–Debreu securities are
set equal to

Au
n =

1
1 + r

Ĉ[Au
n+1|Fn] =

b̂u
1 + r

, (43)

d
n =

1
1 + r

Ĉ[Ad
n+1|Fn] =

b̂d
1 + r

. (44)

In the augmented one-period market over [n, n+1], a portfolio
s a vector δn = (δ0n, δ

1
n, δ

2
n, δ

3
n), where the δin’s are Fn-measurable

random variables expressing, respectively, the number of units of
bond, stock and Arrow–Debreu’s securities to buy (if positive) or
short-sell (if negative) at time n up to time n + 1. Furthermore,
we can define a local price process {π δ

n , π
δ
n+1} associated with δn

over [n, n + 1] by defining the random variables

π δ
= δ0B + δ1S + δ2Au

+ δ3Ad, (45)
n n n n n n n n n
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δ
n+1 = δ0nBn+1 + δ1nSn+1 + δ2nA

u
n+1 + δ3nA

d
n+1. (46)

iven the history {S0 = s0, . . . , Sn = sn}, U(sn) and D(sn) form a
artition of each event {Sn = sn}, moreover, the random variables
π δ
n and π δ

n+1 can be simply regarded as functions with domain
W(sn) = {U(sn),D(sn)}, where π δ

n is actually constant over W(sn).
If we are at time n, the tacit assumption of the classical no-

rbitrage condition concerning time n + 1 is to work under
ompletely resolving uncertainty. This means that, given the his-
tory {S0 = s0, . . . , Sn = sn}, at time n + 1 the market agent will
be always able to determine which one between the mutually
exclusive events U(sn) and D(sn) has occurred. In this setting,
we define a one-step arbitrage opportunity as a portfolio δn that
satisfies one of the following two conditions, where comparisons
are intended over W(sn) given the history {S0 = s0, . . . , Sn = sn}:

(a’) π δ
n < 0 and π δ

n+1 = 0;
(b’) π δ

n ≤ 0 and π δ
n+1 ≥ 0 with π δ

n+1 ̸= 0.

t is easily shown that the absence of one-step arbitrage oppor-
unities is equivalent to u > 1 + r > d > 0, b̂u =

(1+r)−d
u−d and

b̂d = 1− b̂u. In turn, this is equivalent to the classical no-arbitrage
condition and, therefore, to the existence of a unique strictly
positive additive risk-neutral belief function ν̂ that reduces to the
already quoted probability measure P̂ .

Hence, choosing b̂d ∈ (0, 1 − b̂u) we can always build a
one-step arbitrage opportunity. Therefore, to justify the choice
of b̂d ∈ (0, 1 − b̂u) from a normative point of view, we need
to generalized the one-step no-arbitrage condition by working
under partially resolving uncertainty, as done in Cinfrignini et al.
(2023). The concept of partially resolving uncertainty goes back
to Jaffray (1989) and in the present context means that, given the
history {S0 = s0, . . . , Sn = sn}, at time n+1 the market agent may
not be able to determine which one between the two mutually
exclusive events U(sn) and D(sn) has occurred. Thus, he/she needs
to consider the set of all the possible pieces of information he/she
may acquire once uncertainty is resolved at time n+1 which form
he set U(sn) = {U(sn),D(sn),U(sn) ∪ D(sn)}.

To address partially resolving uncertainty, the local price pro-
cess needs to be changed to {π̃ δ

n , π̃
δ
n+1} by defining its compo-

ents as functions defined over U(sn) instead of over W(sn), given
he history up to time n. To do so, we notice that, given the history
p to time n, Bn, Sn, Au

n, A
d
n as well as Bn+1, Sn+1, Au

n+1, A
d
n+1 can be

een as functions with domain W(sn). Given a function X defined
n W(sn), the market agent adopts a systematically pessimistic
ehavior under partially resolving uncertainty if he/she considers
n place of X the quantity [X]

L defined on U(sn) by setting, for
very E ∈ U(sn)

X]
L(E) = min{X(F ) : F ⊆ E, F ∈ W(sn)}. (47)

e finally define

π̃ δ
n = δ0n[Bn]

L
+ δ1n[Sn]

L
+ δ2n[A

u
n]

L
+ δ3n[A

d
n]

L, (48)

˜
δ
n+1 = δ0n[Bn+1]

L
+ δ1n[Sn+1]

L
+ δ2n[A

u
n+1]

L
+ δ3n[A

d
n+1]

L. (49)

lso in this case, π̃ δ
n is actually constant over U(sn).

