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Abstract
Direct numerical simulation of a turbulent pipe flow of a realistic solution of 108 polymers, 
modelled as finitely extensible nonlinear elastic (FENE) dumbbells, and directly momen-
tum coupled with the incompressible Navier–Stokes equations, are performed by means of 
an Eulerian-Lagrangian approach. Besides the drag reduction, the polymers significantly 
modify mean and turbulent kinetic energy budgets. The polymer backreaction to the sol-
vent reduces the Reynolds stress and thus decreases the turbulent production and, at large 
Weissenberg number, the polymers act as a source of turbulent kinetic energy for y+ > 40 , 
leading to an increase in the dissipation. This effect is peculiar to large Weissenberg poly-
mers and it is particularly apparent at a small Reynolds number. At a smaller Weissenberg 
number, the effect of the polymers remains confined in the buffer layer, with the kinetic 
energy budget not significantly altered elsewhere.

Keywords  Turbulence · Pipe flow · Polymer-laden flows

1  Introduction

After the experiments of Toms (1949), who showed that the addition of a tiny amount of long 
polymer chains in a turbulent flow of a Newtonian solvent can drastically reduce the drag, the 
drag reduction (DR) phenomenon gained large interest, both from the experimental and the 
numerical point of view. Experiments demonstrated that drag reduction (DR) is due to the 
mechanical interaction between the polymer chains and the turbulent flow (Xi 2019), and can 
reach large amounts, up to 80% (Procaccia et al. 2008). Since the experiments cannot show 
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the actual interaction between polymer chains and turbulent flow dynamics, direct numerical 
simulations (DNS) of the Navier-Stokes equations have been performed since the pioneering 
work of Sureshkumar et al. (1997), using the viscoelastic FENE-P (finitely extensible non-
linear elastic with Peterlin’s approximation) model (Bird et al. 1987) to account for polymer 
dynamics and the polymer effect on turbulence. Numerical simulations with the FENE-P 
model (Dimitropoulos et al. 1998; De Angelis et al. 2002) helped to capture insights into the 
polymer drag reduction phenomenon, showing qualitative accordance with the experimental 
observations.

Both experiments and numerical simulations agree that the polymer effect on the solvent is 
to reduce the momentum flux to the wall. The main modification of turbulence occurs in the 
buffer layer (Virk 1975) where the Reynolds stress peaks. The reduction of the Reynolds stress 
causes a consistent decrease in the production term in the turbulent kinetic energy budget, 
meaning that less energy is transferred from the mean flow to the fluctuating flow field. By 
analysing the fluctuating fluid velocity - polymer force correlation, De Angelis et al. (2002) 
suggested that the polymers extract energy from the turbulent fluctuations in most of the flow 
field (negative correlation), while the viscoelastic forces perform a positive work to the fluid 
velocity (positive correlation) within the viscous sublayer.

Despite the phenomenon of drag reduction being known since the ’40 s, the mechanism 
at its basis is not fully understood. From the numerical point of view, it is recognised that 
the FENE-P model presents some shortcomings (Graham 2004; Keunings 1997), that did not 
allow to reproduce realistic polymer systems (Dubief et  al. 2022). In fact, DNSs of realis-
tic polymer solutions require a Lagrangian description of the polymer phase to overcome the 
FENE-P model limitations (see Peters and Schumacher 2007; Watanabe and Gotoh 2013 for 
two applications in unbounded 3D turbulence). Such simulations have been performed only 
recently in wall-bounded turbulence, see (Serafini et  al. 2022, 2022) for numerical simula-
tions in pipe flows at different friction Reynolds numbers, thanks to massive MPI-GPUs paral-
lelization and physically consistent approaches to account for the polymer back-reaction on 
the Newtonian solvent (Gualtieri et al. 2015). In particular, it is shown that, at large Weissen-
berg number Wi (ratio of the polymer relaxation time and the fluid time scale), DR is entirely 
induced by the polymers elongated to their maximum extension, and has a weak dependence 
on the Reynolds number. Instead, at a fixed Reynolds number and increasing Weissenberg 
number, DR grows up to an asymptote (Serafini et al. 2023).

