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Abstract

Extrasolar planet (exoplanet) science has rapidly expanded over the past decades, with
thousands of exoplanets discovered using techniques such as the transit method. As the
field progressed, the focus shifted from measuring fundamental planetary parameters to
understanding the nature of these faraway worlds. The James Webb Space Telescope is a
monumental step in this direction. However, studying select targets needs complementing
with unbiased surveys of the diverse exoplanets we can currently observe. This will be a
legacy of the Ariel space mission, which will perform the first spectroscopic survey of the
atmospheres of exoplanets, enabling comparative planetology studies on a Galactic scale.
This thesis presents my work over three years of Ph.D. research to prepare exoplanet atmo-
spheric characterization with Ariel. Preparing the Ariel mission requires extensive studies,
from optimizing the mission design and observation strategy to developing representative
simulators and data analysis tools. At a high level, this thesis is a three-stage progression: it
begins by framing the scientific context and motivation for Ariel, then evaluates the expected
performance of the mission, and finally develops tools to reduce and analyze simulated
Ariel data. Characterizing the atmospheres of exoplanets with Ariel requires the combined
expertise and dedication of numerous scientists, engineers, and institutions. While advanced
instrumentation enables the mission, it is the people involved who drive its success. Ariel
is more than flying hardware: it is a culmination of human ingenuity, teamwork, and vi-
sion. My work fits into this broader effort of individuals collaborating to maximize Ariel’s
scientific potential and ensure its legacy, on the path of understanding these alien worlds.
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Preface

The field of exoplanetary science has seen tremendous growth in recent years, fueled by
continuous advancements in observational techniques and technology. As we set our sights
on understanding the nature and formation of these distant worlds, it is essential to develop a
comprehensive and systematic approach to studying their atmospheres. In this Ph.D. thesis,
I present my contributions to the characterization of extrasolar planetary atmospheres with
the Ariel space mission.

In approaching this thesis, I have chosen a three-tiered structure of logos, ethos, and
pathos to present my work. This structure is inspired by the Aristotelian modes of persuasion,
which I believe provide an effective framework for presenting the technical, mission-oriented,
and scientific impact aspects of the research. However, elements of each mode are inherently
interwoven throughout the thesis.

“Part I: Logos - Scientific Framework, Technical Contributions, and Development” be-
gins by providing a concise overview of the scientific context and the objectives of the Ariel
space mission. Then, it delves into the technical aspects of my research, detailing the soft-
ware learning and contributions, as well as the development of a physical optics propagation
simulator. By discussing these general and technical aspects, this part emphasizes the logical
underpinnings and methodological foundations of my research, its Logos.

“Part II: Ethos - Mission Performance, Calibration, and Data Reduction Strategies”
focuses on examining the various aspects of the Ariel mission’s performance, as well as my
contribution to developing the processes and techniques necessary to analyze the collected
data. Through a detailed discussion of the noise budget, mission validation, and data
detrending, this part presents the rigorous standards and requirements in my doctoral work:
its Ethos.

“Part III: Pathos - Scientific Impact and Future Prospects” illustrates the scientific impact
and future prospects of the study. Through a discussion of publications, collaborations, and
proposed observations, this part emphasizes the broader implications of my work for our
understanding of extrasolar planets and their atmospheres. It highlights the potential for
interdisciplinary collaboration and the development of innovative research methodologies.
Most of all, it conveys the central theme in my research: the exploration of the unknown, its
Pathos.

* * *

The boundless reaches of outer space have often been likened to a Cosmic Ocean, and
just like a seafarer traversing the open waters, the scientist who seeks to explore them needs
a suitable vessel and a skilled crew. In my voyage of exploration, I have had the most
suitable vessel, “Sapienza” University of Rome, the best captain, Enzo, and the best admiral,
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Giovanna. As the captain’s attendant, I have kept a logbook of our expeditions, which I
recount in this thesis.

But first, I want to thank two notable crew members: Lorenzo, for instructing and
mentoring me as the former attendant, and Jiří, for inspiring me to always gaze beyond the
ship’s windows. Other friends and crew members that are always invited guests for a good
beer and cheer are Angelos, Luke, Quentin, Billy, Howard, William, Yassin, and Anastasia.
Whatever the storm, this crew will bring you to the stars.

Some days at sea, however, exact a heavy toll. They say that in those days a dark mood
befalls the mariners and their hearts start to covet just one thing: a home. These borrowed
rhymes put it better than I ever could. Day after day, day after day,\We stuck, nor breath
nor motion;\ As idle as a painted ship\ Upon a painted ocean [S.T. Coleridge, The Rime of
the Ancient Mariner].

When the wind fails to blow and the quest seems doomed, the sailors without a home
are lost in despair. I, however, have a home, and my home is with Caterina. Rephrasing
from another master of Literature, J.R.R. Tolkien, without her “I would not do half of what I
do half as well as I should like; and I would like to do less than half of what I do half as well
as it deserves.”
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Chapter 1
Introduction

This chapter provides a brief introduction to the field of exoplanetary science and the Ariel
mission. It sets the stage for the entire thesis, outlining the scope and objectives of my
doctoral work and briefly introducing the computational tools used throughout.

1.1 A Primer to Exoplanetary Science

The idea that planets are not unique to the solar system, but could be found orbiting other
stars as well, was proposed by a few scientists and philosophers like Giordano Bruno in
the past1. This was a radical statement, as it challenged the axioms of Aristotelian natural
philosophy2, which dominated the world cultural stage at the time. Due to a lack of evidence
to support either argument, the debate died out eventually. It was not until 1992 that the first
planets outside the solar system, or exoplanets, were discovered around an unlikely host, a
pulsar (Wolszczan and Frail, 1992). Soon after, Mayor and Queloz (1995) struck gold with
the discovery of 51 Pegasi b, the first exoplanet found orbiting a main-sequence star, which
was awarded the Nobel Prize in Physics in 2019. The observations now support a scenario
where on average each star hosts at least one planet (Howard et al., 2010; Cassan et al., 2012),
and therefore there are more than ∼ 100 billion planets in the Milky Way alone. We are the
first generation to know with absolute certainty that other planetary systems besides our own
exist. This profound acknowledgment has sparked our most vivid dreams that, if we continue
to look, someday we may find evidence of life elsewhere in the Universe. At present, a
major scientific goal for astronomers worldwide is “Understanding the connections between
stars and the worlds that orbit them” (National Academies of Sciences, 2021) and “[. . . ] the
conditions for planet formation and the emergence of life” (ESA, 2015). To achieve this

1Excerpt from a dialogue between two imaginary characters in (Bruno, 1584) I translated.

<Elpino> Thus, there are innumerable Suns and Earths that orbit around those Suns just as these
seven orbit this Sun close to us.
<Filoteo> Indeed.
<Elpino> Then, how is it possible that we cannot see these Earths orbiting their Suns [. . . ]?
<Filoteo> That is because we see the Suns, which are the largest bodies, but we cannot see the
Earths which are much smaller and are thus invisible.

2Notably the idea that sublunary elements occupied or strove to return to their natural places, that is, the
elemental spheres, at the center of the cosmos (Knox, 2019).
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Figure 1.1. Cumulative histogram of confirmed exoplanet discoveries over the years, colored
according to the method used for their detection. The discovery of 51 Pegasi b in 1995 is the
turning point in this timeline. The two large spikes in 2014 and 2016 correspond to the data
releases of the NASA Kepler space mission (Koch et al., 2001). From the NASA Exoplanet
Archive.

goal, we need to discover and characterize a large sample of exoplanets. The cumulative
discoveries of exoplanets are represented in Figure 1.1 on a yearly basis. In total, more than
5000 exoplanets have been revealed using different detection techniques including the transit
method, which yielded the largest number of discoveries to date. However, this number
is tiny when compared to the billions of planets expected in our Galaxy, and the sample
is not complete, i.e. statistically unbiased. In this respect, the Kepler (Koch et al., 2001)
space mission, discontinued in 2018, was a stepping stone in the field. Launched to search
a portion of the Milky Way galaxy for Earth-sized planets orbiting stars outside our solar
system, Kepler provided a large and homogenous sample of exoplanets, which enabled the
first statistical studies of the exoplanetary population (Batalha, 2014). Another pioneering
mission was the CoRoT space telescope (Baglin et al., 2006; Barge and CoRoT Exoplanet
Science Team, 2009), which was launched in 2007 and operated until 2013. CoRoT was the
first space mission dedicated to the search for exoplanets using the transit method, opening
the way for more advanced probes such as Kepler.

The number of confirmed exoplanets will increase significantly in the coming years,
thanks to existing and future space missions such as TESS (Ricker et al., 2015), CHEOPS (Fortier
et al., 2014; Cessa et al., 2017), Gaia (Gaia Collaboration et al., 2016), and PLATO (Rauer,
2013), as well as ground-based instrumentation such as HARPS (Mayor et al., 2003),
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WASP (Pollacco et al., 2006), OGLE (Udalski et al., 2015), HATNet (Bakos, 2018),
KELT (Pepper et al., 2018), and NGTS (Wheatley et al., 2018). However, as will be
discussed in the next sections, the emphasis in the field is expanding from the discovery of
exoplanets to their characterization. This shift in focus is driven by the need to understand
the physical and chemical properties of exoplanets, in relation to their host stars and the
environment in which they formed and evolved. This understanding is essential to advanc-
ing our knowledge of the formation and evolution of planetary systems, and ultimately to
answering the question of what is the true nature of (exo)planets.

1.1.1 Exoplanet Demographics in 2023

For centuries, the terrestrial and gas giant planets in the solar system have been our only
templates for planetary bodies in the Galaxy, and we have been able to study them in
detail (Galanti et al., 2019; Cao et al., 2020). As a consequence, our understanding of
planetary systems was predominantly heliocentric. Current observations of exoplanets,
however, suggest that the processes of formation and evolution of planetary systems produce
a gamut of outcomes (e.g. Turrini et al., 2015; Zhu and Dong, 2021), with a diverse range of
parameters in terms of masses, sizes, orbits, and types of planets. These parameters often
differ from those of the planets in the solar system, calling for a Copernican revolution. For
instance, 51 Pegasi b was the first discovered Hot Jupiter, a Jupiter-sized planet with an
orbital period of less than ∼10 days, and served as a prototype for a new class of planets3.
Moreover, observations indicate that super-Earths like Proxima Centauri b, rocky exoplanets
with a mass between ∼2 and 10 Earth masses, absent from the solar system, are among the
most common in our Galaxy.

1.1.2 Observational Constraints

Four or five key diagrams can represent the basic properties of exoplanets (Pudritz et al.,
2018). However, before discussing them, it is crucial to consider the observational biases that
may affect the interpretation and generalization of the data. For instance, the solar system
seems to be unique in the Milky Way because our current technical capabilities cannot detect
an exoplanetary system with Earth-sized planets in 1 AU orbits around a G-type star and
large gas giants in decade-long outer orbits (Howard et al., 2012). Moreover, transiting
planets – planets that cross the disk of their host star with respect to our line of sight –
provide the most informative data set on the properties of exoplanets orbiting close to their
host star (within 1 AU). However, the transit method is inherently biased towards detecting
short-period and large planets, due to both geometric and detection factors (Kipping and
Sandford, 2016).

Another notable observational bias is the one that affects the shape of the distribution
of the masses of the exoplanet host stars. The peak emission of G-type stars is at visible
wavelengths, matching the peak sensitivity of charge-coupled device (CCD) detectors, used
e.g. on the focal plane of Kepler (Koch et al., 2001), which reported the highest number of
exoplanet discoveries so far. Thus, the observed mass distribution of exoplanet host stars is

3In a famously ignored paper, Struve (1952) actually asserted Doppler measurements had become good
enough to detect planets – if they existed – at least as massive as Jupiter with orbital periods as short as a few
days, which no physical law forbade. However, the discoverers of 51 Pegasi b were completely uninfluenced by
this paper, and the first Hot Jupiter was a genuine surprise.
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Figure 1.2. Observed mass distribution of exoplanet stellar hosts, from the Exoplanet Orbit Database.
Black: full data set of planets. Blue: data set restricted to exoplanets found in peer-reviewed
literature before 2005. Red: data set restricted to stars with hot Jupiters as planetary companions.
The red and blue distributions are similar because Doppler radial velocity measurements of
G-type stars provided the first exoplanet discoveries, essentially hot Jupiters (Deeg and Belmonte,
2018).

primarily centered around ∼ 1M⊙ (see Figure 1.2). Detecting planets around more common
and cooler M-type stars requires detectors sensitive to infrared wavelengths.

Interestingly, one detection method, microlensing – the method of detecting exoplanets
by observing the effects of the gravitational field of a planet on the passing light of a
distant background star, is largely unaffected by these observational biases. In microlensing,
host stars are essentially selected by nature, independent of the observer. Consequently,
the properties of these stars, such as their spectral type or activity, are not significantly
biased. As a result, both planets and their host stars should be detected in a proportion
reflecting their true occurrence within the Galaxy’s disk (Jørgensen and Hundertmark,
2018). However, microlensing events, though unbiased, are rare and challenging to validate
using other methods, which limits their statistical significance and the potential for detailed
characterization.

In discussing basic exoplanet properties, the mass-period (or semimajor axis) diagram
(see Figure 1.3) is a crucial initial reference. Here, planets are divided into three or four
populations: Jovian planets, hot Jupiters, super-Earths, and mini-Neptunes. Jovian planets
cluster around Earth’s orbital period, while hot Jupiters are slightly less massive, boasting
orbital periods of less than roughly 10 days. Super-Earths and mini-Neptunes populate the
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Figure 1.3. Mass-period distribution of the discovered exoplanets, colored according to the method
used for their detection. From the NASA Exoplanet Archive.

lower-mass and lower-period sectors of the diagram. The distinction between super-Earths
and mini-Neptunes lies in their composition and mean density. Super-Earths, rocky planets
with outgassed atmospheres, exhibit a mean density greater than water. Mini-Neptunes, in
contrast, contain a substantial primordial gaseous envelope, resulting in a mean density less
than that of water (Kaltenegger, 2017). The existence and location of hot Jupiters in the
diagram suggest a significant movement of these massive planets during their formation
within disks (Turrini et al., 2015), delivering planets formed at different times, under different
conditions, and at different distances from their host star to an optimal location for e.g. transit
observation (Turrini et al., 2018). Finally, observational bias works to under-represent small-
radius and long-period planets (Welsh and Orosz, 2018). Thus, the lower right-hand corner
of Figure 1.3 is sparsely populated.

The mass-radius distribution of exoplanets (see Figure 1.4) is the second key diagram
to discuss. Mass and radius are fundamental properties for exoplanet characterization, yet
for a substantial portion of exoplanets, one or the other remains unknown. That is because
they are derived from different measurement methods: radial velocity measurements are
used to derive the mass4 (Wright, 2018), while the radius is primarily determined using the
transit method. Various published mass-radius relationships, contingent upon planet type,
frequently enable radius prediction (Ulmer-Moll et al., 2019). These relationships facilitate

4More precisely, mass · sin(i), where i represents the inclination of the plane of the orbit with respect to the
plane of the sky (i = 0 represents a face-on orbit with no radial component).
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Figure 1.4. Left panel: Masses and radii of known transiting exoplanets. Black lines show mass-
radius relations for a variety of internal compositions: the models cannot fully capture the
variety of cases and break the degeneracies in the interpretation of the bulk composition (Tinetti
et al., 2018). Right panel: zoom into the lower mass regime (roughly) indicated as a grey
rectangle on the left. Coloured lines show mass-radius relations for a variety of internal compo-
sitions (Kaltenegger, 2017).

the first-time exploration of planetary structure and composition (Howard et al., 2013). A
crucial factor, especially for low-mass planets, is the overall elemental abundances of the
materials accreted onto forming planets, which largely determines the radius of a planet
for a given mass (Pudritz et al., 2018). For instance, the radius can be radically altered if
the planet is rocky, has substantial water content, or retains a hydrogen-helium atmosphere.
Inferences about planetary structures rely on the compressibility of potential compositions
within a planet’s pressure and temperature range, which in turn depends on the Equation
of State (EoS) for the relevant matter composition (Seager et al., 2007; Swift et al., 2012).
The minimum conceivable radius for a given mass corresponds to a planet composed purely
of iron. The mass-radius relationships for silicate planets intersect with those of carbon
and water planets due to similar EOS (Seager et al., 2007). These intersections represent
degeneracies, where planets of different compositions could end up having similar radii and
masses.

The third key diagram to consider is the planet-metallicity relation (Petigura et al., 2018)
(see Figure 1.5). This relation suggests that massive planets are more likely to be found
around stars with solar or higher metallicity. Specifically, within a limited range of stellar
masses (0.7 − 1.2 M⊙), the probability of a star hosting a giant planet scales as the square of
the number of iron atoms, represented as Pplanet ∝ N2

Fe (Fischer and Valenti, 2005). Less
massive, longer-period planets show a similar, but significantly weaker correlation. This
suggests that low-mass planets can form in any disk, while only high metallicity disks or
sufficiently massive disks can generate giant planets within the disk’s lifespan (Hasegawa
and Pudritz, 2014).
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Figure 1.5. Planet-metallicity relations for short (left panel) and long (right panel) period exoplanets.
Data points show the number of planets per 100 stars for bins of host star metallicity from −0.4 to
0.4 in logarithmic iron to hydrogen proportion. Triangles represent upper limits (90%). The solid
lines and bands show the best-fitting model and the 1σ credible range of models, respectively.
The strength of the planet occurrence-metallicity correlation increases with planet size and is
stronger for shorter periods. Figure credits: Petigura et al. (2018).
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Figure 1.6. The mass-orbital eccentricity distribution of planets, plotted using data from the Exo-
planet Orbit Database, is color-coded according to the planet’s semi-major axis in astronomical
units (AU). Square markers emphasize planetary systems with a multiplicity greater than three.
Filled dots signify exoplanets discovered in peer-reviewed literature prior to 2005. Initial mea-
surements predominantly populate the high mass, high eccentricity parameter space. In contrast,
highly multiplexed planetary systems tend to occupy the lower mass, lower eccentricity region
due to their lower gravitational stability and increased susceptibility to disruption.

The fourth important diagram to discuss to consider is the distribution of planetary
eccentricities, which reveals substantial eccentricities for a significant number of massive
exoplanets (see Figure 1.6). In particular, planets with mass ≳ 4MJ exhibit an eccentricity
distribution akin to that of binary stars. In contrast, planets with ≲ 4MJ are less eccentric
than both binary stars and more massive planets (Ribas and Miralda-Escudé, 2007). The
median value of this eccentricity is very high ≈ 0.25 (Pudritz et al., 2018). The eccentricity
of single massive planets can be attributed to planet-planet scattering interactions following
the dispersal of the gas disk (Chatterjee et al., 2008). Based on these trends, Ribas and
Miralda-Escudé (2007) posited that there are two populations of gaseous planets, each arising
from a distinct formation mechanism: a low-mass population formed by gas accretion onto
a rock-ice core within a circumstellar disk, and a high-mass population formed directly
via pre-stellar cloud fragmentation. Planets of the first population are theorized to form
in initially circular orbits that become more eccentric over time. In contrast, planets of
the second population exhibit higher mean orbital eccentricity due to the extensive radial
migration required to move from their initial orbits at ≳ 30 AU to their significantly smaller
observed orbits (Ribas and Miralda-Escudé, 2007). Additionally, population studies of
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exoplanets’ orbital characteristics within multi-planet systems reveal an inverse correlation
between average planetary orbital eccentricity and system multiplicity (Jurić and Tremaine,
2008). In Turrini et al. (2020), they identified an anti-correlation between the Normalized
Angular Momentum Deficit (NAMD) of planetary systems, a dimensionless measure of
the difference between an idealized circular-orbit system’s angular momentum and that of
a real planetary system, and the multiplicity of these systems. This finding explains the
previously observed inverse relationship between eccentricity and multiplicity. Planetary
systems with exceptionally high multiplicity (6 or more) are rare but not impossible, as
observations have shown (Tuomi, 2012; Gillon et al., 2017; Shallue and Vanderburg, 2018).
Such systems necessitate very low eccentricities for maintaining stability and averting
gravitational disruption. A prominent example is the TRAPPIST-1 system (Gillon et al.,
2017), hosting seven Earth-sized exoplanets orbiting an ultra-cool star. Notably, all seven
TRAPPIST-1 planets constitute a single resonant chain, despite the likelihood of instability
typically associated with resonant systems. This unique arrangement is interpreted as
the result of a comparatively slow migration of the whole system to its observed orbital
configuration, resulting in a long-lived resonant system (Grimm et al., 2018).

1.1.3 The Radius Gap

The field of exoplanets has made significant advances in recent years, thanks to the avail-
ability of fresh data and measurements using different instruments. This has enabled the
validation of observed trends and the discovery of entirely new features in the parameters
space of exoplanets. For instance, the pioneering study of Owen and Wu (2013) initially
observed a bimodality in the planetary radii using the Kepler exoplanet population. Still, it
could not confirm this feature due to insufficient data and observational biases. However,
the California-Kepler Survey in 2017 confirmed this bimodality using updated Kepler statis-
tics and recent spectroscopic observations of stellar companions, along with Gaia (Gaia
Collaboration et al., 2016) observations to refine the stellar types and radii (Fulton et al.,
2017; Fulton and Petigura, 2018). The resultant distribution shows that, after accounting for
selection effects, planets fall into two groups: those with radii of approximately ∼ 2.4 R⊕
and those with ∼ 1.3 R⊕ (see Figure 1.7). In between these groups, planets with radii from
1.5 − 2.4 R⊕ are relatively uncommon, forming a “radius gap”.

The distribution peaks correlate with the orbit environment, specifically the host star’s
level of irradiation. The 1.3 R⊕ peak corresponds to planets that typically receive irradiation
S inc > 100 S ⊙, while the 2.4 R⊕ peak planets usually orbit in less irradiated environments.
There are two potential mechanisms to explain this distribution. The first is mass loss due to
photoevaporation, a mechanism that was proposed in a study by Owen and Wu (2013). In this
scenario, Extreme Ultra-Violet (EUV) and X-ray radiation heat the atmosphere, causing a
mass outflow. This outflow is dependent on Extreme Ultra-Violet (XUV) time-integrated flux,
and hence on stellar mass, scaling as ∼ M−3

∗ . This process decreases significantly after the
first 100 Myr of the stellar lifetime (Ribas et al., 2005). The peak at lower radii is composed
of rocky cores that were unable to retain their primordial hydrogen-helium atmosphere,
which was completely stripped off by photoevaporation. The peak at slightly higher radii,
on the other hand, consists of larger planets with thicker atmospheres that have preserved
some of their original gaseous envelopes. This retention of gas significantly inflates their
radii, shifting these planets to the larger peak of the radius distribution (see Figure 1.8, 1.9).

An alternative explanation is core-powered mass loss, a mechanism dependent on both
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Figure 1.7. Histogram illustrating the distribution of planet radii for planets with orbital periods
less than 100 days, adjusted for selection effects (completeness). The typical uncertainties are
represented by bars. The median radius uncertainty is indicated in the upper right corner of the
plot. A light gray thick line emphasizes the region of the histogram representing radii smaller
than ∼ 1.14 R⊕, a range that is subject to low completeness due to observational bias. A dotted
gray line overlays the histogram, representing the uncorrected version of the same distribution.
A distinct bimodality is visible in the planet size distribution, along with the presence of the
radius gap. Figure credits: Fulton and Petigura (2018).
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Figure 1.8. Infographic of the formation and evolution mechanism behind the bi-modal distribution
of exoplanet radii. Exoplanets mostly fall into two classes, super-Earths and mini-Neptunes.
These classes are the end product of various evolutionary processes including accretion of
material from the proto-planetary disk, gas accretion to form the primordial hydrogen-helium
envelope, and heating by the host star. The further advancement of our understanding of these
processes relies on future ground-based and space-based exoplanet observation facilities. Credits:
NASA/Kepler/Caltech (R. Hurt).
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Figure 1.9. Two-dimensional distribution of planet size (on the vertical axis) and insolation flux (on
the horizontal axis), with median uncertainty depicted in the upper left corner. The distribution
shows two distinct peaks corresponding to planets receiving S inc > 100 S ⊙ and S inc < 200 S ⊙,
as discussed in the text. Possible explanations for the bimodal nature of the distribution involve
either mass loss by photoevaporation or core-powered mass loss. Credits: Fulton and Petigura
(2018).
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stellar irradiation and planetary properties. This scenario, first proposed in Ginzburg et al.
(2018), postulates that the luminosity from a cooling rocky core produces a scarcity of
intermediate-sized planets, irrespective of the high-energy flux incident upon them. Both
peaks of the distribution naturally emerge from this process, which can fully erode light
envelopes while preserving heavier ones. With core-powered mass loss, the results align with
a dependency on mass, whereby the peak occurrence shifts towards higher irradiation levels
as stellar mass increases. To differentiate between these two mechanisms - photoevaporation
and core-powered mass loss - it could be useful to observe planets orbiting stars of different
types. This is because photoevaporation is driven by the high-energy tail of stellar radiation,
while core-powered mass loss depends on the planet’s equilibrium temperature, which
determines both its cooling and mass loss rates (Ginzburg et al., 2018).

A notable feature of the mass-period diagram, shown in Figure 1.3, is the dearth of
exoplanets with Neptune-like masses and radii on short orbital periods (below 2–4 days).
This feature is known as the “Neptune desert” (Mazeh et al., 2016; Szabó M et al., 2023),
and cannot be explained by observational biases since many Neptunian planets with longer
orbital periods have been detected. The exact origin of this desert is currently unresolved, and
there is active debate in the literature about its possible causes, including photoevaporation.
A parallelism with the so-called brown-dwarf desert suggests different mechanisms of
formation and evolution for hot Jupiters and short-period super-Earths. By investigating
the shape of the desert’s boundary in the mass-period or radius-period diagram, different
formation-evolution scenarios can be inferred, dependent on the stellar environment. In
this respect, systems with multiple planets (each receiving different levels of irradiation),
where at least one planet is inside the desert, can provide further insight into the origin of
the desert (Kubyshkina et al., 2022b). For further reading on the subject, see Chapter 8.

1.1.4 Beyond Mass and Radius

From most of the current exoplanet observations, we could infer only a limited set of ob-
servable properties related to the orbits and the fundamental planetary parameters. These
observations have highlighted an unprecedented diversity among exoplanets, posing signifi-
cant challenges to our understanding of their true nature. We may question, for instance,
“What are exoplanets made of?”. However, answering this is more complicated than it might
initially seem. Indeed, when only the mass and radius (and therefore the average density)
information is available, intrinsic degeneracies between different internal compositions
prevent us from reaching a definitive answer (e.g. Swift et al., 2012; Lopez and Fortney,
2014; Deming and Seager, 2017). For instance, according to a density estimate alone, the
super-Earth GJ 1214 b could either have a rocky interior with a primordial hydrogen-helium
atmosphere or a water interior and a steam atmosphere (Valencia et al., 2013). This is
evidenced in Figure 1.10, which illustrates the degeneracy between different compositions
for a given mass and radius for this planet.

Additional observational data are required to complement the basic mass and radius
information and enable a more accurate characterization of the composition. This infor-
mation can be obtained from the spectroscopic study of the atmosphere - the link between
the interior of the planet and the stellar environment in which it has formed and evolved
- and its composition. In this respect, we have yet to understand if the chemistry of exo-
planets is intrinsically linked to their formation environment or if the nature of the host star
directs the physics and chemistry of the planets’ origin and evolution (Tinetti et al., 2018).
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Figure 1.10. Ternary diagram of the exoplanet GJ 1214b. The composition χ is related to the radius
for a specific planetary mass in terms of Earth-like nucleus fraction, water/ices fraction, and
H/He fraction to total mass. Each vertex corresponds to 100% and the opposite side to 0% of
a particular component. The color bar shows the radius in Earth radii and the gray lines are
the isoradius curves labeled in Earth radii. Note that isoradius curves correspond to isodensity
curves since the mass is fixed. Credits: Valencia et al. (2013).
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Figure 1.11. Various mechanisms responsible for adding (blue arrows) or removing (red arrows)
gas from the atmosphere of a planet. The former includes accretion of gas from the surrounding
solar nebula, degassing of solids and condensed species from the planetary surface, and possibly
secondary outgassing from active volcanoes. The latter include atmospheric escape driven by
stellar irradiation, in-gassing through atmospheric-surface thermal exchange, and impactor-
induced escape from the atmosphere. Credits: Tinetti et al. (2021).

Additionally, the composition and structure of planetary atmospheres are influenced by a
variety of physical processes, hard to disentangle, such as accretion, degassing, outgassing,
escape, in-gassing, and impacts (see Figure 1.11). Therefore, it becomes clear that all these
aspects are intertwined, and a comprehensive, multi-faceted effort is needed to answer these
questions.

While the task of isolating the relative impact of all these processes on a single planet
poses a considerable challenge, we can potentially decipher these influences by expanding
observations to a larger and more diverse sample of planets. Through these expanded
observations, we could extract general correlations or “trends” between e.g. atmospheric
chemistry, planetary size, density, temperature, stellar type, and metallicity (Changeat et al.,
2020a). Importantly, this information could shed insight into the key mechanisms governing
planetary evolution at different time scales. Planets, unlike stars, do not occupy a well-
behaved parameter space, exhibiting instead a broad and complex array of characteristics.
As a result, the rigorous validation of our theoretical models and the understanding of the
most critical physical parameters necessitate spectroscopic observations of a statistically
significant sample of exoplanets (Tinetti et al., 2018). This task involves observing hundreds
of planets, often repeatedly or over extended periods. Achieving such an extensive level of
observation requires the use of dedicated space-based instruments, such as the Ariel mission
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(see Section 1.2 for details).

1.1.5 Transit spectroscopy

The study of exoplanetary atmospheres is a relatively new field of research, with the first
detection of an exoplanet atmosphere occurring in 2001 (Charbonneau et al., 2002). Since
then, a growing number of atmospheres have been characterized by ground- and space-based
observatories, using different techniques, including transmission and emission spectroscopy
of transiting planets. Transiting planets are those that cross the disk of their host star with
respect to our line of sight. During a primary transit (henceforth, transit), the planet blocks
a fraction of the stellar light, causing a dip in the observed flux. Four different phases of a
transit can be distinguished:

1. First contact – T1, when the planet first overlaps with the stellar disk;

2. Second contact – T2, when the planet starts being fully inside the stellar disk;

3. Third contact – T3, when the planet starts exiting the stellar disk;

4. Fourth contact – T4, when the planet is fully outside the stellar disk.

Therefore, besides the orbital period P, we can measure four observables which charac-
terize the duration and profile of the transit (see Figure 1.12), assuming a uniformly bright
stellar disk:

1. the interval between first and last contact, T14, also referred to as “transit duration”;

2. the interval between second and third contact, T23;

3. the Out-of-Transit (OOT) flux, FOOT , measured outside the transit, when the planet is
not blocking any light from the star;

4. the In-Transit (IT) flux, FIT , measured during T23.

During a transit, the observed flux from the star is reduced from the baseline value FOOT

to the in-transit value FIT , by an amount δF = FOOT − FIT . The transit depth is defined
as the ratio between the flux decrement and the baseline flux, δF/FOOT . To first order, the
transit depth measured from a mono-chromatic light curve, δ, is given by the ratio of the
projected area of the planet to the projected area of the star:

δ =

(
Rp

R∗

)2

(1.1)

Assuming that the stellar radius is known, the transit depth can be used to measure the radius
of the planet. The atmosphere of the planet, if present, induces a chromatic absorption,
increasing the measured radius of the planet at some specific wavelengths corresponding to
the absorption features of atomic or molecular species present in the atmosphere (Seager
and Sasselov, 2000; Brown, 2001; Tinetti et al., 2013). By measuring the transit depth at
different wavelengths, one can reconstruct the atmospheric spectrum of the planet. The
wavelength-dependent transit depth, δ(λ), is then given by:

δ(λ) =
πR2

p + A(λ)

πR2
∗

(1.2)
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Figure 1.12. Schematic of a transit of an orbiting planet (Perryman, 2018). The total transit duration
is between first and fourth contact, while the ingress/egress duration is timed between second
and third contact. The planet blocks a fraction of the star light, causing a dip in the observed
flux. After the fourth contact, the planet’s brighter day-side progressively comes into view, and
the total flux rises. The flux drops again during the secondary eclipse as the planet passes behind
the star.
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where Rp is the radius at which the planet becomes opaque at all wavelengths, and A(λ)
is the atmospheric contribution. Equation 1.2 has a unique solution provided we know Rp

accurately. For a terrestrial planet, Rp usually coincides with the radius at the surface. For a
gaseous planet, Rp may correspond to a pressure p0 ∼ 1 − 10 bar. A(λ) can be calculated
by integrating the absorptivity of the atmosphere from Rp to the top of the atmosphere (e.g.
Sing, 2018):

A(λ) =
∫ zmax

Rp

[1 − T(z, λ)] 2πzdz (1.3)

where the transmittance T(z, λ) is the fraction of the radiation transmitted through a given
atmospheric layer, and z is the radial coordinate direction, with z = 0 at Rp. T(z, λ) is related
to the optical depth of the atmosphere at altitude z, τ(z, λ), by the Beer-Bouguer-Lambert
law:

I(z, λ) = I0(λ)T(z, λ) = I0(λ)e−τ(z,λ) (1.4)

where I0(λ) is the intensity of the incoming stellar radiation and I(z, λ) is the intensity
after the radiation has been filtered through the atmosphere. τ accounts for the quantum
interaction between the stellar photons and the atmospheric absorbers, which depends on
the absorption coefficient and mixing ratio of each species.

The characteristic length scale of the atmosphere is the scale height, H, defined as the
height at which the pressure decreases by a factor e in hydrostatic equilibrium:

H =
kBT
µg

(1.5)

where kB is the Boltzmann constant, T is the temperature, µ is the mean molecular weight,
and g is the surface gravity. At zero order approximation the atmosphere is shaped as an
annulus around the planet with a radial height of N scale heights, so the amplitude of the
atmospheric absorption is:

A ∼ N × 2RpH (1.6)

A typical value of N in the infrared is 5. This formulation highlights that the atmospheric
signature is stronger for hot planets, light atmospheres, and low-gravity objects. “Hot
Jupiters” are therefore amongst the most suitable targets for transit spectroscopy.

Figure 1.13 shows the spectro-photometric light curves of WASP-39b, a hot Jupiter
orbiting a G-type star at a distance of about 0.05 AU (Rustamkulov et al., 2023). The
observations cover the entire 0.5 to 5.5 µm JWST/PRISM wavelength range at 20–300 in
resolving power, and were taken as part of the JWST Transiting Exoplanet Community
Early Release Science Program. The light curves were created by binning the data into wide
wavelength channels, before removing known systematics. This beautifully demonstrates
the unprecedented stability and precision of this observing mode.

Figure 1.14 illustrates the transmission spectrum obtained from the dame data, processed
with the FIREFLy (Rustamkulov et al., 2022) data reduction pipeline. The PICASO 3.0
grid (Mukherjee et al., 2023) was used to fit the data and retrieve the atmospheric parameters,
and found evidence for the presence various atmospheric species, including Na, H2O, CO2,
CO, and CH4. An unexpected absorption feature at 4.05 µm was also detected, which
was attributed to SO2. Extensive photochemical modelling (Tsai et al., 2023b) has shown
that SO2 is a robust outcome of the chemical environment in WASP-39b’s atmosphere.
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Figure 1.13. Normalized spectrophotometric light curves for the JWST-PRISM transit of WASP-
39b (Rustamkulov et al., 2023). The light curves were created by summing over wide wavelength
channels (wavelength ranges indicated on the plot). Overplotted on each light curve are their
best-fit models, which include a transit model and detector systematics. Light curve systematics
have not been removed from the data.
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Figure 1.14. The JWST-PRISM transmission spectrum of WASP-39b with key contributions to the
atmospheric spectrum (Rustamkulov et al., 2023). The black points with error bars correspond
to the measured FIREFLy transit depths of the spectrophotometric light curves at different
wavelengths. The best-fitting model spectrum from the PICASO 3.0 grid is shown as the
grey line and the coloured regions correspond to the chemical opacity contributions at specific
wavelengths.

Follow-up observations with the JWST/MIRI instrument are scheduled5 to unambiguously
confirm this detection using the SO2 7.5 µm and 8.8 µm features. This remarkable result
demonstrates the power of transit spectroscopy to lead the charge in the study of exoplanet
atmospheres. It also highlights the ability of JWST to provide transformative insights into
the nature of exoplanets.

As opposed to a transit, the secondary eclipse (henceforth, eclipse) occurs when the
planet passes behind the star. The planet is then hidden from view, and the observed flux
drops from the combined flux of the star and the planet to the flux of the star alone. The
secondary eclipse is usually much shallower than the transit, and therefore more challenging
to observe. Before and after the eclipse, the signal from the planet is the combination of
thermally-emitted radiation and reflected stellar light (Charbonneau et al., 2005; Deming
et al., 2005). Then, the contrast ratio between the planet and the star is given by:

δ(λ) =
R2

p

R2
∗

Fp(λ)
F∗(λ)

+ Al(λ) (1.7)

where Fp(λ) and F∗(λ) are the fluxes emitted by the planet and the star, respectively. Al(λ)
is the reflected light contribution, which can be expressed as a function of the geometric
albedo p(λ):

Al(λ) =
R2

p

a2 p(λ) (1.8)

The geometric albedo is determined by the optical properties of the atmosphere and the
aerosols (condensate clouds/photochemical hazes) cover. Eclipse spectra are sensitive to

5https://www.stsci.edu/jwst/phase2-public/2783.pdf

https://www.stsci.edu/jwst/phase2-public/2783.pdf
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Figure 1.15. Illustration of WASP-76 b eclipse spectra with HST and Ariel (Edwards et al., 2020).
The gray box indicates the wavelength range covered by the HST/WFC3 G141 grism. The data
points from HST are shown in white. The black points show the simulated Ariel observations of
the same planet, where Gaussian scatter was added. The Ariel spectra are for a single observation
at the native resolution of the instrumentation (i.e., Tier 3). The red areas indicate the 1–3σ
uncertainties from the Ariel data.

the bulk temperature of the atmosphere, its vertical structure, and global energy budget.
This is important to reveal possible temperature inversions – where an upper layer of the
atmosphere is warmer than the layer beneath it, strong thermal emitters, and the presence
of reflective aerosols. Additionally, the acquisition of eclipse spectra allows us to gain
information on atmospheric molecules (Cartier et al., 2017), although their spectral features
may be more difficult to detect than in transmission. Recent detections of thermal inversions
in Hot Jupiters and ultra-Hot Jupiters6 have linked it to the presence of optical molecular
absorbers e.g. TiO, VO, AlO, as well as ionic species such as FeI and H- (von Essen et al.,
2019; Edwards et al., 2020; Yan et al., 2020; Changeat, 2022).

Figure 1.15 reports a measured eclipse spectrum acquired using the HST/WFC3 G141
grism (Edwards et al., 2020). The spectrum covers the wavelength range 1.1− 1.7 µm, and it
was used to infer the possible presence of TiO and an atmospheric thermal inversion, along
with a significant amount of H2O. The extent probed via HST should be compared to the
Ariel wavelength range, which covers 0.5 − 7.8 µm. The figure shows the simulated Ariel
observations of the same planet, for a single observation. Compared to HST, Ariel will be
able to probe the emission of the planet at longer wavelengths, where the thermal emission is
more prominent. This will allow us to better constrain the atmospheric temperature structure
and place far more stringent constraints on the presence of molecular constituents.

6Hot Jupiters with day-side temperatures higher than 2200 K (Parmentier et al., 2018).
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1.1.6 Atmospheric Retrieval

Retrieval codes are essential for correctly interpreting spectroscopic observations of exo-
planet atmospheres. The idea being to infer the atmospheric properties from comparing the
observed spectrum to a forward model, iteratively adjusting the model parameters until the
best fit is found (see Figure 1.16). At each step, the forward model is computed, and the
likelihood of the model is calculated. The likelihood is then used to update the posterior dis-
tribution of the model parameters. Upon convergence, the posterior distribution is sampled
to obtain the best-fit model and the uncertainties on the model parameters. See Appendix A
for a brief introduction to Bayesian statistics which explains in more detail how posterior
distributions are derived and how we can use them to interpret the observations.

Fitting process

Parameters/priors

Forward model

Likelihood

Optimizer

Star/planet data

Opacities

Observation

Posterior

Figure 1.16. Schematic representation of the atmospheric retrieval process. The forward model is
computed from the input parameters and opacities data. The forward model is then compared
to the observed spectrum, and the likelihood is calculated. The optimizer adjusts the input
parameters to maximize the likelihood, i.e. obtain the best fit. The process is repeated iteratively
until convergence. The end products are the best-fit model for the atmospheric spectrum and the
uncertainties on the parameters, obtained from the posterior distribution.