In agreement with Cinfrignini et al. (2023), we define a gener-
lized one-step arbitrage opportunity a portfolio δn that satisfies
ne of the following two conditions, where comparisons are
ntended over U(sn) given the history {S0 = s0, . . . , Sn = sn}:

(a’’) π̃ δ
n < 0 and π̃ δ

n+1 ≥ 0 with π̃ δ
n+1 = 0 over W(sn);

(b’’) π̃ δ
n ≤ 0 and π̃ δ

n+1 ≥ 0 with π̃ δ
n+1 ̸= 0 over W(sn).

s an immediate consequence of Theorem 5 in Cinfrignini et al.
2023), avoiding generalized one-step arbitrage opportunities

s equivalent to the existence of a conditional belief function

10
ν(·|S0 = s0, . . . , Sn = sn) defined on the ring generated by W(sn)
such that

ν(Sn+1 = usn|S0 = s0, . . . , Sn = sn) = b̂u, (50)
ν(Sn+1 = dsn|S0 = s0, . . . , Sn = sn) = b̂d, (51)

1
1 + r

Ĉ[Sn+1|S0 = s0, . . . , Sn = sn] = sn. (52)

In other terms, the choice of b̂d ∈ (0, 1− b̂u) is consistent with the
generalized one-step no-arbitrage condition, i.e., it does not pro-
duce generalized one-step arbitrage opportunities. It is important
to notice that abandoning additivity we lose the self-financing
property and, therefore, dynamic completeness. We also stress
that in the additive case the one-step no-arbitrage principle alone
assures the uniqueness of the global P̂ defined on the whole F . On
the other hand, this is not the case for the generalized one-step
no-arbitrage principle since we generally have infinitely many
non-additive risk-neutral belief functions ν̂ compatible with the
fixed one-step transition belief functions.

6.2. Induced dynamic risk measures and time-consistency

Consider {B0, . . . , BT } and {S0, . . . , ST }, where the latter is
a DS-multiplicative binomial process on (Ω,F, {Fn}

T
n=0, ν). The

real-world belief function ν and the associated conditional Cho-
quet expectation operator C[·|Fn] allow us to define a dynamic
risk measure by setting, for n = 0, . . . , T and all XT ∈ RΩ ,

n(XT ) = −
1

(1 + r)T−nC[XT |Fn], (53)

where XT is taken as a risky position at time T . In turn, this im-
plies that ρn is an Fn-measurable, positively homogeneous, trans-
lation invariant, monotone and sub-additive conditional operator,
that is, for n = 0, . . . , T :

(i) ρn(XT ) is an Fn-measurable random variable, for all XT ∈

RΩ ;
(ii) ρn(λXT ) = λρn(XT ), for all XT , λ ∈ RΩ where λ is Fn-

measurable and λ ≥ 0;
(iii) ρn(XT + α) = ρn(XT ) −

α

(1+r)T−n , for all XT , α ∈ RΩ where α
is Fn-measurable;

(iv) ρn(XT ) ≥ ρn(YT ), for all XT , YT ∈ RΩ with XT ≤ YT ;
(v) ρn(XT + YT ) ≤ ρn(XT ) + ρn(YT ), for all XT , YT ∈ RΩ .

The above properties imply that the family {ρn}
T
n=0 is a coherent

dynamic risk measure according to Riedel (2004), where we
restrict to risky positions that can be non-null only at time T .
Noticing that ρT (XT ) = −XT , for T = 1, then ρ0 reduces to a
static coherent risk measure in the sense of Artzner et al. (1999).