In this paper, we investigate the polymer modification to the kinetic energy path by analys-
ing spatial fluxes, production, and dissipation of kinetic energy associated with both the mean 
flow and the velocity fluctuations. We present a comparison between two different Reynolds 
numbers, namely Re� = 180 and Re� = 320 in the asymptotic Weissenberg number range, i.e 
Wi > 103 , and a comparison between two different Weissenberg number, namely Wi = 10 
and Wi = 104 , at fixed friction Reynolds number Re� = 180 . At the smallest Weissenberg 
number, we compare the results given by the Eulerian-Lagrangian FENE model with those 
provided by the classical FENE-P model.

2 � Methodology

The turbulent flow is considered in a pipe geometry. It is described by the (dimensionless) 
incompressible Navier–Stokes equations in cylindrical coordinates (�, r, z) , completed with 
the no-slip condition at the wall u(t, �, r = 1, z) = 0 . The Navier-Stokes system is coupled 
with the evolution of Np polymer macromolecules, modelled as finitely extensible 



Flow, Turbulence and Combustion	

1 3

nonlinear elastic (FENE) dumbbells (two massless beads at the chain ends x(j)
1∕2

 , connected 
by an entropic nonlinear spring).

The system (1) is made dimensionless using the following reference quantities (with aster-
isks denoting dimensional quantities): the pipe radius �∗

0
 , the solvent density �∗ , the bulk 

velocity U∗
b
= Q∗

b
∕(��∗2

0
) of the Newtonian case ( Q∗

b
 is the volumetric flow rate), and the 

solvent viscosity �∗ . In eq. (1), u(t, �, r, z) is the fluid velocity, p(t, �, r, z) the hydrodynamic 
pressure, x(j)c = (x

(j)

1
+ x

(j)

2
)∕2 is the coordinate of polymer centre, h(j) = (x

(j)

2
− x

(j)

1
)∕L the 

end-to-end vector that connects the two beads of the dumbbell, normalised by the polymer 
contour length L. Finally, H(j) = ‖h(j)‖ is the dumbbell length, and heq is the equilibrium 
size of the chain determined by the Brownian forces �(j)

1∕2
 in a quiet solvent.

The back-reaction of the polymers to the solvent is accounted for by the polymer forcing 
term

given the friction forces D(j)

1∕2
= 𝛾(ǔ

(j)

1∕2
− v

(j)

1∕2
) mutually exchanged by the polymer beads 

with the Newtonian solvent.
In the previous expression of the friction force v(j)

1∕2
 is the velocity of the bead, ǔ(j)

1∕2
 the 

velocity of the fluid at the position of the bead, deprived of the bead’s self-interaction con-
tribution (Maxey and Riley 1983), and � is the friction coefficient of the beads. For a dumb-
bell, the dimensional friction coefficient can be related to the other polymer parameters as 
follows Serafini et al. (2022)

where �∗ is the relaxation time of the macromolecule, k∗
B
 the Boltzmann constant and �∗ the 

absolute temperature.
Neglecting the Brownian contribution, the feedback force can be rewritten as a function 

of the end-to-end vector h . In eq. (2) co is the polymer concentration. The friction forces 
D1∕2 are localised at the instantaneous position occupied by the beads x1∕2 and they need to 
be regularised to be accounted for in the Navier–Stokes system. The regularisation is pro-
vided by the Exact Regularised Point Particle method (ERPP) (Battista et al. 2019; Motta 
et al. 2020).
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Finally, we describe the dimensionless parameters appearing in eqns.  (1) and  (2). 
Re = �∗U∗

b
�
∗
0
∕�∗ is the bulk Reynolds number, Wi = �∗∕(�∗

0
∕U∗

b
) , is called Weissenberg 

number, and Rep = �∗U∗
b
�
∗
0
∕�∗

p
 is the polymer Reynolds number, built with the quantity 

�∗
p
= c∗

o
�∗L∗2 which is dimensionally a viscosity.