To date, there exist a number of open-source retrieval tools (e.g. Irwin et al., 2008;
Line et al., 2013; Benneke, 2015; Waldmann et al., 2015b; Gandhi and Madhusudhan,
2017; MacDonald and Madhusudhan, 2017; Zhang et al., 2019; Mollière et al., 2019;
Kitzmann et al., 2020; Harrington et al., 2020; Al-Refaie et al., 2021), each with its own
strengths. Following an intense effort to compare different retrieval tools, Barstow et al.
(2020) demonstrated the robustness of the retrieval results obtained by different codes.
However, the comparison also highlighted the need for a unified framework that can be used
to perform retrievals with different forward atmospheric models and retrieval algorithms. As
will be discussed later, the atmospheric retrieval framework TauREx 3 is the first attempt to
address this need.
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1.1.7 Key Scientific Questions

While recent observations are beginning to reveal the diversity of exoplanets, we still lack a
comprehensive understanding of their true nature. Further observations with dedicated space-
based instruments are required to provide pivotal insights into a number of fundamental
questions about exoplanets:

• What are exoplanets made of? The study of the composition and elemental abundances
of planetary atmospheres – the window into the interior structure and bulk composition
– can constrain the nature of the planet’s interior.

• How do planetary systems form and evolve? The planetary population is a fossil
record of the formation and evolution of planetary systems. The stellar environment,
the disk composition, and the disk dispersal mechanisms all influence the formation
and evolution of planetary systems. Therefore, by studying a diverse sample of
exoplanets, we can decipher the key processes that determine the formation pathways
and migration histories of exoplanets.

• What processes shape planetary atmospheres? A planet’s atmosphere is shaped
by a variety of physical processes, including photochemistry, transport-induced
quenching, surface interactions, clouds, and hazes. Each of these processes leaves
a unique, wavelength-dependent imprint on the atmospheric spectrum. Therefore,
multi-wavelength observations are required to disentangle the roles of these processes
in sculpting atmospheric chemistry.

• How do exoplanets and their atmospheres evolve over time? The study of Earth’s
climate is an example of how the evolution of a planet’s atmosphere can be studied
over time. The study of exoplanets can provide a broader perspective on the evolution
of planetary atmospheres, including the role of stellar activity, the evolution of the
host star, and the evolution of the planet itself. Single observations of exoplanets
can provide a snapshot of their atmospheric properties at a particular time. However,
repeated observations over time can provide insights into the planet’s weather, global
circulation, spatial variability, and seasonal changes.

1.2 The Ariel Contribution to Exoplanetary Characterization

The upcoming Ariel mission will conduct the first chemical survey of a large and diverse
sample of exoplanets by performing simultaneous spectro-photometric observations across
the visible to infrared wavelength range. As the first dedicated exoplanet atmosphere
characterization mission, Ariel will provide key insights into the nature, formation, and
evolution of planets beyond our solar system.

1.2.1 An Overview of the Ariel Mission

The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey (Ariel) is a Medium
Class science mission of the ESA’s Cosmic Vision science programme (Figure 1.17). More
in-depth information about the mission can be found in the Ariel Definition Study Report7,

7https://sci.esa.int/web/ariel/-/ariel-definition-study-report-red-book

https://sci.esa.int/web/ariel/-/ariel-definition-study-report-red-book
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Figure 1.17. Artist impression of ESA’s Ariel exoplanet satellite. Credit: Airbus.

commonly referred to as the “Red Book”. Ariel will be the first space observatory fully
devoted to studying the atmospheres of a large and diverse population of known exoplanets
orbiting different types of stars (Pascale et al., 2018; Tinetti et al., 2018).

The mission launch is planned in 2029, with an Ariane 6.2 vehicle8. After reaching the
operational orbit, a large halo orbit around the L2, Ariel will begin its commissioning phase9

and instrument performance verification phase10. Nominal science phase operations will
start six months after launch, and the nominal mission will last 4 years11. Upon completion
of the nominal mission phase, Ariel will enter the extended mission phase12, foreseeing
an additional 2 years of operations. During the nominal mission phase, Ariel will survey
approximately 1000 exoplanets, ranging from Jupiter- and Neptune-size gas giants down to
sub-Neptunes and super-Earths, orbiting host stars with a range of spectral types – from hot
F- to cooler K- and M-types, metallicity, and activity level.

This large and diverse sample of targets is essential for extending comparative plan-
etology to the Galaxy scale and uncovering the processes that shape planetary formation
and evolution. Most observations will consist in transit and/or eclipse spectroscopy of the
atmospheres of warm and hot exoplanets to take advantage of their well-mixed atmospheres
which should present minimal sequestration of heavy elements. These atmospheres are thus
expected to be more representative of the planetary bulk composition than those of colder
planets. Thanks to this approach, Ariel will be able to provide key insights into the observed
planetary population to address the following fundamental questions:

• What are exoplanets made of?

8https://www.esa.int/Enabling_Support/Space_Transportation/Launch_vehicles/
Ariane_6

9R-MIS-170
10R-MIS-190
11R-MIS-010
12G-MIS-030

https://www.esa.int/ESA_Multimedia/Images/2021/12/Ariel_artist_impression
https://www.esa.int/Enabling_Support/Space_Transportation/Launch_vehicles/Ariane_6
https://www.esa.int/Enabling_Support/Space_Transportation/Launch_vehicles/Ariane_6
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Figure 1.18. The optical layout assumed representative of the Ariel payload. The components
of the system are represented as follows: mirrors as light blue circles, lenses as purple ovals,
dichroics as green diamonds, prisms as yellow pyramids, filters as red rectangles, and detectors
as gray cubes. Additionally, two slits (field stops) are shown as gray frames. The incoming
light is initially collected by the primary mirror in the Telescope Assembly and then reflected
onto the secondary mirror, which includes a refocusing mechanism. After propagating through
the Telescope Assembly, the light enters the Common Optics, which splits the flux into two
instruments: the Fine Guidance System (FGS) and Ariel Infra-Red Spectrometer (AIRS). Within
FGS, the light is divided into four channels on two separate detectors. The AIRS instrument
encompasses two channels, each with a separate detector in the current Ariel design.

• How do planets and planetary systems form?

• How do planets and their atmospheres evolve?

The observations will cover a wide spectral range from 0.5 to 7.8 µm using two in-
strument modules integrated into a single optical path (see Figure 1.18). This allows
simultaneous and co-aligned observations by two science instruments: the Fine Guidance
System (FGS) and Ariel Infra-Red Spectrometer (AIRS). FGS mounts three photometers
and a low-resolution spectrometer, while AIRS has two infrared-optimized spectrometer
channels (see Table 1.1 for details). With this optimized instrumental setup, Ariel will
measure atmospheric signals from the planet at the level of 20–100 ppm relative to the host
star, depending on the target brightness. This level of photometric precision is required to
probe the atmospheric composition and thermodynamical structure of transiting planets.
Additionally, the L2 orbit provides excellent thermal stability and maximum field of regard,
ensuring high observational efficiency on the time-constrained observations of transits.

The simultaneous spectral coverage from visible to infrared wavelengths is another
critical aspect of the Ariel mission. Robust relative calibration afforded by the simultaneous
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Table 1.1. Ariel required spectral coverage and resolving power by instrument/channel.

Instrument Channel
Spectral Range
[µm]

Spectral Resolution

FGS VISPhot 0.5 – 0.6 Integrated band
FGS-1 0.6 – 0.8 Integrated band
FGS-2 0.8 – 1.1 Integrated band
NIRSpec 1.1 – 1.95 ∼20

AIRS Ch0 1.95 – 3.9 ∼100
Ch1 3.9 – 7.8 ∼30

observations is required to extract tiny signals from differences between measurements,
avoiding potential offsets between detector channels which would compromise the quality of
the data. From the shorter wavelengths, we can monitor stellar activity, detect the existence
of haze and/or clouds in the planetary atmospheres, and provide an estimate of the planetary
albedo. The longer wavelengths are key for detecting spectral features of the expected major
atmospheric constituents, such as H2O, CO2, CH4, NH3, HCN, H2S, TiO, and VO (Tinetti
et al., 2013; Encrenaz et al., 2015), allowing to infer their abundances.

Transit spectroscopy observations require no significant angular resolution and detailed
performance studies show that a telescope collecting area of 0.64 m2 is sufficient to achieve
the necessary observations on all the Ariel targets within the mission lifetime (see Chapter 3
for details). The Ariel telescope (Pace et al., 2022; Chioetto, 2022) is an off-axis 1.1
× 0.73 meter all-Aluminium Cassegrain13 (M1, M2) with an elliptical primary mirror
(see Figure 1.19). The Cassegrain telescope provides diffraction-limited performance
beyond 3 µm. Behind M2, a refocusing mechanism (M2M) with three degrees of freedom
(focus, tip, and tilt) is responsible for the in-flight focus adjustment after launch/cool-down
and to compensate for any long term drifts in structural stability. The Cassegrain feeds
the optical beam to the common optics, which include a re-collimating off-axis parabola
(M3), two plane fold mirrors (M4, M5), and a dichroic beam splitter (D1) that splits the
beam into two paths leading to the FGS and AIRS instruments. The Payload Module (PLM)
is passively cooled to ∼55 K by isolation from the Spacecraft (S/C) bus via a series of
V-Groove radiators to limit thermal infrared background; the AIRS detectors are the only
items that require cooling to <42 K, achieved via an active Joule-Thomson (JT) cooler with
Neon as the working fluid.

1.2.2 The Ariel Observing Strategy

The primary science objectives of the Ariel mission, summarized above, necessitate the
collection of a large and diverse sample of atmospheric spectra or photometric light curves
of known exoplanets covering a wide parameter space in terms of planetary parameters and
host-stars properties. In contrast, other science objectives require the very deep knowledge
of a select sub-sample of objects. The total sample size of approximately 1000 targets calls
for a well-defined observing strategy to maximize the scientific return of the mission.

After each observation, the resulting spectrum from each spectrometer – taken always at

13Parabolic primary and hyperbolic secondary.
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Figure 1.19. Scale drawing of the telescope and common optics on the Y-Z optical axis plane. The
0.1°offset is exaggerated for clarity.

the focal plane native resolution – is binned during data analysis in bins of different widths
to optimize the Signal-to-Noise Ratio (SNR). Therefore, by implementing different binning
options, the mission adopts a four-tiered approach tailored to address both questions on the
general population of exoplanets and in-depth studies of individual targets. The four tiers
are as follows (see Table 1.2 for a quick-look summary):

1. Tier 1 – shallow Reconnaissance Survey of the full sample of 1000 exoplanet atmo-
spheres. It is designed to reach a SNR >7 when measurements are binned into 7+
photometric bands. Among its main purposes is to provide a rapid and broad character-
ization of planets to identify and flag featureless spectra, detect key molecular features
and potentially provide a preliminary classification of planets through color-color
diagrams (or other metrics) to reveal hidden properties/trends in the population, and
guide decisions about priorities for future observations in higher Tiers. It will also
address questions concerning the fraction of planets with clouds, the fraction of small
planets that have retained their primordial gaseous envelope, and will characterize the
albedo, bulk temperature, and energy balance for a sub-sample of planets.

2. Tier 2 – Deep Survey observations at higher spectral resolution and SNR of about half
of the Tier 1 sample. The goal is to uncover the atmospheric structure and composition,
as well as to search for potential correlations between atmospheric chemistry and
fundamental parameters such as planetary radius, density, temperature, stellar type,
and metallicity. The Tier 2 observations will bridge single planets and population-level
studies, providing detailed information to fill the gaps in our understanding of the
exoplanet population.
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Table 1.2. Summary of survey tiers and detailed science objectives. From the Red Book.

Tier Name Observational
Strategy Science case

Tier 1
Reconnaissance
survey

Low Spectral
Resolution observation
of ∼ 1000 planets in
the VIS and IR, with
SNR ∼ 7

• What fraction of planets are covered
by clouds?

• What fraction of small planets have
still retained H/He?

• Classification through color-color
diagrams?

• Constraining/removing degeneracies
in the interpretation of mass-radius
diagrams

• Albedo, bulk temperature, and
energy balance for sub-sample

Tier 2
Deep survey

Higher Spectral
Resolution
observations of a
sub-sample in the
VIS-IR

• Main atmospheric component for
small planets

• Chemical abundances of trace gases

• Atmospheric thermal structure
(vertical/horizontal)

• Cloud characterization

• Elemental composition (gaseous
planets)

Tier 3
Benchmark
planets

High SNR
observations in 1–2
events, re-observed
over time

• Very detailed knowledge of the
planetary chemistry dynamics

• Weather and temporal variability

Tier 4
Phase-curves &
bespoke
observations

Phase-curves &
bespoke observations

• Very detailed knowledge of the
planetary chemistry dynamics

• Targets of special interests

• Weather, spatial, and temporal
variability
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3. Tier 3 – observations of Benchmark Planets, a small subsample of planets for which the
maximum Ariel resolving power and SNR can be reached in one or two observations.
Repeat observations of these planets will shed light on the temporal variability of
their atmospheres, due to variations in the cloud coverage or patterns in the global
circulation. These observations will in short enable extremely detailed and time-
resolved studies of atmospheric chemistry and dynamics in key exoplanets.

4. Tier 4 – Phase-curves & Bespoke Observations will be allocated to targets of special
interest, identified based on observations by previous missions as well as Ariel in
its Tier 1. These targets may require tailored observations rather than the standard
Tier-based observational strategy. Short-period exoplanets orbiting bright host stars
are the most favorable for phase-curve observations in this Tier to probe the spatial
and temporal variability of their atmospheres.

The interdependence among the tiers means that the scientific value of the data collected
by Ariel will grow over time. The planets observed in each tier will give us deeper insight
into the nature of the planets in preceding tiers. Tier 1 will provide the base for selecting
Tier 2 planets, which in turn will inform the selection of Tier 3 targets. Tier 4 observations
will benefit from the insight gained by the planetary populations of the other Tiers and will
in turn provide a better understanding of their atmospheric behaviour. At the end of the
nominal mission, the wealth of information supplied by the four-Tier approach will guide
the decision-making process for the selection of the new observational sample.

1.3 Software Ecosystem

The Ariel mission is a multifaceted project that requires the integration of many different
tools, each with a specific purpose, into a single ecosystem. From early-on in the mis-
sion stages, Ariel has developed advanced simulators to assess the performance of the
mission, prepare the observations, and analyze the data. The software ecosystem is shown
in Figure 1.20.

The figure is not meant to be exhaustive, and its main purpose is to show the interde-
pendence of each component and underlying flow of information, activities, and networks
of people. My research has led me to the center of this flow, where I have been able to
contribute to the development of the software ecosystem in several ways, leading the actual
development or contributing to it in a significant way14. Additionally, I have taken a proac-
tive approach in the utilization of the software in critical aspects of mission preparation.
This section aims to give a high-level introduction to this software, providing the reader with
a foundation to be engaged in the following chapters with hands-on analyses.

The software ecosystem is composed of four main building blocks: the generic tools, the
Ariel customization, the Ariel products, and the main finality of each product. Among the
generic tools are the radiometric simulator ExoRad 2.0, the atmospheric retrieval framework
TauREx 3, the time-domain simulator of an exoplanet observation ExoSim 2, and the
physical optics propagation code PAOS. These tools are described in the following sections
and chapters. The customization layer takes the current knowledge of the Ariel payload
specifications (e.g., telescope, instruments, detectors, etc.) and the mission design (e.g.,

14With TauREx 3 being the exception, as it pre-dates my involvement in the Ariel mission.
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Figure 1.20. Illustration of the Ariel software ecosystem. The building blocks are generic tools,
which can be customized for the Ariel application. The customized tools are then used to prepare
the mission and the data interpretation, as well as to organize community contributions.
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orbit, observing strategy, etc.) to adapt the generic tools and obtain the Ariel products.
Major Ariel products are the system Point Spread Function (PSF) – which is fed back to the
customization layer, the Ariel radiometric simulator ArielRad, ExoSim 2 adapted to Ariel,
and Alfnoor – a tool for studies of synthetic populations of atmospheres observed by Ariel.

Thanks to these products, and in close interaction with all involved teams, we can
assess e.g. the role of known systematics to improve the overall resilience of the mission
design and devise strategies for their correction in post-processing. The goals being the
optimization of the overall scientific output of the mission and the correct interpretation of
measurements. These goals require (i) a thorough understanding of the instrument, (ii) the
timely prototyping of the data reduction pipeline, and (iii) large-scale studies of thousands of
representative atmospheres. All these aspects are covered by the Ariel software ecosystem,
which will continue to evolve with the mission to best serve its scientific needs and organize
community contributions.

1.3.1 ArielRad

The Ariel consortium has developed a radiometric simulator named ArielRad (Mugnai et al.,
2020) to support the mission design and the scientific preparation of the mission. ArielRad
enables the extensive modeling required for:

1. verifying performance requirements,

2. optimizing the payload design,

3. assessing the feasibility of observing Ariel’s target list,

4. estimating required telescope time, and

5. thoroughly budgeting noise sources.

ArielRad is an adapted version of the generic point source radiometric simulator Exo-
Rad 2.0 (Mugnai et al., 2023)15. This simulator enables the evaluation of the payload science
performance by propagating signals through a detailed, physically-motivated model of the
Ariel payload to estimate the noise performances achievable on each target. By facilitating
detailed sensitivity analyses, ArielRad is an indispensable tool for maximizing the science
return of Ariel.

The ArielRad software, implemented in Python, takes as input a configuration file
specifying the Ariel payload parameters, a file defining the astrophysical parameters of
potential exoplanet targets, and a file detailing the mission configuration (see Figure 1.21).
Each simulation starts with the generation of the source signal from the target star. ArielRad
currently supports black body sources, Phoenix stellar models16 (Baraffe et al., 2015), or
custom files that describe the source’s spectral energy density vs. wavelength. The signal
is then propagated through the modeled Ariel telescope and instruments to the detector
focal planes. This includes accounting for each optical component’s wavelength-dependent
transmission and the dispersion of the prism spectrometers. Background signals from
zodiacal light and thermal instrument emission are added, and the total signal is dispersed
onto the appropriate detector pixels depending on the channel (photometer or spectrometer).

15ExoRad 2.0 is released under the BSD 3-Clause license and it is available at https://pypi.org/
project/exorad/.

16https://phoenix.ens-lyon.fr/Grids/BT-Settl/CIFIST2011_2015/FITS/

https://pypi.org/project/exorad/
https://pypi.org/project/exorad/
https://phoenix.ens-lyon.fr/Grids/BT-Settl/CIFIST2011_2015/FITS/


1.3 Software Ecosystem 34

Figure 1.21. Illustration of the ArielRad workflow (Mugnai et al., 2020). ArielRad takes two input
files: a payload configuration file and a candidate planet list. Then, it propagates the target host
star signal through the payload before evaluating the noise. Finally, ArielRad estimates the
transit or eclipse observation and calculates the resultant Signal-to-Noise Ratio (SNR).

With the input signal modeled, ArielRad estimates the noise variance on these signals in
the spectral bin, considering photon noise from the star, zodiacal background, instrument
emission contribution, detector noise (readout noise and read noise), dark current, and gain
variations. Pointing jitter noise is imported from external time-domain simulations with
ExoSim (Sarkar et al., 2021) and now ExoSim 2 (see Section 1.3.3 below). Additional
margins are included to account for uncertainties in the current noise estimates and instru-
ment performances, and a noise floor is implemented to prevent over-optimistic estimates
(i.e., noise that integrates down indefinitely with time). The noise model17 implemented in
ArielRad is summarized in the below equation.

Var(S )
S 2 = σ2

G ×
1
T︸   ︷︷   ︸

gain terms

+ gγ
1 + X

kηs QE N0
×

1
ϵT︸                   ︷︷                   ︸

photon noise term

+
NpixID + Npixσ

2
add/(ϵ∆t)

(kηs QE N0)2 ×
1
ϵT︸                                   ︷︷                                   ︸

dark current and additive noise

+ p2
0︸︷︷︸

payload noise floor

(1.9)
In this equation, S represents the time-averaged signal with efficiency ϵ. σG denotes
electronic gain noise. gγ is a photon noise amplification factor arising from detector ramp
fitting, taking a value of 1 for Correlated Double Sampling (CDS). X is a margin term for
photon noise. Npix gives the number of pixels used in aperture photometry, and k is the
aperture correction factor. ID symbolizes the dark current per detector pixel. QE denotes
the quantum efficiency. N0 gives the incident photons reaching the focal plane in each
photometric channel or spectral bin. ∆t represents the detector exposure time. Note that the
expected value of S equals kηs QE N0, where ηs is an astrophysical source efficiency set to
unity here. Additive noise σadd accounts for detector read noise and other additive terms
beyond read noise. The noise floor p0 is the limit below which noise does not integrate
down with time, interpretable as low-frequency Brownian noise.

Using this noise model, ArielRad calculates the atmospheric signal and resulting Signal-
to-Noise Ratio (SNR) achievable for a given exoplanet target in both transit and eclipse.
Each simulated observation spans 2.5 times the transit duration between first and fourth
contact points (T14). This approach enables out-of-transit data collection alongside in-transit
measurements for light curve fitting and transit depth determination. By iterating through all
prospective targets over multiple tiers of spectral resolution, ArielRad can robustly predict
Ariel’s performance across its three-tier observing strategy (see Section 1.2.2). Finally,
ArielRad estimates the number of observations required to achieve the desired SNR for

17ARIEL-SAP-PL-TN-004
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each planet (e.g. SNR = 7) and from this the number of transit observations and the total
observing time required per target.

ArielRad enables verification that the Ariel payload meets the mission science require-
ments. By modeling the noise contributions in detail, it facilitates thorough sensitivity
analyses to identify optimal design solutions that maximize SNRs achieved. Computation-
ally efficient to run for thousands of targets, ArielRad permits assessment of whether the
proposed Ariel target list can actually be observed to the required sensitivity within the
mission lifetime (e.g. Edwards et al., 2019; Edwards and Tinetti, 2022). This is crucial for
verifying the feasibility of Ariel’s observing plan.

ArielRad has undergone extensive validation, with its results cross-checked against two
other simulators, including the first version of ExoSim (Sarkar et al., 2021), which has
been validated against real astrophysical observations. The comparison shows excellent
agreement between the simulators. While ExoSim provides unparalleled fidelity, ArielRad
offers sufficiently accurate performance estimates with massively improved computational
efficiency. The development of ArielRad has been critical in supporting the payload design
convergence and performance verification activities during Ariel’s Phase B1 study, leading
up to mission adoption. Recently, it was used in the payload performance analysis for the
Preliminary Design Review (PDR) (see Chapter 3 for details). As Ariel moves towards the
Critical Design Review (CDR), ArielRad will continue to be an essential tool for finalizing
the payload design and optimizing the expected scientific return.

1.3.2 TauREx 3

Tau Retrieval for Exoplanets (TauREx 3) (Al-Refaie et al., 2021) provides a fully Bayesian
inverse atmospheric retrieval framework for exoplanetary atmosphere modeling and re-
trievals, written in Python. The framework builds forward models, simulates instruments,
and performs retrievals, and provides a rich library of classes for building additional pro-
grams and using new atmospheric models18. TauREx 3 is very flexible, allowing users to
mix and match atmospheric models and retrieval algorithms, and is also designed to be
easily extensible, allowing users to add their own forward models and retrieval algorithms.
This is achieved by using a modular design (see Figure 1.22) that allows the user to easily
add new components to the framework. This flexibility is enhanced by a plugin-based
system (Al-Refaie et al., 2020), inspired by Flask extensions19, allowing the framework to
be extended with new functionality without the need to modify the core code. Anyone can
host and develop taurex plugins, and they are designed to be fully interoperable with each
other. This allows TauREx 3 to potentially become a hub for the exoplanet atmospheric
retrieval community. Table 1.3 reports a list of plugins available on Python Package Index
(PyPI); the list is not exhaustive, as new plugins are continuously being developed and
released20.

Compared to its previous incarnations (Waldmann et al., 2015a,b), TauREx 3 is a
complete rewrite and redesign of the codebase, with a focus on performance, flexibility, and
ease of use. At its core, TauREx 3 is a line-by-line radiative transfer code embedded in a
Bayesian framework. Rather than a monolithic block of code, the new framework represents
different atmospheric properties like temperature profiles and chemical abundances as

18A propedeutical introduction to TauREx 3 can be found in Quentin Changeat’s Ph.D. thesis.
19https://flask.palletsprojects.com/en/2.3.x/extensions/
20The main GitHub repository for TauREx 3 and its plugins is https://github.com/ucl-exoplanets.

https://liveuclac-my.sharepoint.com/:b:/g/personal/ucapqch_ucl_ac_uk/EbUUk7ogPXVMrgRNv1yby5ABcuFv7nszdmY9Fc0n9sWjfA
https://flask.palletsprojects.com/en/2.3.x/extensions/
https://github.com/ucl-exoplanets
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Figure 1.22. The overall structure of TauREx 3 (Al-Refaie et al., 2021). Highlighted is the two-
framework structure of the complete framework. Each box describes a class from Table 1, solid
arrows flowing out describe outputs, and solid arrows flowing in describe inputs. A dashed arrow
describes the creation of an object.

Table 1.3. A non-exhaustive list of TauREx 3 plugins available on PyPI.

Plugin name Description PyPi

taurex_ace ACE (Agúndez et al., 2012, 2020) equilibrium chemistry link
taurex_fastchem FastChem (Stock et al., 2018, 2022) equilibrium chemistry link
taurex_ggchem GGChem (Woitke et al., 2018) equilibrium chemistry link
taurex_cuda CUDA-acceleration of forward models link
taurex_ultranest Ultranest (Buchner, 2021b) sampler for the retrieval link

taurex_petitrad
petitRADTRANS (Mollière et al., 2019) forward models and
opacity formats

link

https://pypi.org/project/taurex-ace/
https://pypi.org/project/taurex-fastchem/
https://pypi.org/project/taurex-ggchem/
https://pypi.org/project/taurex-cuda/
https://pypi.org/project/taurex-ultranest/
https://pypi.org/project/taurex-petitrad/
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interchangeable building blocks. Each module exposes a simple interface specifying what
inputs it requires and outputs it generates. The modules can be connected together into a
full forward model pipeline without tightly coupled interdependencies. This approach offers
great flexibility: users are able to develop new models and components into the existing
framework with minimal coding effort. Another breakthrough is a system for dynamic
detection and fitting of model parameters, which eliminates much of the complexity required
in previous versions to manually define parameter lists and handle their sampling. This is
further helped by the high-level input file, designed to allow users to easily enable or disable
the fitting of any parameter without editing core code. These capabilities make TauREx 3 an
extremely powerful tool for the exoplanet community to investigate new data sets and test
new theoretical advances in exoplanet atmosphere modeling by the community.

Out-of-the-box, TauREx 3 contains a suite of state-of-the-art models relevant for ex-
oplanet characterization. For primary transit spectroscopy, a 1D plane-parallel forward
model computes transmission spectra using efficient numerical integration. Emission spectra
can be generated with a 1D hemispherically-integrated thermal emission model. Multiple
temperature profile parameterizations are available, including analytic two-stream solutions
and flexible N-point profiles. Equilibrium and free chemistry routines provide atmospheric
compositions, with configurable mixing ratio profiles for individual species. Opacities
are handled using cross-sections with high-performance interpolation, allowing high spec-
tral resolution. Contribution modules represent processes including molecular absorption,
collision-induced absorption (CIA), Rayleigh scattering, and gray clouds. TauREx 3 supports
a number of formats for wavelength-dependent opacities including ExoMol21 (Tennyson
and Yurchenko, 2012), HITRAN22 (Gordon et al., 2017), and HITEMP23 (Rothman et al.,
2010). Also supported are opacity tables for fast computation of molecular absorption (e.g.
Yurchenko et al., 2018). A flexible binner resamples model spectra onto arbitrary observa-
tional grids. By importing noise modeling in TauREx 3, users can simulate observations
and estimate the retrievability of atmospheric parameters given a range of telescope and
instrument configurations. This extensive suite of modern components enables TauREx 3
to synthesize high-fidelity atmospheric spectra for solar system and exoplanet applications
spanning a wide phase space.

The software employs state-of-the-art Bayesian retrieval techniques to infer model pa-
rameters and uncertainties from simulated/observational data. Nesting samplers – including
MultiNest (Feroz et al., 2009; Buchner, 2021a) and Nestle (Barbary, 2021) – are supported
to rigorously map posterior distributions efficiently. The dynamic fitting system auto-selects
an appropriate set of parameters to retrieve based on the chosen forward model configuration.
Uniform priors are currently implemented, but the modular design and available plugins
readily allow the addition of more complex priors (Al-Refaie et al., 2020). Native TauREx 3
can thus conduct retrievals to constrain properties like chemical abundances, temperature
structure, planetary radii, and cloud properties given transmission or emission spectra. The
versatile retrieval functionality provides a robust statistical framework for analyzing spectro-
scopic data sets. Moreover, the flexibility of the plugin-enhanced TauREx 3 has enabled to
cross-compare state-of-the-art chemical equilibrium codes (Al-Refaie et al., 2022a).

Thanks to these capabilities, in recent years TauREx 3 has played a key role in enabling

21https://www.exomol.com/
22https://hitran.org/
23https://hitran.org/hitemp/

https://www.exomol.com/
https://hitran.org/
https://hitran.org/hitemp/
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the detailed analysis of spectroscopic data sets to constrain the properties of exoplanets.
An example is the study presented in (Changeat et al., 2022) where they used TauREx 3 to
re-analyze archival data of the atmospheres of 25 exoplanets with observations taken with
the HST/WFC3. Another is the study (Al-Refaie et al., 2022b) which demonstrated the
viability of total disequilibrium chemistry24 retrievals with simulated JWST observations of
HD189733b, implemented thanks to a TauREx 3 plugin. Figure 1.23 showcases that the full
chemical scheme matches the simulated observations, with recovered free parameters close
to the chosen true value.
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Figure 1.23. Posteriors from the retrieval of a simulated JWST spectrum of HD 189733 b (Al-Refaie
et al., 2022b) using full and reduced chemical network of Venot et al. (2020a) and equilibrium
chemistry (Agúndez et al., 2012). Blue and red are the posteriors using the full and reduced
schemes respectevly and green are the posteriors using equilibrium chemistry.

In summary, TauREx 3 represents a major leap forward in publicly available software

24As opposed to equilibrium chemistry, where the detailed molecular abundances depend solely on the
temperature, pressure, and elemental composition.
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for exoplanet atmosphere characterization. The flexible, high-performance design facilitates
leveraging cutting-edge theoretical models. Dynamic fitting and modular components enable
extensive customization. These capabilities make Taurex an extremely powerful tool for
the exoplanet community to investigate new data sets. By lowering barriers to rapidly
prototype and evaluate new retrieval approaches, TauREx 3 helps accelerate understanding
of these faraway worlds. It is publicly released under an open-source license to maximize its
value to the scientific community. Ongoing development will further enhance TauREx 3’s
capabilities through new forward model physics, support for more general prior shapes, and
expanded spectral generation options. By providing a state-of-the-art, shared platform for
atmospheric retrievals, TauREx 3 aims to be an enabling resource helping unlock insights
from current and future exoplanet observations.

1.3.3 ExoSim 2

ExoSim 2 (Mugnai et al., 2022) is a time-domain simulator for exoplanet observations,
designed to simulate the entire observation process, from the generation of the astrophysical
signal to the final detector readout. It can capture temporal effects, such as correlated noise
and systematics on the light curve. The simulator produces spectral images like those
produced by an actual observation, aiming to:

1. inform the design of the instrument;

2. assess the impact of systematics on the measurements;

3. evaluate the compliance with scientific objectives;

4. prepare the data reduction pipeline against realistic data sets;

5. assist in the selection of targets and observing strategies;

6. interpret the measurements;

7. assess the confidence level of retrieved quantities.

The first version of ExoSim (Sarkar et al., 2021) was developed for the Ariel space
mission, then adapted to the James Webb Space Telescope (JWST) and presented to the
community as JexoSim (Sarkar et al., 2020; Sarkar and Madhusudhan, 2021).

ExoSim 2, a fully refactored version, represents a major advancement in exoplanet
observation simulation tools, developed to address the evolving needs of the exoplanet
community. Built entirely in Python, ExoSim 2 employs an object-oriented architecture
focused on flexibility, extensibility, and ease of use compared to its previous version.
The code is open-source and designed to simulate high-fidelity focal planes alongside
photometric and spectroscopic timelines for diverse optical systems studying exoplanets.
A huge effort has been put in place to systematically document the code and include
readily executable examples to facilitate adoption by new users. This effectively enables
community-driven code growth as needed moving forward.

A key innovation in ExoSim 2 is its modular framework based on encapsulated Task
classes. Different physical models and simulation steps are implemented as swappable Tasks.
This allows straightforward customization and expansion of ExoSim 2’s capabilities by users
writing their own Tasks, without needing to modify the core code. Tasks automatically share
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data through a common Signal class representing a general photometric or spectroscopic
data cube. As shown in Figure 1.24, ExoSim 2 parses the input parameters description and
data, then executes through a three-stage pipeline: 1) focal planes creation, 2) sub-exposures
generation, and 3) final pixel reads with noise. This produces focal plane, sub-exposure, and
Non-Destructive Reads (NDRs) data products. This structure optimizes resource usage by
enabling selective recomputation of only updated components.

ExoSim 2 incorporates detailed models of astrophysical scenes and instrumental effects.
Point Spread Functions (PSFs) can be generated analytically (Airy or Gaussian) or supplied
by the user. PSFs from PAOS (see Chapter 2 for details), are natively supported. Pixel-level
effects include intra-pixel sensitivity variations, diffusion, and multiple sampling modes.
Sophisticated noise models account for contributions from source shot noise, dark current,
readout noise, and zodiacal light. The flexible Task framework allows integrating additional
components like background stars through custom extensions. This enables ExoSim 2 to
produce realistic synthetic observations for a wide variety of instruments and targets, beyond
its initial use case.

Concerning the astrophysical scene, ExoSim 2 includes a module for loading and apply-
ing different astronomical signals to the target source. This expands upon the “Astroscene”
functionality of the previous code version (Sarkar et al., 2021), allowing users to write their
own Tasks that describe the target astronomical signal. The signal is convolved with the
spectral instrument line shape before being applied as a perturbation to the data. Figure 1.25
illustrates an example transmission spectrum simulated with ExoSim 2. The high-resolution
input spectrum is observed by Ariel in the FGS-NIRSpec and AIRS spectroscopic channels,
and the output spectrum is obtained after post-processing the science images produced
by ExoSim 2. This functionality enables ExoSim 2 to provide realistic data sets to assess
the data reduction pipeline’s capability to recover spectral features of a given amplitude
post-processing.

The development of ExoSim 2 has been driven by the evolving needs of the Ariel space
mission. As a pioneering spectroscopic survey of exoplanet atmospheres, Ariel requires de-
tailed simulations of payload performance and related systematics to develop its observation
strategy and data analysis pipeline. ExoSim 2 models the specific instrumental characteristics
of Ariel across its multiple detector channels. The simulator has undergone extensive testing
and validation against ArielRad (see above for details), showing excellent consistency in es-
timating photon conversion efficiency, saturation times, and signal generation. The software
has also been independently validated for instantaneous read-out and jitter simulation, as
well as for astronomical signal representation, attesting to its robustness and versatility. This
gives confidence ExoSim 2 will provide Ariel with representative simulations to inform all
mission activities in the coming years.

Looking beyond Ariel, ExoSim 2’s flexibility enables adaptation to other exoplanet
studies. Its generic optical payload and noise frameworks allow the modeling of any combi-
nation of imagers and spectrographs. User customization through Task extensions provides
the capability to tailor ExoSim 2 to different satellite, balloon-borne, and ground-based
instruments. Already ExoSim 2 simulations are being generated for the Exoplanet Climate
Infrared TElescope (EXCITE) mission (Tucker et al., 2018), and its ability to simulate the
physics encapsulated in user-defined models opens avenues for other observatories, such
as the JWST, to be modeled within its framework. This demonstrates the significant value
of ExoSim 2’s versatile architecture in reliably serving varied scientific instrumentation.

In conclusion, ExoSim 2 represents a state-of-the-art tool for synthesizing observations
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Figure 1.24. ExoSim 2 operates via a three-step workflow. The initial step involves the creation of
focal planes based on source and instrument specifications. Subsequently, the Sub-Exposure step
simulates high-frequency sampled focal planes, incorporating astronomical signals, pointing
jitter, and detector read-out modes. Finally, the Non-Destructive Read (NDR) step generates
NDRs from the Sub-Exposure, accounting for detector noise. Figure from Mugnai et al., 2023
(in preparation).
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Figure 1.25. Transmission spectrum simulated in ExoSim 2. The gray curve represents the original
high-resolution spectrum used as input for the astronomical signal simulation. The black curve
corresponds to the same spectrum binned down to the focal plane resolution at the pixel level.
The red curve represents the spectrum obtained as output from ExoSim 2 data, post-processing.
The red spectrum is modulated by the instrument line shape. The colored background indicates
the spectral range of the spectrometers. Figure from Mugnai et al., 2023 (in preparation).
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to enable exoplanet atmosphere characterization studies. For future missions like Ariel, it
provides critical support for mission design and planning. In the era of JWST and extremely
large telescopes, models like those encapsulated in ExoSim 2 will be essential to understand
the biases of estimators and instrumental effects to accurately interpret the data. The open-
source nature of ExoSim 2 will foster growth through community contributions. As we push
the boundaries of exoplanet science with new discoveries and high-fidelity observations,
robust and adaptable simulators like ExoSim 2 will be ever more indispensable tools for
understanding these faraway worlds.
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Chapter 2
The Physical Optics Simulator

This chapter presents the development, validation, and application of a Physical Optics
Propagation (POP) code called Physical Optics Simulator (PAOS). The original motivation
behind the development of PAOS is to assess the optical performance of the Ariel space
mission (see Section 1.2 for details). Reliable estimates of the Ariel system Point Spread
Function (PSF) are critical to estimate saturation times and photometric performance. Dur-
ing different mission phases, the PSF needs to be (i) estimated from manufacturing models,
(ii) extrapolated from ground measurements, and (iii) measured in-flight. For each of these
phases, PAOS can be used to estimate the representative system PSF in the Fresnel approxi-
mation, accounting for the impact of diffraction, aberrations, and related systematics. This is
essential to interpret the measurements and ensure that Ariel achieves a sufficiently compact
PSF to operate as a light-bucket (see Section 2.3 for details) and a sufficiently sampled PSF
to mitigate line-of-sight jitter (see Section 4.1 for details), as per design. Additionally, tight
integration with the mission simulators such as ArielRad and ExoSim 2 (see Section 1.3.1
and Section 1.3.3 for details) has been achieved to provide the representative PSF at the
detector level. Beyond Ariel, PAOS can be used to simulate the optical performance of a
wide range of optical systems, including non-axial symmetric ones, as long as the Fresnel
approximation remains valid.

* * *

Optical system design has witnessed significant advancements in recent years, necessi-
tating efficient and reliable tools to simulate and optimize complex systems (Smith, 2000).
Ray-tracing and POP are the two primary methods for modeling the propagation of electro-
magnetic fields through optical systems. Ray-tracing is often employed during the design
phase due to its speed, flexibility, and efficiency in determining basic properties such as opti-
cal magnification, aberrations, and vignetting. POP provides a comprehensive understanding
of beam propagation by directly calculating changes in the electromagnetic wavefront (Good-
man and Weare, 2010). POP is particularly useful for predicting diffraction effects and
modeling the propagation of coherently interfering optical wavefronts. Yet, it may require
supplementary input from direct measurements or a ray-tracing model for comprehensive
analysis including aberration variations, especially in the Fresnel approximation.

Commercial ray-tracing codes like Zemax and Code V provide tools for performing
POP calculations and optimization, offering advanced capabilities in aberration reduction
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and optical system enhancement. However, these programs often come with substantial costs
and steep learning curves, which may not be justifiable for every application. Furthermore,
accessibility to their source code could be limited.

To overcome these limitations, we present the PAOS, a reliable, user-friendly, and open-
source POP code that integrates an implementation of Fourier optics. It employs the Fresnel
approximation for efficient and accurate optical system simulations. By including a flexible
configuration file and paraxial ray-tracing, PAOS seamlessly facilitates the study of various
optical systems, including non-axial symmetric ones, as long as the Fresnel approximation
remains valid.

Initially developed to evaluate the optical performance of the Ariel space mission (Tinetti
et al., 2018, 2021), PAOS has proven its value in assessing the impact of diffraction, aberra-
tions, and related systematics on Ariel’s optical performance. By offering a general-purpose
tool capable of simulating the optical performance of diverse optical systems, PAOS fills a
crucial gap in the field and makes advanced physical optics research more accessible. This
chapter presents the development, validation, and application of PAOS and its limitations,
showcasing its potential to advance optical system design and analysis for a wide range of
scientific and engineering applications.

2.1 Methods

2.1.1 PAOS: an overview

PAOS, is an end-to-end POP simulator developed using a full Python 3 stack. The motivation
behind the development of PAOS is that of assessing the optical performance of Ariel.
However, PAOS is not specific to Ariel and it is general enough to be employed as a library
for implementing custom propagation routines. The code will soon be openly distributed
under the BSD 3-Clause License.

2.1.1.1 Initial setup

The PAOS software package is equipped with an installer, comprehensive documentation
in HTML and PDF formats, and a collection of example scripts that showcase the core
functionalities of the code. To compile the documentation from the source code, users can
follow the instructions in the README.md file and use the make command (see Listing 2.1).

1 $ cd PAOS/docs/
2 $ make html
3 $ make latexpdf

Listing 2.1. Compiling the PAOS documentation.