Following Epstein and Schneider (2003) in the axiomatization
of inter-temporal multiple-priors utility (see also Amarante and
Siniscalchi, 2019), the notion of time (or dynamic) consistency can
be formulated for {ρn}

T
n=0. In particular, as in Cheridito and Stadje

(2009), we say that {ρn}
T
n=0 is time-consistent if for n = 0, . . . , T−

1 and XT , YT ∈ RΩ ,

ρn+1(XT ) ≥ ρn+1(YT ) implies ρn(XT ) ≥ ρn(YT ). (54)

The next example shows that the coherent dynamic risk mea-
sure {ρn}

T
n=0 built through a DS-multiplicative binomial process

is generally not time-consistent.

Example 4. Let T = 2, u > d > 0, s0 > 0, bu = bd =
1
4 , 1+r = 1

and consider the DS-multiplicative binomial process {S0, S1, S2}
and the random variables X2, Y2, Z2 on Ω = {1, 2, 3, 4} reported
below
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2 01 s0 ds0 uds0 1 2 4
1 00 s0 ds0 d2s0 1 1

6
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Taking n = 0, we have that

[X2|F0](ω) = C[X2|F1](ω) = C[Y2|F1](ω) = 1, for all ω ∈ Ω,

C[Y2|F0](ω) =
19
48
, for all ω ∈ Ω,

herefore, we get ρ1(X2) = ρ1(Y2) but ρ0(X2) < ρ0(Y2), so
qualities are not preserved. Moreover, since

[Z2|F1](ω) =
11
8
, for all ω ∈ Ω,

[Z2|F0](ω) =
15
16
, for all ω ∈ Ω,

e have that ρ1(X2) > ρ1(Z2) but ρ0(X2) < ρ0(Z2), so inequalities
an even be inverted.

Actually, the failure of time-consistency is not surprising and is
recisely due to the product conditioning rule for belief functions
3). Indeed, this has been already highlighted in Petturiti and Van-
aggi (2022) in terms of conditional preferences in a generalized
nscombe–Aumann setting under Dempster-Shafer uncertainty.
The failure of time-consistency is a well-known problem in

isk measurement (see, e.g., Cheridito and Stadje, 2009): such
roperty is known to hold when {ρn}

T
n=0 can be expressed in

terms of a closed and convex set P of probability measures on
F , satisfying a suitable version of the tower property, called rect-
angularity in Epstein and Schneider (2003) or consistency in Riedel
(2004). In this setting, conditioning is intended element-wise
on P by relying on the classical Bayesian conditioning rule for
probabilities.

In our setting we can refer to P = core(ν) but we consider
the product conditioning rule (3) that only pays attention to the
lower envelope ν and not to the elements of P (see Remark 1).
On one hand, our approach gives rise to an easy parameterization
of the family of transition belief functions {βt : t = 1, . . . , T }

and, therefore, of the conditional Choquet expectation operator.
On the other hand, the resulting conditional Choquet expectation
operator is generally not the lower envelope of the set of condi-
tional expectation operators obtained from P as in Epstein and
Schneider (2003), Riedel (2004) and, further, it fails the tower
property (26). Hence, in our setting, under the definition (54),
time-consistency holds when bd = 1 − bu.

Nevertheless, following Cheridito and Stadje (2009), time-
consistency can be recovered in our setting by composing one-
period risk measures over time. This gives rise to the dynamic risk
measure {ρC

n }
T
n=0 defined, for n = 0, . . . , T − 1 and all XT ∈ RΩ ,

as

ρC
n (XT ) = −

1
1 + r

C[−ρC
n+1(XT )| Fn], (55)

here ρC
T (XT ) := −XT . In this case, {ρC

n }
T
n=0 is easily verified

to satisfy the properties (i)–(v) above and to be time-consistent
by construction. Therefore, {ρC

n }
T
n=0 is a time-consistent coherent

dynamic risk measure.
If we refer to a risk-neutral belief function ν̂ according to