Simulations are performed with periodic boundary conditions in the axial/tangen-
tial direction, and at imposed pressure gradient, i.e. fixed friction Reynolds number 
Re� = u∗

�
�
∗
0
∕�∗ (where u∗

�
=
√
�∗
w
∕�∗ is the friction velocity). The drag reduction appears 

as a flow rate increase and can be evaluated in terms of friction coefficients c(0)∕(p)
f

 (with (0) 
and (p) denoting Newtonian and polymer case respectively),

For the Eulerian-Eulerian FENE-P model  (Bird et  al. 1987), the polymers are modelled 
according to the conformation tensor C = ⟨h⊗ h⟩ that represents the covariance of the 
local polymer population. The corresponding equation for C is

Equation (5) can be derived by performing an ensemble average over the local polymer 
population (here denoted by the angular brackets) after the following hypotheses are made: 
i) uniform polymer concentration co , ii) the velocity of the beads ǔ(j)

1∕2
 can be linearised 

around the polymer centre xc , iii) the diffusion of the polymer centre is neglected and the 
polymers are simply advected by the fluid velocity. Finally, Peterlin’s approximation needs 
to be considered as a closure assumption to constrain the average polymer extension Tr(C) 
to the polymer contour length L. This assumption is known to introduce artefacts in turbu-
lent flows, as polymers are allowed to overcome their maximum length, being only the pol-
ymer extension variance constrained. The polymer forcing is evaluated as the divergence of 
the extra-stress tensor, F = � ⋅ TFP

p
 , whose expression is

The system of equations is numerically solved (Direct Numerical Simulation) on a stag-
gered grid in cylindrical coordinates ( �, r, z ) using a projection method to enforce veloc-
ity solenoidality. All the time integrations are performed using a four-step, third-order, 
Runge–Kutta low-storage scheme. The domain dimensionless size is (2� × 1 × 6�) , while 
the number of grid points are reported in tab. 1. In the radial direction, a minimum grid 
size Δr+ ≃ 0.5 at the wall and a maximum grid size Δr+ ≃ 2 at the pipe centre are obtained 
by means of a coordinate transformation. The high resolution in the axial and tangential 
directions is employed in the polymer-laden simulations to ensure an accurate regulari-
sation of the back-reaction of the beads  (Gualtieri et  al. 2015; Battista et  al. 2019). The 
momentum equation and the conformation tensor equation, apart from the convective 
term of the latter, are discretized in space with a second-order centred scheme. The BCDS 
scheme (Waterson and Deconinck 2007) is used to treat the convective term of the equa-
tion for C , to avoid the addition of artificial diffusion. The numerical solution is acceler-
ated using a hybrid MPI+GPUs approach, using the 2DECOMP & FFT library (Li and 
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Laizet 2010). Simulations are run on the CINECA Marconi100 cluster. Concerning poly-
mer-laden simulations, 32 GPUs were used for each simulation for approximately 20000 
core-hours to collect 200 statistically steady-state uncorrelated fields, while all FENE-P 
simulations ran on 8 GPUs for approximately 7200 core-hours to collect 200 statistically 
steady-state uncorrelated fields.

Table 1 summerises the simulation parameters, while an illustrative example of the flow 
configuration is reported in Fig.  1 where the instantaneous field of the turbulent kinetic 
energy is shown as a contour plot for the FENE and FENE-P simulations.

3 � Results

As shown in previous works the drag reduction, defined in eq. (4), increases up to about 
27% with the Weissenberg number, and it is not significantly affected by an increase in the 
Reynolds number. As also captured by simulations with the FENE-P model, DR is mainly 
due to the depletion of the Reynolds stress. Here we address how the polymers alter the 
dynamics of the kinetic energy of the mean velocity ( kM = ⟨u⟩2∕2 ) and fluctuating velocity 
( kT = ⟨u�2⟩∕2 ), respectively,

On the left-hand side of Eq. 7, we find the divergence of the spatial fluxes �M and �T , 
whose expressions are the following:

(7)
� ⋅�M = −P − �M + ⟨F⟩ ⋅ ⟨u⟩ + Pw

� ⋅�T = P − �T + ⟨F�
⋅ u

�⟩.