This process generates an HTML file in the build/html directory and a PDF file in
the build/latex directory within PAOS/docs/. The documentation provides a detailed
explanation of the code and the API, accompanied by example scripts that serve as a valuable
resource for new users.

PAOS necessitates a Python 3 installation and the numpy package as minimum require-
ments. The installation can be compiled from the source (see Listing 2.2).
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1 $ cd PAOS/
2 $ pip install .

Listing 2.2. Installing PAOS from source.

This action automatically downloads and installs the requisite dependencies. After installa-
tion, users can initiate PAOS from any location on the operating system using the command
paos (see Listing 2.3).

1 $ paos --help
2 usage: paos [-h] -c CONF [-o OUTPUT] [-lo] [-wl WAVELENGTHS] [-wlg

WL_GRID] [-wfe WFE] [-keys STORE_KEYS] [-n N_JOBS] [-p] [-d] [-l]

Listing 2.3. PAOS help message.

To execute an input file input.ini, save the output, generate a plot of the results, and
employ 2 parallel cores, the command in Listing 2.4 is used:

1 $ paos -c input.ini -o output.h5 -p -n 2

Listing 2.4. Example PAOS command.

In this case, output.h5 represents a HDF5 file containing the simulation output, which
by default includes the wavefront amplitude, spatial sampling along the x and y axes, and
wavelength.

Upon installation, users also gain access to the paosgui command, which initiates a
GUI for PAOS (see Listing 2.5).

1 $ paosgui --help
2 usage: paosgui [-h] [-c CONF] [-d] [-l] [-o OUTPUT]

Listing 2.5. PAOS GUI help message.

The GUI, acting as a wrapper for the paos command, provides users with a streamlined
and user-friendly interface to access input files and effectively utilize the most important
functionalities of the code.

2.1.1.2 Software architecture

PAOS boasts a modular software architecture, composed of four primary modules: core,
classes, util, and gui. The core module manages the central POP propagation loop,
employing the Python classes ABCD, WFO, and Zernike from the classes module, along
with the Material class from the util module (Table 2.1). These classes serve as the
fundamental building blocks of the code. In addition to directing the main propagation
process, the core module encompasses advanced plotting routines and output file writing
capabilities, streamlining data visualization and storage. Lastly, the gui module implements
the GUI for PAOS.
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Table 2.1. The main Python classes in PAOS.

Class Main purpose Module

ABCD Implement ABCD matrix theory classes
WFO Implement wavefront propagation classes

Zernike Handle Zernike polynomials classes
Material Handle optical glasses util

2.1.1.3 Simulation workflow

Figure 2.1 presents an overview of the PAOS code and the standard simulation workflow.
The user can launch the code (i) from the terminal using the paos command, (ii) from a
Python script using the pipeline routine in the coremodule, or (iii) by manually executing
the steps in a Jupyter notebook.

The PAOS Standard Simulation Workflow
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Figure 2.1. Schematic representation of the PAOS standard simulation workflow, illustrating each
step and associated API call. The standard input is a .ini file containing the initial beam properties,
ambient pressure and temperature, wavelengths, fields, and the sequence of optical surfaces from
the input to the output. The simulation can be launched from a shell or a Python script. PAOS
automatically parses the input file and runs the propagation, accounting for refractive index
changes. It outputs the sagittal and tangential ABCD matrices, along with the complex wavefront
vs wavelength at each required plane. The output is saved in a .h5 file, with visualization tools
provided for PSF representation. Additionally, PAOS can function as a library, enabling custom
propagation routines and surface types.

The simulation begins by parsing the user-defined input, a .ini file that contains the
simulation configuration (Section 2.1.2.1). It then proceeds with wavefront propagation
through the optical system.

Wavefront propagation is performed using the Paraxial theory described in Lawrence
et al. (1992), that is, Fourier optics in the Fresnel approximation (Section 2.1.2.3). PAOS
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initially propagates a surrogate beam profile using an analytically-traced on-axis Gaussian
beam (Appendix B.1.2). From the properties of the surrogate beam, PAOS then automatically
selects the algorithm for propagating the actual wavefront in near and far-field regions and
the corresponding computational grid sampling (Appendix B.1.7).

The propagation accounts for any aberration that can be described by Zernike poly-
nomials (Section 2.1.2.4). Such aberrations can occur due to e.g. imperfections in mirror
manufacturing and the presence of refractive elements at non-normal angles, such as prisms.
However, the current implementation of PAOS lacks the capability to independently evaluate
wavefront aberrations. Instead, the user is required to input wavefront aberrations in the .ini
file, utilizing Zernike polynomial coefficients. To address this limitation, a future version of
PAOS may include a dedicated ray-tracing module.

Moreover, PAOS features a built-in refractive index database and calculates refractive
indices using the Sellmeier equation (Section 2.1.2.5). Deviations from the refractive index
at standard temperature and pressure are accounted for by specifying ambient pressure and
temperature in the .ini file.

Throughout propagation, PAOS computes the complex wavefront and updates the ABCD
matrices in the sagittal and tangential directions at each surface (Section 2.1.2.6). PAOS
can save this data in an HDF5 file at each point in the optical system or only at the output.
Additionally, PAOS provides routines to plot the PSFs at the principal and intermediate focal
planes. Parallelization using the joblib module in Python can be activated to speed up
computation.

Finally, PAOS implements a logger based on the logging module in Python, allowing
users to save output parameters, debug the code, and monitor the simulation progress. The
log file is saved in the same directory as the output file and contains the relevant information
for reproducibility (e.g. code version). This information is also stored in the HDF5 file under
the info group.

2.1.2 PAOS: implementation

2.1.2.1 Input system

PAOS utilizes the standard .ini file format for its input system. The configuration file is a
single .ini file that serves as the main source of input parameters and contains the description
of the optical chain, which defines the optical system from the input to the output. The input
structure is generic, flexible, and intuitive and can be applied to configure and customize a
wide range of optical simulations.

For instance, let us consider the optical layout in Figure 2.2, exported from Zemax. This
layout represents a simple periscope, ray-traced from input to output. The collimated input
rays (top left) are double-folded by a sequence of two plane mirrors at an angle of 45◦ before
being brought to a focus (bottom right) by a thin lens. In between the mirrors, a generic
surface can be customized to impose a wavefront aberration.

This periscope layout can be propaedeutic to illustrating the input structure in PAOS. To
this aim, let us refer the reader to the input .ini file provided in Listing 2.6. This input file
showcases how to set up all the various components to model the same periscope optical
system, from input to output, including its off-axis geometry. Therefore, this learning
material also demonstrates the potentiality of PAOS in modelling advanced optical systems.
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Figure 2.2. Zemax 3D layout of a simple periscope to be modeled using PAOS.
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1 [general]
2 project = Periscope
3 version = 1.0
4 grid_size = 512
5 zoom = 4
6 lens_unit = m
7 tambient = 20.0 # C
8 pambient = 1.0 # atm
9

10 [wavelengths]
11 w1 = 1.0
12 w2 = 3.0
13

14 [fields]
15 f1 = 0.0,0.0 # Slope: Sagittal, Tangential
16 f2 = 0.0,0.001
17

18 [lens_01]
19 surfacetype = INIT # Input Beam Initialization
20 aperture = elliptical aperture,0.050,0.050,0.0,0.0 ## Aperture Type, X-Half Width,

Y-Half Width, X-Decenter, Y-Decenter
21

22 [lens_02]
23 surfacetype = Standard # Move to M1
24 thickness = 0.100
25

26 [lens_03]
27 surfacetype = Coordinate Break # LOS tilt 1
28 par3 = -45.0
29

30 [lens_04]
31 surfacetype = Standard # M1
32 material = MIRROR
33 save = True
34 stop = True
35 aperture = elliptical aperture,0.050,0.033,0.0,0.0
36

37 [lens_05]
38 surfacetype = Coordinate Break # LOS tilt 2
39 par3 = -45.0
40

41 [lens_06]
42 surfacetype = Standard # Move to Zernike surface
43 thickness = -0.050
44

45 [lens_07]
46 surfacetype = Zernike # Z1
47 zindex = 0,1,2,3,4,5
48 z = 0.0,0.0,0.0,0.05,0.0,0.0
49 par1 = 3.00 ## Wavelength
50 par2 = standard ## Ordering
51 par3 = False ## Normalization
52 par5 = x ## Origin for Angle Measurement
53

54 [lens_08]
55 surfacetype = Standard # Move to M2
56 thickness = -0.050
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57

58 [lens_09]
59 surfacetype = Coordinate Break # LOS tilt 3
60 par3 = 45.0
61

62 [lens_10]
63 surfacetype = Standard # M2
64 material = MIRROR
65 aperture = elliptical aperture,0.050,0.050,0.0,0.0
66

67 [lens_11]
68 surfacetype = Coordinate Break # LOS tilt 4
69 par3 = 45.0
70

71 [lens_12]
72 surfacetype = Standard # Move to L1
73 thickness = 0.100
74

75 [lens_13]
76 surfacetype = Paraxial Lens # L1
77 thickness = 0.100
78 par1 = 0.100 ## Focal Length
79

80 [lens_14]
81 surfacetype = Standard # Image Plane
82 save = True

Listing 2.6. Example input file for PAOS. Remove comments to use.

The .ini file is organized into various sections, each denoted by a header enclosed in
square brackets. The [general] section contains general information about the simulation,
including the project name, version, grid size, and zoom level. This section includes
parameters for the ambient temperature (tambient) and pressure (pambient). To ensure
consistency, PAOS assumes meters, micrometers, and degrees, respectively, for the unit of
measurement of lens parameters, wavelengths, and angles.

In the [wavelengths] section, the input wavelengths used in the simulation are spec-
ified. Each wavelength is assigned a unique identifier, such as w1 and w2 in the example
provided. The [fields] section contains information about the field slopes in the sagittal
and tangential directions. Field slopes represent the tangent of the angle between the rays and
the optical axis. In the PAOS code, these field slopes are set equal to the angles themselves
under the paraxial approximation. The field slopes are identified with labels like f1 and f2
in the provided example.

The optical chain description begins with the [lens_01] header, which represents the
initial surface and is always of type INIT. Following this, subsequent headers are used to
define each optical surface in sequential order. There are several supported surface types,
including Coordinate Break, Standard, ABCD, Zernike, and Paraxial Lens. Each
optical surface is defined by a set of parameters, such as surface type, curvature, material,
shape and position of the aperture, and thickness. The thickness parameter specifies the
propagation distance to the next surface. Additional parameters can be utilized to place an
aperture stop, ignore the surface, or save the current wavefront properties. The user can refer
to the documentation for a comprehensive list of parameters and their description.

In Listing 2.6, the input beam is initialized on-axis at [lens_01] and has a radius
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of 50 mm; the next surface, [lens_02], propagates the collimated beam by 100 mm to
the first fold mirror, M1. Before M1, [lens_03] tilts the beam about the sagittal axis
clockwise by 45◦. M1 is defined at [lens_04] with an elliptical aperture that vignettes
the incoming beam and planar geometry. M1 also normalizes the wavefront to unit energy.
[lens_05] and [lens_06] perform another beam tilt of 45◦ and a propagation of 50 mm,
respectively. [lens_07] is a Zernike surface and imposes a wavefront error of 50 nm RMS
astigmatism on the beam. Then, [lens_08] propagates the beam to M2 by 50 mm. M2 is
preceded by [lens_09], which tilts the beam about the sagittal axis counter-clockwise by
45◦. [lens_10] is M2, the second fold mirror, plane and circular. After M2, [lens_11]
performs the last tilt that restores the original propagation direction. The next surface
is [lens_12], from where the beam is propagated to the paraxial lens at [lens_13],
described by a focal length of 100 mm. Finally, the lens brings the beam to its focus, at
[lens_14]. When using this input file, the wavefront properties are saved in the HDF5 file
at M1 and the image plane.

This example demonstrates all essential components in PAOS. It, along with other
examples provided in the documentation, serves as a valuable starting point for users to
understand and explore the capabilities of the software. It also showcases the standard
naming conventions and syntax adopted by PAOS, similar to those used in commercial
optical computer-aided design (CAD) software like Zemax. This approach minimizes the
learning curve and allows users to quickly leverage their existing knowledge and experience
in optical design when working with PAOS.

The input file is parsed using the core.parseConfig method, which utilizes the
ConfigParser class from the Python standard library. This method parses the input file
and stores the data in a dictionary. It returns a tuple consisting of simulation parameters
and the optical chain list. Each entry in the list is a dictionary that represents an optical
surface in the .ini file. The dictionary contains the parameters and ABCD matrices of the
optical surface, estimated at the given wavelength. It should be noted that this information is
relevant only for diffractive components, as their inclusion results in wavelength-dependent
optical paths. The output of this method is then used for the POP simulation.

2.1.2.2 GUI

PAOS’s generic input system is complemented by a GUI, which can be accessed through the
paosgui command in the terminal. The GUI serves as a user-friendly interface, providing
an intuitive way for users to interact with the essential functionality of the PAOS code – the
POP simulation. One notable advantage of the GUI is that it eliminates the requirement for
users to be versed in Python or any programming language. This accessibility makes PAOS
suitable for optical engineers, scientists, and even students who may not be programming
experts. By providing a convenient and user-friendly GUI, PAOS (i) extends its user base,
(ii) enables users to focus on the scientific analysis while seamlessly interacting with the
code and input file, and (iii) enhances usability and appeal compared to other open-source
POP codes.

The GUI is implemented using the PySimpleGUI1 module in Python. This module
aims to bridge the gap between software developers and end-users by offering high-level
access to the Tkinter library2 (and other backends), which is built-in in Python. With

1https://www.pysimplegui.org/en/latest/, insert-version-here
2https://docs.python.org/3/library/tk.html

https://www.pysimplegui.org/en/latest/
https://docs.python.org/3/library/tk.html
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this module, creating GUI elements such as windows, buttons, and input fields becomes
straightforward, requiring only a few lines of code. PAOS provides a GUI that emphasizes
simplicity, featuring a minimal number of elements and a straightforward interface.

To illustrate the GUI, let us refer to Figure 2.3, which presents a series of screenshots
displaying its various tabs. Users can either load an existing input file (we use the same one
from Section 2.1.2.1) or create a new one using the GUI as an editor. The GUI loads instantly
and the landing tab is General (screenshots 1 and 2), which contains two different sections
corresponding to the [general] and [wavelengths] sections in the input file. Users have
the flexibility to insert wavelengths for the simulation either manually or by pasting a column
of values. The second tab, labeled as Fields (screenshot 3), corresponds to the [fields]
section. The next tab, Lens Data (screenshot 4), displays a table that represents the optical
chain from input to output. Each column corresponds to a keyword that can be selected
from a dropdown menu or entered in an input field, such as SurfaceType or Thickness.
The figure only shows part of the table, which comprises many more columns, including
Aperture (with its own dropdown menu in a collapsible window) and the columns from
par1 to par8. This table allows users to create and edit the input file section [lens_01] and
following in an interactive and intuitive way, with event-driven programming (e.g. keyboard
navigation) and dynamic headers (e.g. par1 to par4 change to Ax, Bx, Cx, and Dx for an
ABCD surface). This feature improves the user experience and facilitates efficient editing
of the input file. The user can access a special window (Zernike Setup) for viewing
and editing the Zernike coefficients (screenshot 5) from the Lens Data tab by selecting
‘Zernike’ as the SurfaceType. In it, the user can enter coefficients individually under
‘Z’ or paste a column of values for convenience. The window shows the index as well as
the radial and azimuthal order of the coefficients, according to the chosen ordering. This
window enables more convenient and precise editing of Zernike coefficients than pasting
them in the input file. The GUI saves any modification by the user in a temporary .ini file
that corresponds to the current status of the GUI. The user can click ‘Save’ to finalize the
changes and optionally overwrite the previous file. The GUI can be exited at any time, but
the temporary .ini file will be deleted.

The user can run a diagnostic ray-tracing (optional) and a POP simulation of the optical
system in the Launcher tab (screenshot 6) after modifying the simulation parameters or
loading the input file. The wavelength and field for the simulation can be selected from
dropdown menus. A progress bar indicates the simulation status. The results can be saved to
an HDF5 file and the squared amplitude of the wavefront can be plotted at the chosen surface
(with the chosen scale), and saved to disk. This plot can be displayed in a dedicated frame
that shows its cross-sectional and 2D views.

This description covers the main GUI functionalities, but there is another tab where the
user can run a predefined set of Monte Carlo (MC) simulations, including running the POP
simulation for different realizations of the optical system Wavefront Error (WFE). We refer
to the documentation for more details on this tab. The GUI is designed to be extensible
and can accommodate additional functionality based on user feedback. However, users
who want more flexibility and customization may prefer to interact with the Python code
directly. This allows them to perform a wider range of tasks, such as implementing new
optical surface types or different MC simulations.
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Figure 2.3. Screenshots of the GUI tabs. (1) and (2) show the General tab, which contains
sections for the [general] and [wavelengths] parameters in the input file. (3) shows the
Fields tab, which corresponds to the [fields] section. (4) shows the Lens Data tab, which
displays a table that represents the optical chain from input to output. (5) shows the Zernike
Setup window, which can be accessed from the Lens Data tab by selecting ‘Zernike’ as the
SurfaceType. This window allows users to view and edit the Zernike coefficients. (6) shows
the Launcher tab, which allows users to run a diagnostic ray-tracing and the POP simulation.
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2.1.2.3 Physical Optics Propagation

PAOS estimates the complex-valued wavefront at any distance along the optical axis using
the scalar Fresnel diffraction theory (Goodman, 2005). The Fresnel approximation requires
i) aperture sizes to be significantly larger than the wavelength, ii) modest numerical apertures
and iii) thin optical elements. Because the Fresnel and the paraxial approximations are
equivalent, PAOS can estimate the wavefront propagation through optical layouts that can
be described paraxially. The propagation of the wavefront is implemented using near-
field and far-field propagators, required to guarantee adequate sampling of the fields while
maintaining computational efficiency. This is a well-consolidated algorithm, fully described
by Lawrence (Lawrence et al., 1992) in 1992. The near- and far-field propagators are
combined to estimate wavefronts traveling from near-to-near, near-to-far, far-to-far, and
far-to-near fields. The propagators to use are selected by studying a pilot beam, an ideal
Gaussian beam whose propagation through an arbitrary optical system can be computed
analytically in paraxial approximation. The pilot beam can be propagated through on-axis
as well as off-axis optical layouts. In practice, the xyz reference frame used to estimate the
field has the z-axis parallel to the direction of propagation of the pilot beam, and the paraxial
quantities are estimated in this reference frame at all positions along the optical axis.

The paraxial behavior of an arbitrary optical system can be conveniently studied using
a matrix method, often called the ABCD method. A ray is represented by a ray vector
v = (y, u), where y is the ray height and u is its slope. In this formalism, the propagation
through an optical element is described by a matrix P(

y′

u′

)
= v′ = P v =

(
A B
C D

) (
y
u

)
(2.1)

The matrix P can be factorized in a number of different ways; PAOS adopts the following

P =
(

1 T
0 1

) (
1 0
−ψ 1

) (
1 0
0 n1/n2

) (
M 0
0 1/M

)
(2.2)

From left to right, the matrices represent a translation T , a lens with optical power ψ, a
boundary between two media with n1 and n2, and an optical magnification M. These four
variables can be obtained from the elements of the matrix P

M = AD−BC
D

n1/n2 = MD
T = B

D
ψ = − C

M

(2.3)

The first three steps (power, medium change, magnification) are fast to execute because
they correspond to a geometrical transformation of the wavefront and only the translation
requires the application of the Fresnel theory (see Lawrence, 1992, section IV Lawrence
et al. (1992)). With this formalism, PAOS can model any optical system involving reflective
flat or powered mirrors, thin lenses as well as thick dioptres, prisms, etc.

The propagation of optical waves through any well-behaved system can be separated into
geometric aberration calculations and propagation in homogeneous media (Lawrence et al.,
1992). Geometric aberrations are discussed in Section 2.1.2.4; this section mainly describes
the assumptions and limitations in the treatment of wavefront propagation in PAOS.
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PAOS employs the Fresnel approximation for analyzing wave propagation, which is a
more feasible alternative than the Rayleigh-Sommerfeld solution for complex systems. The
Rayleigh-Sommerfeld solution is a fundamental approach in wave optics that provides a
rigorous analysis of wave propagation, but it is impractical for most applications because of
its high mathematical and computational demands. The Fresnel approximation is derived
from the Rayleigh-Sommerfeld solution by assuming paraxial conditions, where the angles
involved are small, and the distance between planes is much larger than the wavelength. The
conditions can be summarized as (Lawrence et al., 1992):

1. aperture sizes significantly larger than the wavelength;

2. modest numerical apertures;

3. thin optical elements.

The Fresnel approximation has some advantages and disadvantages that affect its appli-
cability and accuracy. A major advantage of this approximation is that it enables the use
of the Fast Fourier Transform (FFT) in numerical computation, which greatly reduces the
computational time and memory requirements. As a result, most optical systems can be effi-
ciently modeled and analyzed using this method. However, this approximation cannot model
systems that violate paraxial conditions. Moreover, aberrations cannot be independently
evaluated and need to be input separately by the user.

Therefore, PAOS can treat all types of systems to the accuracy of small angle, scalar
Fresnel diffraction theory, but it may not be suitable for systems that require higher accuracy
or involve non-paraxial conditions. In these scenarios, the Rayleigh-Sommerfeld solution or
other advanced methods might be more appropriate for analyzing wave propagation. These
topics are well-known in the literature (e.g. Goodman, 2005) and were briefly summarized
here for completeness. For more details on the code implementation of wavefront propaga-
tion in PAOS, as well as practical examples, the reader is referred to the Appendix B.1 and
the code documentation. Next, we present a distinctive feature of PAOS that enables it to
model off-axis optical systems.

Unlike other publicly available POP codes such as PROPER, PAOS can model off-
axis optical systems, where the optical axis does not coincide with the mechanical axis.
This is achieved by combining Fresnel diffraction theory and paraxial ray-tracing. Fresnel
diffraction theory requires propagation along the optical axis, but this axis is not fixed in
an off-axis system. Therefore, PAOS uses paraxial ray-tracing to estimate the location and
projected shape of the apertures (and obscurations) that may affect the wavefront with respect
to the optical axis, before propagating the wavefront (example in Appendix B.1.11). This
information allows the translation of physical apertures into ABCD matrices for an on-axis
optical chain, which enables propagation of an off-axis optical system with minimal phase
aberrations. In some cases, such as the prism, PAOS also uses ray-tracing to estimate the
appropriate ABCD matrices that account for the refraction and dispersion effects. For more
information on ABCD matrices implemented in PAOS, we refer the reader to Section 2.1.2.6.

The Ariel Telescope, which has an off-axis Cassegrain design, is the main system
that inspired the development of PAOS. Thanks to the combination of Fresnel diffraction
and paraxial ray-tracing, PAOS was able to accurately simulate the wavefront propagation
through the telescope and provide useful information on optical performance and tolerances.
However, a detailed description of the analyses done for the Ariel Telescope is beyond the
scope of this thesis and will be presented elsewhere.
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2.1.2.3.1 Propagation loop The propagation loop is the main function of PAOS that
performs the POP simulation over each element of the optical system according to the
configuration file which must be already parsed (Section 2.1.2.1). This section describes the
sequential flow diagram to execute the entire POP simulation, implemented in the core.run
method.

First, PAOS initializes the beam at the center of the aperture. Then, it initializes
the propagation ABCD matrix. Once the initialization is complete, the simulation run
is completed in a single for loop over all the optical elements. For each element (step),
PAOS applies sequentially different actions according to a series of if-clauses, which are all
evaluated before going to the next step, as shown in Figure 2.4. The if-clauses and actions

Stepi

Yes

if1 Stepi+1

Apply

...No ifn
No

Yes

Apply

Figure 2.4. Sequential flow diagram that is repeated over all the optical elements in the system.

are in the specific order below.

1. Check coordinate break; if true, transform the wavefront coordinates.

2. Check aperture; if true, apply (and save) the given mask to the beam.

3. Check stop; if true, normalize the current wavefront to unit energy.

4. Check aberration; if true, add a phase term represented by a Zernike expansion to the
wavefront.

5. (*) Save the wavefront properties.

6. Check magnification; if true, rescale the sampling and the relevant beam parameters.

7. Check medium change; if true, adjust the relevant beam parameters.

8. Check lens; if true, apply a paraxial lens phase term to the wavefront.

9. Check propagation by thickness; if true, select the appropriate propagation primitive
and propagate the wavefront by a given distance.

10. (*) Update beam vector and ABCD matrix (and save it).

Note that actions with an asterisk are not in if-clauses and are always applied.
To illustrate a POP simulation using PAOS, we show the wavefront propagation of the

optical system of the Hubble Space Telescope (HST) in Figure 2.5. The HST input file uses
open-source information and is included in the PAOS package as an example. We describe
this input file in more detail in Section 2.2. The figure displays the wavefront intensity at
1 µm for different locations in the optical path: the input pupil (left), the secondary mirror
(center), and the Point Spread Function (PSF) at the telescope’s focal plane (right).
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Figure 2.5. Wavefront propagation of the optical system of the Hubble Space Telescope (HST) at
1 µm. The panels show the squared amplitude of the wavefront at different positions, and the
titles report information on the current surface number, beam focal ratio, Gaussian beam width,
beam wavelength, and the fraction of total transmitted power. Left panel: the input pupil, which
is uniformly illuminated and apodized by the primary mirror circular pads (1, 2, and 3), the
circular obscuration of the secondary mirror, and the rectangular vanes (vertical and horizontal)
that block part of the incoming light. Center panel: the beam at the secondary mirror (M2). Right
panel: the Point Spread Function (PSF) at the HST telescope focus. Black rings are positioned
at the first five dark rings for a diffraction-limited Airy PSF for reference. The color scale shows
the power in each over-sampled pixel in decibels (dB).

2.1.2.4 Aberrations

One of the most important applications of optical modeling methods is to properly account
for aberrations. Aberrations can arise in different ways, such as inherent optical configuration
design and manufacturing errors (e.g. Lawrence et al., 1992; Welford, 1986; Mah, 2013). In
this section, we describe how PAOS handles aberrations.

PAOS implements low-spatial-frequency aberrations (geometric aberrations), which
can result from various factors, including gravity, mirror manufacturing, mounting, and
alignment errors, and can affect the shape and large-scale spatial features of the PSF in
distinctive ways. In contrast, mid- or high-spatial frequency errors (surface roughness)
scatter light to larger angles, reducing the Strehl ratio without significantly altering the PSF
shape. These aberrations can be statistically characterized relative to the spatial scales of
interest using a parameterized Power Spectral Density (PSD) specification (e.g. Church and
Takacs, 1991). PAOS does not support these aberrations natively at present; however, the
user can add custom aberration maps when using PAOS as a library. We may include this
capability in the next version of PAOS based on user feedback.

2.1.2.4.1 Zernike polynomials PAOS models a geometric aberration as a superposition
of Zernike polynomials, up to a specified radial order. This is implemented in the Python
class Zernike. The function describing an arbitrary wavefront in polar coordinates W(ρ, θ)
can be expanded in terms of a sequence of Zernike polynomials (Lakshminarayanan and
Fleck, 2011) as:

W(ρ, θ) =
∑
n,m

Cm
n Zm

n (ρ, θ) (2.4)

where Cm
n are the coefficients of the Zernike polynomial Zm

n (ρ, θ), and n and m are the radial
and azimuthal numbers, respectively. The radial coordinate is normalized so that it is equal
to 0 at the center of the pupil and equal to 1 at the edge of the pupil. Let xpup and ypup be
the physical coordinates of a pupil, and let a and b be, respectively, the semi-major and
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semi-minor axes of an elliptical pupil. Then:

ρ2 =
x2

pup

a2 +
y2

pup

b2 (2.5)

This formalism captures both circular and elliptical pupils. The first three terms in Equa-
tion 2.4 describe trivial aberrations (Piston, Tip, and Tilt) and are usually neglected. Note
that, due to orthogonality, the Zernike coefficients are independent of the number of polyno-
mials in the sequence.

PAOS can generate ortho-normal polynomials and orthogonal polynomials; orthonormal
polynomials are normalized to RMS = 1, and each coefficient of the expansion represents the
RMS Wavefront Error (WFE) of that specific mode. Orthogonal polynomials are generated
as described in (Lakshminarayanan and Fleck, 2011):

Zm
n =


Rm

n (ρ) cos(mϕ) m ≥ 0
R−m

n (ρ) cos(mϕ) m < 0
0 n − m is odd

(2.6)

The radial polynomial is estimated using the Jacobi polynomial expression as in (Lakshmi-
narayanan and Fleck, 2011, Eq. 14) and is normalized to 1 at the unit radial coordinate, that
is, Rm

n (ρ = 1) = 1. Equation 2.6 can be expressed as:〈[
Zm

n (ρ, ϕ)
]2
〉
= 2

n + 1
1 + δm0

(2.7)

where δm0 is the Kronecker delta (δm0 = 0 for m ,0) and the average operator ⟨⟩ is intended
over the pupil. Note that when a set of Zernike coefficients, Dm

n , are obtained from an
interferometric measurement of a mirror, they can be scaled to match the desired RMS of
the WFE at the pupil. This is useful for modeling realistic mirror aberrations.

The Zernike class supports four different orderings: ANSI, Noll, Fringe, or Stan-
dard (e.g. Born et al., 1999). For any ordering, it can convert n and m into the corresponding
coefficient index and vice versa. This is particularly useful for collaborative work, since
different teams often use different orderings, and doing a manual conversion is a cumbersome
task.

PAOS can convert the Zernike coefficients between any of the ANSI, Noll, Fringe, or
Standard orderings, ensuring compatibility and interoperability.

To illustrate how PAOS can model different types of aberrations, we present two exam-
ples below. Listing 2.7 shows an example of using PAOS as a library to simulate a 100-nm
RMS wavefront aberration of defocus (4th coefficient in ANSI ordering) for an optical
system with an input pupil similar to Ariel’s. Figure 2.6 reports simulated PSFs at the Ariel
Telescope exit pupil for a set of large wavefront aberrations: primary astigmatism, defocus,
coma, and trefoil3. This figure illustrates that each optical aberration affects the final PSF
shape and optical quality for the Ariel application in a distinctive way.

3The interested reader can verify that as the input parameters, aberration, and the implemented f# are
comparable to those used in Listing 2.7, the defocused PSF is similar.
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1 import numpy as np
2 from paos.classes.wfo import WFO
3 wfo = WFO(beam_diameter=1.1, wl=0.55e-6, grid_size=512, zoom=4)
4 wfo.aperture(xc=0.0, yc=0.0, hx=0.55, hy=0.365, shape="elliptical")
5 wfo.make_stop()
6 Z_index = np.array([0, 1, 2, 3, 4, 5])
7 Z_value = np.array([0, 0, 0, 0, 100e-9, 0]) # defocus: 100 nm RMS WFE
8 wfo.zernikes(index=Z_index, Z=Z_value, ordering="ansi", normalize="False"

, radius=wfo.wz, origin="x")
9 wfo.lens(lens_fl=12)

10 wfo.propagate(dz=12)
11 psf = wfo.amplitude ** 2 # aberrated PSF at image plane

Listing 2.7. Zernike defocus aberration. We expand the wavefront function in terms of Zernike
polynomials with ANSI ordering. The input pupil is elliptical, so we use orthogonal polynomials
by setting normalize to false. The first three terms are trivial aberrations and are neglected. The
fourth term is the defocus coefficient, set to 100 nm RMS. The radius parameter is the current
Gaussian beam width, and the origin parameter is the x-axis. We propagate the wavefront to the
image plane and calculate the PSF.
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Figure 2.6. PSFs at the Ariel Telescope exit pupil simulated for different aberrations and same
100-nm Root Mean Square (RMS) Wavefront Error (WFE). The PSFs are reported in ascending
ANSI index (Born et al., 1999). From the top left: oblique astigmatism, defocus, vertical
astigmatism, vertical trefoil, vertical coma, horizontal coma, and oblique trefoil. The color scale
represents the power per pixel in decibels (dB), normalized to the maximum value in the array.
For reference, five black rings show the locations of the first zeros of the corresponding Airy
PSF.
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2.1.2.5 Refractive elements

PAOS can simulate both reflective and refractive elements, such as mirrors, dichroics, and
prisms. This section describes how it accounts for the dispersion, temperature, and pressure
effects on the refractive index of optical materials. This is another feature that distinguishes
PAOS from other POP codes.

The dispersion of light can be explained by applying the electromagnetic theory to the
molecular structure of matter. The properties of optical materials depend on wavelength
through the index of refraction. The chromatic variation in the paraxial image formation
properties of a system is generally of most interest (Lawrence et al., 1992). For instance, the
wavefront propagating through the Ariel optical system is transmitted through dichroics and
prisms. At each limiting surface, there is a change in the refractive index due to the different
optical materials. Only for mirrors, the refractive index is constant between the mirror space
and the media before.

In PAOS, the optical materials need to be specified in the input file (see Section 2.1.2.1)
by using the material keyword for each surface. Note that blanks are treated as air. The
catalog of supported optical materials includes:

• CAF2 (calcium fluoride) (Bass et al., 2009);

• SAPPHIRE (mainly aluminum oxide) (Rogatto et al., 1993);

• ZNSE (zinc selenide) (Bass et al., 2009);

• BK7 (borosilicate crown glass) [Adept-infrared catalog];

• SF6 (a dense-flint glass) [Schott catalog];

• SF11 (a dense-flint glass) [Adept-infrared catalog];

• BAF2 (barium fluoride) (Bass et al., 2009).

“MIRROR” is a valid key that can be entered for a mirror, although this name is not present in
the catalog. We acknowledge that this catalog is largely Ariel-oriented and we may expand
it in a future PAOS release upon user feedback.

Once the optical materials are defined, PAOS can compute their refractive index as
a function of wavelength, temperature, and pressure. For more details, please refer to
Appendix B.3 and the code documentation.

Note that the current PAOS implementation is not intended to perform thermal analysis,
which must be done externally, and the results of which must be input by the user. As such,
it allows one to specify only one pressure and temperature for the optical system under
consideration; in addition, PAOS does not implement changes in the size of glasses with
temperature from the value specified in the input file.

2.1.2.6 ABCD matrix method

In the past sections, we have introduced some of the peculiar features of PAOS that distin-
guish it from other POP codes, such as in Section 2.1.2.3, where we discussed how PAOS
can model off-axis optical systems using paraxial ray-tracing and ABCD matrices. Here, we
discuss how the ABCD matrix method is implemented in PAOS and what are its advantages
and limitations.
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PAOS implements the Paraxial theory described in Lawrence et al. (1992), which applies
to the infinitesimal thread-like region around the optical axis where all the angles involved
are small enough to be approximated by their sines and tangents (Smith, 2000). This
approximation allows for estimating the image position and sizes in a real optical system
by comparing them with the ideal paraxial image. Also, a well-corrected optical system
will have only minor deviations from these first-order expressions, and the analysis will be
greatly simplified compared to the exact trigonometric relations.

ABCD matrix theory was developed to break down the paraxial behavior of an optical
system into a series of elementary transformations, which can be easily implemented in a
computer program. Using ABCD matrices, the propagation of a paraxial beam is performed
by representing each optical surface as a 2-by-2 matrix that transforms the beam parameters
– height and slope of the rays – from one surface to the next. The ABCD matrix (less
colloquially, ray transfer matrix) is a characteristic of each optical element. This method
can be used to describe the paraxial behavior, the properties of the Gaussian beam, and the
overall diffraction behavior of any given optical system described by a sequence of optical
surfaces. In general, any optical system can be considered a black box described by an
effective ABCD matrix:

Optical system←
(
A B
C D

)
e f f

(2.8)

This black box and its matrix may be factored into a set of four elementary non-commuting
operations or primitives (Lawrence et al., 1992):

1. magnification change;

2. change of refractive index;

3. divergence (“thin lens”);

4. translation of distance (“thickness”).

Assuming that the apertures in the intervening surfaces are sufficiently large, we can neglect
the diffraction propagation effects in all steps except the single propagation step, which is
the most computationally intensive one. We can estimate the parameters of the effective
ABCD matrix as follows:

M = AD−BC
D

n1/n2 = MD
T = B

D
ψ = − C

M

(2.9)

where T , ψ, n1/n2, and M are the effective thickness, power, refractive index ratio, and
magnification of the black box system, respectively. These parameters are not the same as
the thickness, power, refractive index ratio, and magnification of the actual optical system or
its components. With these definitions, we can obtain the effective focal length as fe f f =

1
ψM .

Using the Paraxial theory and the ABCD matrix method, PAOS can analyze the paraxial
behavior of any optical system (or subsystem) as a black box, as long as it has the effective
ABCD matrix of that system (or subsystem).

This is a flexible feature of PAOS that distinguishes it from other POP codes and enables
the modeling of optical systems that may not have a simple analytical description or a
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standard optical design software representation. It also allows for using placeholder ABCD
matrices in early design stages, when the exact parameters of the optical elements are not
yet known. The input file format and syntax for specifying the ABCD matrix are explained
in Section 2.1.2.1.

In the following section, we demonstrate using the Python class ABCD in PAOS to esti-
mate the appropriate ABCD matrices for a prism. The reader is referred to the Appendix B.2
and the code documentation for further examples of how to implement different ABCD
operators using this class as a library.

2.1.3 Prism

The prism changes the slope and the magnification of an incoming beam.
Following (Taché, 1987), after some algebra, the ABCD matrix for the tangential transfer

can be rewritten as:

Pt =

(
A B
C D

)
(2.10)

where
A = cos(θ2)cos(θ4)

cos(θ1)cos(θ3)
B = L

n
cos(θ1)cos(θ4)
cos(θ2)cos(θ3)

C = 0
D = 1/A

(2.11)

where n is the refractive index of the prism, L is the geometrical path length in the prism,
and the angles θ1..4 are as described in Figure 2.7, copied from (Taché, 1987).

The sagittal transfer, instead, is simply a propagation by the thickness t = L/n.
Listing 2.8 lists the steps of the computation of the tangential and sagittal ABCD matrices

for an optical component with tilted flat interfaces such as a prism.

1 import numpy as np
2 from paos.classes.abcd import ABCD
3 thickness = 20 # mm
4 n = 1.5
5 theta_1 = np.deg2rad(60) # modify angles as necessary
6 theta_2 = np.deg2rad(-30)
7 theta_3 = np.deg2rad(-20)
8 theta_4 = np.deg2rad(45)
9 A = np.cos(theta_2) * np.cos(theta_4) / (np.cos(theta_1) * np.cos(theta_3

))
10 B = np.cos(theta_1) * np.cos(theta_4) / (np.cos(theta_2) * np.cos(theta_3

)) * thickness / n
11 C = 0.0
12 D = 1.0 / A
13 abcdt = ABCD()
14 abcds = ABCD()
15 abcdt.ABCD = np.array([[A, B], [C, D]])
16 abcds.ABCD = np.array([[1, thickness / n], [0, 1]])
17 (At, Bt), (Ct, Dt) = abcdt.ABCD # tangential
18 (As, Bs), (Cs, Ds) = abcds.ABCD # sagittal

Listing 2.8. Computing the tangential and sagittal matrices for a prism with given parameters using
the ABCD class. Two instances of ABCD class are created and assigned the tangential and sagittal
matrices, respectively. The components of the matrices are calculated using Equation 2.11; they
are assigned and extracted from the ABCD instances.
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Figure 2.7. Propagation of a ray through a prism of refractive index n, apex angle α, and geometrical
path length in the prism L. From Taché (1987, Figure 2).

2.2 Benchmark

We benchmarked PAOS against PROPER on the HST optical system, because PROPER is
not designed to handle Ariel’s, which (i) is off-axis and (ii) involves more complex elements
than simple thin lenses (Krist, 2007), such as dichroics.

The description of the HST system used is the one provided in the “Hubble_simple.py”
file in the PROPER package4. This description was translated into an input file for PAOS,
“Hubble_simple.ini”, included in the package under the “lens data” directory, for repro-
ducibility. All simulation inputs have been matched (e.g., wavelength, grid size, zoom). We
added a line in the PROPER HST routine to set the pixel subsampling factor used to antialias
the edges of shapes. We set this value to 101 from the default 11 to improve the accuracy of
the result to compare with the exact treatment given in PAOS.

We compared the resulting PSFs at the focal plane of the telescope, both in the central
region and in the outer wings. The first benchmark is reported in Figure 2.8, showing the
results for the PSFs at 1 µm. The plots in the upper row show the central region of the HST
PSFs as computed with PAOS and PROPER, and their difference. No significant residuals
were found, with sporadic outlier pixels showing deviations by less than 0.1 dB in regions
corresponding to the PSF zeros due to small numerical errors. The middle and lower rows
show a detailed view of the slices of the PSFs along the horizontal and vertical axes, and

4The PROPER source code and documentation can be downloaded at https://proper-library.
sourceforge.net/

https://proper-library.sourceforge.net/
https://proper-library.sourceforge.net/
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their differences. The signal curves show an almost perfect overlap, with negligible residuals,
all corresponding to values lower than -50 dB from the PSF maximum in the far wings.
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Figure 2.8. Top row: the central region of the HST PSF at 1 µm as estimated with PAOS (left)
and PROPER (center) and normalized to the maximum value in the array. The axes are in
oversampled pixels. The color scale represents the power per pixel in decibels (dB), with a lower
cut-off at -60 dB for better visualization. The right panel reports the difference between the
PSF computed with PROPER and PAOS in the same physical units. Middle and bottom rows:
comparison between PSF slices along the x and y axis, respectively. The left column reports the
slice values for both codes, whilst the right column reports their difference. The units are the
same (power per pixel in dB) to highlight even the smallest discrepancies. As can be observed,
these differences are negligible for powers ≳-50 dB for the HST application.