Theorem 3, then the dynamic risk measures {̂ρn}
T
n=0 and {̂ρC

n }
T
n=0,

computed with respect to ν̂ and Ĉ[·|Fn] as in (53) and (55), give
rise to two dynamic lower pricing rules {Ψ̂ C

n }
T
n=0 and {Ψ̂n}

T
n=0

obtained, for all YT ∈ RΩ , as

Ψ̂ C
n (YT ) = −ρ̂C

n (YT ) and Ψ̂n(YT ) = −ρ̂n(YT ), (56)

that actually correspond to Eqs. (31) and (35), respectively. The
previous discussion, shows that {Ψ̂ C

}
T always satisfies the
n n=0

11
analog of property (54), while {Ψ̂n}
T
n=0 does not. In turn, time-

consistency is another motivation in favor of the lower pricing
rule {Ψ̂ C

n }
T
n=0 generated through (31).

7. Conclusion

We introduce the novel notion of DS-multiplicative binomial
process and use it to build a bid–ask pricing model. All the
construction relies on the product rule of conditioning for belief
functions (3), that leads to a nice parameterization of the re-
sulting conditional Choquet expectation operator. The proposed
pricing model subsumes the classical binomial pricing model,
which is extended in a way to allow for frictions in the market.
Many properties of the additive case are preserved, while the
general failure of the tower property (26) implies the failure
of the Chapman–Kolmogorov equations and the usual dynamic
programming approach. Nevertheless, the one-step construction
allows us to preserve time-consistency.

This pricing model, though simple, can be easily calibrated on
market data, due to its significant parameterization. Nevertheless,
the research carried out in this paper naturally looks towards
more complex models, whose development is reserved to the
future. Below we report some of the possible future expansions
of the present model:

• Define a more complex market model where more stocks
evolve as DS-multiplicative binomial processes. This would
require to express dependencies between the processes by
referring, for instance, to a suitable notion of correlation for
belief functions (Jiang, 2018).

• Define a DS-multiplicative n-nomial process where the stock
is allowed to have n ≥ 2 future developments after one
step. This would require to define and characterize a suitable
family of ‘‘canonical’’ transition belief functions, in analogy
with (19).

• Consider the convergence of a DS-multiplicative binomial
process in continuous time. This would require to recur to
results on Choquet weak convergence in a way to get a sort
of DS-geometric Brownian motion in the limit (Feng and
Nguyen, 2007).
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roof of Proposition 1. Define µt : P(At ) → [0, 1] setting, for
= 0, . . . , t ,

t ({ak}) =

(
t
k

)
bkub

t−k
d , (A.1)

or j = 1, . . . , t and k = 0, . . . , t − j,

µt ([ak, ak+j]) =

(
t − j
k

)
bkub

t−j−k
d (1 − (bu + bd)), (A.2)

and µt is 0 otherwise. The function µt is easily seen to range in
[0, 1], moreover we have that it sums up to 1 since
t∑

k=0

µt ({ak}) +

t∑
j=1

t−j∑
k=0

µt ([ak, ak+j])

= (bu + bd)t +

t∑
j=1

(bu + bd)t−j(1 − (bu + bd)) = 1.

Finally, the claim follows since, for all A ∈ P(At ), we have that

βt (A) =

∑
ak∈A

µt ({ak}) +

∑
[ak,ak+j]⊆A

j≥1

µt ([ak, ak+j]),

that is µt is the Möbius inverse of the belief function βt . □

Proof of Theorem 1. Let µ : F → [0, 1] be such that:

(a) µ({S0 = s0, . . . , ST = sT }) = bkub
T−k
d , for sT = ukdT−ks0 ∈ ST ;

(b) µ({S0 = s0, . . . , Sn = sn}) = bkub
n−k
d (1 − (bu + bd)), for

0 < n < T and sn = ukdn−ks0 ∈ Sn;
(c) µ({S0 = s0}) = µ(Ω) = 1 − (bu + bd);
(d) µ is zero otherwise.