Table 1   Simulation parameters. From left to right: simulation codename; grid size in azimuthal, radial and 
axial directions respectively; friction Reynolds number Re� , and Weissenberg number Wi . N denotes the 
Newtonian simulations, D the FENE dumbbell simulations, and FP the FENE-P simulation

SIM Grid size Re� Wi Re
p

N1 128 × 129 × 384 180 − −
N2 256 × 239 × 768 320 − −
D1 812 × 129 × 2436 180 10

4 44
D2 1442 × 239 × 4224 320 2 × 10

4 83
FP 128 × 129 × 384 180 10 44

Fig. 1   Example of the flow configuration and snapshot of turbulent kinetic energy field for the Eulerian-
Lagrangian FENE simulation (left) and for FENE-P simulation (right) at Re� = 180 and Wi = 10
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Due to the symmetry of the pipe flow, the divergence of the fluxes � ⋅ (⟨u⟩kM) , � ⋅ (⟨u⟩kT ) , 
and � ⋅ (⟨u⟩⟨p⟩) are statistically zero and they are not reported in the budget.

On the right-hand side of Eq. 7 we find the production term P = −⟨u� ⊗ u�⟩ ∶ �⟨u⟩ , 
the dissipation �M = �⟨u⟩ ∶ �⟨u⟩∕Re of the mean flow, the dissipation of the fluctuating 
field �T = ⟨�u� ∶ �u�⟩∕Re , and the energy source/sink ⟨F⟩ ⋅ ⟨u⟩ and ⟨F′

⋅ u′⟩ associated 
with the mean ⟨F⟩ and fluctuating F′ polymer coupling term. Finally, Pw = −dp∕dz‖0⟨u⟩ 
accounts for the power injected into the system via the imposed pressure gradient dp∕dz‖0.

Figure 2 reports the mean square velocity fluctuations and the turbulent kinetic energy 
kT , for the FENE simulations at Re� = 180 , panel (a), and Re� = 320 , panel (b). As a com-
mon factor in the polymer-laden case, streamwise velocity fluctuations increase above 
y+ ≃ 10 with respect to the Newtonian case while tangential and radial components 
decrease in the entire pipe cross-section. These modifications result in a slight increase in 
turbulence kinetic energy, especially at the larger Reynolds number Re� = 320 . An inter-
esting difference between the profiles at different Reynolds numbers appears close to the 
pipe centre, where at Re� = 180 axial velocity fluctuations are decreased with respect to 
the Newtonian case, with a companion decrease of the turbulence intensity. Besides the 
modification of the turbulent kinetic energy profile, another consequence of the reduced 
axial fluctuations is the decrease of large-scale anisotropy in the bulk region, reported in 
Fig. 3. The large-scale anisotropy is measured in terms of the parameter b = ‖b‖ where b is 
the (normalised) deviatoric part of the Reynolds stress tensor

Fig. 3 shows that the large-scale anisotropy is maximum in the near-wall region, where 
the mean square axial velocity fluctuations peak. The effect of polymers is to increase the 
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Fig. 2   Mean square velocity fluctuations and turbulent kinetic energy at Re� = 180 , panel a, and 
Re� = 320 , panel b. Solid line: ⟨u′2

z
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anisotropy in most of the pipe. However, at the smallest Reynolds number Re� = 180 , and 
thus the smallest polymer Reynolds number Rep , the anisotropy of the flow is reduced 
close to the pipe centre. The previous observations, i.e. the difference both in turbulent 
kinetic energy and large-scale anisotropy in the bulk region, suggest that the turbulent sec-
ond order statistics are affected by Re (or Rep ), despite the overall amount of drag reduc-
tion is not.