Figure 2.9 reports the second benchmark; in this case, we simulate an aberrated PSF
by HST described by a superposition of Zernike polynomials. At M2, we added 100 nm
RMS (WFE) each for defocus, vertical astigmatism, and oblique astigmatism, totaling
σ ≈ 173.2 nm WFE. The simulation is performed at λ = 1.0 µm; therefore, using the Ruze
formula (Ross, 2009), the Strehl ratio is S = exp (−2πσ/λ) ≈ 0.3. Consequently, the PSF is
highly aberrated and the main lobe is spread over more pixels. Thus, we can validate the
PAOS implementation of optical aberrations, and we have a larger region of high signal. The
latter is especially useful for investigating aliasing errors, which tend to occur more severely
where the distribution has the highest amplitude because the amplitudes of the signal and
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the error add rather than the intensities (Lawrence et al., 1992).
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Figure 2.9. Same as Figure 2.8, but adding an optical aberration using Zernike polynomials: 100
nm RMS (WFE) for each of three low-order coefficients in the Zernike expansion: defocus
and primary astigmatism (vertical and oblique), corresponding to the coefficients 4, 5, and
6 in the Noll ordering, respectively. The difference between the large-scale features of the
PSFs is negligible. Locally, slightly “hotter” and “colder” pixels can be identified in the PSF
wings, although, for powers ≳-50 dB, this happens only sporadically. These minute numerical
differences may be caused by the different treatment of aperture edges (exact for PAOS, sub-
pixelled for PROPER), causing tiny aliasing errors.

We find that the differences between the aberrated PSFs are negligible and reach peaks
of few dB only in the far wings. However, even in the central region, there is an increase in
“hot” and “cold” pixels compared to the unaberrated case. These discrepancies are probably
due to the different treatment of the edges of apertures and vanes in the optical system,
causing small aliasing errors when not exact. However, they are so tiny that they can be
safely neglected for the HST application.
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2.3 From Radius of Encircled Energy to Wavefront

As an example PAOS application, this section aims to convey the work I led to convert a
high-level optical requirement of the Ariel mission into information that can be used by the
telescope manufacturer. The analysis started from developing a mathematical framework
from first principles in optics and Zernike polynomials to link aberrations and PSF. Then,
we sampled from solutions that were meeting a given criterion and compiled a table with
compliant aberration realizations. To validate this table with an independent framework, we
used PAOS and obtained results comparable with the expectations.

* * *

The optical performance requirements of the Ariel Payload and its subsystems are
provided in terms of Encircled (or Enclosed) Energy (EE)5, i.e. power within specified
elliptical apertures at surfaces along the optical path. This is because Ariel is designed to
be diffraction-limited at 3 µm, and in an aberrated system the energy in the Point Spread
Function (PSF) spreads out. This is particularly relevant at FGS wavelengths: here the
payload design relies on geometrical aberrations to broaden the PSF relative to the scale of
the detector pixels. Otherwise, diffraction-limited optics would result in sub-sampled PSFs
at FGS wavelengths, given the focal numbers implemented (see Section 4.1 for details).

Transmission spectroscopy observations do not require significant angular resolution:
imaging quality is not critical, and the PSF can be aberrated. However, photons need
to be collected in a sufficiently compact region of the focal plane. Translating this PSF
“compactness” requirement into compliant aberration families is not trivial and a possible
attempt is provided here. Additionally, the exact distribution of geometrical aberrations on
the optical beam feeding the FGS instrument will be known later in the project.

From the manufacturer point of view, it is crucial to know the maximum allowable
amplitude of aberrations from manufacturing the large all-Aluminum primary mirror, which
poses fabrication challenges (Chioetto, 2022). To balance scientific requirements with
manufacturing feasibility, the mirror fabrication process should be provided with optical
surface shape requirements as relaxed as possible.

A measure of the degree of aberration of an optical system is given by the Wavefront
Error (WFE). The WFE is defined in the geometric optics approximation as the optical path
difference between the actual wavefront and an ideal one. Being easy to model with optical
analysis software and measured precisely with interferometers, the WFE is a very commonly
used performance parameter for optical systems.

A Wavefront Error (WFE) Root Mean Square (RMS) specification provides a useful
budgeting tool as it can be directly allocated by setting an upper limit to optical surface errors.
However, families of WFE functions meeting the RMS may still produce non-compliant
PSFs6. This is because no one-to-one relation exists between the WFE RMS and PSF shape.
Reducing WFE to its RMS discards information on the distribution of spatial frequencies,
preventing unambiguous PSF (and therefore EE) determination. In other words, different
WFE functions may result in the same RMS but different PSF shapes, and therefore different
EEs. Therefore, the optical requirement is provided in terms of EE rather than WFE RMS,
as verying EE ensures compliance regardless of the PSF shape.

5Perhaps it could be more precisely described as “enclosed” energy.
6ARIEL-SAP-PL-TN-005
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In this section, we detail the analysis7 done to investigate the shape of complex wave-
fronts sampled at the Telescope Exit Pupil (TEP) that are compatible with the EE requirement
presented in Section 2.3.1, i.e. result in a PSF that is not too large. Somewhat serendipitously,
later we also study the constraints to implement a PSF that is not too small (see Section 4.1
for details). Together, these analyses represent examples of practical application of the
PAOS software described above to realistic scenarios requiring detailed knowledge of optical
performance.

As shown in Section 2.3.2, we derive a mathematical relation between wavefront shape
and requirements in terms of coefficients of Zernike polynomials, a sequence of polynomials
that are orthogonal on the unit disk. We provide 1000 simulated wavefronts that comply
with the requirements, sampled at the TEP8. The mathematical constraints on wavefront
shape detailed below, and the realizations provided can be used to assess the performance of
the Ariel subsystems, including Common Optics, AIRS and FGS. Notably, this preliminary
attempt has led to further optical tolerancing analyses, described elsewhere9.

2.3.1 Requirement at Telescope Exit Pupil

This section reports the top-level optical performance requirement for achieving the Ariel
science goals. The allocated budget specifies an EE for each instrument channel that the
telescope and payload optics must comply with. Table 2.2 summarizes the EE requirements
at the TEP as elliptical apertures capturing 83.8% of the optical power.

2.3.2 Methodology

This section outlines the approach to derive validated WFE constraints from the top-level
EE requirements. The WFE is estimated at the TEP and represented it in terms of Zernike
polynomials. Clearly, there is a continuum of WFEs that are compatible with a given rEE
and EE. Therefore, the overall approach consists of three steps:

1. Develop a mathematical and statistical framework linking EE and aberrations;

2. Generate aberration realizations compatible with EE requirements;

3. Validate realizations using an independent physical optics model (PAOS) and an
appropriate optical chain representation.

The first step requires an involved digression into the theory behind that is beyond the scope
of this section. Here we provide a brief summary and gloss over much of the mathematics
and technical details10.

The analysis used a geometric optics model to establish a relationship between wavefront
errors described by Zernike polynomials and the resulting EE. Geometric optics is suitable to
describe low spatial-frequency aberrations. As shown below, we also account for diffraction
effects and scattering from optical surface imperfections (e.g. surface roughness). At the
very core, geometric optics is based on angles diffracted by refractive elements or deviated

7ARIEL-SAP-INST-TN-001
8We later realized that those wavefront are all over-performing, i.e., each gives a Radius of Encircled Energy

(rEE) that is better (smaller) than required.
9ARIEL-INAF-PL-TN-015

10See ARIEL-SAP-INST-TN-001 for details.
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Table 2.2. EE Requirements at the Telescope Exit Pupil (TEP).

Instrument Wavelength Ellipse axes (83.8% EE)
channel [µm] Semi-major Semi-minor

[arcsec] [arcsec]

VISPhot 0.55 41 27
FGS-1 0.70 40 26
FGS-2 0.90 41 27

1.00 42 28
1.24 45 30
1.48 48 32
1.71 49 33

NIRSpec

1.95 53 35

1.95 53 35
3.00 73 49CH0
3.90 91 61
3.90 91 61
5.90 132 88CH1
7.80 169 113

1 Angles are measured at the collimated beam from the
telescope on the optical bench.

2 The major axes of these elliptical apertures are orthogo-
nal to the major axis of the telescope pupil.
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Figure 2.10. Probability Density Function (pdf) of the first 36 Zernike aberrations. The trivial terms
(piston, tip, and tilt) are not shown and are not used in the analysis. n is the radial order and m is
the azimuthal order of the Zernike polynomials. Note the Standard ordering.

by reflective elements. To simplify the discussion, with no loss of generality, we assume
that aberrations are introduced by reflection off a fictitious surface located at the TEP. For
reflective optical elements the Surface Form Error is S FE = WFE/2. The SFE is related to
the Power Spectral Density (PSD) of the Surface Deviation (SD) – the difference from the
ideal surface of the mirror – by the Parseval theorem:

SFE2 =

∫
Aperture

2π f PSD( f ) d f (2.12)

where the integral is over the aperture described by the mirror. Moreover, there is a relation
between the variance of the distribution of the incidence angles and the Power Spectral
Density (PSD) of the SD:

Var(θ) = 8π3
∫

Aperture
f 3 PSD( f ) d f (2.13)

The geometrical Point Spread Function, PSFG, is given by the distribution of all reflected
rays’ angles, θ⃗R = −2 θ⃗, i.e. their Probability Density Function (pdf). Specifically, it is given
by the convolution of the pdf of all individual reflection angles θ⃗R,k. Figure 2.10 shows the
pdfs over the elliptical Ariel TEP for the first 36 Zernike aberrations, estimated numerically
from the wavefront gradient. To account for diffraction, the geometrical PSF, PS FG, can be
convolved with the PSF expected from diffraction (Airy), PS FD:

PSFtot(θ⃗R) = PSFG(θ⃗R) ∗ PSFD(θ⃗R) (2.14)

where the symbol ∗ denotes the convolution operation.
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The residual Surface Form Error at mid and high frequencies, SFER, cannot be ade-
quately described using a Zernike polynomial expansion and is instead described with a
suitable PSD (e.g. Church et al., 1990):

PSDR( f ) =
w4

0

1 + ( f / f0)β
(2.15)

where w0 is the power at low frequency in units of meters, f0 is the cutoff frequency
corresponding to the −3db point of the PSD, and β is the spectral index. The net effect of
mid and high frequencies is that of removing power by scattering photons in all directions,
but without significantly affecting the PSF shape. Therefore, we account for this effect by
requiring that the EE in the target aperture be larger than required by the Total Integrated
Scatter (TIS):

TIS(λ) = 1 − exp

− (
4π
λ

SFER

)2 (2.16)

To obtain WFE constraints, first, we perform an inverse sensitivity analysis, where we
evaluate the maximum level of aberrations compliant with the EE requirement assuming
that the wavefront is affected by a single aberration. Thus, we obtain 36 Zernike coefficients
ck and discard the first three (trivial). These coefficients define a volume in the N − 3
dimensional space, where N is the number of Zernike coefficients, 36, and 3 are those
discarded. The volume is bounded by the hyper-ellipsoid with semi-major axes equal to the
coefficients.

Then, we consider a superposition of aberrations. In this case, we seek to sample from
the set of all possible {c̃k} compliant with the EE requirement. Therefore, we consider the
boundary of the hyper-ellipsoid, i.e. {c̃k} is a member of the set if∑

k

(
c̃k

ck

)2

≤ 1 (2.17)

Using the Marsaglia (1972) method, we sample 1000 realizations from the boundary, at-
tempting to combat the curse of dimensionality. Sampling from the volume would otherwise
result in a disproportionate number of too optimistic realizations.

2.3.3 Results and POP validation

For each realization, and accounting for diffraction, we estimate the radius at which the EE
allocation is met and compare this with the rEE allocation. Given that the geometrical PSF
is independent of the wavelength, it is best studied at visible wavelengths, where diffraction
effects are smallest. Therefore, the analysis is performed at the wavelength of the FGS–
VISPhot channel (550 nm). We conservatively consider an allocation more demanding than
the requirement (allowing some margin). Additionally, instead of the 83.8% EE requirement,
we allocate 90% to account for TIS. At the end of the analysis, we obtained around 20%
outliers violating the target allocation, which we may consider acceptable.

To validate the results of the geometrical treatment, we estimate the 550 nm VISPhot
PSF for each {c̃k} realization using a Physical Optics Propagation (POP) model of the Ariel
Telescope Assembly (TA) implemented with PAOS. The model consists of the Ariel TA
optical design11 up to the TEP, where an ideal thin lens is located. The lens has a 240 mm

11ARIEL-RAL-PL-ML-001
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Figure 2.11. EE achieved in the allocated aperture, estimated using a PAOS physical optics propaga-
tion (POP) model of the Ariel Telescope Assembly (TA).

focal length to create an f /12 focal plane. The distribution of the EE estimated over the
1000 physical optics simulations is shown in Figure 2.11. The number of outliers is reduced
from 21% to about 10%. The reason for this decrease has yet to be determined, but it is likely
numerical (the POP simulation may be less precise than the geometrical treatment because
of the finite resolutions of the grids used to sample the fields at the pupil and intermediate
planes).

The obtained aberration realizations that are compatible with the EE allocation at 550
nm are shown in the example Table 2.3, along with the achieved EE within the specified
elliptical aperture. These WFE limits represent the edge of the hyper-volume consistent with
meeting the EE allocation.

Deriving WFE constraints tied directly to the EE requirements enables quantitative
evaluation of the optical design. The whole set of aberrations realizations provides an
effective way to test the optical performances of subsystems ahead of measurement of
the SD of the Ariel TA. Additionally, it supports specifying the maximum allowable am-
plitude of aberrations from manufacturing the large all-Aluminum primary mirror. The
goal, mentioned above, is to balance scientific requirements with manufacturing feasibility,
without challenging the mirror fabrication process with overly stringent optical surface shape
requirements.

The validation with PAOS gives high confidence that the geometrical limits define a
bound on permissible aberrations. The integrated approach, starting from first principles in
optics, followed by independent POP validation, provides an efficient process for cascading
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Table 2.3. Example of WFE table of current pupil model.

EE000 EE001 EE002 EE003 EE004 ... EE999
86.7 87.5 87.6 87.8 87.9 . . . 94.6

Noll
Index J N M WFE000 WFE001 WFE002 WFE003 WFE004 . . . WFE999

6 4 2 2 77.2 -25.6 -16.2 3.6 32.6 . . . 14.8
4 5 2 0 70 -29.4 -15.4 -52.2 48.4 . . . 15
5 6 2 -2 -3.6 6.4 33 -3.4 21 . . . 25.4

10 7 3 3 -7.6 14 -2.8 5.6 -21.2 . . . -54.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35 36 7 -7 1.4 0.6 -4.6 -10.8 -12.4 . . . -9.8

top-level science requirements down to detailed optical subsystem budgets. By combining
these complementary approaches, the analysis produced realistic performance budgets
validated through end-to-end modeling. Finally, it motivated further, large-scale analyses
with commercial optics software12 that yielded compatible results.

12Chiefly, the analysis with Zemax Opticstudio® presented in ARIEL-INAF-PL-TN-015.



74

Part II

Ethos
Mission Performance, Calibration,

and Data Reduction Strategies



75

3 Ariel’s Payload PDR Performance Analysis 76
3.1 Model Parameters and Margins . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2 Optical efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3 Noise Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4 Pointing stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.5 Compliance with requirements . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Data Reduction Strategies 89
4.1 PSF sampling analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Pointing Jitter Detrending . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.1 Pointing jitter timeline models . . . . . . . . . . . . . . . . . . . . 94
4.2.2 Lessons learned from past analyses . . . . . . . . . . . . . . . . . 95
4.2.3 Constant signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.3.1 Signal timeline . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.3.2 Decorrelation algorithm . . . . . . . . . . . . . . . . . . 102
4.2.3.3 Decorrelated signal . . . . . . . . . . . . . . . . . . . . 104
4.2.3.4 Flat fielding . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2.3.5 Noised timeline . . . . . . . . . . . . . . . . . . . . . . 108
4.2.3.6 Time averaging . . . . . . . . . . . . . . . . . . . . . . 111

4.2.4 Transit signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2.4.1 Decorrelation algorithm . . . . . . . . . . . . . . . . . . 111
4.2.4.2 Decorrelated signal . . . . . . . . . . . . . . . . . . . . 113
4.2.4.3 Accuracy and bias . . . . . . . . . . . . . . . . . . . . . 113

4.2.5 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



76

Chapter 3
Ariel’s Payload PDR Performance
Analysis

An important milestone in the development of the ESA’s Ariel space mission was the
Preliminary Design Review (PDR). The PDR reviewed the completeness and consistency of
the preliminary mission design to ensure it meets the technical, scientific, and operational
requirements within the constraints of cost, risk, and schedule. In May 2023 the ESA review
board accepted that all the objectives had been completed, and confirmed the successful
closure of the Ariel payload PDR. As a result of this major achievement, Ariel’s payload
critical technology is now considered at Technical Readiness Level 6, indicating that the
mission can now proceed to payload Critical Design Review (CDR) and begin to manufacture
its first prototype models. In support of these activities, I have contributed to investigating the
overall scientific performance of the Ariel payload. The outcome of this study is summarized
here and discussed in detail in the Performance Analysis Report1. Before delving into this
study, I provide a brief overview of key aspects of the Ariel payload design, some already
introduced in Section 1.2.1, to provide the reader with a self-consistent chapter.

* * *

Transit spectroscopy and multi-band photometry of exoplanet atmospheres have been
so far conducted using general-purpose space telescopes and ground-based instruments.
While these have achieved some success, measurements often suffer from limited and
patchy spectral coverage and systematic errors from factors such as pointing jitter, thermal
variations, opto-mechanical instabilities, and detector effects. Drawing upon lessons learned
from past missions including Spitzer Space Telescope (SST), Hubble Space Telescope
(HST), and ground-based observatories, the Ariel payload has been strategically designed
to overcome these limitations. Ariel will obtain spectroscopic and photometric time series
of transiting exoplanets with post-processing stability better than 20 to 100 ppm over a
single transit observation, depending on the target brightness. Key aspects that allow Ariel
to obtain its stable performance are:

1. Simultaneous observations by all photometric and spectroscopic channels;

1ARIEL-SAP-PL-AN-002
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2. Continuous observations such that thermal and photometric stability are minimized;

3. A payload design that makes Ariel resilient to major sources of systematics, or allows
their removal via post-processing.

The most significant noise and systematic uncertainties have been identified2 and are sum-
marized in Table 3.1, alongside mitigation approaches to minimize their impact on detection
sensitivity and photometric stability.

Table 3.1. Sources of uncertainty and mitigation strategies implemented by Ariel.

Type of
Uncertainty Source Mitigation Strategy

Detector noise Dark current noise,
Readout noise

Choice of low-noise detectors

Gain stability

Calibration, post-processing data
analysis, requirement of stable
detectors, thermal stability of both cold
and warm electronics

Persistence3
Post-processing decorrelation.
Continuously staring at a target for the
whole duration of the observation.

Thermal noise

Emission from
telescope, common
optics, and all optical
elements

Negligible impact by design

Temperature
fluctuations in time

Negligible impact by design

Astrophysical
noise

Photon noise from the
target

Fundamental noise limit, choice of
aperture size (M1 diameter).

Photon noise from
local zodiacal light

Negligible over Ariel band

Stellar variability with
time

Multi-wavelength stellar monitoring,
post-processing decorrelation

2ARIEL-RAL-PL-DD-001
3Later analysis (ARIEL-SAP-PL-TN-008) found persistence negligible for the Ariel application.
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Pointing jitter

Relative Performance
Error (RPE) and
Performance Drift
Error (PDE) effects on
the position, Spectral
Energy Distribution
(SED), and detector
intra/inter pixel
response

Combination of instrument design,
Attitude and Orbit Control System
(AOCS) stability, and post-processing
decorrelation

Slit losses
Spectrometer input slit sufficiently
large

Below I provide a targeted overview of salient aspects of the science performance of the
Ariel payload, demonstrating the compliance of the payload design with the Ariel science
requirements. The analysis discussed here uses radiometric and time-domain simulations
together with data reduction techniques. The radiometric estimates are obtained using
the Ariel Radiometric Model (ArielRad) (Mugnai et al., 2020), while non-stationary noise
processes are evaluated using ExoSim 2, a new implementation of the time-domain simulator
described in (Sarkar et al., 2021). ArielRad (see Section 1.3.1 for details) implements a
detailed instrument model and performance is radiometrically estimated from a physically
motivated noise model. ExoSim 2 (Mugnai et al., 2022) (see Section 1.3.3 for details)
utilizes a more detailed instrument model and generates photometric and spectroscopic
images in the time domain similar to those Ariel will provide during science operations. The
timelines are processed with a data reduction pipeline that implements prototypical steps
of ADaRP, the Ariel Data Reduction Pipeline4, to provide estimates of the spectral and
photometric light curves, of the noise processes and systematics, and to study the overall
payload performance. Finally, I report on the capability of the Ariel payload in conducting
observational campaigns to detect hundreds of exoplanetary atmospheres. An observational
programme compliant with the Ariel science requirements is compatible with available
observing time within the mission lifetime.

3.1 Model Parameters and Margins

To conduct these performance analyses, appropriate model parameters and margins are
critical. This section details the key model parameters drawn from the Ariel Performance
Parameters Database (PPD), listed in the table below as per the payload PDR snapshot5,
including both requirements-driven values and estimated performance.

4ARIEL-CRDF-GS-DD-001
5ARIEL-UCL-PLD-ML-001
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Table 3.2. ArielRad model parameters utilized in the performance analysis for the payload PDR.
Note that, when a requirement reference is given in the last column, then the value parameter is
from requirements instead of the PPD.

Instrument
Prescription VISPhot FGS-1 FGS-2 NIRSpec AIRS

Ch0
AIRS
Ch1 Requirement

Telescope
collecting area 0.63 m2 R-TEL-10000

Wavelength
coverage (µm)

0.50–
0.60

0.60–
0.80

0.8–
1.1

1.1–
1.95

1.95–
3.90

3.90–
7.80

R-PRD-0380
R-PRD-0390

Telescope
temperature
(K)

60 60 60 60 60 60 R-PRD-1310

Instrument
optics
temperature
(K)

60 60 60 60 60 60 R-PRD-1310

Instrument
enclosure
temperature6

(K)

60 60 60 60 55 55

Detector
temperature
(K)

65 65 65 65 42 42 R-PRD-1310

FoM7 (m2) 0.130 0.130 0.165 0.165 0.132 0.132
R-PRD-0440
R-PRD-0441
R-PRD-0442

Emissivity of
optical surfaces 0.03 0.03 0.03 0.03 0.03 0.03

Slit width
(mm) N/A N/A N/A N/A 1.2 0.94

Slit image
width (mm) N/A N/A N/A N/A 1.07 0.39

Image Space
F/#

33.67
50.63

18.70
28.12

24.83
37.34

19.66
29.57

15.5 7.7

Plate Scale
(mas/pix) 106 173 135 165

130
204
312

440
660

Detector Pixel
Size (µm) 18 18 18 18 18 18

Detector Dark
Current8

(e-/s/pixel)
5 5 5 5 5 5

Detector pixel
linear well
depth (ke-)

100 100 100 100 85 50

Read Noise9

(CDS/pixel) (e-) 20 20 20 20 22 23

6Box light-tightening the instrument optics. Assumed 55 K for AIRS Ch0 and Ch1.
7Defined in Equation 3.1.
8Mean value
9Mean value
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Excess additive
noise10

(CDS/pixel) (e-)
6 6 6 6 7 7 R-PRD-8811

Excess photon
noise variance
margin11

40% 40% 40% 40% 40% 40%

Straylight12 1% 1% 1% 1% 1% 1%
Noise Floor 20 ppm R-PRD-8810
Gain noise 40 ppm

√
hr R-PRD-8810

Jitter noise 20 ppm, constant at time scales T >1hr
Observing time
(transit or
eclipse)

2.5 × T14

Zodiacal light
model Average, using 2.5 multiplier in Zodiacal light expression R-PRD-0500

Conservative assumptions and margins are also applied in the ArielRad model in Ta-
ble 3.2 to account for uncertainties in this design phase. The most critical ones are as
follows.

1. A photon noise variance margin of 18% (X = 0.4) is allocated to the target star noise,
which dominates the budget as shown later. This margin accounts for uncertainties in
quantum efficiency, optical efficiency, and observing efficiency.

2. The electronic gain noise is expected to be a pessimistic overestimate, as it was
negligible for HST and SST. However, it does dominate the noise budget for bright
targets.

3. The Photometric Conversion Efficiency (PCE) is potentially underestimated for AIRS
bands by ∼30%, based on JWST data indicating higher quantum efficiency from
2–5 µm.

4. A noise floor of 20 ppm is used in the analysis as a consequence of stability re-
quirements at 10 hrs. This is considered a worst-case assumption by more than 30%
compared to the stability of <15 ppm achieved by HST and SST. Given Ariel’s op-
timization for exoplanets and L2 orbit, the 20 ppm noise floor is likely a significant
overestimate of the true stability.

As Ariel detections are photon noise limited (Mugnai et al., 2020), neglecting gain noise,
that may perhaps affect only a very small portion of the Ariel targets, the margins are carried
mainly by a 40% excess noise variance and pessimistic QE requirements in AIRS. Overall,
this represents conservative margins of ∼20% for FGS bands and ∼30% for AIRS bands on
the noise model.

10Mean value
11Margin allocated
12The value used accounts for all sources of straylight (TIS, sky and ghosts, respectively R-PRD-0780/1/2) as

discussed in ARIEL-SAP-PL-TN-003. It does not include self emission as this is accounted for separately.
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Figure 3.1. The payload end-to-end Figure of Merit (FoM), calculated as the product of the telescope
collecting area, the detector quantum efficiency, and the optical efficiency. Horizontal solid lines
in blue show science performance requirements: 0.130 m2 from 0.5 µm to 0.8 (R-PRD-0441),
0.165 m2 from 0.8 µm to 1.95 µm (R-PRD-0442) and 0.132 m2 from 1.95 µm to 7.8 µm (R-
PRD-0440). Blue horizontal dashed lines show the minimum allowed Figure of Merit (FoM)
(R-PRD-0450). Vertical red lines represent the extended spectrometer wavelength ranges (R-
PRD-0400). The solid black line is the total resulting FoM considering the overlap of adjacent
spectroscopic channels.

3.2 Optical efficiency

The overall optical efficiency, named Figure of Merit (FoM), is defined as the product
between the telescope collecting area, the optical efficiency, and the detector quantum
efficiency13:

FoM(λ) = Atel · QE(λ) · TR(λ) (3.1)

where Atel is the effective telescope collecting area, QE is the detector Quantum Efficiency
(QE) and TR is the optical efficiency of the instrument.

The FoM is computed using parameters from Table 3.2 and is shown in Figure 3.1.
Ariel’s current best estimate is significantly above requirements and discussed in the Payload
Throughput and FoM Analysis document14.

3.3 Noise Budget

The overall noise budget is shown in Figure 3.2. It gives the best estimate of the complete
instrument noise performance for the three sizing targets: GJ 121415, HD 21913416, and

13R-PRD-0440
14ARIEL-SAP-PL-AN-001
15R-PERF-010
16R-PERF-020
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HD 20945817. GJ 1214 is a faint target of spectral type M5V and magk = 8.8. HD 219134
has spectral type K3V, magk = 3.25, and represents the brightest target observable by Ariel.
HD 209458 is a G0V star with magk = 6.3; it represents a typical bright target Ariel will
observe. Figure 3.2 shows that excluding gain noise, the dominant noise source is the target
photon shot noise.

The noise budget presented provides a cautious estimate of Ariel’s post-processing
photometric performance. The following considerations are worth making:

1. At the red end of AIRS-Ch1, the detector read noise becomes comparable to the
photon noise. The analysis assumes that detectors are analyzed using the first and
the last science frame of one exposure to form a Correlated Double Sampling (CDS)
sample. However, as Ariel detectors are sampled up the ramp, read noise reduction
strategies can be implemented when advantageous.

2. The noise evaluation assumes aperture photometry signal extraction. Optimal estima-
tion methods could reduce noise components other than target photon noise, including
read noise, by 40% compared to aperture photometry. Thus aperture photometry
represents a worst-case assumption.

3. For the bright targets HD 209458 and HD 219134, gain noise dominates the budget
of HD 209458 at wavelengths shorter than 1.95 µm and across the full spectrum,
respectively. While Ariel is fully compliant with the science requirements as shown
later, past observations by HST and SST achieved total noise within 15% of photon
noise for similar bright stars. And that includes noise from both the instrument and
of astronomical origin. Because Ariel implements very similar detector focal planes
and acquisition electronics but has an optimized payload design operating in a more
stable environment, it is likely that this noise source, which primarily affects bright
targets, is significantly over-estimated. Thus, while detector gain noise is expected to
be efficiently detrended, we retain it as a worst-case.

4. A 20 ppm noise floor is included, corresponding to an allocation of Brown noise with
a 1/ f knee at 10 hr. An additional noise floor of 20 ppm is added to account for the
photometric noise arising from pointing jitter (see Section 3.4 for details).

3.4 Pointing stability

As part of the payload Preliminary Design Review (PDR), I contributed to a detailed study
of photometric uncertainties arising from pointing jitter18. Below, I summarize the key
findings and design solutions from that study relevant to this analysis.

The pointing stability of the telescope is quantified in terms of19 Absolute Performance
Error (APE), Performance Drift Error (PDE), Relative Performance Error (RPE), and Mean
Performance Error (MPE)-RPE. The effect of the jitter on the observed time series is the
introduction of noise, characterized by the power spectrum of the telescope pointing. It
is correlated in time if the power spectrum is non-white. Since jitter randomly shifts the

17R-PERF-025
18ARIEL-CRDF-PL-AN-005
19ESA Pointing Error Engineering Handbook

http://peet.estec.esa.int/files/ESSB-HB-E-003-Issue1(19July2011).pdf
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Figure 3.2. Noise budget for the three sizing planets with channel bands highlighted. The total noise
is the sum in quadrature of all noise sources, where the target photon noise has been scaled up
by 40%. The noise floor is the sum in quadrature of the true noise floor and jitter noise; it has no
units as it does not integrate down with time. The noise floor is not included in the total noise
and should be added in quadrature to the total noise, at the time scale of interest.
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line of sight, it affects all illuminated pixels identically and is 100% correlated across
all wavelengths and channels. The amplitude of the resultant photometric noise depends
on the amount of displacement of the spectrum, the Point Spread Function (PSF) of the
instruments vs. wavelength, the detector intra-pixel response, and the amplitude of the
inter-pixel variations (Sarkar et al., 2021, Figure 4).

The Ariel spectrometers utilize a slit-less design. Field stops in the form of rectangular
apertures are implemented to mitigate possible stray light contamination. Through Physical
Optics Propagation (POP) simulations using Physical Optics Simulator (PAOS) (see Chap-
ter 2 for details), the field stop sizes were characterized to determine sufficient widths that
prevent photometric instabilities from field losses. This quantification prompted design
changes to ensure field stop dimensions that maintain photometric stability. However, the
detailed characterization and analysis are not discussed here due to length constraints.

For CDS, pointing jitter mainly affects the second Non-Destructive Read (NDR). There-
fore, the relevant frequency is set by the exposure time, and pointing jitter induces photo-
metric error on two different time scales:

• Jitter faster than the exposure rate effectively enlarges the monochromatic PSF, slowly
changing its size with time. However, total energy collected per unit time does not
incur significant losses, making this photometric error negligible compared to other
experimental uncertainties on 1-hour timescales (vs. max 4-hour transit durations).
The slight spectral blurring is inconsequential20.

• Jitter slower than the exposure rate can be a non-negligible source of photometric
errors. For spatial jitter, photometric uncertainties arise from the combined effect
of a wobbling spectrum sampled in the presence of intra- and inter-pixel variations.
For spectral jitter, uncertainties arise mostly from the modulation imposed in the
dispersion direction. Compared to spatial jitter, spectral jitter can result in larger
photometric instabilities, and if left uncorrected can severely impair the quality of
the final science result. The effect of spectral jitter is most problematic in areas
of steep flux gradients, whether due to stellar lines or variations in the continuum.
Photometric variations caused by PSF shape variations induced by a time-varying
RPE are comparatively much smaller.

Jitter can be mitigated by a combination of instrument design, Attitude and Orbit Con-
trol System (AOCS) stability, and post-processing analysis which takes advantage of the
correlated nature of this systematic component21. Spatial-jitter can be made negligible by
requiring that photometer and spectrometer signals are at least Nyquist sampled (see Sec-
tion 4.1 for more details). This results in a monochromatic PSF with widths spanning two
or more detector pixels, eliminating any photometric instability from intra-pixel responses.
Inter-pixel variations do still have an impact, but this is rendered negligible by flat-fielding
quantum-efficiency variations across pixels to the required level (∼0.5%), in post-processing.
Moreover, spectral jitter can be decorrelated in post-processing by using the spectral informa-
tion alone, correlating each exposure with all other exposures to estimate the shift. However,
even with these design and post-processing solutions, without proper decorrelation, jitter
can be a significant source of photometric noise.

20ARIEL-SAP-PL-TN-003
21ARIEL-SAP-PL-TN-003 and ARIEL-CRDF-PL-AN-001
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Figure 3.3. Simulated spectro-photometric relative noise at a 1-hour time scale pointing jitter (wiggly
lines in the three panels) using simulations from Airbus. The black horizontal line corresponds
to the 20ppm

√
hr bright target pointing jitter detrending requirement (R-PRD-8927).

The photometric and spectroscopic lightcurves are simulated using AOCS inputs from
Airbus22 - specifically pitch and yaw deviations relative to the target vs. time. The AOCS
models used for both bright and faint targets include several strong reaction wheel harmonics
(5 Hz – 300 Hz) and time-varying RPE. The simulations are processed through ExoSim 2
and a dedicated simulator for reading out HgCdTe (MCT) detectors. Airy PSFs are used for
AIRS channels. This is appropriate for the diffraction limited Ch1, but conservative for Ch0
because it is narrower than expected in the integrated payload, increasing the jitter noise.
On the other hand, NIRSpec utilizes PAOS PSFs to capture the PSF broadening critical for
jitter noise mitigation (see Section 4.1 for details).

The simulated lightcurves are jitter-noise-decorrelated, before estimating the uncertainty
on the photometry. Decorrelation is a data processing step that, taking advantage of the
Nyquist sampled nature of photometric and spectral images, can reduce jitter noise by
close to two orders of magnitude in noise variance23. The decorrelation implemented in
this analysis is only a possible solution, and it was later found suboptimal for the Ariel
photometers. I present an optimal decorrelation algorithm in Section 4.2, along with the
updated results.

The uncertainty on the photometry after decorrelation is proportional to the signal, and
therefore the relative uncertainty is independent from the target brightness24.

Figure 3.3 summarizes an example of the analysis of the estimated jitter noise for the
spectroscopic channels. At 1 hr, the noise is generally < 20 ppm in NIRSpec/AIRS-Ch1

22ARIEL-ADST-SC-FI-000001
23ARIEL-CRDF-PL-AN-001
24ARIEL-CRDF-PL-AN-005
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and across most of AIRS-Ch0. However, the Ch0 blue end exhibits excess jitter noise up
to 50–70 ppm from 1.95-2.1 µm. While this marginally exceeds the bright target jitter
requirement25, it does not impact overall science capabilities as discussed later. Improved
detrending using the optimal decorrelation algorithm, adapted to spectrometers, and more
realistic PSFs are expected to resolve this small non-compliance.

While we expect to be able to de-trend jitter noise significantly better than 20 ppm, in the
performance analyses presented it is conservatively assumed that the jitter noise contributes
20 ppm at all time scales from 1 hr and longer, i.e. it does not integrate down with time, and
at all Ariel wavelengths.

3.5 Compliance with requirements

This final section demonstrates compliance of the Ariel science payload with the science
requirements26, showing the Mission Reference Sample (MRS) can be observed during the
available mission lifetime at the specified tier spectral resolution and Signal-to-Noise Ratio
(SNR). The Mission Reference Sample 2019 (MRS19) (Edwards et al., 2019) lists potential
Ariel targets that are in number and type compliant with the science requirements27 This
target list is not the final one, nor the only possible one; it is used mainly to provide a testbed
for the performance of the payload to validate the compliance with the science requirements
consistently as the mission evolves.

MRS19 includes information on stellar and planet parameters, assigned observing tiers,
and preferred transit or eclipse methods. Phase curve observations are not considered. 400,
550, and 50 targets are listed in the Reconnaissance, Deep, and Benchmark tiers, respectively.
For Reconnaissance survey, we use this definition28: average SNR ≳ 7 for ≳ 10 averaged
bands for 1.10<λ<7.80 µm for all targets. This is slightly different than reported in Edwards
et al. (2019).

The validation procedure is described in Table 3.3. For each target in the MRS19, we use

Table 3.3. Procedure utilized to validate the mission reference sample (MRS19).

Step Description

1
Use ArielRad to calculate observing time needed per target to reach required
SNR and resolution

2 Sum observing times over all MRS19 targets to get total time TOBS

3 Estimate total science time available in mission lifetime TS CI

4 Compare TOBS and TS CI

5 If TOBS < TS CI , payload design meets requirements for MRS19 sample

ArielRad to estimate the amount of observing time required to reach the SNR appropriate
for the tier each target belongs to, at the spectral resolution of the tier. The target observing
time is always an integer multiple of the minimum target observing time, that is 2.5 times
the transit duration. The sum of all target observing time, TOBS , is the total observing time

25R-PRD-8927
26R-PERF-130, ESA-ARIEL-EST-MIS-RS-001
27From R-PERF-130 to R-PERF-136, included.
28R-PERF-134
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required for Ariel to comply the top level performance requirements29. TOBS is compared
with an estimate of the fraction of the mission lifetime available for science observations,
TS CI . TS CI is evaluated as:

TS CI = ηOBS ηS E (TMIS − TCP) ×
[
1 −

TCAL

24 · 7

]
(3.2)

with parameters TMIS (mission life time, 4 years), TCP (commissioning phase + performance
verification + science demonstration, 180 days), ηOBS (observation efficiency, 85%), ηS E

(target scheduling efficiency, 100%), and TCAL (calibration time, 7 hours/week).
Given these parameters, TS CI is estimated to be 25044 hours. The mission is considered

compliant if the science implemented by the MRS19 can be executed within the mission
lifetime, i.e if TOBS < TS CI , and not compliant otherwise.

Below we demonstrate the compliance of the Ariel science payload with Table 3.2
parameters with the science requirements on the Ariel core survey30, i.e. the observation of
a core sample of ≥ 500 exoplanet targets divided in at least three survey tiers. This analysis
uses a modified version of the payload, where the overall Figure of Merit (FoM) from
payload requirements is used (horizontal solid red lines in Figure 3.1), that is significantly
worse than the current design estimate. As a stress-test, we study the largest number
of MRS19 targets that can be observed in the deep survey tier31. Figure 3.4 shows that
observations of 557 targets can be completed during the nominal mission lifetime, 57 targets
more than the required 500. As a further stress test, we estimate that 428 planets can be
observed if Ariel targets were all Benchmark targets. Figure 3.4 further shows that observing
all MRS19, 1000 targets at the low resolution of the Reconnaissance survey would take less
than the available time. Because targets have to be distributed among different tiers, we
conclude that Ariel can easily observe targets in excess of 500, when tier-optimized.

As further evidence of this, we analyzed the case of MRS19, that is compliant with
1000 targets32 optimally distributed in the three Ariel tiers (Reconnaissance tier, Deep tier,
and Benchmark planets). We utilize the Current Best Estimate (CBE) FoM, but retaining
simulations margins. Here, for optimization we adopt the definition of Edwards et al.
(2019) for the Reconnaissance survey spectral data, binned in 4 spectral bins (1 in NIRSpec,
2 in AIRS-Ch0 and 1 in AIRS-Ch1). Additionally, we utilize the AIRS capability of
averaging consecutive NDRs33. As shown in Table 3.4, 981 MRS19 targets observations
can be completed in less than ∼25000 hr, i.e. the available science observing time during
the nominal mission, having deducted overheads and calibration events from the nominal
mission lifetime. Finally, we obtain that 1753 hr of the extended mission lifetime are needed
for completion of the full sample of 1000 planets, i.e. about 14% of the extended lifetime34.

29R-PRD-0470
30R-PERF-130, R-PERF-133
31R-PERF-135
32Twice more than R-PERF-130.
33R-PRD-1967
34G-MIS-030
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Figure 3.4. Cumulative number of targets observable vs. time from the start of science observations.
The vertical line marks TS CI , the maximum available science time within the nominal mission
lifetime. All targets observed at Deep survey tier resolution (blue solid line). All targets observed
at Benchmark resolution (red solid line). All targets observed at Reconnaissance resolution
(green solid line). Figure of Merit (FoM) from requirements is assumed.