We prove statement (i). We have that µ(B) ≥ 0, for all B ∈ F ,
moreover

•
∑

sT∈ST
µ({S0 = s0, . . . , ST = sT }) = (bu + bd)T ,

• for all 0 < n < T ,
∑

sn∈Sn
µ({S0 = s0, . . . , Sn = sn}) =

(bu + bd)n(1 − (bu + bd)),
• µ({S0 = s0}) = µ(Ω) = 1 − (bu + bd),

while µ is zero otherwise. Hence, we get that∑
B∈F

µ(B) = (bu + bd)T

+

∑
0<n<T

(bu + bd)n(1 − (bu + bd)) + (1 − (bu + bd)) = 1,

that is µ is the Möbius inverse of a belief function. Moreover,
since elements of Ω can be identified with the trajectories on the
binomial tree, i.e., with events {S0 = s0, . . . , ST = sT }, µ is such
that µ({ω}) > 0, for all ω ∈ Ω . In turn, this implies that ν is such
that ν(B) > 0, for every B ∈ F \ {∅}.

We prove statement (ii). For every 0 ≤ n ≤ T , we let sn =

ukdn−ks0 ∈ Sn and prove that

ν(S0 = s0, S1 = s1, . . . , Sn = ukdn−ks0) = bkub
n−k
d . (A.3)

In order to get the events with strictly positive µ contained in the
event {S0 = s0, S1 = s1, . . . , Sn = ukdn−ks0}, the corresponding
partial trajectory on the binomial tree must be completed for the
remaining T−n times indexed by l with l = T−n, T−n−1, . . . , 0,
working backward.

For l = T−n we have to add iT−n = 0, . . . , T−n movements to
the state of the random variable S . For a fixed i , by summing
n T−n

12
over all the possible completions of the trajectory, we have that∑
sn+1,...,sT−1

µ(S0 = s0, . . . , Sn = ukdn−ks0, . . . , ST

= uk+iT−ndn−k+(T−n)−iT−ns0)

=

(
T − n
iT−n

)
bk+iT−n
u bn−k+(T−n)−iT−n

d .

Then, summing over iT−n we have that
T−n∑

iT−n=0

(
T − n
iT−n

)
bk+iT−n
u bn−k+(T−n)−iT−n

d . (A.4)

For a generic 0 ≤ l ≤ T − n − 1 we need to add il = 0, . . . , l
movements to the state of the random variable Sn. For a fixed il,
by summing over all the possible completions of the trajectory,
we have that∑
sn+1,...,sn+l−1

µ(S0 = s0, . . . , Sn = ukdn−ks0, . . . , Sn+l = uk+ildn−k+l−il s0)

=

(
l
il

)
bk+il
u bn−k+l−il

d (1 − (bu + bd)).

Then, summing over il we have that
l∑

il=0

(
l
il

)
bk+il
u bn−k+l−il

d (1 − (bu + bd)). (A.5)

Therefore we obtain that

ν(S0 = s0, S1 = s1, . . . , Sn = ukdn−ks0)

=

T−n∑
iT−n=0

(
T − n
iT−n

)
bk+iT−n
u bn−k+(T−n)−iT−n

d

+

T−n−1∑
l=0

l∑
il=0

(
l
il

)
bk+il
u bn−k+l−il

d (1 − (bu + bd))

= bkub
n−k
d

[
(bu + bd)T−n

+ (1 − (bu + bd))
T−n−1∑
l=0

(bu + bd)l
]

= bkub
n−k
d .

Now we prove that

ν(Sn = ukdn−ks0) =

(
n
k

)
bkub

n−k
d . (A.6)

Eq. (A.4) considers the trajectory from time n to time T , having
fixed the part before n. Summing over all the possible comple-
tions of the trajectory before time n, we get(
n
k

) T−n∑
iT−n=0

(
T − n
iT−n

)
bk+iT−n
u bn−k+(T−n)−iT−n

d .