In order to get more insights into the way the polymers modify turbulence, let us now 
discuss the budget of mean and turbulent kinetic energy at Re� = 180 . Figure 4a shows the 
budget of kinetic energy associated with the mean velocity. The term Pw injects power into 
the system through the mean imposed pressure gradient, mainly in the bulk of the flow. 
The injected power is essentially moved into the buffer layer by the term ⟨u⟩ ⋅ ⟨u′ ⊗ u′⟩ , 
which represents the flux of the Reynolds stress. In the buffer layer, the flux of viscous 
stress �kM∕Re has a negative peak, meaning that it removes energy from the buffer layer 
to inject it in the near wall region, where the �M dissipates the kinetic energy of the mean 
flow. Still in the buffer layer, the energy that is not transferred to the wall by �kM∕Re , 
besides being partially dissipated locally by �M , is gathered by the production term P , that 
takes energy from the mean flow to feed the turbulent velocity fluctuations. The polymer 
term ⟨u⟩ ⋅ ⟨F⟩ acts as a source of mean kinetic energy in the near wall region ( y+ < 30 ), 
whilst it is a sink in the bulk ( y+ > 30 ). Its contribution is however smaller than the other 
terms in the budget.

The budget of turbulent kinetic energy is shown in Fig. 4b. The peak of the production 
P in the polymer case is significantly lower than the corresponding one for the Newto-
nian flow (dashed blue line), with a peak slightly shifted further from the wall. Less of the 
power injected to sustain the mean flow is thus transferred, and then dissipated, from the 
mean to the fluctuating field, explaining the lower drag of the polymer-laden flow. Velocity 
fluctuations are mainly fed in the buffer layer, where the production P peaks. Part of the 
available energy is locally dissipated, while the other part is mainly transferred towards 
the wall by the fluxes, namely ⟨p′u′⟩ , �kT∕Re , ⟨uu�2∕2) , where the energy is dissipated 

Fig. 3   Large scale anisotropy parameter b as function of the wall-normal distance
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by �T . It is worth highlighting that the turbulent dissipation at the wall in the polymer-
laden case is lower than in the Newtonian case. The part of the available energy that is 
not moved towards the wall is transferred towards the pipe centre by the turbulent flux 
⟨uu�2∕2) that feeds turbulent fluctuations, and thus the dissipation, also in the bulk region. 
In Newtonian flow, this effect is however almost negligible, being the dissipation in the 
bulk very small (dashed red line). Conversely, in the polymer case, the dissipation is not 
negligible in the bulk, because turbulent fluctuations are directly sustained by the polymers 
via the correlation ⟨u′ ⋅ F′⟩ , which behaves as a local source of turbulent kinetic energy in 
the region y+ > 40 . Below y+ < 40 the contribution of the polymers is small with respect 
to the other terms and acts as a source of turbulent kinetic energy for y+ < 15 and as a sink 
for 15 < y+ < 40.

The noticeable effect of the polymers in the bulk, and the consequent increase of the 
dissipation, is peculiar to a high Weissenberg number flow and is enhanced at the smaller 
Reynolds number Re , i.e. smaller Rep , as shown by the budget of turbulent kinetic energy 
at Re� = 320 in Fig. 5. Despite the scenario being qualitatively similar to the one described 
at Re� = 180 , the effect of the polymers is apparently less intense in the bulk, and the dis-
sipation is not significantly increased by the polymer back-reaction.

The phenomenon of enhanced dissipation completely disappears at a smaller Weis-
senberg number Wi = 10 , as reported by the turbulent kinetic energy budget in Fig. 6. 
In this case, we compare the results of the FENE dumbbell model, panel (a), and the 
FENE-P model, panel (b). Both models capture a qualitatively similar scenario, with 
quantitative discrepancies either in terms of turbulent production, and thus drag reduc-
tion, or in terms of turbulent dissipation, especially far from the wall. Turbulent fluc-
tuations take energy from the mean flow via the production term P whose peak is sig-
nificantly lower than the corresponding one for the Newtonian flow (dashed-blue line). 
The production peaks in the buffer layer with effect enhanced in the FENE-P simu-
lation predicting a larger DR measured (Serafini et  al. 2023). The path of the energy 
is qualitatively similar to the one observed at the large Weissenberg number. Again, 
consistently with the lower drag measured, the turbulent dissipation at the wall in the 
polymer case is lower than in the Newtonian case (dashed red line), and the effect is 
amplified in the FENE-P simulation. The correlation between the polymer forcing and 