Table 3.4. Performance on the MRS19 sample, where 19 out of 1000 targets that require a large
number of observations have been excluded.

Tier Number of
targets

Total observing
time [h]

Relative
observing time

Reconnaissance survey 391 7151 29 %
Deep survey 541 16247 65 %
Benchmark 49 1559 6 %

Total 981 24958 100 %
Available time 25 044
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Chapter 4
Data Reduction Strategies

This chapter bridges theory and practice, cementing the connection between my technical
analyses and their practical application. Below I present a targeted selection of my work done
for Ariel mission data simulations and subsequent data reduction. This work encompasses
the start and end of the analysis cycle - from generating Point Spread Functions (PSFs)
with PAOS (see Chapter 2 for details) to the final de-jittering steps. This end-to-end
involvement afforded critical insights into the data being simulated and post-processing to
extract exoplanet atmospheres’ signals.

* * *

To establish context before delving into these analyses, here is a high-level summary of
key points, sketched in Figure 4.1.

• Transit spectroscopy measurements are subject to sources of systematic uncertainty,
which must be characterized and removed in post-processing, e.g. photometric noise
from pointing jitter, before the data can be interpreted.

• The observation method of transit spectroscopy requires no significant angular resolu-
tion. Detailed performance studies show that a telescope collecting area of 0.64 m2

is sufficient to achieve the necessary observations on all the Ariel targets within the
mission lifetime. Since imaging quality is not a driver, Ariel is designed to be an effi-
cient light bucket, collecting photons in a compact but adequately sampled PSF. This
reduces costs and risks, ensuring that the instrument design is not above specification
while retaining the necessary measurement quality.

• Among the main Ariel mission requirements is to provide critically sampled focal
planes because Nyquist-sampled optical signals enable efficient rejection of these
systematics. At small wavelengths, the Ariel payload design relies on geometrical
aberrations to broaden the PSF relative to the scale of the detector pixels: diffraction-
limited optics would otherwise result in sub-sampled PSFs at FGS wavelengths, given
the image space f-numbers implemented.

• Ariel spectrographs operate in a slit-less mode for point source spectroscopy. To
reduce background and straylight, AIRS implements field stops at the intermediate
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Figure 4.1. Schematic representation of the analysis cycle, from the definition of the scientific
problem to a comprehensive strategy to address it and actionable steps needed to implement
the strategy. Here, the problem is pointing jitter, which affects transmission spectroscopy
measurements. The devised strategy includes designing the Point Spread Function (PSF) to
be sufficiently compact and sufficiently sampled to mitigate jitter effects, and then modeling
the system PSF and comparing it to measurements taken on-ground and in-flight. At the
same time, realistic observations need to be simulated and algorithm prototyping and testing
need to be carried out to ensure that the data analysis pipeline can effectively remove the
systematic. To execute this strategy, a suite of tools is needed, including PAOS to generate
PSFs, ArielRad to verify performance requirements, and ExoSim 2 to simulate observations. At
the end of this process, the best algorithm for correcting the systematic effects can be selected
based on representative simulations and the Ariel Data Reduction Pipeline (ADaRP) is updated
accordingly. This process is iterative and requires the collaboration of multiple teams. All steps
are documented and timely feedback is provided to the Consortium and at mission reviews.
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image planes, at the input of Ch0 and Ch1. A key requirement is to implement
sufficiently wide field stop apertures relative to the PSF dimensions1 and Absolute
Performance Error (APE) to prevent photometric instabilities from field losses in the
presence of pointing jitter2.

• Therefore, detailed studies of diffraction, aberrations, sampling, and related sys-
tematics must be carried out before the mission launch. These studies require the
simulation of the propagation of the electromagnetic field through the Ariel optical
chain, including diffractive elements, and the resulting PSFs vs. wavelength at the
intermediate and focal planes. This is essential, especially at wavelengths where Ariel
is not diffraction-limited (FGS), to properly capture the broadening of the PSF that is
of fundamental importance for the rejection of jitter noise.

• The generation of simulated science frames requires knowledge of the illumination of
the detector array by the Focal Plane Spectrum (FP). The FP depends on the stellar
spectrum and takes into account the entire telescope/instrument optical chain. To sim-
ulate representative science frames, the PSFs generated with PAOS (see Chapter 2 for
details) are combined with the time-domain simulation of an Ariel observation, from
the astrophysical source to the focal planes, provided by ExoSim 2 (see Section 1.3.3
for details).

• Finally, the science frames need to be processed during data analysis and dedicated
detrending modules need to be established to deal with systematics such as pointing
jitter, that would otherwise interfere with the correct interpretation of the science data.
Extensive testing and validation of the detrending modules are necessary to ensure that
the atmospheric parameters are inferred within the required precision and accuracy,
avoiding biases. These data analysis techniques will be eventually implemented in the
Ariel Data Reduction Pipeline (ADaRP).

4.1 PSF sampling analysis

This section presents the analysis I conducted to evaluate Point Spread Function (PSF)
sampling across the focal planes. Adequate PSF sampling is critical for enabling the
effective mitigation of systematic uncertainties such as photometric noise from pointing
jitter. This analysis was instrumental in establishing fully Nyquist-sampled PSFs for the
detailed analyses of jitter noise mitigation, carried out for the payload Preliminary Design
Review (PDR) (see Chapter 3 for details) and improved in subsequent work as shown later.

Rejection of photometric noise induced by pointing jitter is facilitated when the optical
signals (PSFs) are critically sampled. At short wavelengths, the Ariel payload design relies
on geometrical aberrations to broaden the PSF relative to the scale of the detector pixels: as
mentioned above, diffraction-limited optics would otherwise result in sub-sampled PSFs at
FGS wavelengths.

The exact distribution of geometrical aberrations on the optical beam feeding the FGS
instrument will be known later in the project. As discussed in Section 2.3, we made a
preliminary attempt at modeling what might be the distribution of aberrations compatible

1R-PRD-8390, R-PRD-8400
2This analysis is not reported in this thesis for length constraints.
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Figure 4.2. The Point Spread Function (PSF) used at the blue end of NIRSpec is critically sampled
by 18 µm detector pixels, and it is shown in the right panel. It is obtained from the aberrated
PSF shown on the left, to which we added 200nm of extra defocus. The PSFs used across the
NIRSpec band are scaled to the appropriate wavelength.

with the Radius of Encircled Energy (rEE) requirements. That report3 estimates 1000
possible realizations, all of which exceed performance requirements, with a smaller rEE.
While in future work we will estimate aberrations realizations compatible with the rEE
requirements, here we consider the possibility4 of placing the instrument deliberately out of
focus to recover the optimal operational conditions from the optical point of view.

For these simulations, we take the realization labeled EE001 (see Table 2.3) and add
200 nm of additional defocus aberration in the form of the appropriate Zernike term. This
makes the PSF, shown in Figure 4.2, critically sampled. We adopt the following definition
for Nyquist sampling compliance:

1. The Optical Transfer Function (OTF) is obtained by taking the modulus of the Fourier
transform of the PSF.

2. The spatial frequencies (fx, fy) at which the OTF drops to 1/e of its peak value OTF(0,0)
must lie within a circle centered at zero frequency.

3. The radius of this circle is defined as the Nyquist frequency fN , calculated as 1/2∆pix,
where ∆pix is the detector pixel size (18 µm, see Table 3.2).

This definition is illustrated graphically in Figure 4.3.
It can be instructive to consider the diagram of Figure 4.4. The blue line relates the

amount of defocus (x-axis) introduced to the size of the detector pixel (y-axis) that would
ensure Nyquist sampling at a wavelength of 1.1 µm. With 200 nm of defocus, the PSF
would be critically sampled by a pixel of about 20 µm. The 18 µm sampling provided by
the NIRSpec detector, therefore, ensures Nyquist sampling with 1 – 18 µm/20 µm = 10%
margin in our simulations.

It should be stressed that the PSFs estimated here provide a representative way to
estimate the effect of jitter on the photometric timelines. This means that it is plausible to

3ARIEL-SAP-INST-TN-001
4Foreseen by R-PRD-8370.
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expect that PSFs of different shapes that are critically sampled and therefore comply with
the rEE requirements to result in similar photometric performance. At any rate, these PSFs -
with 200 nm defocus - have been used in the jitter performance simulations (see Section 3.4
and the next section for details).

4.2 Pointing Jitter Detrending

As part of the Ariel Simulators Software, Management, and Documentation (S2MD) working
group, I have participated in key efforts to develop and apply simulation and data analysis
tools to ensure Ariel can meet its exoplanet characterization goals. This section focuses on
my contributions to the de-jittering analysis of simulated Ariel observations.

The S2MD collaboration encompasses a multidisciplinary team working to build an
end-to-end modeling and analysis framework, including the ExoSim 2 and PAOS simulators,
detector electronics modeling, and advanced data reduction techniques. Through weekly
mini-workshops over multiple years, the team has constructed an ecosystem of tools while
training junior members.

While the work featured here was led primarily by myself, Lorenzo V. Mugnai, and
Andreas Papageorgiou, it reflects the efforts of the entire S2MD team. My contributions
centered on developing and applying data analysis steps to quantitatively assess Ariel’s
capability to meet photometric stability requirements in the presence of pointing jitter
disturbances. The following sections detail this jitter analysis process, methods, and results,
representing a critical S2MD achievement on the path to ensuring Ariel’s success and legacy.

4.2.1 Pointing jitter timeline models

The pointing jitter timelines are a critical input to assessing Ariel’s capability to meet
photometric stability requirements. Over several years, our team has compiled a dataset of
timelines from various contributors. Early simulated timelines (2019) explored different
aspects including Relative Performance Error (RPE), Mean Performance Error (MPE),
Performance Drift Error (PDE), transients, and frequency content non-stationarity. A second
set of timelines were provided in 2020. The most recent addition to the dataset comes from
Airbus (2022), with different cases for bright and faint targets.

In this analysis, we utilize the Airbus timelines represented in Figure 4.55. As evident in
the raw timelines, these contain small spikes embedded within the jitter noise. However,
these are negligible compared to the jitter noise itself. More impactful are temporal effects
such as the RPE variation changing the envelope, and the short-duration “hiccup” in the
middle of the timeline that will be discussed later. Other features include linear drift, easily
removable by detrending, and a sinusoidal variability attributed to fuel sloshing, negligible
for detrending and expected to be reduced. We process the timelines to remove linear drift
and sinusoidal signals prior to analysis. This is better shown in terms of Power Spectral
Density (PSD) in the figure. After correction, the only remaining feature is the time-varying
RPE of the pointing timelines.

Ultimately, the various timelines provided by Airbus behave similarly for the purpose of
our performance analyses. Therefore, we focused on a single example, nom_bright_10h_1kz6,

5ARIEL-CRDF-PL-AN-005
6ARIEL-ADST-SC-FI-000001
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Figure 4.5. Summary of the latest (Mar 2022) AOCS simulations utilized in the analysis. Left panels:
The raw pointing jitter timelines along x- and y-axes versus time (blue lines). A 10s boxcar
average (orange lines) reveals underlying drift and strong sinusoidal components. Fitting the
average data (black lines) models the drift and sinusoid. Right panel: Power spectral density
(PSD) representation. The raw timeline PSD (blue) features strong harmonics around 7×10−4 Hz
and 1/f noise below 1×10−2 Hz, causing the fitted sinusoidal and linear drift behavior, respectively.
Notch filtering of the raw timeline (orange) rejects the sinusoidal component. Subtracting the
fitted model yields the corrected PSD (green) without the sinusoidal and linear drift features.

that corresponds to the nominal Reaction Wheel (RW) case, bright stellar target, and 10
hours duration at the sample time of 1 kHz. The value of pointing indexes for this timeline
is: 2-mas PDE, 65-mas MPE-RPE, and 60-mas RPE. As this example shows, the PDE,
MPE, and RPE are small compared to requirements7. Ariel’s resilience depends more on
stability than absolute jitter - rapid temporal variations are more problematic than e.g. a
stable, high-amplitude RPE.

4.2.2 Lessons learned from past analyses

A time-varying RPE has significant implications on how noise integrates down if the effect
is not properly corrected. This was highlighted in previous analyses (see Section 3.4 for
details) that motivated the present investigation in our detrending pipeline, as this is a known
issue that has been successfully addressed in the past. Figure 4.6 illustrates the RPE time
variability in the Airbus timelines. The envelope of the jitter noise exhibits a slow rise in
Root Mean Square (RMS) toward the timeline center, followed by a decrease back to roughly
the initial value. Around the time of peak RMS, the timelines present a “hiccup” feature that
originates from variations in vibration frequencies modulated by the S/C Transfer Function.
This rapid temporal variation induces photometric instability on timescales of a few minutes,
posing a detrending challenge and a potential risk of data loss.

The coupling mechanism between the Line of Sight (LoS) jitter and the resulting
photometric noise is as follows. In the presence of slow-varying RMS compared to the
exposure rate (∼3 s for bright targets) the signal is sampled by tiny amounts of different

7find-requirement.
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Figure 4.6. Spatial and temporal jitter timelines provided by Airbus and used in the analysis, after
subtracting the linear drift and sinusoidal components. Left: The extended, 10-hour timelines
illustrating the slow change in the jitter envelope. Right: A zoomed-in version of the left
plot, showcasing the fast change in Relative Performance Error (RPE) around the center of the
timeline.

pixels (a 1/10 of a pixel or even smaller) from exposure to exposure. This results in small
variations in the position of the PSF. These shifts are not a problem in themselves, rather
the photometric instability originates from the PSF distortions caused by variations in
frequency content8. These frequency content variations arise from focal plane imperfections
manifesting as inter-pixel Quantum Efficiency (QE) differences9 and intra-pixel response
variability. The intra-pixel response function (IPRF) is such that the pixel is generally more
sensitive near the center and less at the edges (see Figure 4.7 for details).

This effect severely impacted SST/IRAC infrared observations10. However, as discussed
above, Ariel is designed to provide Nyquist-sampled optical signals, minimizing the IPRF
influence on photometric stability. This leaves inter-pixel QE variations, whose impact can
be mitigated via flat fielding. The measured PSF depends on the combination of the optical
PSF, with the jitter pdf, and the focal plane imperfections. Therefore, it becomes apparent
that the measured PSF is distorted by the jitter, as well as the coupling between the jitter
and focal plane imperfections. As a result, the measured PSF changes in shape with some
skewness and kurtosis. Figure 4.8 illustrates these deformations of the PSF shape for a
Gaussian, Nyquist-sampled PSF, jittered on a simple focal plane with randomized QE and
constant IPRF. These subtle effects were not corrected by previous jitter detrending analyses,
even those including flat fielding, and the resultant residual noise did not integrate down
over time as an uncorrelated process. In hindsight, the limitation in accounting for PSF
shape variations represents the missing step in our post-processing pipeline that prevented
proper noise integration.

8Indeed, the jitter of the LoS would have no effect on an ideal detector: provided that the optical signal is
spatially Nyquist-sampled, we can always reconstruct the signal shape with no loss of information.

9Each pixel has its own QE, i.e. the fraction of the counts that contributes to the photocurrent in the pixel.
10See IRAC Instrument Handbook, v.4.0, Figure 8.10

https://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/iracinstrumenthandbook/
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Figure 4.7. 2-D pixel response function used in ExoSim to simulate intra-pixel variation in respon-
sivity (Sarkar et al., 2021). x and y axes are show distance in units of m; z axis shows the
responsivity after normalizing the volume to unity.
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Figure 4.8. Visualization of the shape deformation of the PSF due to the combination of jitter
movements and focal plane imperfections. Left panel: The PSF is represented with a Nyquist-
sampled Gaussian profile (red curve). The illumination profile before and after the jitter (sub-pixel
shift of -0.3 pixels) are obtained by convolving the Gaussian profile with the pixel IPRF and
multiplying by the QE. The product of the QE and IPRF is shown in the orange pixel responsivity
curve for reference. Right panel: bar plot of the first order moments of the illumination profile
before and after the jitter shift, using the same colors. The variation in the moments with respect
to the initial position is reported on top of the bars of the shifted profile.
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4.2.3 Constant signals

This section presents the detrending analysis performed using constant timelines, as opposed
to time-varying timelines containing planetary signals discussed later. Constant timelines are
obtained through stable calibration source observations over time or out-of-transit monitoring
of transiting exoplanet systems. We first focus on this simpler case to establish a foundation
before addressing more complex signals. Moreover, we focus on photometric timelines; an
extension of this work to spectroscopic timelines has already been initiated by the S2MD
team, led by student Angèle Syty whom I co-supervised during her three-months internship
at La Sapienza University of Rome. Her work has shown promising results, demonstrating
that the main methods developed here apply across the Ariel wavelength band.

I produced the signal timelines using the state-of-the-art ExoSim 2, an end-to-end time-
domain simulator of Ariel observations (see Section 1.3.3 for details). By implementing
a detailed model of the payload design, expected noises, and systematics, it is capable of
evaluating representative photometric and spectroscopic light curves. Given the pointing
timelines, detector arrays, PSF vs. wavelength, and IPRF, ExoSim 2 calculates the detector
array response to the target signal, modulated in position according to the AOCS pointing
(“signal integration”). Using ExoSim 2, I simulated a 10-hour jittered timeline of the star
HD 20945811, observed out-of-transit. This simulation contains no astrophysical noise, e.g.
variability from the star, and the stellar disk is flat, with no limb darkening. Additionally, to
start from a simple case, the stellar flux follows a Planck model.

At specific times, the detector array is read to produce NDRs and when appropriate
the array is reset. For implementation simplicity, the simulations used here ignore detector
saturation and non-linearity. The detector charge increases linearly without limitation until
the reset takes place. Even though the simulation can produce multiple NDRs before
resetting, this work has focused on Correlated Double Sampling (CDS) mode, producing
just two NDRs per exposure. Given the target brightness, we set the exposure time to 3
seconds between consecutive resets. The simulation also accounts for detector QE and
its variation across the array, simulated with a standard deviation of 5% pixel-to-pixel12.
Additionally, we do not consider detector persistence, which was extensively modeled and
found to have a negligible impact on the Ariel application13, even in the presence of pointing
jumps14.

4.2.3.1 Signal timeline

The output produced by ExoSim 2 for a photometric timeline is a data cube of two-
dimensional frames representing the two spatial directions (x, y) indexed by the NDR
time stamp. To obtain the “science frames”, we apply the CDS and subtract the first frame of
each exposure from the second (i.e., last minus first). Then, we perform aperture photometry
on each frame to extract the photometric signal. That is, we sum the counts read by the
photometer during the exposure within an aperture of specified sizes centered on the PSF.
Given the Ariel elliptical primary, the PSF is elliptical, with the semi-major axis oriented as
the semi-minor axis of the telescope aperture. Therefore, the photometric aperture is also
elliptical.

11R-PERF-025
12In agreement with past analyses, e.g. ARIEL-CRDF-PL-AN-005
13ARIEL-SAP-PL-TN-008
14ARIEL-CRDF-PL-AN-005
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Figure 4.9. Aperture photometry for FGS-1. The image values are the median of the full image stack
(reference PSF). The aperture is elliptical, with semi-major axis oriented as the semi-minor axis
of the telescope aperture. Aperture 3 is the one used to compute the signal. The other apertures
are sized according to the widths of the reference PSF (Aperture 1) and its Half Width at Half
Maximum (HWHM) (Aperture 2) along each axis.

Figure 4.9 illustrates the aperture photometry process for the FGS-1 photometer. To have
a good estimate of the PSF shape and consequently of the aperture, we start from the median
of the image stack to obtain a reference PSF15. This choice is not strictly necessary for the
analysis, as no transients are present in the simulation. However, it is a good practice to
remove outliers and spurious signals that could affect the PSF shape estimate. To determine
the aperture sizes, we define a Radius of Encircled Energy (rEE) criterion such that the
aperture contains around 95% of the incoming power. The value of this rEE is to an extent
arbitrary; however, a larger aperture would incorporate more background noise.

It should be noted that these science frames have considerable Signal-to-Noise Ratio
(SNR) and the PSF is very stable, variations from one to the next are tiny. As a consequence,
we need high-precision aperture photometry to capture tiny signal variations. Given that
changing the aperture size between frames would introduce noise (the estimator gain would
change), we center the aperture on the centroid, calculated with sub-pixel precision for each

15Here we have a constant illumination from the source and therefore we can take the median of the full
image timeline. When dealing with signals containing a transit, we restrict the median operation to the frames
collected out of transit.



4.2 Pointing Jitter Detrending 101

0 2 4 6 8 10
Time (hr)

6000

4000

2000

0

2000

4000

R
el

. f
lu

x 
[m

ea
n 

+
 p

pm
]

0 2 4 6 8 10

0

500
Window: 1 hr
Ptp: 693 ppm
Std: 200 ppm

Signal in aperture

data boxcar avg.

Figure 4.10. An example FGS-1 photometric timeline. Bottom: The raw signal timeline with only
pointing jitter present - photon noise and read noise are not included here. The data is plotted in
ppm, after subtracting the mean. Top: A low-pass filtered version of this timeline. The data were
boxcar-averaged using a window of 1 hour to show temporal trends at the observation timescale.

frame, and apply the same aperture throughout. This should correspond to having a fixed
PSF for optimal photometry and then correcting for gain variations. Finally, the photometric
signal is normalized by the total counts in the first frame. This is done to work with values
close to unity.

Figure 4.10 shows an example signal timeline for the FGS-1 photometer, in the presence
of pointing jitter noise only. Photon and readout noise add a layer of complexity for jitter
detrending and are discussed later. The other photometer channels (VISPhot and FGS-2)
behave similarly and the main analysis findings apply to them as well. Therefore, in this
section, we focus on the FGS-1 channel. In addition, unless specified differently, we do not
apply flat fielding (i.e., divide the CDS data by the distribution of QE across the detector
array, assuming perfect knowledge or within the required mission uncertainty).

The raw signal timeline is represented in the bottom diagram, after subtracting the mean
to highlight the ppm variations. A low-pass filtered version of this timeline is represented
on top, averaged using a window of 1 hour. This filtered timeline illustrates the large
photometric variation in the middle of the observation, due to the RPE envelope change
as discussed previously. The peak-to-peak (Ptp) of this timeline is around 0.7 ppt, while
the raw timeline oscillates between around ±4 ppt. The standard deviation of the filtered
timeline is around 200 ppm at the timescale of 1 hour, 10 times more than the bright targets
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requirement16. Photometric variations of this magnitude would severely impact the science
data Ariel will provide, if not corrected to within limits. Other features visible in the
raw timeline are spikes and the shrinking of the timeline envelope toward the center. The
contraction is most significant in correspondence with the “hiccup” feature observed in the
jitter timelines and is likely due to this RPE variation occurring suddenly.

4.2.3.2 Decorrelation algorithm

Originally, when investigating this "hiccup" feature, we hypothesized it could be caused
by PSF motion. However, we later realized the photometric variations correlated with PSF
distortions rather than shifts, thanks to the work led by M.Sc. student Leonardo Altamura,
whom I co-advised. In this analysis, I estimate not just image centroids but also the width,
skewness, and kurtosis - effectively all low-order moments of the light distribution along x
and y - from each exposure as a function of time. Figure 4.11 illustrates the time series of all
these moments, showcasing the wealth of spatial information contained in the images and
some rather obvious correlations with the signal timeline.

I then cross-correlate these parameters with the photometric signal over time and remove
the identified correlations from the data. This processing significantly reduces the photomet-
ric variability, demonstrating a nearly one-to-one mapping between the jitter-induced noise
and the first four moments of light distribution. By accounting for position, width, skewness,
and kurtosis variations, the jitter effect can be almost perfectly removed without having to
perform a flat fielding (see later for details).

For sufficiently small jitter, the jitter-induced variability f can be described by a first-
order Taylor expansion of those moments:

f (t, X⃗) = f (X⃗0) + (X⃗ − X⃗0)T∇ f (X⃗0) (4.1)

where X⃗ = (x, y,wx,wy, sx, sy, kx, ky) is the vector containing the position, width, skewness,
and kurtosis along x and y17. While including higher-order terms18 can improve the model,
it increases the complexity significantly. Moreover, as shown later, in the studied case a
first-order approximation yields a decorrelated signal that is already within the specification.
Therefore, the jitter model effectively reduces to a linear combination of the moments of the
light distribution:

f = c0 + c1x + c2y + c3wx + c4wy + c5sx + c6sy + c7sx + c8kx + c9ky (4.2)

where c0..9 are the decorrelation model coefficients, determined by fitting the time-domain
photometry data, and we dropped the explicit time dependencies. The obtained model of the
jitter-induced variability is then removed from the raw signal timeline.

In essence, the decorrelation algorithm implemented is a three-stage process:

1. Estimate position, width, skewness, and kurtosis from the photometric data;

2. Simultaneously correlate the estimated parameters with the time-domain photometry;

3. Remove the identified correlations from the photometric data.
16R-PRD-8927
17In contrast, for spectroscopic data, for each spectral bin only the spatial dimension is available.
18e.g. 1

2 (X⃗ − X⃗0)T H f (X⃗0)(X⃗ − X⃗0), where H is the Hessian.
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Figure 4.11. Time series of the low-order moments of light distribution for the same FGS-1 timeline.
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Figure 4.12. An example of jitter decorrelation using the same raw photometric timeline shown in
the previous figure. Left: the timelines of the raw signal (blue dots), the jitter model (orange),
and the decorrelated signal (green), after mean subtraction. Note that the orange dots almost
perfectly superimpose the blue dots. Right: histogram of the counts obtained from the timelines
shown on the left, after collapsing the temporal axis.

4.2.3.3 Decorrelated signal

As shown in Figure 4.12, the detrending algorithm described above is enough to reduce the
variability in the raw signal timeline by more than an order of magnitude, using solely the
spatial information contained in the science frames, and no calibration information. There is
still a slight bump in the middle of the decorrelated signal timeline, where the model is not
perfectly capturing the variability associated with the “hiccup” feature in the pointing. By
including higher-order terms, we can achieve a better fit, with the caveats exposed above.
Apart from this, the signal after decorrelation is almost perfectly constant, with residual
variability that is better illustrated in Figure 4.13a. This figure can be directly compared
with Figure 4.10. The residual variability is most significant in the middle of the timeline
and has a Ptp of around 14 ppm (decreased by a factor of ∼50), and a standard deviation of
5 ppm (decreased by a factor of ∼40) when boxcar-filtered using a 1-hour-long window.

To measure the stability of the frequency content in the decorrelated signal, we use
the Allan deviation (ADEV) (e.g. Riley and Howe, 2008). Also known as sigma-tau, the
ADEV is a metric designed to overcome the limitations of the standard deviation (Allan,
1987), having the advantage of being convergent for most noise types. This is achieved by
using the first differences of the fractional frequency values, rather than deviations from the
average as in the standard deviation, which is not stationary for the more divergent noise
types. Also, the ADEV is more informative than the standard deviation and can distinguish
between different noise types, e.g. white and colored noise. The ADEV is usually employed
to present results instead of the Allan Variance (AVAR) as it gives the relative amplitude
stability and can be directly compared to other sources of errors. For instance, an ADEV of
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(a) An example FGS-1 photometric timeline, after jitter decorrelation. Raw timeline (bottom) and
low-pass-filtered version (top). To be compared with the same figure for the original timeline.

101 102 103

Time interval [s]

100

101

102

103

Al
la

n 
de

vi
at

io
n 

[p
pm

]

20 ppm

1 hr1 min 10 min

Temporal stability analysis

Signal Decorr. signal Equiv. white noise

(b) The stability analysis performed on the same FGS-1 photometric timeline. The overlapping Allan
deviation (ADEV) for the original signal (blue) and the decorrelated signal (green). The orange
line represents the expected deviation for the decorrelated signal, were it random white noise.

Figure 4.13. Time-domain stability analysis of the decorrelated signal vs. the original.
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e.g. 20 ppm at averaging time τ = 1 hr is interpreted as there being a frequency instability
between two measurements 1 hour apart with a relative amplitude of 20 ppm RMS. Notably,
there is no information difference between the AVAR/ADEV and a power spectral density
representation: one can be transformed into the other (and vice versa) by convolving it
with the appropriate transfer function (Allan, 2016). Lastly, the original AVAR has been
largely superseded by its overlapping version, which improves the confidence of the resulting
stability estimate. This version makes maximum use of a data set by forming all possible
overlapping samples at each averaging time. The overlapped ADEV is the most common
measure of time-domain frequency stability. Therefore, we refer to this form of the metric
unless otherwise specified. In addition, throughout this analysis, we use the Python package
Allantools19, which provides an extensive library for calculating the ADEV and related time
and frequency statistics.

Figure 4.13b illustrates the ADEV of the decorrelated signal vs. the original signal and
a reference white noise timeline. The latter is a line with a slope of −0.5, normalized to
the value of the decorrelated signal ADEV at the shortest averaging time. Therefore, in the
log-log plane, it represents the ADEV curve for the decorrelated signal if it were entirely
white noise. This figure allows us to evaluate frequency stability at different averaging
times, capped at 1 hour to ensure an adequate number of samples (at least 10, given the
length of the simulation) for statistical analysis. The bright targets requirement at 1 hour
is represented with a dashed line at 20 ppm. Vertical dashed lines at visualize relevant
times (1 min, 10 min, and 1 hour). For both ADEV curves, random white noise processes
are dominant at timescales up to ∼few minutes and the noise integrates down roughly as
a time-uncorrelated process, i.e. as root time. These fluctuations correspond to harmonic
fast movements of the line of sight of the telescope. At longer timescales, time-correlated
processes become more important, and the ADEV negative slope decreases, i.e. the noise
integrates down ever less efficiently with time.

While it is possible to quantify the prevalence of different noise contributions (e.g. Brown
noise), it is not the scope of this analysis and is deferred to future work. Here, we focus on
demonstrating the level of stability that can be reached given the decorrelation implemented,
and we observe a drop in photometric noise by a factor ∼20 at short timescales and ∼50 at the
longest timescales compared to the original signal. At the 1-hour timescale, the decorrelated
signal ADEV tapers around 3 ppm, fully compliant with the requirement and consistent with
the standard deviation of the low-pass filtered signal discussed previously. As a side note,
the fact that at short timescales the noise integrates slightly faster than root time is not yet
completely understood and a tentative explanation is that the model is not entirely immune
from overfitting. Additionally, with regard to the behavior at longer timescales, we must
bear in mind that (i) the reduced number of samples is likely not statistically significant,
reducing the level of confidence and (ii) the numerical resolution of the simulation is at a
comparable level (∼1 ppm).

4.2.3.4 Flat fielding

The flat fielding operation is expected to improve our ability to detrend jitter-induced
photometric noise compared to the previous results by virtue of removing the impact of
inter-pixel responsivity variations. Figure 4.14 illustrates the outcome of the same detrending
analysis, preceded by the flat fielding step. The science frames are flat-fielded by dividing

19https://allantools.readthedocs.io/en/latest/index.html.

https://allantools.readthedocs.io/en/latest/index.html
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(a) An example FGS-1 photometric timeline, after flat fielding (assuming perfect QE knowledge)
and jitter decorrelation. Raw timeline (bottom) and low-pass-filtered version (top).
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(b) The stability analysis performed on the same FGS-1 photometric timeline. The overlapping Allan
deviation (ADEV) for the original (blue), decorrelated (green), and white noise equivalent signal
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Figure 4.14. Time-domain stability analysis of the decorrelated signal vs. the original one, having
flat-fielded the images. To be compared with the same figure for the case of no flat fielding.
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with the QE matrix, i.e. a map of the pixel response of the detector to uniform illumination.
This QE matrix is a simulation parameter in ExoSim 2 and is provided with the simulation
output. The pixel-to-pixel responsivity variations contained in this map are within 5%. The
operation of dividing by the “true” QE matrix is the equivalent of perfect flat fielding.

A more realistic scenario can be examined by adding additional uncertainty to this QE
map, before dividing the frames. Among the mission baseline calibration requirements is
to achieve better than 0.5% uncertainty on the QE knowledge20. Although in this analysis
we also examined adding an uncertainty of 0.5%, we choose not to include this case for
brevity and present solely the results assuming perfect knowledge of QE. This is a limiting
scenario that aims to show the full extent of the improvement (if any) that can be obtained
by performing the flat field correction.

Compared to Figure 4.13, the stability improvement appears very small even in this
idealized condition. The Ptp of the low-pass-filtered timeline at 1 hour is the same (rounded
to the nearest ppm), and the standard deviation is ∼1 ppm less, possibly due to the model’s
better fit near the “hiccup” feature in the middle of the timeline. Accordingly, the ADEV is
slightly ameliorated in the following: (i) at short timescales, the ADEV perfectly follows the
expected trend for white noise, (ii) the knee of the curve, where it deviates from white noise,
is slightly lower, and (iii) at 1 hour timescale the noise seems to still integrate down. All this
indicates an overall reduced power of time-correlated processes, although the improvement is
very minor, in the order of 1 ppm at 1 hour. Under baseline conditions for QE knowledge, the
improvement is further reduced, and the flat-field operation could introduce bias. Moreover,
this simulation does not contain any other noise source. When including e.g. the photon and
read noise contributions, this ∼1 ppm improvement is virtually inconsequential.

Overall, this analysis seems to indicate that the decorrelation method implemented fully
exploits the spatial information contained in the science frames and is capable of removing
the jitter-induced photometric noise efficiently. Flat fielding only marginally reduces noise
levels after jitter detrending. The minor gain from flat fielding may not warrant the potential
introduction of bias. Since the noise levels achieved through jitter decorrelation alone
already satisfy Ariel’s stability requirement, flat fielding could potentially be avoided as
was done successfully with SST/IRAC observations. This is not to suggest that calibration
flats should not be taken meticulously, for (a) this analysis is based on simulated data, and
(b) they still contain useful spatial information that can be exploited for sanity checking.
However, a flat field calibration is not as critical as previously thought. Using this lesson,
the rest of the analysis described here assumes no flat fielding.

4.2.3.5 Noised timeline

In this section, we utilize the same simulation and include photon and read noise alongside
jitter to reproduce a more realistic observation than the previous example. Photon noise
is by definition a quantized and thus time-uncorrelated process, follows Poisson’s law and
integrates down as root time. Readout noise is produced in the readout process by the
amplifier chain and can be modeled as a Gaussian white noise contribution. The amount
of readout noise assumed is 20 electrons per CDS per pixel, as specified in Table 3.2. This
analysis aims to demonstrate that, even with the introduction of photon and read noise, the
decorrelation procedure can still detrend the variability induced by jitter below the required
level.

20R-CAL-070
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To compare the results obtained post-processing with the jittered signal against what
could be achieved in the ideal case where the only noise sources are photon noise from the
star and read noise, we generate a reference unjittered timeline. This timeline is obtained
by repeating the first frame of the unnoised jittered timeline for the whole duration of
the observation. This is equivalent to having a perfectly stable PSF and no jitter. Then,
photon and read noise are added to this timeline to obtain the reference unjittered timeline.
By comparing the stability of the decorrelated signal with that of the reference unjittered
timeline, the best-accomplishable stability, we can evaluate how much of the jitter-induced
noise is removed by the decorrelation algorithm.

Compared to the previous case, the introduction of photon and read noise decreases the
sensitivity to the tiny photometric variations from exposure to exposure caused by jitter.
To counter this, we utilize a weighting algorithm to evaluate the moments of the light
distribution. The idea is to implement a Wiener filter21 that enhances the underlying signal
compared to the noise level, decreasing the influence of the noise-dominated tails. As a
first approximation, we employ a Gaussian weighting function and compute the moments
of the enhanced light distribution, i.e. the light distribution of each frame convolved with
the corresponding weighting function. The implementation is analogous to the algorithm
described in the centroiding report for the Ariel FGS22.

Our implementation of the weighting algorithm is as follows. As detailed previously in
the photometric aperture discussion, first the median of the stack of images in the timeline is
computed to have a reference image. Then, the width of the reference PSF is computed from
the reference image, by estimating the width of the light distribution along the corresponding
axis from a moment’s calculation. Before using this width in the weighting function, it is
enlarged by a factor 2

√
2 to avoid cutting signal frequencies23. The weighting function is

then computed as a Gaussian with a standard deviation equal to the enlarged width, centered
on the centroid of each frame. Using the same width throughout assures that the gain of
the estimator is constant. Moreover, by updating the position of the weighting function
for each frame, we ensure that the moments are computed on the same region of the PSF,
centered on the centroid. Therefore, they are homogeneous and comparable across frames.
The moments of the enhanced light distribution are then computed for each frame and used
in the decorrelation algorithm described previously.

Figure 4.15 reports the results obtained for the temporal stability of the decorrelated
signal and the reference unjittered signal. 10 different noise realizations were used to
estimate the mean and standard deviation of the ADEV curve obtained in both cases. The
curve for the signal before decorrelation is also shown. The reference ADEV curve is ∼few
ppm lower than the equivalent white noise curve for the mean decorrelated signal ADEV,
estimated as discussed above. However, at longer timescales (≳10 min), the decorrelated
signal ADEV deviates from the expected behavior for white noise, and reaches 13.7±2.5 ppm
at the 1-hour timescale, compared to 9.6±1.8 ppm of the reference. Notwithstanding, this
analysis demonstrates compliance of the decorrelated signal with the 20 ppm requirement at
1 hour. The residual correlated noise can be dealt with by including second-order terms in
the jitter model; however, this may lead to overfitting.

21A type of filter used in signal processing whose goal is to compute a statistical estimate of an unknown
signal using a related signal as an input and filtering that known signal to produce the estimate as an output.

22ARIEL-UVIE-PL-TN-001
23This factor corresponds to the best-performing factor for the FGS-1 photometer from a coarse grid search.
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Figure 4.15. Time-domain stability analysis of the same FGS-1 photometric timeline, with the
addition of photon and read noise. The overlapping Allan deviation (ADEV) for the original
(blue), decorrelated (green), white noise equivalent (orange), and un-jittered signal (purple). The
solid lines are the mean of the ADEV from 10 different noise realizations, and the shaded areas
represent the corresponding standard deviation.
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4.2.3.6 Time averaging

While the decorrelation algorithm described above is capable of removing the jitter-induced
photometric noise to within the required level, even in presence of photon and read noise,
further improvements are possible, as the decorrelated signal ADEV curve is still above the
reference unjittered signal ADEV curve. In this section, we investigate the possibility of
stacking frames on time as a way to simulate a longer time exposure. This is conceivable
because working at a faster exposure frequency than the astrophysical signal of interest is
not mandatory. Stacking frames is equivalent (barring noise contributions) to integrating
in time, increasing the SNR and averaging jitter, such that its impact on the photometric
stability is reduced.

For transit spectroscopy, the relevant timescale is the transit duration, i.e. up to a few
hours. Fully sampling the ingress and egress of the transit event for bright targets24 requires
a cadence of less than about 90 s. In the following, we consider a stacking factor of
10, i.e. simulating a 30 s exposure time by averaging successive groups of 10 exposures
together. Figure 4.16 illustrates the resultant ADEV curves for the decorrelated signal and
the reference unjittered signal. From the ADEV of the original signal, we can see that
compared to the case of no time averaging, the stacking of frames has a very limited effect
on improving the stability if no decorrelation is performed. This is expected, as the jitter is a
time-correlated process, and averaging does not integrate down the correlated component
over longer timescales.

Instead, the decorrelated signal ADEV, shown in green, is significantly improved by
averaging the frames. At the 1-hour timescale, the ADEV is 11.6±2.1 ppm compared
to 13.7±2.5 ppm for the non-decimated case. This is still above the reference unjittered
signal ADEV (9.6±1.8 ppm), however, the difference has now been halved from ∼4 ppm to
∼2 ppm. This is a significant improvement over the non-decimated case, demonstrating the
effectiveness of combining the decorrelation algorithm with time averaging to achieve even
greater post-processing stability.

4.2.4 Transit signals

This section presents the jitter-detrending analysis performed using time-varying timelines
containing planetary signals. These timelines are produced natively by ExoSim 2, which
includes a dedicated module for loading and applying different astronomical signals to the
target source (see Section 1.3.3 for details). Here, we simulate the transit light curve of
planet HD 209458 b using a simulated atmosphere with a fixed transit depth vs. wavelength
and limb darkening coefficients all set to zero as an example of an astronomical signal. The
default model for the transit light curve is based on the batman-package (Kreidberg, 2015).
To investigate what is possibly a worst-case scenario, we implement a mid-transit time at
the middle of the timeline, where the RPE amplitude and rate of change are greatest.

4.2.4.1 Decorrelation algorithm

The algorithm to decorrelate the jitter in constant photometric timelines must be updated
to account for the presence of the transit signal - the relative flux decrease during planet
occultation. Since the transit and jitter effects are orthogonal, the updated model is the

24R-PRD-0370
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Figure 4.16. Time-domain stability analysis of the same FGS-1 photometric timeline, with the
addition of photon and read noise, stacked on time by a factor of 10 (effective exposure time of
30 s). To be compared with the same figure for the case of no time averaging.
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product of the jitter model and the transit light curve:

℧ = f × LC (4.3)

In the decorrelation step, all free parameters are fitted simultaneously: c0..9 for the jitter
model and the transit light curve’s parameters, e.g. time of mid-transit (t0), planetary
radius over stellar radius (k), orbit semi-major axis (a), inclination (i), and limb darkening
coefficients. Here, the free parameters for the light curve are t0, k, a, and i; all other transit
parameters are assumed known.