Analogously, for a generic 0 ≤ l ≤ T − n − 1, Eq. (A.5) considers
the trajectory from time n to time n + l, having fixed the part
before n. For a fixed l, summing over all the possible completions
of the trajectory before time n, we get(
n
k

) l∑
il=0

(
l
il

)
bk+il
u bn−k+l−il

d (1 − (bu + bd)).

Hence, we obtain

ν(Sn = ukdn−ks0)

=

(
n
k

) T−n∑ (
T − n
iT−n

)
bk+iT−n
u bn−k+(T−n)−iT−n

d

iT−n=0
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+

T−n−1∑
l=0

(
n
k

) l∑
il=0

(
l
il

)
bk+il
u bn−k+l−il

d (1 − (bu + bd))

=

(
n
k

)
bkub

n−k
d .

Now let 1 ≤ t ≤ T − n and A ⊆ At = {ah = uhdt−h
:

h = 0, . . . , t}. Let µt be the Möbius inverse of βt defined in
roposition 1 through (A.1) and (A.2). We prove that

({Sn+t ∈ Aukdn−ks0} ∩ {S0 = s0, . . . , Sn = ukdn−ks0}) = bkub
n−k
d βt (A).

(A.7)

If ah ∈ A, summing over the partial trajectories from time n+1
o time n + t − 1, we get that∑
n+1,...,sn+t−1

µ(S0 = s0, . . . , Sn = ukdn−ks0, . . . , Sn+t = uh+kdn+t−(h+k)s0)

=

(
t
h

)
bh+k
u bn+t−(h+k)

d

= bkub
n−k
d µt ({ah}).

If j ≥ 1 and [ah, ah+j] ⊆ A, summing over the partial
trajectories from time n + 1 to time n + t − j − 1, we get that∑
sn+1,...,sn+t−j−1

µ(S0 = s0, . . . , Sn = ukdn−ks0, . . . , Sn+t−j

= uh+kdn+t−j−(h+k)s0)

=

(
t − j
h

)
bh+k
u bn+t−j−(h+k)

d (1 − (bu + bd))

= bkub
n−k
d µt ([ah, ah+j]).

Hence

ν({Sn+t ∈ Aukdn−ks0} ∩ {S0 = s0, . . . , Sn = ukdn−ks0})

=

∑
ah∈A

(
t
h

)
bh+k
u bn+t−h−k

d

+

∑
[ah,ah+j]⊆A

j≥1

(
t − j
h

)
bh+k
u bn+t−j−h−k

d (1 − (bu + bd))

= bkub
n−k
d

⎡⎢⎢⎣∑
ah∈A

µt ({ah}) +

∑
[ah,ah+j]⊆A

j≥1

µt ([ah, ah+j])

⎤⎥⎥⎦
= bkub

n−k
d βt (A).

Proceeding in analogy with the derivation of Eq. (A.6) we get
that

ν({Sn+t ∈ Aukdn−ks0} ∩ {Sn = ukdn−ks0}) =

(
n
k

)
bkub

n−k
d βt (A). (A.8)

Finally, Markovianity and time-homogeneity follow from
Eqs. (A.1), (A.2), (A.6), (A.7) and (A.8) since we obtain

ν(Sn+t ∈ Aukdn−ks0|S0 = s0, . . . , Sn = ukdn−ks0)
= ν(Sn+t ∈ Aukdn−ks0|Sn = ukdn−ks0)
= βt (A). □

Proof of Proposition 3. Conditionally on {Sn = sn}, the random
variable Sn+t takes values in Atsn and has belief distribution given
by βt on P(At ). Let µt be the Möbius inverse of βt defined in
Proposition 1 through (A.1) and (A.2). The general expression of
C[ϕ(Sn+t )|Sn = sn] easily follows by the properties of the Choquet
integral (see, e.g., Denneberg, 1994; Gilboa and Schmeidler, 1994;
13
Grabisch, 2016). We have that

C[ϕ(Sn+t )|Sn = sn] = C
∫
ϕ(Sn+t (ω))dν(ω|Sn = sn)

= C
∫
At

ϕ(asn)dβt (a)