Fig. 4   Panel a: Budget of mean kinetic energy at Re� = 180 and Wi = 10
4 . Panel b: Budget of turbulent 

kinetic energy. Dashed lines in panel b represent Newtonian quantities. All the terms in the budget are nor-
malised by the total injected power
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the velocity fluctuation ⟨u′ ⋅ F′⟩ , behaves as a local source of turbulent kinetic energy 
very close to the wall y+ < 10 , although its contribution is significantly smaller than 
the other terms in the budget. In contrast, far from the wall at y+ > 10 , the correlation 
⟨u′ ⋅ F′⟩ behaves as a sink of turbulent kinetic energy; the effect predicted by the FENE 
model is small and decays above y+ = 70 . The same effect is amplified by the FENE-P 
model, which predicts an apparent larger amplitude of the correlation ⟨u′ ⋅ F′⟩ in the 
buffer layer, with a slight reduction going towards the pipe centre up to finite not null 
value. Since the FENE-P model predicts that the polymers act as a sink of energy in the 

Fig. 5   Budget of turbulent kinetic energy at Re� = 320 and Wi = 2 ⋅ 10
4 . Dashed lines represent Newtonian 

quantities. All the terms in the budget are normalised by the total injected power

Fig. 6   Turbulent kinetic energy budget. Panel a: Lagrangian-Eulerian FENE model. Panel b: Eulerian-
Eulerian FENE-P model. In both panels, dashed lines represent data for the reference Newtonian case. All 
the terms in the budget are normalised by the total injected power
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bulk, the model predicts a lower dissipation of turbulent kinetic energy with respect to 
the Newtonian flow. This effect is however an artefact of the FENE-P model, and its 
simplifying assumptions, since the more accurate Lagrangian FENE dumbbell model 
does not predict significant changes of dissipation in the region y+ > 70 , with respect to 
the Newtonian case.

4 � Conclusions

A hybrid Eulerian-Lagrangian approach has been exploited to investigate the mean and tur-
bulent kinetic energy budgets of a polymer-laden turbulent pipe flow at friction Reynolds 
number Re� = 180 and Re� = 320 and Weissenberg number Wi = 104 and Wi = 2 ⋅ 104 . 
The population of FENE dumbbells is evolved alongside the incompressible Navier–Stokes 
system and the backreaction of the polymers on the flow field is accounted for by means 
of the Exact Regularised Point Particle (ERPP) method for wall-bounded turbulent flows. 
Besides a drag reduction of about 27% at both Reynolds numbers, the budgets of mean and 
turbulent kinetic energy show that the polymers significantly reduce the turbulent produc-
tion, thus the transfer of kinetic energy from the mean flow to the velocity fluctuations. The 
dissipation of turbulent kinetic energy is significantly reduced at the wall and is increased 
above the buffer layer where the polymers act as a direct source of velocity fluctuations. 
This remarkable effect is particularly apparent at small Reynolds number Re� = 180 , 
where the turbulent dissipation is significantly increased and reduces with increasing Reyn-
olds number, despite the amount of drag reduction being unaffected.

The budget of turbulent kinetic energy is also accounted at a smaller Weissenberg num-
ber Wi = 10 , at Re� = 180 , where the FENE-P model is also considered. The dissipation is 
considerably reduced at the wall, and the FENE-P model amplifies the effect consistently 
with the predicted larger drag reduction. Above the buffer layer, the effect of the polymer 
force-velocity correlation on the kinetic energy budget is insignificant and the dissipation 
is not affected. The FENE-P model, as a consequence of the restrictive assumptions on the 
polymer population, predicts that the polymers act as a sink of turbulent kinetic energy 
above the buffer layer, and predicts a lower dissipation with respect to the Newtonian flow.

As a final comment, we stress the importance of investigating a wide range of Weis-
senberg numbers when characterising turbulent flows of dilute polymer solutions, as the 
parameter varies a lot depending on the specific polymer and its molecular weight (Doi 
and Edwards 1988; Harnau and Reineker 1999). For instance, for 20�m DNA molecule 
the relaxation time is of the order of 1 s , while for a PEO chain of equal length, the 
relaxation time is approximately 10−3 s . Such a large difference explains the importance 
of investigating very high Wi , up to the asymptotic range, as both polymers and turbu-
lence dynamics are largely influenced by the Weissenberg numbers.
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