Therefore, in the presence of a transit signal, the detrending algorithm becomes:

1. Estimate position, width, skewness, and kurtosis from the photometric data;

2. Simultaneously correlate the estimated parameters with the time-domain photometry,
together with the science signal model and its parameters;

3. Remove the identified correlations from the photometric data (superfluous).

4.2.4.2 Decorrelated signal

Figure 4.17 illustrates the results obtained by applying the detrending algorithm described
above. The residual variability in the decorrelated light curve is largely attributable to
the photon and read noise components. However, a small excess noise is visually evident
mid-timeline. From inspection of the decorrelated timeline alone, it is difficult to ascertain if
any time-correlated behavior remains. To quantify this excess, Figure 4.18a plots the ADEV
of the residual signal, R obtained from the difference between the detrended transit signal
and the true transit light curve:

R = D/ f − True LC (4.4)

where D is the photometric data. As done before, 10 different noise realizations are utilized
to estimate the mean and standard deviation of the ADEV curve, shown alongside the
equivalent white noise one. The slope for the decorrelated signal follows the expected
curve up to time intervals of ∼15 min, then increases slightly. At 1 hour, the ADEV is
13.6±2.4 ppm, comparable to what was obtained for the constant noised timeline. Therefore,
we demonstrated that including the transit signal does not interfere with the jitter decor-
relation, confirming that the astronomical signal and the jitter are fully separable using
this algorithm. The jitter noise is corrected to a large extent, and the level of photometric
precision that can be achieved is compliant with the 20 ppm requirement at 1 hour.

To further benchmark this result, we analyze a photometric timeline that contains only
the transit light curve, photon, and read noise. Figure 4.18b reports the ADEV for the residual
obtained in this case, subtracting the true light curve from D, appropriately normalized.
Here, we obtain 8.6±1.5 ppm at 1 hour, which effectively represents the lower limit that
can be achieved for this simulation and is compatible with the stability achieved for the
reference unjittered signal in the case of constant photometry shown previously.

4.2.4.3 Accuracy and bias

An important, yet often overlooked, aspect of detrending is the accuracy of the retrieved
parameters. In the case of transit spectroscopy, the planetary radius is the key parameter to
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Figure 4.17. An example of jitter decorrelation using the photometric timeline with the transit signal
and the addition of photon and read noise. Left: the timelines of the raw signal (blue dots), the
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Figure 4.18. Time-domain stability analysis of the residual signal obtained from the FGS-1 photo-
metric timeline modulated by the transit light curve, with the addition of photon and read noise.
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reconstruct the atmospheric spectrum. Therefore, it is essential to understand whether it is
recovered not only to the required precision but also with no bias. That is, we must ensure
(a) that after jitter decorrelation there is no systematics due to pointing jitter still present and
biasing the estimate of Rp, and (b) that decorrelating jitter is not introducing unexpected
noise or bias to the estimate of Rp.

To investigate this, I have complemented the analysis of the stability of the detrended
signal with a study of the distribution of the retrieved planetary radius values. The analysis
is performed on the same photometric timeline used in the previous section, containing the
transit signal and photon and read noise. The detrending algorithm is applied to the timeline,
and the planetary radius is estimated in the decorrelation step described in Equation 4.3.
Besides the planetary radius, the other free parameters are the same as in the previous
section. Again, all limb darkening coefficients in the simulation are set to zero, which is a
simplifying assumption of the light curve shape. The inclusion of non-zero limb darkening
coefficients in the simulation is left for future work: while it is not expected to impact the
stability of the detrending, it may affect the accuracy of the retrieved parameters.

The analysis is repeated for 10 different noise realizations, and the corner plot of the
retrieved parameters is shown in Figure 4.19. Having several realizations is useful to under-
stand not only whether the individual parameters for each realization are unbiased, but also
whether the scatter between the different realizations is compatible with the expected experi-
mental uncertainties. We obtain that the mean retrieved uncertainty on the radius estimates is
52 ppm, while the standard deviation of the best-fit radius value across realizations amounts
to 48 ppm, i.e. the scatter between realizations is comparable to the retrieved uncertainty.

For better visualization, Figure 4.20 shows the scatter plot of the residuals between
the retrieved and true planetary radius values for each realization. While having only 10
realizations is not enough to draw statistically significant conclusions, from this figure it
appears that on average, the recovered radius is smaller than the true value by a few tens
of ppm. From a χ2 test with 10 degrees of freedom, the reduced χ2 is 1.4, indicating that
there is a discrepancy (albeit small) between the retrieved and true values. This discrepancy
may be due to the residual correlated noise particularly at the center of the timeline, that the
decorrelation algorithm is not able to fully remove.

While further work is required to confirm this, here we can investigate whether this
discrepancy can be mitigated via time averaging. Figure 4.21 illustrates the same analysis
as before, but for the case where the photometric timeline is averaged by a factor of 10 to
obtain an effective exposure time of 30 s.

From this figure, we note that the mean retrieved uncertainty on the radius estimates is
69 ppm, while the standard deviation of the best-fit radius value across realizations amounts
to 66 ppm. Compared to the previous case (52 ppm), the uncertainties are about 30% larger,
and the reduced χ2 is now 1.2. Therefore, there is a slight improvement in the agreement
between the retrieved and true values, although there is still a small discrepancy.

4.2.5 Final remarks

The jitter-detrending procedure developed in this analysis improves upon previous results
and has been shown to work well for both constant and time-varying timelines containing
a transit light curve. The achievable photometric stability is well within the requirement
of 20 ppm at the 1-hour timescale, even when additional noise contributions are included,
such as photon and read noise. By implementing a decorrelation based on evaluating the
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Figure 4.19. Corner plot of the retrieved parameters from the detrending algorithm applied to the
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Figure 4.20. Scatter plot of the residuals between the retrieved and true planetary radius values for
each realization, with error bars representing the retrieved uncertainty. The horizontal dashed
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moments of light distribution, we can fully exploit the spatial information contained in the
science images. Calibration information (flat fields) was shown to not improve the achieved
precision significantly. In addition, the presented analysis suggests that the decorrelation
algorithm may not be fully removing the correlated noise component, and as a result the
retrieved planetary radius may be biased by a few tens of ppm. This is a preliminary result,
and an investigation is underway to confirm this finding and understand its origin.

The analysis was carried out focusing on FGS-1, but the results apply to all photometric
channels. Fully independent verification of the jitter detrending was conducted by Angelos
Tsiaras from the S2MD collaboration, and compatible results were obtained. Future work
on this topic will include a thorough analysis of the accuracy of the estimated light curve
parameters, and the progressive inclusion of more layers of complexity in the simulation,
such as nonzero limb darkening coefficients and instrumental effects such as detector 1/f
noise, gain drifts, non-linearities, and saturation. The extension of this work to spectroscopic
timelines has been initiated by M.Sc. student Angèle Syty, whom I co-supervised. She has
adapted the detrending to AIRS channels, significantly improving the results on achieved
precision and finding similar small biases in the retrieved planetary radius.

Studying the impact of detrending across multiple wavelength ranges (photometric
and spectroscopic) remains a priority, especially given the potential wavelength-dependent
biases, however small, that preliminary results suggest may be introduced by the detrending
algorithm. A future update of the payload performance analysis will include the results of this
work, now carried forward by myself. I am currently preparing a publication that describes
the detrending algorithm and presents the results for both photometers and spectrometers.

While only a single Airbus-provided timeline has been used so far, future studies will
incorporate diverse representative timelines, to confirm that the achievable photometric
precision remains compliant across an ensemble of jitter realizations compatible with the
requirements. Such investigations will remain an essential mission preparation activity, with
the algorithm presented here to be directly incorporated into the official Ariel data reduction
pipeline to ensure optimal exploitation of Ariel’s scientific data by effective mitigation of
the jitter systematic.
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Chapter 5
Alfnoor: a Tool for Quantitative
Population Studies

With the Preliminary Design Review (PDR) milestone successfully completed, an important
next objective is expanding systematic investigations of Ariel’s capability to characterize
exoplanetary atmospheres. Our group is leading studies of simulated exoplanet populations
representative of the data set observed by Ariel, and is actively contributing to the efforts
related to the intermediate milestone of the Dry Run in 2025. This chapter, together with the
next, detail our studies on evaluating the expected information content of spectra collected
during the mission’s reconnaissance survey. This unprecedented survey of hundreds of transit
and eclipse spectra aims to address population-level questions, guide further observation, and
cement Ariel’s legacy. The survey observations will shape our knowledge of the exoplanet
population and solar system’s place within it for decades.

To simulate this data set, in collaboration with University College London (UCL) we
have developed an end-to-end framework for large atmospheric studies, Alfnoor (Changeat
et al., 2020a; Mugnai et al., 2021a). Alfnoor combines the atmospheric models of ‘forward’
spectra produced by TauREx 3 (Al-Refaie et al., 2021) with Ariel’s performance estimated
by ArielRad (Mugnai et al., 2020). By iterating this process for different planets and
compositions, Alfnoor automates the simulation and retrieval of planetary populations and
thus a representative data set of Ariel’s observations.

We focused on evaluating the reconnaissance survey data set, which poses analysis
challenges given that the combination of Signal-to-Noise Ratio (SNR) and spectral resolution
might not be sufficient to constrain e.g. abundances of atmospheric species with high
confidence. In an initial study (Mugnai et al., 2021a), we developed a metric sensitive to
the chemical composition of atmospheres, independent of planet type and fundamental
parameters (temperature, mass, and radius), and capable of producing color-color diagrams
of planetary populations. Although the classification of Tier-1 observations based on
molecular content using this metric is affected by the bias of the estimators used, which
depends on instrumental noise, this demonstrated potential for inferring the presence of
molecular species and using Tier-1 data to address population-level questions.

* * *

Here we report our work and results, presented in Mugnai et al. (2021a). The analysis
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aims are threefold:

1. Show the capability of selecting the planets with featureless spectra, that may not be
observed again in successive Tiers, without involving retrieval techniques;

2. Introduce a metric and show its principal applications as a tool to classify Tier 1
observed planets on their molecular content, to aid in the selection of targets to be
re-observed in successive Tiers;

3. Show other strategies to exploit Tier 1 data are feasible such as those based on Deep
and Machine Learning.

Section 5.1 presents the methodology. Alfnoor is introduced in Section 5.1.1. Sec-
tion 5.1.2 describes the simulated planets and atmospheric properties. Identification of flat
spectra is discussed in Section 5.1.3, with results in Section 5.2.1. The classification metric is
detailed in Section 5.1.4, and compared to a K-nearest neighbors algorithm in Section 5.1.4.1.
Results are presented in Section 5.2.2, including the relation between the metric and the
input molecular abundances, biases, and limitations. Finally, we provide a preliminary
assessment of the application of Machine and Deep Learning techniques to the problem
of spectra classification in Section 5.1.5, discussing their performance in Section 5.2.3, al-
though thorough investigation is left to future work. The results are discussed and compared
in Section 5.3.

5.1 Methodology

5.1.1 The Alfnoor software

Ariel will provide a sample of hundreds of planetary spectra. To simulate this data set we
developed a new algorithm: Alfnoor, the thousand lights simulator, which was also used for
Tier 2 data in Changeat et al. (2020a). Alfnoor is a wrapper of TauREx 3 (Al-Refaie et al.,
2021, see Section 1.3.2 for details) and ArielRad (Mugnai et al., 2020, see Section 1.3.1
for details). TauREx 3 is a complete rewrite of the atmospheric retrieval code TauREx
(Waldmann et al., 2015b,a). ArielRad is the Ariel Radiometric Model: a software that, given
the Ariel payload and mission strategy descriptions, can simulate the signal propagating
from a candidate target through the instruments, and return the expected instrument noise.
ArielRad, therefore, can compute the number of observations needed to match each of the
Ariel Tier requirements (to reach a minimum SNR=7 at the Tier spectral resolution).

By combining the two software, Alfnoor produces the atmospheric high-resolution
forward model of a planet with TauREx 3, it bins down the spectrum to the Ariel Tier
wavelength grid and adds the expected noise estimated by ArielRad. Consequently, Alfnoor
returns a simulation of the planet spectrum as observed in each of the Ariel mission Tiers.
Iterating this procedure for different planets or compositions, Alfnoor automates the process
of building entire planetary populations and therefore a data set that is representative of the
one Ariel will provide.

The Alfnoor and the ArielRad tools are not publicly available, currently. However, both
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TauREx 312 and a generic radiometric simulator called ExoRad 2.034, are publicly available
on GitHub and PyPI. ArielRad is ExoRad 2.0 configured for the Ariel payload.

5.1.2 Planetary populations

To build a diverse sample of planets in terms of masses, radii, and temperatures, we use
the Ariel candidates list of Edwards et al. (2019). This list contains 1000 planets, selected
from both NASA’s Exoplanet Archive and TESS predicted discoveries, and covers a wide
range of planetary radii (from ∼ 0.4 to ∼ 27 R⊕), masses (from ∼ 0.01 to ∼ 3000 M⊕)
and equilibrium temperatures (from ∼ 200 K to ∼ 3900 K). From that list, we extract the
parameters listed in Table 5.1. Our goal is not to reproduce accurately the composition of
the planets in that list, but to test a diverse sample, and therefore we randomly build an
atmosphere for each of the listed targets. We produce three planetary populations that will
be of use for this work. We call them POP-I, POP-II and POP-III.

Table 5.1. List of host star and planet information obtained from the Ariel planets candidate list and
used to build the planetary populations used in this work.

Star Planet

mass mass
radius radius
effective temperature equilibrium temperature
distance distance from the star

orbital period
transit duration

5.1.2.1 POP-I

For each planet we randomize the equilibrium temperature, choosing a value between
0.7 × Tp and 1.05 × Tp, where Tp is the planet’s equilibrium temperature in Edwards et al.
(2019). This randomization is biased toward lower temperature values as we probe the
terminator region, where the spectral features are affected both by the day side and the
night side temperatures (Caldas et al., 2019; Pluriel et al., 2020b; Skaf et al., 2020). The
temperature randomization range is consistent with the work presented in Changeat et al.
(2020a).

Then, for each planet we consider an isothermal temperature-pressure profile; we add
a constant vertical chemical profile (Moses et al., 2011) for every molecule from a list
of selected molecules (the abundances are randomized according to defined boundaries).
Finally, we add randomly generated gray opaque clouds. We use the plane-parallel approxi-
mation, building 100 plane-parallel layers to uniformly sample in log-space the pressure
range 10−4 → 106 Pa. Every atmosphere is built with randomised relative abundances of
CH4, H2O, CO2 and NH3 on a uniform logarithmic scale between 10−7 and 10−2. Such a

1https://github.com/ucl-exoplanets/TauREx3_public
2https://pypi.org/project/taurex/
3https://github.com/ExObsSim/ExoRad2-public
4https://pypi.org/project/exorad/

https://github.com/ucl-exoplanets/TauREx3_public
https://pypi.org/project/taurex/
https://github.com/ExObsSim/ExoRad2-public
https://pypi.org/project/exorad/
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large range allows us to explore the sensitivity of our developed method to very different
abundances. We also randomized the cloud surface pressure varying between 5 × 102 and
106 Pa, similarly to what presented in Changeat et al. (2020a), to explore the whole range
from overcast to cloud-free atmospheres respectively. Using these boundaries, we obtain
that ∼ 40% of the atmospheres in the populations contains clouds to at least 104 Pa (surface
pressure), as expected from Tsiaras et al. (2018) and Iyer et al. (2016). Every planet is
considered filled with a H2 and He atmosphere with mixed ratio He/H2 = 0.17. A list of the
opacities used in this work is reported in Table 5.2.

As already mentioned, we don’t focus on the consistency of the atmospheric models used
to build the population. The spectra generated will only be used as “transmission spectral
shapes” to test our methods against. No information other than the planet transmission
spectrum is used in this work.

Table 5.2. List of opacities used in this work and their references.

Opacity Reference

H2-H2 Abel et al. (2011); Fletcher et al. (2018)
H2-He Abel et al. (2012)
H2O Barton et al. (2017); Polyansky et al. (2018)
CH4 Hill et al. (2013); Yurchenko and Tennyson (2014)
CO2 Rothman et al. (2010)
NH3 Yurchenko et al. (2011); Tennyson and Yurchenko (2012)

Each planetary spectrum generated by Alfnoor is binned at Ariel’s Tier 3 spectral
resolution. These spectra make up the “noiseless spectra” data set. ArielRad then predicts
the noise for each spectral bin at the Tier resolution. To reproduce a Tier 1 observation
we scatter the data around the true value according to a normal distribution with the mean
coinciding with the simulated spectrum, and a standard deviation equal to the noise estimated
with ArielRad at each spectral bin. This noise is a re-scaled version of the Tier 3 noise,
obtained by combining the number of transit observations needed to match the Tier 1
required SNR. Using these scattered spectra, we build the “observed spectra” data set.
Examples of the resulting spectra are shown in Figure 5.1.

We generate POP-I using the full 1000 planets candidate list and we produce one
realization for each planet. A similar approach was used by Changeat et al. (2020a) in
their investigation of the Ariel Tier-2 observations. We use the POP-I population to test the
strategies described later in the text.

5.1.2.2 POP-II

We produce another data set keeping the same 1000 planets from the target list and the
randomization rules of POP-I. However, this time we modify the chemical composition to
include only H2O and CH4. We use POP-II to perform tests against a simpler population, as
detailed later in the text.
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(a) HD 209458b -like planet. (b) GJ 1214b -like planet. (c) WASP 79b -like planet.

Figure 5.1. Example of simulated spectra. The gray solid lines are the noiseless spectra simulated
and binned at Ariel Tier 3 spectral resolution. The gray bands are the 1 − σ confidence levels
centered around the simulated spectra for a number of transit observations needed to match the
Tier 1 required SNR. The blue dots are noised data points representing Tier 1 observed spectra.
Starting from the left, the first planet is HD 209458 b-like, the second one is GJ 1214 b-like and
the third one is WASP-79 b-like. Their atmospheres are built as described in Section 5.1.2.

5.1.2.3 POP-III

To build the last population, we use the same list of 1000 planets, where each planet is
repeated 4 times, such that there are 4 randomized atmospheres for each unique set of stellar
and planetary properties that define a planet. While the temperature and cloud conditions
used are the same as those discussed for POP-I, for each molecule we widen the abundance
boundaries to 10−9 → 10−2 on a uniform logarithmic scale. We call this population POP-III,
and we use it to train our Deep and Machine Learning algorithms.

5.1.3 Flat spectra detection

The first goal of this work, as listed at the beginning of this chapter, is to identify featureless
spectra. This will help in the selection of targets to be re-observed in Ariel’s higher Tiers.
Given the property of the Ariel payload, we divide the spectral wavelength range into four
parts or bands:

• from 0.5 to 1.1 µm, sampled by three photometers;

• from 1.1 to 1.95 µm, corresponding to the NIRSpec wavelength range;

• from 1.95 to 3.9 µm, corresponding to the AIRS-CH0 wavelength range;

• from 3.9 to 7.8 µm, corresponding to the AIRS-CH1 wavelength range.

For every planet, and for every band we estimate a χ2 using all measurements in the
band to assess the compatibility with a flat, zero-gradient line: for each planet, there are four
χ2 estimates, one for each band above. We reject the hypothesis of spectral flatness in a

given band with a 3 − σ confidence if χ2 > 1 + 3
√

2
ν , where ν are the degrees of freedom.

Therefore, if any of the four bands has a χ2 smaller than this number, we mark the band as
flat. If a planetary spectrum has all 4 bands marked as flat, it is classified as a flat spectrum.
This strategy is similar to that presented in Zellem et al. (2019), however, while in that work
the authors were only focused on the Ariel FGS channels, here we are considering the full
Ariel spectral coverage.
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5.1.4 An optimized molecular metric

The second goal listed at the beginning of this chapter is to develop a metric, Mmol, to assess
the presence of a molecule, mol, in the planet’s atmosphere. We want this metric to work
in such a way that by comparing two molecules, the metric produces a diagram similar to
that in Figure 5.2. In the diagram, we can distinguish four regions: two regions where the
atmospheres are rich in a single molecule and therefore only show its characteristic features;
a third region where the atmospheres show features from both molecules; a fourth region
where features are absent, either because the planets have flat spectra or because the features
from both molecules do not emerge from a thick layer of clouds.

Figure 5.2. Illustration of the diagram we expect to build with our metric. Here, the metric is used to
compare two molecules, mol1 and mol2. By drawing Mmol1 versus Mmol2, we aim to separate
four different regions: one rich in the first molecule at the top left (green), where Mmol1 grows
and Mmol2 is low: a similar region at the bottom right (blue), where the planet atmosphere is rich
in the second molecule because Mmol2 is high and Mmol1 is low; a region where molecular poor
planets are located (gray), or those that have no features in the considered bands, where both
Mmol1 and Mmol2 are low; a region for mixed atmosphere (yellow) in the central portion of the
diagram.

To compare different planets and constrain their atmospheric molecular content, the
metric should be (i) sensitive to the spectral signature of molecules, (ii) independent of the
planet’s size, and (iii) independent of the scale height. Here we present a metric that fulfills
these 3 conditions and we show its current limitations.

For each molecule, we select N bands within the Ariel wavelength range, where the
molecular features in the transmission spectrum are strong. Then, for each planet, we
compute the average in each band, S bandi and its dispersion, σbandi .

S bandi =
1
M

M∑
j

S j (5.1)

σbandi =

√√√
1
M

M∑
j

(S j − S bandi)2 (5.2)
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where M is the number of spectral bins in the band, S j is the atmospheric transmission
spectrum estimated in the jth wavelength bin.

We do the same with a control band where we know there are no major molecular
features from the molecule considered, called the “normalization band”, obtaining S norm

and σnorm. We select a different normalization band for each molecule (Table 5.3).
Thus, for each molecule, mol, we define

Mmol =
1
N

N∑
i

S bandi − S norm√
σ2

bandi
+ σ2

norm

(5.3)

Defined in this way, Mmol is similar to a signal-to-noise ratio, where the signals are the
molecular features arising above the “normalization band”, and the noise is the dispersion in
the band. Therefore,

σMmol =
1
√

N
(5.4)

The metric thus designed, by averaging the contribution of N different bands, corre-
sponding to N different features of the same molecule, reduces the chance of being misled
by overlapping features in one of the bands considered. As Ariel’s Tier 1 is optimized for
low resolution spectroscopy, spectral binning increases the SNR. Also, this metric is (i)
sensitive to the presence of molecules, (ii) independent of the planet size, and (iii) inde-
pendent of the scale height (see Section C.1 for details), at the cost of the introduction of a
bias: Equation 5.2 provides an estimate of the spectral dispersion when applied to noiseless
spectra, and it is larger for observed spectra because of the presence of measurement noise.
Therefore, the absolute value of Mmol of Equation 5.3 is always smaller on observed spectra
compared to noiseless spectra of the same planet. While the bias effects are further discussed
in Section 5.3.1, we note here that a detailed characterization of the instrumental noise
would allow to de-bias the metric, but we leave this investigation to future work, and we
focus the attention on the performance of the metric in extracting information from Tier 1
observations.

To maximize the metric efficiency, the challenge is to identify the best-performing wave-
length range to use: large enough to reduce the uncertainty introduced by the observational
noise, but small enough to distinguish the molecular features of interest.

In this work, we consider only H2O, CH4, and CO2, and the bands used are listed in
Table 5.3. Even though NH3 is present in our sample, it is used only to introduce a nuisance
and challenge our metric, because NH3 has features overlapping with those of water. We
use 3 feature bands for CH4 and CO2 and 5 for H2O. Examples of the bands used for CH4
and H2O are shown in Figure 5.3 where, for the same planetary template, HD 209458 b, we
simulate different atmospheres (overcast, CH4 rich and H2O rich) to show how the metric
captures the relevant spectroscopic features.

In the next section, we show how we intend to use this metric to build a diagram similar
to that of Figure 5.2.

5.1.4.1 Planets classification

The metric requires to be calibrated to assess its capability to estimate the presence of a
molecule. The final product is a diagram similar to Figure 5.2, that can be used as a look-up
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Table 5.3. Wavelength ranges used to select the molecular features in the spectra (left table) and the
normalization bands (right table) for H2O, CH4, and CO2.

H2O CH4 CO2

1.2→ 1.6 µm 1.5→ 1.8 µm 1.9→ 2.3 µm
1.7→ 2.1 µm 2.1→ 2.6 µm 2.6→ 3.2 µm
2.6→ 3.0 µm 3.1→ 3.7 µm 4.2→ 4.8 µm
5.4→ 6.1 µm
6.5→ 7 µm

Molecule Normalization

H2O 3.6→ 4.2 µm
CH4 4.0→ 5.0 µm
CO2 5.0→ 6.0 µm

(a) Overcast HD 209458b -
like planet with MCH4 data
bands highlighted.

(b) Methane rich HD 209458b
-like planet with MCH4 data
bands highlighted.

(c) Water rich HD 209458b -
like planet with MCH4 data
bands highlighted.

(d) Overcast HD 209458b -
like planet with MH2O data
bands highlighted.

(e) Methane rich HD 209458b
-like planet with MH2O data
bands highlighted.

(f) Water rich HD 209458b -
like planet with MH2O data
bands highlighted.

Figure 5.3. Here are shown three examples of randomized spectra. For the same planet, HD
209458 b, we present three different realizations: a flat atmosphere (first column), a methane-
rich atmosphere (second column), and a water-rich atmosphere (third column). Each column
shows the same planetary spectra. gray solid lines are the original binned spectral data (Tier
3 spectral resolution), the filled gray areas are the 1 − σ uncertainties (Tier 1), and blue dots
are the simulated observation data used in this work. The top row highlights the MCH4 feature
bands from Table 5.3, while the bottom row shows the MH2O bands. In green are reported the
molecular feature bands values, with their dispersion, while in red are reported the normalization
bands’. Comparing the rows we see how the bands selected match the relevant molecular spectral
features.
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table, such that, given an observed spectrum, its corresponding Mmol can be located on the
diagram, and its possible composition inferred.

To assess the ability of the metric to separate the atmospheres in the sample, we use the k-
Nearest Neighbors (kNN) algorithm, a non-parametric pattern recognition algorithm (Hastie
et al., 2009). Note that the k-Nearest Neighbors (kNN) algorithm is a very simple algorithm
that is known to return noisy class-division boundaries. More expressive and flexible
clustering algorithm such as DBSCAN (Ester et al., 1996) would have likely been more
appropriate for this task. However, the kNN algorithm is what we chose to use in this work
because it is simple and easy to implement, and we deemed it sufficient to demonstrate the
potential of the metric.

This algorithm, after a training process, assigns a class to an element given the properties
of its neighbors. The goal is to classify observed spectra by their molecular content,
according to their Mmol. Considering two molecules at a time, we first define four classes of
planets: molecular poor, mol1 rich, mol2 rich, and mixture, as defined in Table 5.4.

Table 5.4. Diagram classes and conditions.

Class Condition

molecular poor Abmol1 < 10−5 and Abmol2 < 10−5

mol1 rich Abmol1 > 10−4 and Abmol1 > 10 × Abmol2
mol2 rich Abmol2 > 10−4 and Abmol2 > 10 × Abmol1
mixture everything else

The kNN algorithm used classifies each planet according to the 20 (k = 20) nearest
planets, in the Mmol1 vs Mmol2 space, in the same data set. We choose to use 20 neighbors (2%
of the full data set) to minimize the number of misclassified planets. The closest neighbors
are uniformly weighted, and we verified that weighting the neighbors with their Euclidean
distance in the metric space does not affect the results significantly. All other parameters are
set to their default values of the scikit-learn5 implementation of the algorithm (Pedregosa
et al., 2011) which we use in this work.

The analysis involves three separate steps, summarised in Figure 5.4, applied to POP-I.
Step 1. We estimate the (Mmol1,Mmol2) on the POP-I observed spectra. We assign a

class to each POP-I planet using its input molecular abundance values, Abmol, that are stored
during the population production. This process is described in the top branch of Figure 5.4

Step 2. To calibrate the metric, we map the metric space grid by training the kNN
algorithm on the (Mmol1,Mmol2) estimated from the noiseless POP-I planetary spectra. We
assign again a class to each planet using its input molecular abundance, Abmol, and the
training is performed on a randomly chosen selection accounting for 70% of the data set,
while we use the remaining 30% to test the success of the training. Finally, we classify
each point (Mmol1,Mmol2) of the Mmol space grid Mmol sampled at a step width of 0.2 Mmol,
obtaining a map comparable to Figure 5.2. This part of the procedure corresponds to the
central branch of Figure 5.4.

Step 3. Since the noiseless planetary spectra are not expected to sample the parameter
space uniformly, we build a mask to select a region of the (Mmol1,Mmol2) space that is
sufficiently well sampled to achieve a reliable classification. To do so, we replace each

5https://scikit-learn.org/0.22/

https://scikit-learn.org/0.22/
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Figure 5.4. Planets classification summary. The figure reports the steps implemented to build the
diagram in Figure 5.2. Starting from POP-I, for each planet we compute (Mmol1,Mmol2) for
the considered molecules and for both observed and noiseless data. Following the top branch,
classes are assigned to the observed spectra (step 1 in the text). Following the middle branch, a
kNN classification is performed on noiseless spectra to calibrate the metric space (step 2 in the
text). Following the bottom branch, the distribution of noiseless metric data points is convolved
with a 2D Gaussian with varying widths to generate a unit-normalized volume. The intersection
between this volume and the calibration of step 2 selects the best sampled (i.e. calibrated) region
in the metric space (step 3 in the text). The combination of these three steps is shown in the
rightmost diagram to be compared with Figure 5.2.

(Mmol1,Mmol2) point representing a noiseless planetary spectrum with a two-dimensional
Gaussian distribution using the metric dispersion in the two directions as σ. We sum the
Gaussian volumes on the parameter space, ending up, after volume normalization, with
a statistical distribution of our data points on the parameter space grid. Then, we select
a region in the metric space that results in a total volume of 95%, therefore removing all
under-sampled areas from the grid. This last step is represented in the bottom branch of
Figure 5.4.

The combination of the three steps is shown in the rightmost panel of Figure 5.4 and it
is the equivalent of Figure 5.2 calibrated for the metric on the investigated population.

5.1.5 Deep and Machine Learning

The metric presented in Section 5.1.4 is based on binning the spectra, and therefore is
equivalent to using Ariel as a multi-band photometer. This strategy is in line with the Tier
1 definition of Tinetti et al. (2018). However, we are also investigating different strategies
to classify spectra by their molecular content (the third goal listed at the beginning of
the chapter). Deep and Machine Learning (ML) techniques are promising because these
algorithms can learn to classify planets from their spectral shape over the whole wavelength
range sampled by Ariel. Another advantage over the metric is that ML techniques are not
supposed to be biased by the instrumental noise, or at least they can be made to learn how
to deal with the bias provided that a sufficiently large and representative set of examples
is provided in training. To train the algorithms we use the POP-III observed spectra and
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their known abundances as a training sample. Each example spectrum is normalized to
zero mean and unit dispersion. The normalization facilitates the training process but might
introduce a bias that may be very similar to that affecting the metric. A detailed investigation
of these aspects concerning ML is left to future work. Knowing the input abundance of each
planet, Abmol, we can define a threshold and flag a planet as bearing a certain molecule if
Abmol is larger than the threshold. This means that, for each molecule, the algorithm learns
to flag the planets as bearing that molecule by looking at characteristic spectral shapes.
Then we measure the algorithm’s ability to “learn” by how much they can generalize their
predictions to unknown shapes, testing it on POP-I observed spectra, used as a test data set.
The comparison of the ML classification with the known input abundance of each POP-I
planet provides an estimate of the success rate.

A detailed investigation of the use of these algorithms and their limitations will be
discussed in future work: here we report only an example of how these tools might be used
and we compare some preliminary results with the outcomes of the metric of Section 5.1.4.
We implemented all algorithms in Python using the scikit-learn package.

The first ML algorithm we use is the kNN algorithm described above. This time we
want to simply classify the planets and not produce a map as in Section 5.1.4.1. For this
exercise, we use all the scikit-learn default kNN settings, including k = 5 and uniform
weight for the neighbors. Other ML algorithms can be used to classify planets. Here
we also present our preliminary results using a Multi-layer Perceptron (MLP) classifier, a
Random Forest Classifier (RFC), and a Support Vector Classifier (SVC) (e.g. Goodfellow
et al., 2016; Sturrock et al., 2019). More sophisticated algorithms such as Convolutional
Neural Networks (CNNs) (Lecun and Bengio, 1995) or Long Short-Term Memory Net-
works (LSTMs) (Hochreiter and Schmidhuber, 1997) can also be used, but we leave their
investigation to future work.

The MLP is a feed-forward neural network composed of multiple layers of perceptrons
largely used in classification problems. To produce the results shown later in the text we use
an MLP network keeping the scikit-learn default settings (a single hidden layer made of 100
units) and we classify the spectra with the same procedure used for the kNN. The RFC is
an ensemble of decision trees used for classification, where each decision tree is a directed
graph and each vertex is a binary test. In this work, we use an RFC set-up commonly used
in binary decision problems, which has a number of features equal to the square root of the
number of input data points, again, as per scikit-learn is the default configuration. The SVC
is a Support Vector Machine method, a family of non-probabilistic linear classifiers that
construct hyper-planes to separate the data points. Here, we implemented a simple SVC
shaping the decision function in “one-vs-one” mode, as it is the default configuration in
scikit-learn at the moment of writing.

The rationale behind using the default scikit-learn settings for all these algorithms is to
show how they perform “out of the box”, without any optimization. All the information
about the algorithms and their settings can be found in the scikit-learn documentation6,
e.g. convergence criteria, minimizers, training duration, pruning regimes (for RFC), non-
linearities and depth (for MLP), etc.

6https://scikit-learn.org/0.22/

https://scikit-learn.org/0.22/
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5.2 Results

5.2.1 Flat spectra detection

Shown in Figure 5.5 is the frequency of observed planets in the POP-I population that have
a certain number of flat bands. In this population, 16% planets are to be considered “flat”
as all of the four spectral bands considered are flat. From the figure, we notice that around
46% of the planets in the population have three or more flat bands, which is consistent with
POP-I’s known properties and with the ground truth (Tsiaras et al., 2018; Iyer et al., 2016),
as mentioned in Section 5.1.2. In the same figure, it is shown the same statistic for the
100 planets of POP-I most covered in clouds (corresponding to a cloud surface pressure of
roughly < 103 Pa), and for the 100 planets of POP-I with fewer clouds (corresponding to a
cloud surface pressure of roughly > 105.5 Pa). This comparison shows how overcast planets
on average present more flat bands than clean planets, demonstrating how this approach is
sensitive to the presence of clouds.

This result clearly shows that Tier 1 observations are effective in the identification of
atmospheres with no detectable molecular absorption features.

Figure 5.5. The histograms show the frequency of planets in the population vs. the number of flat
bands. We consider four bands: one for the photometers (VisPhot, FGS-1, FGS-2) and one
for each spectrometer (NIRSpec, AIRS CH0 and AIRS CH1). Each band is compared with
a constant value using a χ2 test to determine its compatibility with flatness. The light blue
histogram shows the frequency of planets in the POP-I population with flat bands. The red
dashed histogram shows the same statistic but for a selection of the 100 planets of POP-I that
are more overcast. The green dotted histogram shows the opposite situation, for a selection of
the 100 planets in POP-I where the cloud pressure is the highest (i.e. it is deeper down in the
atmosphere; therefore, no clouds appear in the spectrum). We notice that the overcast planets
show more flat bands than planets with fewer clouds.
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5.2.2 Spectra classification

The Mmol (Section 5.1.4) estimated for the observed POP-I planets are shown in Figure 5.6
for different pairs of molecules: CH4 - CO2 and CH4 - H2O. Comparing the top left and right
panels in Figure 5.6, we notice from the color scale that our metric can separate between
planets bearing more or less methane (dark and light green colored dots respectively) or
carbon dioxide (dark and light orange colored dots respectively). The bottom panels, and the
bottom-right panel in particular, show that it is harder to separate planets bearing more or
less water (dark and light blue colored dots respectively). Water data appear more clustered
around the axes’ origin than the top row, and the water-colored data points are not as clearly
separated according to their color gradient as the methane or the carbon dioxide data points
are. A possible explanation is that CH4 and CO2 have strong spectral features, with isolated
transmission features in the range 3 → 4 µm and 4 → 5 µm respectively, while H2O
features are less obvious and frequently overlap with the ones of NH3, that is present in the
population (Tinetti et al., 2013). An alternative explanation is that involving a bias in the
metric that affects more strongly the water bands.

The diagrams of Figure 5.6 are reproduced in Figure 5.7, where the data points are now
color-coded following the assigned classes (step 1, Section 5.1.4.1) and the background
colors, constructed by training the kNN on noiseless spectra (step 2 and 3, Section 5.1.4.1),
serve as reference and calibrated regions in the metric space. It can be noticed that the metric
has the desired response from the similarities between the reference regions in Figure 5.7
with those of Figure 5.2, with a good separation in the metric space. However, it can be seen
that the classification boundaries are not as sharp as in Figure 5.2. In some instances, the
data belonging to a class do not adhere to their shaded regions. Moreover, the data points
tend to cluster towards the origin of the grid more strongly than the reference regions. This
is the effect of the bias, further discussed in Section 5.3.1.

While better clustering results are expected in higher dimensions, for instance with
the inclusion of bulk parameters (radius, mass, stellar radius, semi-major axis, etc.), we
stress that the aim of these plots is to show the potential of the molecular metric to separate
the atmospheres in the sample and construct a diagram similar to Figure 5.2. This is a
first attempt at producing one of the Holy Grails of exoplanet science, that will be enabled
by Ariel observations: color-color diagrams for the exoplanetary population based on the
molecular content of their atmospheres. Future work will focus on the exploration of the
higher dimensional space to optimize the clustering and classification of the atmospheres.

Figure 5.8 shows the relation between the metric, Mmol, estimated on POP-I observed
spectra, and the input abundances, Abmol. The coefficients of the linear trends of Mmol vs
the logarithm of Abmol are listed in Table 5.5. An appreciable trend is detected with log
abundances of CO2 and CH4, while the H2O metric shows only a weak trend with input
log abundance. Anti-correlations between e.g., MCH4 - log(AbCO2), or MH2O-log(AbCH4)
are present as we are considering juxtaposed bands to size these molecules, as listed in
Table 5.3. The logarithmic abundances of H2O and NH3 show similar correlations with
MH2O. While this is expected, as the two molecules manifest similar spectral shapes, the
water sensitivity of the metric to the abundance may also be limited by the noise, by a bias
squeezing the metric to small values, or both, and further investigation is required in future
work. However, the metric is an estimator for the classification of atmospheres on the basis
of their molecular content, and it would be misleading to expect the metric to provide robust
estimates of abundances, for which spectral retrieval techniques are more appropriate. These
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(a) POP-I estimated MCO2 − MCH4 colored by
CH4.

(b) POP-I estimated MCO2 − MCH4 colored by
CO2.

(c) POP-I estimated MH2O − MCH4 colored by
CH4.

(d) POP-I estimated MH2O − MCH4 colored by
H2O.

Figure 5.6. Diagrams for comparison between MCO2 - MCH4 and MH2O - MCH4 . In these figures, each
point represents an observed POP-I planet, and the color scale reflects the input abundances. gray
horizontal and vertical lines are the metric estimated dispersion. By comparing the diagrams on
the left with those on the right we can see that planets bearing more CH4 are located on the top
left, while the ones bearing more CO2 and H2O are on the bottom right.
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(a) MCO2 − MCH4 - observed spectra. (b) MH2O − MCH4 - observed spectra.

Figure 5.7. k-Nearest Neighbors analysis results with k = 20 for CO2-CH4 (left) and H2O-CH4
(right) cases. The superimposed dots are from the POP-I observed spectra and the error bars
represent the metric dispersion. Colors correspond to classes described in Table 5.4. gray dots:
planets that contain less than 10−5 in mixing ratio for the considered molecules; green points:
planets that contain 10 times more CH4 than the other molecule and AbCH4 > 10−4; red points:
planets that hold 10 times more CO2 than CH4 and AbCO2 > 10−4; blue points: planets with 10
times more H2O than CH4 and AbH2O > 10−4; yellow dots: all the other possible configurations.
The same color scheme applies to the painted region of the diagram, built from the noiseless
spectral data. gray area: planets with low quantities of water and methane; green area: where we
expect to have methane-rich planets, blue: for water-rich planets; yellow: for mixed atmospheres.
The regions best sampled by the noiseless data, as described in Section 5.1.4.1, are fully colored,
while other regions are transparent.
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aspects are further discussed in Section 5.3.2 as well as in Section 5.3.4, where we show
with an example how a retrieval exercise is effective in constraining the input abundances of
the molecules considered, water included.

(a) MCH4 versus CH4 true
abundance value.

(b) MH2O versus H2O true
abundance value.

(c) MCO2 versus CO2 true
abundance value.