=

t∑
h=0

ϕ(ahsn)µt ({ah})

+

t∑
j=1

t−j∑
h=0

[
min

ai∈[ah,ah+j]
ϕ(aisn)

]
µt ([ah, ah+j]),

and the claim follows by (A.1) and (A.2). The special cases of a
non-decreasing or non-increasing ϕ(x) are obtained by computing
minima and gathering terms. Finally, the equality C[ϕ(Sn+t )|S0 =

s0, . . . , Sn = sn] = C[ϕ(Sn+t )|Sn = sn] follows by the time-
homogeneity and Markov properties of the process. □

Proof of Theorem 2. We prove only sufficiency as necessity is
readily verified. Hence, suppose u > 1 + r > d > 0. Property (a)
follows immediately, by taking the discounted ‘‘up’’ and ‘‘down’’
coefficients u∗

=
u

1+r and d∗
=

d
1+r and taking

b̂u =
(1 + r) − d

u − d
and b̂d ∈ (0, 1 − b̂u].

Property (b) follows by Proposition 3, noticing that {S∗

0 =
∗

0, . . . , S
∗
n = s∗n} = {S0 = s0, . . . , Sn = sn}, since

Ĉ[S∗

n+1|S
∗

0 = s∗0, . . . , S
∗

n = s∗n]

= d∗s∗n[b̂d + 1 − (b̂u + b̂d)] + u∗s∗nb̂u

= s∗n

[
d(u − (1 + r))
(1 + r)(u − d)

+
u((1 + r) − d)
(1 + r)(u − d)

]
= s∗n.

We prove property (c) by conditioning on {S∗

0 = s∗0, . . . , S
∗
n =

∗
n}. By Proposition 3, we have that

[S∗

n+t |S
∗

0 = s∗0, . . . , S
∗

n = s∗n] =

t∑
h=0

δhu∗hd∗t−hs∗n,

where δ0, . . . , δt ≥ 0 and
∑t

h=0 δh = 1, and the δh’s are defined,
for h = 0, . . . , t , as

δh =

(
t
h

)
b̂u

h
b̂d

t−h
+

t−h∑
j=1

(
t − j
h

)
b̂u

h
b̂d

t−j−h
(1 − (b̂u + b̂d)),

in which the second summation is 0 for h = t . Moreover, by well-
known results on the classical binomial model (see, e.g., Černý,
2009; Pliska, 1997) we have that

s∗n =

t∑
h=0

αhu∗hd∗t−hs∗n,

where α0, . . . , αt ≥ 0 and
∑t

h=0 αh = 1, and the αh’s are defined,
for h = 0, . . . , t , as

αh =

(
t
h

)
b̂u

h
(1 − b̂u)t−h.

If b̂d = 1 − b̂u, then δh = αh, for h = 0, . . . , t , and so

C[S∗

n+t |S
∗

0 = s∗0, . . . , S
∗

n = s∗n] = s∗n.

Thus, suppose b̂d ∈ (0, 1 − b̂u). If t = 1, then by property (b)
we still have that Ĉ[S∗

n+1|S
∗

0 = s∗0, . . . , S
∗
n = s∗n] = s∗n. Therefore,

suppose t > 1. In this case, after a straightforward algebraic
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anipulation we have that, for h = 0, . . . , t − 1,

δh = b̂u
h

⎧⎨⎩
t−h∑
j=1

[(
t − j + 1

h

)
−

(
t − j
h

)]
b̂d

t−j−h+1

+ 1 − b̂u
t−h∑
j=1

(
t − j
h

)
b̂d

t−j−h

⎫⎬⎭
and δt = b̂u

t
. From this, since b̂d < 1 − b̂u, we get that

δ0 = 1 − b̂u
t∑

j=1

b̂d
t−j
> 1 − b̂u

t∑
j=1

(1 − b̂u)t−j
= α0,

moreover,

δ0 + δ1 = 1 − b̂u
t∑

j=1

b̂d
t−j

+ b̂u

⎧⎨⎩
t−1∑
j=1

b̂d
t−j

+ 1 − b̂u
t−1∑
j=1

(t − j)b̂d
t−j−1

⎫⎬⎭
= 1 − b̂u

2
t−1∑
j=1

(t − j)b̂d
t−j−1

> 1 − b̂u
2

t−1∑
j=1

(t − j)(1 − b̂u)t−j−1
= α0 + α1.