Figure 5.8. Comparison between the Mmol estimates for each planet and the true molecular abundance
value, Abmol, in the atmospheres. CH4, H2O, and CO2 cases are shown in the leftmost, middle,
and rightmost panel, respectively. Data points with error bars represent POP-I planets. The color
scale gives a visual representation of the molecular abundance in the atmosphere. A linear fit is
shown by the solid black lines in each panel, with coefficients listed in Table 5.5. The fitted lines
superimposed to the data highlight a positive correlation between the true molecular abundance
values and the values estimated by the metric, Mmol.

Table 5.5. Here we report the fitted C0 (top table) and C1 (bottom table) coefficients for Mmol =

C0 · log(Abmol) +C1 for all the possible combination of considered molecules. The bands used
for Mmol are reported in Table 5.3.

(a) C0 coefficients.

log(AbH2O) log(AbCH4) log(AbCO2) log(AbNH3)

MH2O 0.108(±0.022) −0.193(±0.022) −0.033(±0.022) 0.104(±0.022)
MCH4 0.003(±0.022) 0.215(±0.022) −0.258(±0.022) 0.104(±0.022)
MCO2 −0.094(±0.022) −0.057(±0.022) 0.228(±0.022) −0.104(±0.022)

(b) C1 coefficients.

log(AbH2O) log(AbCH4) log(AbCO2) log(AbNH3)

MH2O 0.599(±0.102) −0.756(±0.106) −0.028(±0.105) 0.590(±0.105)
MCH4 −0.241(±0.102) 0.725(±0.106) −1.419(±0.105) 0.215(±0.105)
MCO2 −0.357(±0.102) −0.202(±0.106) 1.088(±0.105) −0.411(±0.105)

We can use Figure 5.8 to obtain an estimate of the probability that a molecule mol has
abundance in excess of 10−4, conditioned to the metric being larger than some value Mmol,∗,
i.e. P(Abmol > 10−4|Mmol > Mmol,∗). For this, we can use the well-known chain rule for the
conditional probability that states that P(A|B) = P(A ∩ B)/P(B), where A and B are two
separate events. We estimate the number of data points found in a region of the diagrams of
Figure 5.8 where both conditions are satisfied (favorable outcomes) divided by the number
of data points for which only the condition Mmol > Mmol,∗ is satisfied (total outcomes). From
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POP-I observed spectra, we can obtain a single realization of P. Therefore we simulate 1000
realizations of POP-I observed spectra, using the same input noiseless POP-I population
spectra, and randomizing the noise realizations. In this way, we simulate 1000 realizations
of P from which medians and 1-σ confidence levels are computed.

Figure 5.9. Probability that a molecule mol has abundance in excess of 10−4, conditioned to the
metric being larger than some value Mmol,∗, i.e. P(Abmol > 10−4|Mmol > Mmol,∗). CH4, H2O, and
CO2 cases are shown by the green, blue, and orange lines, respectively. The lines are computed
as the median of the probability estimates from 1000 different realizations of the POP-I observed
population. The shaded regions are the 1 − σ confidence levels associated with the median
probability. Vertical dotted lines mark metric values, Mmol,∗, corresponding to a probability of
68%.

Figure 5.9 suggests that the metric can be used to classify planetary primary atmospheres
for the presence of CH4 and CO2, and to a lesser extent H2O, and atmospheres that are likely
missing these molecular contributions. With reference to Figure 5.9, it can be seen that when
MCH4 ≥ 0.5, the number of planets wrongly classified to have AbCH4 > 10−4 is only 20%,
or 1 out of 5 are false positives. However, as expected, the case of water is different, and our
metric is not as effective in detecting the presence of water as it is for the other molecules.
Even for large values of MH2O, the rate of false positives is close to 40%.

5.2.3 Deep and Machine Learning

The percentages of correct classifications for all considered molecules and for different
minimum input abundances are reported in Table 5.6a for kNN, in Table 5.6b for MLP, in
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Table 5.6c for RFC and in Table 5.6d for SVC.

Table 5.6. Percentages of correct identifications for the considered molecules and with different
thresholds. In each column, we report a different minimum Abmol and in each row a different
molecule. The percentages represent how many of the atmospheres have been correctly identified
by the algorithm to have at least the specified minimum amount of that molecule, and therefore
they represent the algorithm’s accuracy. Each ML algorithm has been trained on POP-III and
tested on POP-I.

(a) KNN percentages of success to identify spectra bearing different minimum amounts of molecules.

Molecule Abmol > 10−5 [%] Abmol > 10−4 [%] Abmol > 10−3 [%]

CH4 79 83 85
CO2 77 79 82
H2O 64 71 82
NH3 75 82 84

(b) MLP percentages of success to identify spectra bearing different minimum amounts of molecules.

Molecule Abmol > 10−5 [%] Abmol > 10−4 [%] Abmol > 10−3 [%]

CH4 78 85 87
CO2 77 81 83
H2O 70 76 84
NH3 80 86 87

(c) RFC percentages of success to identify spectra bearing different minimum amounts of molecules.

Molecule Abmol > 10−5 [%] Abmol > 10−4 [%] Abmol > 10−3 [%]

CH4 77 82 87
CO2 76 79 83
H2O 69 74 82
NH3 78 85 87

(d) SVC percentages of success to identify spectra bearing different minimum amounts of molecules.

Molecule Abmol > 10−5 [%] Abmol > 10−4 [%] Abmol > 10−3 [%]

CH4 79 86 89
CO2 79 83 84
H2O 69 78 84
NH3 81 87 87

Table 5.6 shows that for all Deep and Machine Learning algorithms, the percentages
of success in identifying the presence of molecules inside the atmosphere grow with the
minimum molecular abundances that we set as a threshold for the classification. While
this is expected, it may come as a surprise that in general, these algorithms appear to
be effective in detecting the presence of all individual molecules with a relatively small
fraction of false positives (about 30% or smaller) even at low abundances. This is perhaps
because ML algorithms learn to classify atmospheres by recognizing spectral shapes. These
algorithms’ performances can be to a certain level independent of the molecules considered,
as long as the training set contains sufficiently diverse spectra to allow a secure identification,
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including water in the presence of ammonia or biases, that is where our metric shows its
more severe weaknesses. We also notice from Table 5.6 that kNN, MLP, RFC, and SVC
show comparable overall performance, and that CH4 and CO2 are the most straightforward
molecules to identify in Tier 1 planetary spectra.

A comparison between these results and our metric is presented in Section 5.3.5.

5.3 Discussion

In this section, we discuss the metric results shown in Section 5.2.2. We first discuss the bias
(Section 5.3.1), then we focus on the metric characteristics, such as the relation between
the metric estimates and the input molecular abundances (Section 5.3.2) and the detection
limits (Section 5.3.3). Then we compare the metric performance with a spectral retrieval
(Section 5.3.4), and with Deep and Machine Learning algorithms (Section 5.3.5).

5.3.1 Metric bias

The kNN analysis discussed earlier and shown in Figure 5.7 is trained on POP-I noiseless
spectra, and the data points shown in that figure are obtained estimating the metric on
POP-I observed spectra, as described in Section 5.1.4.1. To verify if the metric is biased,
the kNN analysis is repeated with data points obtained estimating the metric on POP-I
noiseless spectra. This is shown in Figure 5.10 that should be compared with Figure 5.7. The
background colors are very similar in either case, with small variations due to the training
process that selects randomly 70% POP-I noiseless examples. In the absence of biases, we
expect the distribution of observed data points to be that of noise-less data points, convolved
with the distribution of the noise. However, it can be noticed from the comparison of the
two figures, that the distribution of the observations is more clustered towards the origin of
the coordinate axes, compared to noiseless data points. This is a consequence of the bias
introduced by the metric normalization discussed in Section 5.1.4: normalization is required
such that the metric response is insensitive to the atmospheric scale height, and sensitive
only to the presence of molecular signatures, at the cost of biasing the estimator. We should
additionally point out that Figure 5.9 results are also affected by the bias. The observing
noise reduces the Mmol average estimates, and therefore for smaller observing noise, the
three colored lines in the figure are shifted to the right, and the 68% of success corresponds
to higher Mmol values.

The work presented here demonstrates that the metric we have designed is a powerful
tool capable of revealing the presence of a molecule in an atmosphere and that the prediction
is independent of the type of the planet and its basic parameters (such as temperature, radius,
and pressure) within the limits explored here. However, this comes at the cost of biasing the
estimator by a quantity that depends on the instrumental noise as discussed in Section 5.1.4.
Provided that the metric can be de-biased, it can be used in a predictive way where an
observation (along with its dispersion estimate) can be compared to the calibrated (trained)
metric space to infer the possible molecular content of the target. Because instrumental
noise can be well characterized, it would be possible to de-bias the metric estimator. This
requires a detailed noise analysis, taking into account the uncertainties in the noise estimates,
which is beyond the scope of this thesis. In the rest of this section, we focus on what we can
learn from this kind of analysis provided that the metric can be de-biased, and we leave to
future work a detailed study on how this de-biasing can be secured.
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5.3.2 Relation with the input abundances

We see in Figure 5.8 that the correlation between Mmol and log(Abmol) is in general not
strong enough to quantify the input molecular abundances. This is because atmospheric
spectra are made of complex non-linear contributions from all the molecules. Therefore, a
method based only on spectral shapes (i.e., this metric), is inadequate to quantify molecular
abundances. However, the goal of this metric, provided that the bias can be removed, is not
to assess the abundance of a certain species in the planet’s atmosphere, but only its possible
presence, avoiding the use of spectral retrieval techniques, that may not be indicated for Tier
1 data.

Focusing on Table 5.5 and looking at the coefficients fitted for MH2O over log(AbH2O)
and over log(AbNH3) we may infer that the metric may not be effective to distinguish
between water and ammonia. However, the degeneracy can be broken by performing a
spectral retrieval if the target was observed at Ariel Tier 2 SNR, as shown in an example in
Section 5.3.4. This population analysis is based on the study of spectral shapes only, and it
does not make use of parameters such as planetary mass, radius, and temperature. Although
it has proven difficult to distinguish between water and ammonia with this metric, using
some knowledge of planetary properties may help us to disentangle the two molecules in
future work; for example, while a Neptune can hold ammonia, a Hot Jupiter planet is not
expected to. One of the goals of Tier 1 is to identify targets with interesting spectra to be
re-observed in higher SNR Tiers. From this point of view, even if the metric cannot clearly
separate between water and ammonia, it can suggest the presence of interesting molecules
in the spectrum. This can in turn be used to make informed decisions about targets to be
selected for further studies.

(a) MCO2 − MCH4 - noiseless spectra. (b) MH2O − MCH4 - noiseless spectra.

Figure 5.10. This figure is the equivalent of Figure 5.7, but the superimposed dots are now from
the POP-I noiseless spectra, and the errorbars represent the metric dispersion on the spectra
before the application of Ariel’s observing noise. The parameter space area best sampled by the
noiseless data is now well-filled with the dots.

5.3.3 Metric detection limit

To explore the detection limit of molecules by the metric, we examine the molecular
poor/spectral flat region of Figure 5.2. A planet spectrum would be found in that region
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because of i) clouds, ii) a low temperature (i.e. small scale height), iii) low molecular
abundances, or a combination of the three. In all cases, the spectrum is expected to be
featureless, i.e. flat. Point iii) is defined from input abundances smaller than 10−5 (Table 5.4).
The metric detection limit can then be investigated by removing flat spectra before training
the kNN, by rising before training the molecular poor spectra threshold to above 10−5, and
by monitoring the kNN classification results. As the threshold increases, we expect the
kNN to begin failing the molecular poor/flat classification when spectra can no longer be
considered flat.

We perform the kNN training on the noiseless spectra of both POP-I and POP-II, the
latter containing only CH4 and H2O, the former containing all molecules considered in
this work. Each noiseless spectrum has its associated observed spectrum. Flat spectra are
identified on observed spectra, and the corresponding noiseless spectra are ignored in the
KNN training.

The motivation behind using POP-II is as follows. If we have a population containing
only CH4 and H2O and we properly remove all planets with a flat spectrum, there should be
no targets left with non-detectable molecular features. In the case of POP-I, however, we do
not expect all the planets with AbCH4 and AbH2O < 10−5 to be flat, because other molecules
(CO2 and NH3) can show features. Therefore, the flat spectra removal procedure will not
empty the molecular poor planets class in this population. Using POP-II instead, we expect
that, after removing all flat planets, there will not be molecular poor atmospheres anymore.
The procedure is summarized in Figure 5.11.

The outcome of this analysis is shown for POP-I and POP-II in respectively Figure 5.12
and Figure 5.13. Only the calibrated regions are shown and data points have been omitted for
clarity. Figure 5.12a shows the POP-II kNN analysis with all planets and planetary classes
of Table 5.4, in Figure 5.12b the kNN is trained removing flat spectra from the training set,
and in Figure 5.12c the training is done removing flat spectra first, and raising the threshold
of molecular poor spectra from Abmol < 10−5 to Abmol < 10−4. We notice that Figure 5.12b
shows no molecular poor atmosphere after excluding spectrally flat cases. This confirms that
our metric is able to separate the more complex atmospheres from the flat ones in the simple
case of only two molecules. By contrast, Figure 5.12c still shows a gray area, signifying that
atmospheres with 10−5 < Abmol < 10−4 cannot be considered flat. This can be interpreted as
a molecular detection limit. We also notice from the figure that these spectra populate the
bottom left corner of the best-sampled area of the diagram, meaning that they are classified
as having the smallest spectral features of the samples. This confirms the relation between
the metric and the molecule abundance. The detection limit is expected to improve in Tier 2
observations, and Changeat et al. (2020a) find that the detection limit using spectral retrieval
techniques on Tier 2 is about two orders of magnitude smaller compared to that of the metric.

In Figure 5.13 we remove all flat spectra from the planetary population POP-I and we
report the results of kNN analysis. Here we see that, as expected, while removing all flat
spectra from POP-II also removes all molecular-poor instances, the same does not occur
in POP-I. In this case, molecular-poor spectra in any two molecules, such as CH4-CO2 or
CH4-H2O, may appear non-flat because of the presence of the other two molecules, i.e.
NH3-H2O or NH3-CO2, respectively.
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Figure 5.11. The figure shows the strategy adopted to identify the molecular detection limit for the
developed metric. Starting from POP-I, we classify the planets as described in Section 5.1.4.1.
Without removing the flat spectra from the population, we would end up with the same results
described in Figure 5.4; by contrast, if we remove flat spectra, we end up with similar results but
with fewer molecular poor planets, because even without flat spectra atmospheres, there will be
planets bearing molecules different from the couple investigated by the plot. Different is the case
of POP-II: here we have only two molecules in the population, and therefore if we remove the
flat spectra planets, we will end with no molecular poor atmospheres.

(a) KNN classification map
for CH4 and H2O, includ-
ing flat spectra. Molecu-
lar poor planets defined as
AbCH4 and AbH2O < 10−5.

(b) KNN classification map for
CH4 and H2O without flat
spectra. Molecular poor
planets defined as AbCH4

and AbH2O < 10−5.

(c) KNN classification map for
CH4 and H2O without flat
spectra. Molecular poor
planets defined as AbCH4

and AbH2O < 10−4.

Figure 5.12. KNN analysis for the POP-II population, considering the full data set (left) and
excluding flat spectra (center and right). The diagrams are obtained following the bottom
branches of Figure 5.4: we used the noiseless planetary spectra to classify the metric space and
to select the best-sampled regions.
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(a) k-Nearest Neighbors for POP-I population
without flat spectra. CH4-CO2 case.

(b) k-Nearest Neighbors for POP-I population
without flat spectra. CH4-H2O case.

Figure 5.13. The figure shows the population POP-I where the flat spectra have been masked. On
the left is reported the case of CH4 and CO2 and on the right is the case of CH4 and H2O.
The diagrams are obtained following the bottom branches of Figure 5.4: we used the noiseless
planetary spectra to classify the parameter space and to select the best-sampled areas. Comparing
this figure with Figure 5.7, we notice that the “molecular poor” area is still present because even
if there are no CO2 and CH4 in the planet atmosphere, there could be NH3 and H2O having
features (left case) or if there are no H2O and CO2 there could be NH3 and CO2 (right case).

5.3.4 Input abundances retrieval

We compare here two atmospheric retrievals of the same planet observed both in Tier 1 and
in Tier 2. This exercise has two goals:

1. to confirm that a spectral retrieval is capable of disentangling water and ammonia,
and to constrain the atmospheric composition of POP-I targets observed in Tier 2 with
Ariel;

2. to show that even though it is possible to perform a spectral retrieval on Tier 1 data
for some selected planets, its performance is comparable with that of the metric.

From the POP-I planets, we select one that has water and ammonia in high abundance,
low cloud presence, high temperature, and a diameter larger than Jupiter’s. Such selection
will help us to investigate the capability of Tier 2 observed data (simulated as described
in Section 5.1.2) to break the water-ammonia degeneracy, as well as to estimate the uncer-
tainties from a retrieval using Tier 1 observed data only.

To perform the retrieval, we use TauREx 3 (Al-Refaie et al., 2021). The parameters
fitted with fit boundaries, true, and retrieved values are listed in Table 5.7, while the retrieved
solutions and posteriors are shown in Figure 5.14.

For the selected planet, we notice that in Tier 2 the abundances of the molecules
considered are well constrained, and, as expected, low-level (high-pressure) clouds are
undetected in both cases.
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Figure 5.14. Retrieved spectra and posteriors. The corner plot shows the posteriors for each retrieved
parameter using Tier 1 (blue) and Tier 2 (orange) observed data. Input values are shown by the
black lines. The panel in the top right corner shows the retrieved spectra from Tier 1 (blue) and
Tier 2 data using colored shaded bands for 1 and 2 − σ uncertainties, and the input (black solid
line). The notation log(X), where X is one of CH4, CO2, H2O or NH3, represents the logarithm
of the molecular abundance of the given species and should be compared to log(AbX).
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Table 5.7. Retrieval parameter table showing fit boundaries, true inputs, and retrieved parameters
with uncertainties for Tier 1 and Tier 2 observations. As in Figure 5.14, the notation log(X),
where X is one of CH4, CO2, H2O or NH3, represents the retrieved logarithm of the molecular
abundance of the given species and should be compared to the input log(AbX).

Name Boundaries True value Tier 1 retrieved Tier 2 retrieved

Rp [RJup] [0.5→ 2] 1.24 1.241+0.004
−0.004 1.2412+0.0020

−0.0011
Tp [K] [800→ 2400] 1617 1720+153

−137 1693+42
−38

log(CH4) [−8→ −2] -3.13 −4.11+1.11
−2.55 −3.08+0.23

−0.18
log(CO2) [−8→ −2] -3.44 −3.74+0.93

−1.61 −3.59+0.30
−0.26

log(H2O) [−8→ −2] -2.93 −2.63+0.42
−0.85 −2.96+0.20

−0.17
log(NH3) [−8→ −2] -2.91 −2.73+0.43

−0.77 −3.03+0.22
−0.15

log(Pclouds) [−3→ 6] 5.90 4.76+0.81
−0.83 4.89+0.75

−0.74

The Tier 1 results can be linked to our previous analysis on molecular input abundance
detection (Section 5.3.2). We compute the probability of having molecular abundances
greater than 10−4 from the retrieval posteriors and compare these with the probability
obtained with our metric (Figure 5.9). In this case, the measured Mmol are: MCH4 = −0.47,
MCO2 = 0.54 and MH2O = 0.29. The results are listed in Table 5.8. Tier 2 observations
provide a confident detection of methane, carbon dioxide, and water, while Tier 1 retrievals
are broadly comparable to our metric approach in detecting the presence of these molecules.

These results appear to confirm that spectral retrievals may not be best suited or at the
very least necessary to analyze Tier 1 data. Retrievals are model-dependent, and one needs
to define planet parameters, as well as cross-sections, pressure-temperature profiles, etc.
Priors might need to be imposed to ensure convergence. Retrievals are also computationally
expensive, making it not trivial to conduct the analysis on hundreds of targets. A photometric
metric instead, is model-independent, which may be an advantage when assessing a planet
observation for the first time. The full analysis takes only minutes on a desktop computer to
reduce 1000 observations.

Table 5.8. Probability to have Abmol > 10−4 for each molecule computed from Mmol and from Tier 1
and Tier 2 retrieval posteriors. The numbers refer to the planet case discussed in Section 5.3.4.

Molecule Mmol [%] Tier 1 [%] Tier 2 [%]

CH4 49 48 100
CO2 78 58 94
H2O 56 89 100

5.3.5 Comparison with Deep and Machine Learning

ML techniques are difficult to interpret, and so a comparison between their performance and
that of our metric can help us in gaining confidence in the outcomes from ML classifiers.
For this purpose, we consider a planet as bearing a molecule if Abmol > 10−4. Then with our
metric, we select all planets that have MCH4 ≥ 0.22 that according to Figure 5.9 corresponds
to a probability of ∼ 68.3% to have a Abmol > 10−4 for CH4.We repeat the same procedure,
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letting MCO2 ≥ 0.26 for CO2 and MH2O ≥ 0.80 for H2O. In each sample, we check how
many of the selected planets have molecular abundances in excess of 10−4, obtaining a
percentage of success for our metric (or metric precision). In the same way, we check how
many of the planets flagged by each of the ML algorithms in the full sample actually bear
the molecules, such that we can compare their precision performance in Table 5.9.

We notice a marginally better success rate for ML algorithms in the cases of kNN and
MLP, while RFC and SVC algorithms suggest a better performance when compared to
that of the metric. Better performances are expected because, while our metric considers
only specific bins in the spectrum, the classification algorithms gather information from
all the spectral data points. The comparable performance of the metric with the kNN and
MLP suggests that the molecular bands chosen for the metric are not far from ideal, but the
comparatively better performances of RFC and SVC provide an indication that margins for
improvement may exist.

While more work is required along this path, which is beyond the scope of this work,
Deep and Machine Learning appear to be very promising for this classification problem,
and we shall leave to dedicated works, as the one presented in Hou Yip et al. (2020), a
more exhaustive investigation of these techniques, their comparison with more physically
motivated strategies similar to the metric, and a thorough investigation of biases that may
affect all these techniques.

Table 5.9. Percentages of positive detection for our metric, compared to Deep Learning algorithms
precision. To assess the presence of a molecule we flag a planet if Abmol > 10−4. We investigate
CH4 in the first row, CO2 in the second and H2O in the third, selecting the planets with
MCH4 ≥ 0.22 (first row), MCO2 ≥ 0.26 (second row) and MH2O ≥ 0.80 (third row).

Molecule Mmol [%] KNN [%] MLP[%] RFC[%] SVC[%]

CH4 69∗ 75.4 84.2 92.5 90.1
CO2 68.3 71.4 75.8 83.1 83.5
H2O 68.3 74.5 79.0 96.7 99.4

* These percentages arise from a discrete distribution of data and there-
fore we cannot exactly identify the 68.3% quantity. In this case 69%
is the closest possible value.
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Chapter 6
Detection of Molecules and Promotion
to Higher Tiers

This chapter details the follow-up study on evaluating the information content of Ariel’s
reconnaissance survey spectra, initiated in the study presented in Chapter 5. To overcome
the bias of the molecular metric discussed there, we developed a different data analysis
technique that provides quantitative predictions for the molecular classification of planets.
The goal is a reliable and unbiased method to address: Can we use Tier 1 transmission
spectra to identify the presence of a molecule, with an associated calibrated probability?.
Hence, we aim to find calibrated probabilities that can also guide the decision-making
process to select Tier 1 targets for re-observation in Ariel’s higher Tiers.

In Bocchieri et al. (2023), we developed a technique based on a P-statistic that measures
the probability that a molecule is present in an atmosphere observed in Tier 1 in excess of a
given threshold. The input data is the marginalized posterior distribution for a molecular
abundance from spectral retrieval, and the probability is estimated as the integral of the
distribution on all abundance values above the threshold. We focused our investigation on
(i) assessing the reliability of the classification, (ii) evaluating its robustness, i.e. whether
it provides valid results across a variety of conditions, and (iii) its predictive power. We
found that, at least in the parameter space explored, the P-statistic can be used to implement
a reliable and powerful predictor of the presence of molecules, as long as the retrieval model
matches the complexity of the data.

* * *

Here we detail the work and results from this second study of Tier 1 spectra. Section 6.1
outlines the methodology used in this analysis. Section 6.1.1 describes our data analysis strat-
egy for detecting a molecule in these spectra. Section 6.1.2 details our experimental data set,
including the planetary population, forward model parameters, atmosphere randomization,
and noise estimation. Section 6.1.3 summarizes the spectral retrievals performed, discussing
the optimization algorithm and the priors used. Section 6.1.5 describes the data analysis
tools used to evaluate the probability forecasts of the method. Section 6.2 details the results
obtained in terms of forecast reliability (Section 6.2.1), predictive power (Section 6.2.2),
and bias of the abundance estimator utilized (Section 6.2.3). Finally, Section 6.3 provides an
overall discussion of the results.
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6.1 Methods

Tier 1 transmission spectra contain sufficient information to infer the presence of several
atmospheric molecules (Mugnai et al., 2021b), but Tier 1 observations are in general non-
ideal for quantitative spectral retrievals in terms of molecular abundances, as they are
required to achieve a SNR ≥ 7 when binned in only seven effective photometric data
points in the 0.5–7.8 µm wavelength range (Edwards et al., 2019). Abundance posterior
probabilities from retrievals can however still be informative and here we develop a new
method to identify the presence of molecules in Tier 1 transmission spectra starting from
these posteriors.

6.1.1 Analysis strategy

Given a marginalized posterior distribution of a molecular abundance, we compute an
empirical probability, P, that the molecule is present in the atmosphere of a planet, with an
abundance above some threshold, TAb, as:

P ≃
∫ ∞

TAb

P(x)dx (6.1)

where P is the marginalized posterior distribution and x represents the abundance values.
Thus, the predicted P depends on the assumed atmospheric model and the selected abun-
dance threshold TAb. If the assumed atmospheric model is representative of the observed
atmosphere, then a clear correlation (above noise) between P and the true abundance in
Tier 1 data implies that P can be used to identify the most likely spectra that contain a
molecule, providing a preliminary classification of planets by their molecular content. Thus,
this P-statistic can be considered robust (Wall and Jenkins, 2012), even when P(x) is too
broad to constrain the abundance.

To test whether this method is sensitive enough, we need to simulate transmission
spectra as observed in Tier 1, using an atmospheric model that includes a certain number of
molecules. Then, we need to perform a spectral retrieval with the same atmospheric model
and compare each input molecular abundance with the predicted P corresponding to that
molecule. The test is successful if, for an agreed TAb, we recover a high P for each large
input abundance and a low P for each small input abundance. To understand how well the
method behaves under conditions similar to the Ariel reconnaissance survey, we repeat this
test on a large and diverse planetary population.

In this study, we employ a simulated population of approximately 300 transmission
spectra of H2-He gaseous planets, which contain CH4, H2O, and CO2 trace gases with
randomized input abundances. Additionally, we introduce NH3 with randomized abundances
as a nuisance parameter since its spectral features overlap with those of water and other
molecules. We utilize NH3 to test the P-statistic’s efficacy and investigate the robustness of
its predictions under various assumptions, such as the exclusion of NH3 from retrievals or
the inclusion of additional molecules not present in the population.

Therefore, we can study whether this method provides reliable predictions under less
favorable conditions when the assumed model is not fully representative of the observed
atmosphere. This might provide some insight into how robustly the method can reveal the
presence of a molecule in a real observation when the atmosphere is unknown. For this,
we add or remove molecules from the retrieval model (hereafter, “fit-composition”) with
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respect to the simulated composition. Then, we perform different spectral retrievals, that use
different fit-compositions, and compare the predictions obtained from the P-statistic with
the input abundances.

6.1.1.1 Model exploration

We consider three cases in our analysis. In the first case (referred to as R0), we use an
atmospheric model that includes CH4, H2O, CO2, and NH3 as trace gases, which matches
the composition used in the forward model generation of the population.

In the second case (referred to as R1), we consider a fit-composition that includes only
CH4, CO2, and H2O, omitting NH3. In this case, there is a possibility of inadequate
representation of the data because NH3’s molecular features could overlap with the observed
features of other molecules (hence its adoption as a nuisance), particularly H2O (Encrenaz
et al., 2015). As a result, the retrieved values of P may not accurately reflect the input
abundances of H2O, leading to decreased reliability of the predictions.

In the third case (referred to as R2), we expand the fit-composition beyond the input
composition by including also CO, HCN, and H2S. It should be noted that the spectral
features of these additional molecules could also overlap with the observed features of the
other molecules. For instance, CO and CO2 exhibit a spectral overlap around 4.5 µm. Hence,
even in this case, obtaining reliable predictions of the input composition may not be obvious.

Table 6.1 provides a summary of the molecules included in the fit-composition for
each retrieval. For more detailed information on the retrievals performed, please refer to
Section 6.1.3.

Table 6.1. Molecules included in the fit-composition for each retrieval.

Retrieval CH4 CO2 H2O NH3 CO HCN H2S

R0 ✓ ✓ ✓ ✓
R1 ✓ ✓ ✓
R2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

6.1.2 Experimental data set

As a simulated population, we use a planetary population generated using the Alfnoor
software (Changeat et al., 2020a; Mugnai et al., 2021b). Alfnoor is a wrapper of Tau-
REx 3 (Al-Refaie et al., 2021) and ArielRad (Mugnai et al., 2020). Given a list of candidate
targets and a model of the Ariel payload, it automatically computes simulated exoplanet
spectra as observed in each Ariel Tier.

Specifically, we use a subset of the POP-I planetary population of Mugnai et al. (2021b).
POP-I consists of 1000 planets from a possible realization of the Ariel Mission Reference
Sample (MRS) of Edwards et al. (2019). That MRS (hereafter, MRS19) comprises known
planets in 2019 from NASA’s Exoplanet Archive and TESS forecast discoveries. Here we
ignore the TESS forecasts, thus obtaining a sub-population of around 300 planets, that we
label POP-Is. Using POP-Is planets ensures that, in principle, we can compare our results
with those of Mugnai et al. (2021b).
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Figure 6.1 shows that POP-Is comprises a diverse sample of planets mostly with large
radii (≳ 5 R⊕), short orbital periods (≤ 4/5 days), warm to hot equilibrium temperatures
(500 – 2500 ◦K) and stellar hosts with different magnitudes in the K band of the infrared
spectrum (8 – 12 mK). Compared to the parameter space sampled by the entire POP-I, this
data set has more occasional statistics on smaller and longer-period planets around brighter
stars.

100 101

Planet Period [days]

2

4

6

8

10

12

St
ar

 K
 M

ag

Distribution of selected MRS19 targets
Tp [°K]
500
1000
1500
2000
2500
Rp [R ]
5
10
15
20
25

Figure 6.1. Parameter space distribution of the POP-Is planetary population used in this work, which
comprises about 300 selected planets from MRS19. The horizontal axis reports the planetary
orbital period in days; the vertical axis reports the stellar magnitude in the K band. Each data
point represents a planet; the symbol size is proportional to the planetary radius in Earth’s radii;
the symbol color shows the expected planetary equilibrium temperature. Light blue data points
in the background show the entire MRS19/POP-I parameter space for reference.

The detailed properties of POP-I (and therefore POP-Is) are discussed in Mugnai et al.
(2021b) and briefly summarized here. The forward model parameters are randomized to
test diverse planetary atmospheres. The baseline atmosphere is a primordial atmosphere
filled with H2 and He with a solar mixing ratio of He/H2 = 0.17. The vertical structure
of the atmosphere comprises 100 pressure layers, uniformly distributed in log space from
10−4 to 106 Pa, using the plane-parallel approximation. The equilibrium temperature of
each planet is randomized between 0.7 × Tp and 1.05 × Tp, where Tp is the equilibrium
temperature of the planet listed in MRS19; the atmospheric temperature-pressure profile
is isothermal. Constant vertical chemical profiles are added for H2O, CO2, CH4, and NH3,
with abundances randomized according to a logarithmic uniform distribution spanning 10−7

to 10−2 in Vertical Mixing Ratios (VMR). Randomly generated opaque gray clouds are
also added with a surface pressure varying from 5×102 to 106 Pa to simulate cloudless
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to overcast atmospheres. Table 6.2 summarizes the randomized parameters of the POP-I
forward models. For each planet, POP-I contains the raw spectrum binned at each Ariel
Tier resolution (“noiseless spectra”), the associated noise predicted by the Ariel radiometric
simulator, ArielRad, for each spectral bin, and the number of transit observations expected
to reach the Tier-required SNR. To simulate an observation, we scatter the noiseless spectra
according to a normal distribution with a standard deviation equal to the noise at each
spectral bin. The “observed spectra” data set is built by repeating this process for each planet
in POP-Is. As in Mugnai et al. (2021b), the Tier 1 data used in this work are binned on the
higher resolution Tier 3 spectral grid: R = 20, 100, and 30, in NIRSpec, AIRS-CH0, and
AIRS-CH1, respectively. The noise is that of Tier 1, which yields a SNR > 7 if data were
binned on the Tier 1 spectral grid. This is to prevent the loss of spectral information that
may occur in binning.

Table 6.2. Forward model randomized parameters in POP-I.

Parameter Unit Range Scale

TP / TP;MRS19
◦K 0.7; 1.05 linear

CH4 VMR 10−7; 10−2 log
CO2 VMR 10−7; 10−2 log
H2O VMR 10−7; 10−2 log
NH3 VMR 10−7; 10−2 log

Pclouds Pa 5×102; 106 log

6.1.3 Retrievals summary

To perform the retrievals, we use the TauREx 3 retrieval framework (Al-Refaie et al., 2021),
the same used to generate the raw POP-Is spectra. In the retrieval model, we include
opaque gray clouds, pressure-dependent molecular opacities of various trace gases, Rayleigh
scattering, and Collision-Induced Absorption (CIA) of H2-H2 and H2-He. Table 6.3 reports
a referenced list of CIA and all molecular opacities used in this study.

Table 6.3. List of opacities used in this work and their references.

Opacity Reference(s)

H2-H2 (Abel et al., 2011; Fletcher et al., 2018)
H2-He (Abel et al., 2012)
H2O (Barton et al., 2017; Polyansky et al., 2018)
CH4 (Hill et al., 2013; Yurchenko and Tennyson, 2014)
CO2 (Rothman et al., 2010)
NH3 (Yurchenko et al., 2011; Tennyson and Yurchenko, 2012)
CO (Li et al., 2015)
H2S (Azzam et al., 2016)
HCN (Barber et al., 2014)

The free parameters of the retrievals are the radius and mass of the planet, as well as the
molecular mixing ratios, as listed in Table 6.4. We use broad logarithmic uniform priors for
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the molecular abundances, ranging from 10−12 to 10−1 in VMR. For the mass and radius of
the planet, we select uniform priors of 20% and 10% around the respective values listed in
MRS19. The gray cloud pressure levels are not included as free parameters in the retrieval
because of their degeneracy with other parameters such as the radius Changeat et al. (2020b).

Table 6.4. Fit parameters and their priors for the
retrievals.

Parameters Units Priors Scale

MP MJ ±20% linear
RP RJ ±10% linear

CH4 VMR 10−12; 10−1 log
CO2 VMR 10−12; 10−1 log
H2O VMR 10−12; 10−1 log
NH3 VMR 10−12; 10−1 log
CO VMR 10−12; 10−1 log

HCN VMR 10−12; 10−1 log
H2S VMR 10−12; 10−1 log

We take a conservative approach by choosing

larger bounds for the priors than those used for

the random forward spectra generation, reported

in Table 6.2.

We set the evidence tolerance to 0.5 and sample the parameter space through 1500 live
points using the MultiNest algorithm1 (Feroz et al., 2009; Buchner, 2021a). We disable
the search for multiple modes to obtain a single marginalized posterior distribution of each
molecular abundance to insert in Equation 6.1.

We then perform the three different retrievals (respectively R0, R1, and R2) described
in Section 6.1.1 on each POP-Is planet. We use the Atmospheric Detectability Index
(ADI) (Tsiaras et al., 2018) to assign statistical significance to the results of these retrievals.
Given the Bayesian evidence of a nominal retrieval model, EN , and of a pure-cloud/no-
atmosphere model, EF , the ADI is:

ADI =

log(EN) − log(EF), if log(EN) > log(EF)
0, otherwise

(6.2)

ADI is a positively defined metric, equivalent to the log-Bayesian factor (Kass and
Raftery, 1995; Jenkins and Peacock, 2011) where log(EN) > log(EF). To compute EF , we
perform an additional retrieval for each planet with a flat-line model with the planet radius
being the only free parameter.

6.1.4 Abundance threshold

We utilized the marginalized posteriors to estimate the P-statistic using an abundance
threshold of TAb = 10−5, which is considered “molecular-poor” according to the definition
by Mugnai et al. (2021b). This threshold is higher by 1–2 orders of magnitude compared

1v3.11, Release April 2018
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to the Tier-2 detection limits reported by (Changeat et al., 2020a). The “molecular-poor”
condition is met for approximately 40% of the atmospheres due to the randomization
boundaries set for each molecule (see Table 6.2). The ability to detect a molecule depends
on factors such as opacities, correlations among molecules, and noise in the measured
spectrum. Therefore, TAb can be optimized for each molecule in future work, although we
applied the same abundance threshold for all in this pilot study.

6.1.5 Data analysis tools

The P-statistic can be used to reliably classify planets for the presence of a molecule with an
abundance above TAb when P correlates with the Ab true value. The stronger the correlation
above noise fluctuations, the larger the predictive power. Because this classification is binary
and P is defined in the range 0→ 1, we can use standard statistical tools such as calibration
curves and ROC curves (Sanders, 1963; Wilks, 2019) to evaluate the performance of this
method in revealing the presence of molecules and in selecting Tier 1 targets for higher
Tiers. These curves are routinely utilized by the Machine Learning community2, as they
present the forecast quality of a binary classifier in a well-designed graphical format.

6.1.5.1 Calibration curves

A calibration curve (e.g. Wilks, 2019) plots the forecast probability averaged in different
bins on the horizontal axis and the fraction of positives, in each bin, on the vertical axis
(see Figure 6.2 for a generic example). In this work, the fraction of positives is the fraction
of POP-Is planets with true abundance larger than TAb, and the forecast probability is the
corresponding P-statistic. Calibration curves provide an immediate visual diagnosis of the
quality of binary classifier forecasts and the biases that the forecasts may exhibit.

For well-calibrated predictions, the forecast probability is equal to the fraction of
positives, except for deviations consistent with sampling variability. Therefore, the ideal
calibration curve follows the 1:1 line. Miscalibrated forecasts can be biased differently
depending on whether the calibration curve lies on the left or on the right of the 1:1 line. A
curve entirely to the right of the 1:1 line indicates an over-forecasting bias, as the forecasts
are consistently too large relative to the fraction of positives, as seen in the calibration
curve of Classifier 1 in Figure 6.2. On the contrary, the calibration curve of Classifier 2
shows the characteristic signature of under-forecasting, being entirely on the left of the
1:1 line, indicating that the forecasts are consistently too small relative to the fraction of
positives. There may also be more subtle deficiencies in forecast performance, such as an
under-confident forecast, with over-forecasting biases associated with lower probabilities
and under-forecasting biases associated with higher probabilities, as seen in the calibration
curve of Classifier 3.

Calibration curves paint a detailed picture of forecast performance, often summarized in
a scalar metric known as the Brier Score (B-S, Brier, 1950), which is defined as the mean
square difference between probability forecasts and true class labels (positive or negative);
the lower the B-S, the better the predictions are calibrated. From Figure 6.2, we see that
Classifier 3 achieves the best B-S, although the forecasts are not well calibrated. In general,
uncalibrated forecasts can be calibrated using calibration methods such as Platt scaling

2In Python, the package scikit-learn (Pedregosa et al., 2011) (v1.0) provides the method
calibration_curve in sklearn.calibration and the method roc_curve in sklearn.metrics.
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Figure 6.2. Calibration curves of three mock classifiers, exhibiting different forecast quality and
biases. The legend reports the B-S of the forecasts of each classifier. The calibration curve for
perfectly calibrated forecasts is reported for reference.
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and Isotonic regression (Platt et al., 1999; Zadrozny and Elkan, 2002; Niculescu-Mizil and
Caruana, 2005).

6.1.5.2 ROC curves

Given the predicted probabilities of a classifier, and a selected probability threshold P,
the number of True Positives (TP), True Negatives (TN), False Positives (FP), and False
Negatives (FN), are defined in Table 6.5.

Table 6.5. Contingency table formulating all four possible outcomes of a binary classification
problem.

True label

Forecast Forecast label Yes No

P ≥ P Yes TP FP
P < P No FN TN

A binary classifier with high predictive power assigns larger P to positive observations
(true label “Yes") and smaller P to negative (true label “No"). This maximizes TP and TN,
and minimizes FP and FN.

A ROC curve (e.g. Wilks, 2019) is a square diagram that illustrates the predictive power
at different values of the probability threshold P. It plots the False Positive Rate (FPR) on
the horizontal axis and the True Positive Rate (TPR) on the vertical axis (see Figure 6.3 for
a generic example), defined as:

FPR =
FP

Negatives
=

FP
FP + TN

(6.3a)

TPR =
TP

Positives
=

TP
TP + FN

(6.3b)

FPR and TPR are commonly known as “false alarm” and “hit” rates. ROC curves are
constructed by calculating the TPR and FPR from the number of TP, TN, FP, and FN as P
decreases from 1 to 0. The ideal classifier minimizes the FPR while maximizing the TPR;
thus, its ROC curve is the unit step function. On the other hand, the worst possible classifier
is a random classifier with a ROC curve along the 1:1 line. Real-world classifiers have
intermediate ROC curves ranked by how close they are to the unit step function. As seen
in Figure 6.3, Classifier 3 exhibits the highest predictive power, as the corresponding ROC
curve arcs everywhere above the ROC curves for Classifiers 1 and 2.