More generally, for k = 0, . . . , t − 2, we have that
k∑

h=0

δh = 1 − b̂u
k+1

t−k∑
j=1

(
t − j
k

)
b̂d

t−j−k

> 1 − b̂u
k+1

t−k∑
j=1

(
t − j
k

)
(1 − b̂u)t−j−k

=

k∑
h=0

αh,

while we get that
t−1∑
h=0

δh = 1 − b̂u
t

=

t−1∑
h=0

αh,

t∑
h=0

δh = 1 =

t∑
h=0

αh.

Hence, we have shown that δ0, . . . , δt and α0, . . . , αt are
probability distributions on Atsn such that α0, . . . , αt first-order
stochastically dominates δ0, . . . , δt . In turn, this implies that

C[S∗

n+t |S
∗

0 = s∗0, . . . , S
∗

n = s∗n] < s∗n,

and this concludes the proof. □

Proof of Theorem 3. Property (a) is an immediate consequence
of (33) and the positive homogeneity property of the conditional
Choquet expectation, indeed

Y ∗

n =
Yn

(1 + r)n
=

1
(1 + r)n

1
1 + r

Ĉ[Yn+1|Fn]

= Ĉ
[

Yn+1

(1 + r)n+1 |Fn

]
= Ĉ[Y ∗

n+1|Fn].

We prove property (b). Due to its definition, the discounted
process {Y ∗

0 , . . . , Y
∗

T } can be expressed as Y ∗
n = ψn(Sn) for a

suitable ψn : Sn → R, for n = 0, . . . , T , where ψT (ST ) =
ϕ(ST )
(1+r)T

.
ix 0 ≤ n ≤ T − 1, 1 ≤ t ≤ T − n, and s ∈ S . By Proposition 3,
n n

14
it holds that

C[Y ∗

n+t |Sn = sn] =

t∑
h=0

µt ({ah})ψn+t (ahsn)

+

t∑
j=1

t−j∑
h=0

µt ([ah, ah+j]) min
ai∈[ah,ah+j]

ψn+t (aisn)

e also have that, for j = 0, . . . , t − 1 and sn+j ∈ Sn+j

n+j(sn+j) = b̂dψn+j+1(dsn+j) + b̂uψn+j+1(usn+j)
+min{ψn+j+1(dsn+j), ψn+j+1(usn+j)}(1 − (b̂u + b̂d)).

ince

in{ψn+j+1(dsn+j), ψn+j+1(usn+j)} ≥ min
ai∈At−j

ψn+t (aisn+j),

tarting from ψn(sn), an iterative substitution and minorization
hows that

n(sn) ≥

t∑
h=0

µt ({ah})ψn+t (ahsn)

+

t∑
j=1

t−j∑
h=0

µt ([ah, ah+j]) min
ai∈[ah,ah+j]

ψn+t (aisn)

= Ĉ[Y ∗

n+t |Sn = sn],

hus the claim follows.
Property (c) is an immediate consequence of well-known re-

ults on the classical binomial model (see, e.g., Černý, 2009;
liska, 1997). □

roof of Proposition 4. Statement (i) is an immediate conse-
uence of (31) and (34). If ϕ is non-decreasing, statement (ii)
ollows by (31) and Proposition 3 since, for n = 0, . . . , T , it is
asy to show that Yn = ϕn(Sn), where ϕn : Sn → R is non-
ecreasing. If ϕ is non-increasing, statement (iii) follows by (34)
nd Proposition 3 since, for n = 0, . . . , T , it is easy to show that

Y n = ϕn(Sn), where ϕn : Sn → R is non-increasing. □
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