ROC curves portray a detailed picture of predictive power, often summarized in a scalar
metric known as the Area Under the Curve (AUC), the fraction of the unit square area
subtended by a ROC curve. The higher the AUC, the higher the predictive power. The ideal
classifier has AUC = 1.0; the random one has AUC = 0.5. From Figure 6.3, we see that, as
expected, Classifier 3 also achieves the largest AUC.

ROC curves can also be used to select the optimal classification threshold P, which
roughly corresponds to the position on the curve where the TPR cannot be raised without
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Figure 6.3. ROC curves of the same mock classifiers shown in Figure 6.2, exhibiting different
predictive powers. The legend reports the AUC associated with each ROC curve. The ideal and
worst possible classifier ROC curves are reported for reference. Several probability thresholds P
at regularly spaced intervals are also displayed on each curve.
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significantly increasing the FPR. For example, as seen in Figure 6.3, the optimal P for Clas-
sifier 3 is around 0.5, where it achieves a TPR of nearly 0.9 at a low FPR of approximately
0.1. Reducing P to 0.4 is not advantageous, as it only increases the TPR to approximately
0.95, at the expense of increasing the FPR to almost 0.3.

6.1.6 Using calibration and ROC curves

Using calibration curves and the B-S metric, we can immediately diagnose the forecast
quality of the P-statistic and its potential biases. Suppose that the forecast probability
P matches the fraction of planets with input abundances greater than TAb (fraction of
positives) in each probability bin. In that case, the prediction of the method is well-calibrated.
Moreover, we can compare the forecast quality achieved for different molecules using the
B-S metric. If the forecasts are not well calibrated, we can infer which kind of bias affects
the predictions of the method by inspecting the shape of the calibration curve. If the forecasts
show an over-forecasting bias (as in the example of Classifier 1, Fig. 6.2) and therefore
incorrectly classify a fraction of planets as bearing a molecule, too many Tier 1 planets
may be selected for re-observation in higher Tiers, resulting in less optimal scheduling of
observations. On the contrary, an under-forecasting bias (as in the example of Classifier
2, Fig. 6.2) may imply that fewer Tier 1 planets than possible would be scheduled for
re-observing in higher Tiers.

Using ROC curves and the AUC metric, the power of the P-statistic to predict the
presence of molecules can be assessed. The closer the ROC curve approaches the unit step
function (AUC ≃ 1, Fig. 6.3), the higher the predictive power. Moreover, we can directly
compare the predictive power achieved for different molecules by analyzing the shape of the
corresponding ROC curves and the AUC values.

The shape of the ROC curve provides a way to select the optimal classification threshold,
P∗, for the problem under study. For instance, P∗ can be chosen in a trade-off process that
maximizes the TPR while keeping the FPR at an acceptable low value.

This choice can aid the selection of Tier 1 targets for re-observation in a higher Tier: a
large FPR would result in a poor allocation of observing time while a low TPR would result
in a reduction of observational opportunities. It can also benefit population studies where
one might need to track the presence of certain molecules across families of planets and
extrasolar systems. These types of studies are outside the scope of this work, but can profit
from the methodology developed here.

6.2 Results

As detailed in Section 6.1.1, we designed a method based on the P-statistic to reveal the
presence of a molecule in Tier 1 spectra. In the following sections, we use the statistical
tools described in Section 6.1.5 to show the performance of the P-statistic in predicting
the presence of several molecules in our simulated planetary population. In particular, in
Section 6.2.1, we use calibration curves to assess the reliability of the predictions of the
method and related biases, while in Section 6.2.2, we use ROC curves to assess the predictive
power of the method and discuss the optimal classification threshold, P∗. In Section 6.2.3,
we use the median abundance as an estimator of the true abundance and investigate its biases
in the low SNR regime to explain the biases observed in the calibration curves.
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6.2.1 Detection reliability

6.2.1.1 Retrieval R0

Figure 6.4 shows the analysis performed to evaluate the reliability of the method when using
the abundance posteriors of the retrieval R0, which uses the same atmospheric composition
as the one used in the generation of the simulated atmospheres (see Table 6.1). The subplots
in each column share the same horizontal axis with the predicted probability P that a
molecule is present with an input abundance, Abmol, above the selected abundance threshold
TAb = 10−5 (see Section 6.1.4). The figure reports the results for CH4, H2O, and CO2,
shown from left to right, respectively.
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Figure 6.4. Detection reliability analysis for CH4, H2O, and CO2 from the R0 retrievals, that
implement a model that is fully representative of the simulated atmospheres. All plots in the
same column share the same horizontal axis with the predicted probabilities, P(Abmol > 10−5),
that a molecule is present in the atmosphere of a planet, with an abundance above the selected
abundance threshold, TAb = 10−5. Top row: histogram with the frequency of the P forecasts.
Middle row: diagrams showing the correlation between P values on the horizontal axis and input
abundances on the vertical axis. The linear fit parameters of the data points are reported on
each legend. For visual reference, the dotted horizontal lines show the position of TAb and the
dotted vertical lines the value 0.5 on the x-axis. Bottom row: calibration curves with associated
bootstrap confidence intervals; each legend shows the B-S of the forecasts.

The top row displays histograms of the P-statistic realizations, which exhibit a bimodal
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distribution. Two peaks are observed in the distribution, with one located at P ≈ 0.2 and the
other at P ≈ 0.8, with the former being more prominent. Additionally, a valley is observed
at intermediate values, with P ≈ 0.5.

The middle row shows the correlation between the predicted probabilities on the hor-
izontal axis and the input abundances of each molecule on the vertical axis. We take a
rough measure of the correlation by calculating the angular coefficient of the data points
from a linear fit. These coefficients are listed in Table 6.6. The lower right quadrant of
these diagrams (P ≳ 0.5 and Abmol < 10−5) is almost empty of data points, indicating that
whenever the method predicts a high P, the corresponding input abundance is likely higher
than TAb. However, not all planets with an input abundance greater than TAb are associated
with a high P, as the upper left quadrants of these diagrams (P ≲ 0.5 and Abmol > 10−5) are
not empty of data points.

The bottom row shows the calibration curves computed for each molecule; each curve is
shown with a bootstrap confidence interval calculated using 1000 bootstrap samples. That
is, following Press et al. (1992), we randomly remove ∼ 1/e ≈ 36% of the data from each
of these samples and replace them by repeating some randomly chosen instances of the
ones kept. It should be stresses that the bootstrap confidence intervals are addressing the
uncertainty of the sample itself (i.e. the epistemic uncertainty) but not the uncertainty of
each sample point (i.e. the aleatoric uncertainty). The latter is not addressed in this work and
would necessitate estimating the uncertainties of the abundance posteriors, to be propagated
through the P-statistic.

For each molecule, we calculate the B-S using the brier_score_loss method of
sklearn.metrics (Pedregosa et al., 2011), with the associated uncertainty estimated from
the same bootstrap samples. Table 6.6 lists the B-S values obtained.

Table 6.6. Best-fit value for the angular coefficient m from the linear fit log(Abmol) ∝ m P(Abmol >
TAb), with TAb = 10−5, and Brier Score for the calibration curves for all possible combinations
of retrievals and molecules.

Retrieval molecule m B-S [%]

R0 CH4 3.9 12 ± 1
H2O 4.6 16 ± 1
CO2 4.0 15 ± 1

R1 CH4 3.2 15 ± 1
H2O 3.8 17 ± 1
CO2 3.7 14 ± 1

R2 CH4 3.9 13 ± 1
H2O 4.4 16 ± 1
CO2 3.9 16 ± 1

The calibration curves show an under-forecasting bias (curve to the left of the 1:1 line; see
Section 6.1.5.1) especially associated with larger forecast probabilities, giving a fraction
of positives ≈ 1.0 for P ≳ 0.6. On the contrary, the probabilities are better calibrated for
P ≲ 0.4. From the B-S values (less accurate forecasts receive higher B-S), we see that CH4
is the best-scoring molecule, probably due to its strong absorption spectral features.

It is possible that the observed under-forecasting of the calibration curves and the
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bimodality of the P-statistic distribution are both related to the sampling of the parameter
space. This is briefly discussed further in Section 6.3.2.

6.2.1.2 Retrieval R1

Figure 6.5 shows the same analysis for the retrieval R1, which includes only CH4, CO2, and
H2O in the fit-composition and excludes NH3, although this molecule is present in the data
set (see Table 6.1). Comparing the histograms from the top row of this figure with those
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Figure 6.5. Same as Figure 6.4. Detection reliability for the R1 retrievals, implementing a model
that excludes NH3 from the fit-composition.

obtained for the retrieval R0 (Figure 6.4), we notice a decrease in the forecast frequency at
low P, especially for CH4 and H2O, with a reduced peak at P around 0.2. On the contrary,
high values of P are more frequent, enhancing the peak at P around 0.8: for CH4, more
than 30% of the data set receives P between 0.8 and 0.9. These are samples with high input
abundance.

The plots in the middle row show an increase in the scatter in the data points compared
to R0. In this case, we find a decrease in the correlation between P and the input abundances,
and the angular coefficients of the linear fit are reported in Table 6.6. Planets that receive
P ≳ 0.8 have high input abundance, Abmol > 10−5.

The calibration curves for H2O and CH4 in the bottom row are, within the uncertainties,
closer to the 1:1 line than for R0, both for high and low forecast probabilities. Although this
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might appear closer to the ideal behavior, it could be misleading. The B-S is higher than for
R0, because the mean squared difference between the forecasts and true class labels is larger.
This is visualized in the middle plots: for Abmol < 10−5 (negative true class label), there are
many forecast values with P > 0.5. In other words, the correlation between the P-statistic
and the true input abundances is weaker. In contrast, the entire CO2 calibration curve shows
the signature of under-forecasting. The curve for CO2 is almost the same as for R0, likely
because the missing NH3 affects less the CO2 abundance posteriors. On the other hand, the
overlap of NH3 with H2O but also CH4 makes the model used in the retrieval less suitable
to describe the data.

The reduced correlation between probability forecasts and input abundances, as well as
the higher B-S values, suggest that excluding NH3, despite its presence in the data set, leads
to less representative abundance posteriors. However, predictions for CO2 are less affected,
possibly because this trace gas has less spectral overlap with NH3 compared to H2O or CH4.

6.2.1.3 Retrieval R2

The results of the same analysis for the retrieval R2, which includes CO, HCN, and H2S as
additional molecules to the fit-composition (see Table 6.1) are very similar to those of R0
(see Section 6.2.1.1). Therefore, we refer the reader to Table 6.6 that summarizes the results
for the correlation between predicted probabilities and input abundances, along with the B-S
values, and to Figure C.1 in Section C.2 of the Appendix.

6.2.2 Predictor assessment

6.2.2.1 Retrieval R0

Figure 6.6 shows the analysis performed to assess the predictive power of the P-statistic
(ability to maximize TP and TN while minimizing FP and FN) when using the abundance
posteriors from the retrieval R0. The figure reports the results for CH4, H2O, and CO2,
shown in different columns from left to right, respectively.

The upper row shows the calculated ROC curves for each molecule. Each curve is
reported with a bootstrap confidence interval calculated using 1000 bootstrap samples, with
the same random removal and replacement of the data as discussed in Section 6.2.1, involving
1/e ≈ 36% of the data. For each molecule, we calculate the AUC using the roc_auc_score
method of sklearn.metrics (Pedregosa et al., 2011), with the associated uncertainty
estimated from the same bootstrap samples. The AUC values thus obtained are collected in
Table 6.7. For all molecules, the ROC curves are close to ideal behavior (curve near the unit
step function, see Section 6.1.5.2), showcasing that the P-statistic has significant predictive
power. Consequently, the corresponding AUC values are > 0.9, with no considerable
variation between molecules, implying similar predictive power.

For each molecule, the bottom row shows the number of TP, TN, FP, and FN (see
Table 6.5), used to construct the ROC, versus the probability threshold P. Also shown are the
associated confidence intervals estimated from the same bootstrap samples. These diagrams
provide information on how the predictive power of the method changes as P varies from 1
to 0 and aid in the selection of the optimal classification threshold P∗ (see Section 6.1.6).

Given the randomization of trace gas abundances in the forward model (10−7 to 10−2 on a
uniform logarithmic scale, see Table 6.2), and the selected abundance threshold (TAb = 10−5),
the data set contains ∼ 60% positive observations and ∼ 40% negative observations. By
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Figure 6.6. Predictor assessment analysis for CH4, H2O, and CO2 from the R0 retrievals, that
implement a model that is fully representative of the simulated atmospheres. Top row: ROC
curves with associated bootstrap confidence intervals. The ideal and worst possible classifier
ROC curves are reported for reference. The legends report the AUC associated with each ROC
curve. Several probability thresholds P at regularly spaced intervals are also displayed on each
curve. Bottom row: TP, TN, FP, and FN curves plotted as a function of the probability threshold
P, with confidence intervals from the same bootstrap estimation.

Table 6.7. AUC of the ROC curves and probability odds at the probability threshold P = 0.5 for all
possible combinations of retrievals and molecules.

Retrieval molecule AUC [%] TP [%]: FP [%] TN [%]: FN [%]

R0 CH4 93 ± 1 43 ± 3 : < 1 42 ± 2 : 15 ± 3
H2O 92 ± 1 37 ± 3 : < 1 41 ± 3 : 23 ± 3
CO2 91 ± 1 45 ± 4 : 1.7 ± 0.3 37 ± 2 : 17 ± 3

R1 CH4 86 ± 2 51 ± 3 : 16 ± 1 27 ± 2 : 7 ± 2
H2O 82 ± 2 47 ± 3 : 15 ± 1 26 ± 2 : 13 ± 3
CO2 90 ± 1 48 ± 3 : 5.6 ± 0.5 33 ± 2 : 14 ± 2

R2 CH4 93 ± 1 41 ± 3 : < 1 42 ± 2 : 17 ± 3
H2O 92 ± 1 37 ± 4 : < 1 41 ± 2 : 23 ± 3
CO2 91 ± 1 45 ± 3 : 1.7 ± 0.3 37 ± 2 : 17 ± 3
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definition, for P = 1, the number of positive forecasts, NP = TP + FP, is zero, and the
number of negative forecasts, NN = TN + FN, is equal to the size of the data set. Therefore,
at this probability threshold, TN ≃ 40% and FN ≃ 60%. As P decreases, NP increases (TP
and FP increase), while NN decreases (TN and FN decrease). For P = 0, NN is zero and NP
is equal to the data set size; at this classification threshold, TP ≃ 60% and FP ≃ 40%.

In those cases where there are no external constraints on which misclassification is
more bearable (FP or FN), the intersection of their curves gives an optimized classification
threshold P∗.

From this intersection, we obtain P∗ ≈ 0.3 for all molecules. For confirmation, we can
trace this P∗ on the ROC curves. As expected, it roughly corresponds to the point where
we cannot significantly increase TPR without increasing FPR, which is at TPR ≈ 0.8. If,
instead, we need a more conservative number of FP, we can choose a higher P∗, for example
P∗ = 0.5, the default classification threshold for a binary classifier.

A concise way to demonstrate the effectiveness of the P-statistic in rejecting misclassifi-
cations is by computing the odds TP:FP and TN:FN, estimated from the curves in the bottom
row of Figure 6.6. Odds relate to the probability that a molecule is correctly identified at the
selected P, with an example shown in Table 6.7, estimated at P∗ = 0.5. The table shows that
the P-statistic is quite effective in rejecting FP, as they are negligible for all molecules at
this threshold. Moreover, TPR at P∗ = 0.5 indicates that more than 60% of the positives in
the dataset is correctly identified, with TP values of approximately 45%, 35%, and 45% for
CH4, H2O, and CO2, respectively (rounded to the nearest 5% from the odds values listed in
the table). However, at this P, FN increases to approximately 15–25% of the dataset (as seen
in the bottom row of Figure 6.6 at P∗ = 0.5), resulting in TN:FN odds of less than 3:1.

6.2.2.2 Retrieval R1

Figure 6.7 shows the same analysis for the retrieval R1.
Comparing the ROC curves in the top row with those obtained for the retrieval R0 (see

Section 6.2.2.1), we notice a decrease in the predictive power of the method, measured by
a reduction in AUC for CH4 and H2O, as reported in Table 6.7. On the contrary, the CO2
ROC achieves the highest AUC, similar to that of R0, possibly caused by the limited overlap
between NH3 and CO2, when compared to the case of CH4 and H2O.

The plots in the bottom row show a significant reduction in the performance of the FP
curve compared to that achieved for R0: for CH4 and H2O, it is above 10% up to P ≃ 0.6,
instead of < 1% at P ≃ 0.5. The TN curve also shows a decrease in performance: it
remains below 30% to P ≃ 0.6, instead of reaching 40% at P ≃ 0.4 in R0. Although the
TP and FN curves demonstrate relatively better performance, the optimal classification
threshold denoted as P∗, determined at the intersection of the FP and FN curves, increases to
approximately P∗ ∼ 0.65, 0.5, 0.4 for CH4, H2O, and CO2, respectively. Tracing these P∗
values on the ROC curves reveals that they correspond to a TPR of approximately 0.8 for
all molecules, similar to R0, but with a significantly worse FPR, as a consequence of the
reduced predictive power.

Table 6.7 reflects this, showing the odds of TP:FP and TN:FN at the same probability
threshold P∗ = 0.5, which was used for R0. In this case, the method is less efficient
in rejecting FP, despite having TP of approximately 50% and 45% for CH4 and H2O,
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Figure 6.7. Same as Figure 6.6. Predictor assessment for the R1 retrievals, implementing a model
that excludes NH3 from the fit-composition.
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respectively, resulting in only about 3:1 odds for TP:FP. However, the method is still
effective in correctly identifying planets with CO2, with TP:FP odds of about 9:1. As for
TN:FN, the results are similar to R0, with a slightly better rejection of FN in the case of CH4
(4:1 instead of 3:1).

6.2.2.3 Retrieval R2

The results from the same analysis for the retrieval R2 are very similar to R0’s (see Sec-
tion 6.2.2.1). Therefore, we refer the reader to Table 6.7 that summarizes the AUC values
obtained and the odds TP:FP and TN:FN at the probability threshold P∗ = 0.5, and to
Figure C.2 in Section C.2 of the Appendix.

6.2.3 Abundance estimates

Tier 1 might not be adequate for reliable abundance retrieval, for which higher Ariel Tiers
are better suited. Therefore, we study the retrieved Tier 1 abundances to investigate trends
in their distribution that may clarify some of the behavior observed in the calibration and
ROC curves seen in the previous sections. The abundance estimator used is obtained from
the median of the marginalized posterior distribution of the log Abmol with asymmetric error
bars estimated from the 68.3% confidence level around the median. In particular, we are
interested in investigating the regime of input abundances under which this median-based
estimator is unbiased.

6.2.3.1 Retrieval R0

Figure 6.8 reports the analysis performed to investigate potential biases affecting the median
of the marginalized posteriors when used as an estimator of the log-abundances. The figure
reports the results for CH4, H2O, and CO2, shown in different columns from left to right,
respectively. NH3 exhibits similar behavior to the other three molecules, but it is not included
in the figure in line with the decision to treat it as a nuisance in this study.

Panels in the top row show the molecular log-abundance input vs. the retrieved with the
error bar. A solid black line serves as the ideal trend (1:1 line) for visual reference. The
color bar indicates the distances between the input and retrieved log-abundance, expressed
in units of the uncertainty σ on log Abmol, estimated by averaging the asymmetric error bars.
Blue colors denote distances up to 1σ; red colors represent distances in the range of 1→ 2σ.
Larger distances are marked with black circles, which serve to diagnose potential trends and
biases that may affect the retrieval results. In addition, the symbol size reflects the Signal-
to-Noise Ratio (SNR) of each observation as estimated in the AIRS-CH0 spectroscopic
channel, providing insight into possible trends between the distance to the input abundance
and the SNR condition.

The retrieved abundances exhibit good agreement with the input abundances in the
large abundance regime, characterized by limited scatter around the ideal trend and by low
retrieved uncertainties. This regime is generally observed for Abmol ≳ 10−4, but starts to
break down at 10−5 ≲ Abmol ≲ 10−4. For Abmol ≲ 10−5, the input abundances are rarely
retrieved accurately. This analysis can provide insights into the detection limits of CH4,
H2O, and CO2 in Ariel Tier 1, which are estimated to be around 10−4. These values can be
compared with the expected detection limits of the same molecules in Ariel Tier 2, which are



6.2 Results 169

10 5

6

4

2

Tr
ue

CH4

id. trend

SNRCH0
7
24
50
67

SNRCH0
7
24
50
67

2.5 0.0 2.5100

101

102

|T
ru

e|
 / 

y = 5

3 0 3

6

4

2

Tr
ue

> 2 : 17;  > 3 : 2;  > 5 : 0

±3 ±5 

10 5
Retrieved

H2O

id. trend

SNRCH0
7
30
53
67

SNRCH0
7
30
53
67

2.5 0.0 2.5
Retrieved - True

y = 5

3 0 3
(Retrieved - True)/

> 2 : 4;  > 3 : 1;  > 5 : 0

±3 ±5 

10 5

CO2

id. trend

SNRCH0
7
24
50
67

SNRCH0
7
24
50
67

2.5 0.0 2.5

y = 5

3 0 3

> 2 : 15;  > 3 : 4;  > 5 : 2

±3 ±5 

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
is

ta
nc

e 
to

 t
ru

e 
va

lu
e 

(
)

Bias assessment  Retrieval R0

Figure 6.8. Comparison between the retrieved molecular abundances and their true values is shown
from the R0 retrievals. The estimator for the retrieved log-abundances is the median of the
posterior distributions from the retrievals. Top row: retrieved vs. input molecular abundances.
The solid black line represents the ideal trend, and the color bar visualizes the distance between
input and retrieved abundances in units of uncertainty σ. The symbol size is proportional to
the SNR in the AIRS-CH0 spectroscopic channel. Middle row: log-abundance SNR vs. the
difference between the retrieved and input log-abundances. A black dashed line is drawn at
a value of 5 on the vertical axis for visual reference. Bottom row: true abundances vs. the
difference between the retrieved and true log-abundances, in units of σ. Dashed vertical lines are
drawn at 3 and 5-σ. Text boxes show the number of 2-, 3-, and 5-σ outliers.
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anticipated to be significantly lower, with previous studies (Changeat et al., 2020a) reporting
limits between 10−7 and 10−6.5.

Let the log-abundance SNR be defined as 1
σ | log Abmol |, where Abmol is the true value

of the molecular abundance. The middle row panels in Figure 6.8 show the plot of log-
abundance SNR vs. the difference between the retrieved and input log abundances. It can be
observed that the distribution of data points is broadly separated into two sub-populations
at a SNR of about 5. Data points with high SNR correspond to cases where the input is
confidently retrieved and aligned along the 1:1 line in the upper row diagrams, indicating
unbiased estimation. On the other hand, data points with low SNR cluster in the bottom left
portion of the diagram. In these cases, the median is no longer an unbiased estimator of the
true value, as the corresponding data points lie to the left of the 1:1 line in the upper row
diagrams. As discussed further in Section 6.3.2, these cases have posteriors dominated by
the prior imposed in the retrieval and are best treated as upper limits.

In the bottom row of Figure 6.8, the true abundances are shown vs. the difference between
the retrieved and true abundances, in units of σ. The diagrams provide a visualization of
how many samples are 2-, 3-, and 5-σ outliers, allowing verification that the distribution is
compatible with the tail of the abundance posteriors. The number of outliers is shown in the
text box inserted in the diagrams and (converted into percentages) in Table 6.8. Assuming
that the abundance posteriors are representative of the data, the fraction of expected outliers
outside is 5%, 0.3%, and≪ 1%, respectively at 2-, 3-, and 5-σ. We find good agreement
between the percentages reported in Table 6.8 and these values, with minor deviations
compatible with the statistical fluctuations of a random variable.

Table 6.8. Percentage of data points counted outside three confidence intervals for all possible
combinations of retrievals and molecules.

Retrieval molecule > 2σ [%] > 3σ [%] > 5σ [%]

R0 CH4 5.6 0.7 ≪ 1
H2O 1.3 0.3 ≪ 1
CO2 5.0 1.3 0.7

R1 CH4 32.9 19.6 11.6
H2O 17.9 13.6 9.6
CO2 16.6 10.3 6.6

R2 CH4 6.0 0.7 ≪ 1
H2O 1.3 0.3 ≪ 1
CO2 5.3 1.7 1.3

6.2.3.2 Retrieval R1

Figure 6.9 shows the same analysis for the retrieval R1. The top row shows that, although
there is still a correlation between the retrieved and input abundances, it is less significant
than for R0. Furthermore, comparing the retrieved and input abundances yields different
regimes for each molecule. However, the main difference from R0 is the significant number
of data points at distances greater than 2σ (marked by black circles), corresponding to 2-σ
outliers. In particular, for all molecules, most of these points are located to the right of the
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Figure 6.9. Same as Figure 6.8 for the R1 retrievals, implementing a model that excludes NH3 from
the fit-composition.
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ideal trend, indicating the presence of an overestimation bias for the retrieved abundances.
These data points are located in the region y ≳ 5 and x > 0 in the plots in the middle
row. Therefore, in addition to the overestimation bias for the abundances, their retrieved
uncertainties are underestimated. Furthermore, the bottom-row diagrams show a larger
number of outliers compared to the R0 case: too many for the posterior to be considered
representative. This is a consequence of an atmospheric model which is not representative
of the data, biasing the likelihood, the abundance posteriors, and the median estimator of the
abundances.

6.2.3.3 Retrieval R2

The results of the same analysis for the retrieval R2 are very similar to those of R0, including
the number of outliers that are compatible with the expectations for a model that is represen-
tative of the data. Therefore, we refer the reader to Table 6.8, and to Figure C.3 in Section C.2
of the Appendix. Here, we only stress that adding molecules to the fit-composition that are
not present in the data set does not appear to significantly bias the abundance posteriors,
compared to R0. This is further discussed in Section 6.3.2.

6.3 Discussion

In this section, we first discuss the similarities between the results from the retrievals R0
and R2, shown in Sections 6.2.1 and 6.2.2. Then we apply the ADI metric to compare
all retrievals from the point of view of the Bayesian evidence (Section 6.3.1). Finally,
we expand the discussion to the role of the priors in the retrieved abundance posteriors
(Section 6.3.2).

The results of Sections 6.2.1 and 6.2.2 show that the predictions of the P-statistic for
the retrievals R0 and R2 are comparable, despite the quite different fit-compositions, while
the reliability of the P-statistic is lower in the R1 case. The R0 model and its parameters
are identical to those used to generate the POP-Is population, and the R2 extends the
parameter space with new molecules. In R2, the abundance posteriors for CH4, H2O, and
CO2 do not appear to be significantly affected by the addition of CO, HCN, and H2S in R2,
despite that the latter three spectral signatures partially overlap with those of CH4, H2O,
and CO2 (Encrenaz et al., 2015). It should be noted that the absence of the three molecules
from the simulated atmospheres is correctly revealed in R2 by their low P-statistic, shown in
Figure 6.10, that take values smaller than 40% for CO, HCN, and H2S, respectively. The
extension of the analysis to include the calibration and ROC curves to these molecules is
left to future work.

The analysis, therefore, suggests that the P-statistic is robust (that means, provides reli-
able results) against retrieval models that are over-representative of the observed atmosphere.
However, the P-statistic can no longer be considered robust when the retrieval models are
under-representative of the observed atmosphere.

In the current study, the threshold abundance used to estimate the P-statistic remains
constant for all molecules. While it is possible to optimize this threshold for individual
molecules, we leave this aspect for future research as discussed in Section 6.1.4. Lowering
the threshold reduces the information provided by the ROC curves. To achieve the optimal
point of operation, one must balance the True and False Positive Rates, which is necessary
to promote a Tier-1 target to higher Tiers. It is important to note that ROC curves calculated
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Figure 6.10. Histogram of the frequency of use of each possible P forecast for CO, HCN, and H2S,
using the abundance posteriors from the retrieval R2. The dotted vertical line marks the default
binary classification threshold P = 0.5 for reference.

at different threshold levels provide a statistical estimation of the sample’s completeness,
enabling the inference of population-wide properties such as the fraction of planets contain-
ing certain molecules. While this aspect requires further investigation in future research, it
should be noted that the fraction of positive, Σ (planets with true abundance in excess of
TAb) is related to the fraction of Tier-1 targets, Σ̃, selected with P(> TAb) > P by

Σ =
Σ̃ − FPR

T PR − FPR
.

The similarities between the R0 and R2 models are further discussed in the next section.

6.3.1 ADI comparison

The ADI metric, described in Section 6.1.3, is used to assess the statistical significance of a
model atmosphere with respect to a featureless spectrum using the log-Bayesian factor. A
large ADI suggests that a featureless spectrum is less favored by the data. From the ADI
definition, the log-Bayesian factor of two competing models is the difference between their
respective ADI. The ADI is used in this section only to compare the Bayesian evidence of
the retrievals, and not for anything else in this study.

Figure 6.11 shows the ADI differences between the R0 model and the two competing
models, R1 and R2, plotted against NH3 abundances. A large, positive difference indicates
that the competing models are less representative of the data compared to R0. The median
ADI values for all retrievals are approximately 91, 86, and 92 for R0, R1, and R2, respectively,
as shown in the text box within Figure 6.11. This suggests that a featureless atmospheric
model is not favored by the data, and R1 is the least representative, as expected. This
is further supported by the fact that the ADI difference between R0 and R1 increases
with increasing NH3 abundance, indicating that higher NH3 abundances make R1 less
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representative compared to R0, in agreement with the analysis of Section 6.2. In contrast,
the ADI difference between R0 and R2 is close to zero, with a scatter described by a standard
deviation of approximately 0.5, which is independent of NH3 abundance. This confirms
that R2 is similarly representative of the data compared to R0, despite describing a wider
parameter space.
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Figure 6.11. Bayesian evidence comparison of the retrievals R0, R1, and R2, measured in ADI. The
horizontal axis plots the input abundances of NH3; the vertical axis reports the ADI difference
between R0 and the other two retrievals, R1 and R2. The y-axis uses a matplotlib “symlog”
scale with the linear threshold set at 1 for better visualization. The text box on the bottom shows
the median ADI reported by each retrieval.

6.3.2 Priors

In this section, we discuss the impact of the log-uniform priors adopted in the analysis
on the results presented. The consequence is a non-Gaussian posterior distribution, and
the mean, mode, and median are not equivalent moments of the distribution. In particular,
the median is not an unbiased estimator of the true abundance as shown in Figure 6.8 for
low log-abundance SNR (hereafter, “abundance SNR”). This can be explained in terms of
the Bayesian formulation of the posterior, P, which is proportional to the product of the
likelihood, L, and the prior, Π.

P ∝ L × Π (6.4)

Because Π(log x) is uniform, Π(x) ∼ 1/x, for large abundance SNR, the likelihood dom-
inates, the posterior is Gaussian (because of the central limit theorem), and the median
estimator is unbiased. For low abundances, the prior dominates, P(x) ∝ 1/x, and the
median is an estimator of the molecular abundance that is biased towards low abundances.
This is shown in Figure 6.12. Each panel shows the Probability Density Function (pdf) of
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the likelihood, prior and posterior normalized to 1 at the peak, for three cases where the
abundance SNR is 4.0, 5.5, and 7.0, respectively, from the top to the bottom panel, assuming
an input abundance of 10−5. The posterior is likelihood-dominated when the abundance
SNR is 7 and is prior-dominated when the abundance SNR is 4.
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Figure 6.12. The pdfs of the likelihood, prior and posterior are shown by the red, blue, and black
lines, respectively. The pdfs are normalized to 1 at their peak. The assumed abundance SNR is
4.0, 5.5, and 7.0, respectively, from the top to the bottom panel. An input abundance of 10−5 is
assumed.

Although logarithmic uniform priors are often assumed in spectral retrieval studies, they
are certainly not “uninformative priors” (Trotta, 2008; Oreshenko et al., 2017). Clearly,
using these priors biases the median estimator of the molecular abundance in the low SNR
regime, explaining the trends seen in Figure 6.8. As a side note, log-priors on molecular
abundances could as well introduce biases on the derived elemental abundances, therefore
the issue has to be investigated carefully in future studies.

The low abundance SNR targets are those that contribute to the leftmost peak in the
bimodal distribution of the P-statistic (Figure 6.4). Further investigation is however needed to
fully understand the origin of the P-statistic bimodality and its under-forecasting properties.
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Chapter 7
ARES VI: Interpreting 3D Biases in
Transmission Spectra

This chapter follows in the steps of the work done to address questions on the interpretability
of transmission spectra given the 3D nature of exoplanetary atmospheres. Biases can
occur when 1D retrieval models are used to interpret high-quality observations from JWST
and Ariel, which can be affected by 3D thermal and chemical effects. While previous
works have begun to investigate and address this type of bias, here we focus on untangling
these effects via examining biases in the retrieval results when using simulated spectra.
This study was initiated at the second edition of the Ariel Retrieval of Exoplanets School
(ARES)1, held in 2021 in Biarritz. The proper investigation was carried out in the subsequent
years and involved a tight collaboration between diverse expertise in the field: Global
Circulation Models (GCMs), atmospheric chemistry, and simulators to estimate the expected
experimental uncertainties with JWST and Ariel, to name a few.

* * *

A major scientific question in the exoplanet field is: "How does the 3D atmospheric
structure affect the transmission spectra of exoplanets, from a cold planet to an ultra-hot
Jupiter?". Recent works (Pluriel et al., 2020b; Lacy and Burrows, 2020; Wardenier et al.,
2022; Pluriel et al., 2022) concluded that, for ultra-hot Jupiters, the 3D structure plays a
major role in shaping the transmission spectra. If the temperature of the atmosphere is not
high enough to dissociate a molecule on both the day-side and the night-side, the amplitude
of its spectral features will be larger than predicted by a 1D plane parallel approach. In
addition, Falco et al. (2022) showed how the changes in planet orientation during the transit
allow us to probe the horizontal variations in the atmosphere. Pluriel et al. (2022) investigated
3D effects in the transmission spectra of hot Jupiters, dividing them into three main groups:
vertical effects, horizontal effects along the limb, and horizontal effects through the limb.

Another key open question is: "Can 1D retrievals find consistent parameters (T-P
profile, abundances, C/O ratio, metallicity, and clouds)?". This question is closely related
to the first one: if the 3D atmospheric structure strongly affects transmission spectra –
can 1D retrieval models find correct atmospheric parameters? In this regard, MacDonald

1ARES II: Ariel School, Biarritz, 2021.

http://www.iap.fr/useriap/beaulieu/ARIEL/ARIEL-School2021-index.html
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et al. (2020) investigated the following conundrum: "Why are most inferred temperatures
from transmission spectra far colder than expected from the equilibrium temperature?".
They concluded that a 1D model can fit the transmission spectra of planets with asymmetric
terminators, but retrieved atmospheric parameters may not represent true terminator averages.
Also, the retrieved temperatures of planetary terminators may be biased by hundred degrees
below their real value, and this bias is most extreme in the case of ultra-hot Jupiters. This
study also mentions the biases in chemical abundances derived from 1D retrievals. Pluriel
et al. (2020b) concluded the same – if the temperature and the chemical composition
vary across the limb, which is the case for 3D structures, 1D retrievals cannot find the
correct molecular abundances. This also affects the inferred C/O ratio, which is an indirect
estimate based on the abundances of all C- and O-bearing molecules. Recently Zingales
et al. (2022) demonstrated that the choice of the retrieval model is critical for correctly
retrieving the thermal structure of the atmosphere. Lastly, Pluriel et al. (2022) provided a
"cheat sheet" of the minimum model assumptions needed to avoid biases in interpreting
atmospheric properties. When optical absorbers are present, 1D models are adequate to
describe transmission spectra for atmospheric equilibrium temperatures lower than 1400 K;
in their absence, the 1D assumption can extend up to 2000 K. Above these temperatures,
retrievals with 1D models return biased estimates of the parameters in the forward model.

To address the above-mentioned questions and related issues, we need two distinct
branches of action: one that can produce simulated transmission spectra for different planets,
accounting for 3D structures, and one that can perform atmospheric retrievals and compare
the inferred parameters with the forward models. Our goal is to assess the extent to which
our retrievals can reconstruct the true atmospheric composition. This end-to-end system
allows us to investigate the interpretation of our atmospheric retrievals consistently. The
first branch starts from precomputed GCMs for three planets (see Section 7.1.1):

• GJ1214 b, a Neptune-like planet orbiting an M-type star;

• HD189733 b, a hot Jupiter around a K-type star;

• WASP-121 b, an ultra-hot Jupiter orbiting an F-type star.

Then, it uses the Pytmosph3R code to produce 3D transmission spectra (see Section 7.1.2).
In this step, we use two different configurations for each planet: an equilibrium chemistry
model and a model with chemical profiles constant with altitude. The final products of
the first branch are spectra with attached errorbars, to reproduce spectra "as observed" by
JWST and Ariel. The expected errorbars are estimated using PandExo and ArielRad, two
simulators of the noise performance of JWST and Ariel, respectively (see Section 7.1.3). The
second branch starts from these simulated observations and performs a Bayesian retrieval to
estimate the best-fitting parameters of the model. As a retrieval tool, we use the retrieval
framework Tau Retrieval for Exoplanets (TauREx 3), briefly described in Section 7.2.1.
Section 7.2.3 details the retrieval procedure, the chemical configurations, and the other
atmospheric parameters. The retrieval procedure is the same for all spectra – the same set of
atmospheric models is applied, to remove our a priori knowledge and compare the obtained
results correctly. We discuss the results from this comparison and their implications for
interpreting transmission spectra with the 1D assumption in Section 7.3.
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7.1 Transmission spectra simulations

The following three planets (GJ1214 b, HD189733 b, WASP-121 b) have been chosen from
warm Neptune to ultra-hot Jupiter in order to study the transmission spectra and retrieval
biases depending on the temperature of the planets. Following Al-Refaie et al. (2022a) study,
we go a step further by focusing on biases arising from 1D vertical thermal variation as well
as full 3D thermal structure. We simulate JWST (NIRSpec +MIRI) and Ariel observations.

7.1.1 Global Climate Models

GJ1214 b has been simulated using the generic Planetary Climate Model. This model has
been specifically developed for exoplanets and paleoclimate studies (Charnay et al., 2015;
Leconte, J. et al., 2013). The dynamical core solves the primitive hydrostatic equations of
meteorology on an Arakawa C grid, using a finite difference scheme. Radiative transfer is
solved using the correlated-k model. Radiative effects of H2, He, H2O, CH4, NH3, CO, and
CO2 are taken into account, assuming a 100x solar metallicity. The horizontal resolution
is 64 × 48 and we use 45 vertical layers between 80 bar and 3 Pa, equally spaced in log
pressure. The star is taken as a blackbody at 3026 K, and we assume an internal temperature
of 60 K. The dynamical time-step is 60s and the physical/radiative time-step is 300s. The
model was integrated for 1600 days. For a more complete description of the model and the
simulation, we refer the reader to Charnay et al. (2015).

For HD189733 b, we make use of the Met Office Unified Model (Drummond et al.,
2018). The model solves the deep atmosphere, non-hydrostatic Navier–Stokes equations on
an Arakawa C grid. Radiative transfer is handled through the SOCRATES2 code adapted
for hot Jupiters (Amundsen et al., 2016). A chemical relaxation scheme is used and the
radiative transfer is computed in 32 wavelength bins. The simulation is integrated for 1000
Earth days. For a more complete description of the model, see Drummond et al. (2018).

WASP-121 b has been simulated using the SPARC/MIT global circulation model (Show-
man et al., 2009). The model solves the same primitive equations of meteorology as the
generic Planetary Climate Model on a cubic-sphere grid. It has been widely used for various
hot Jupiters (Showman et al., 2009; Kataria et al., 2015; Parmentier et al., 2016, 2018, 2021)
and has also been applied to ultra-hot Jupiters (Kreidberg, 2018; Arcangeli et al., 2019). For
this study, we use the model published in Parmentier et al. (2018). The horizontal resolution
is C32, equivalent to 128 cells in longitude and 64 in latitude and 53 vertical levels with
pressure ranging from 200 bar to 2 µbar. Radiative transfer is handled using the two-stream
approximation with 11 wavelength bins, as done in Kataria et al. (2013). The model assumes
chemical equilibrium, taking into account the thermal dissociation of water and hydrogen.
However, H2 recombination is neglected despite its non-negligible impact on the thermal
and dynamical structure (Tan and Komacek, 2019). For a more complete description of the
model and the simulation, we refer the reader to Parmentier et al. (2018).

For each planet, we build a pseudo-1D version of the 3D model. The temperature
profiles of the whole grid are replaced by the same 1D profile. This profile is the average
temperature profile over all latitudes of the eastern terminator for each model. Thus, the
pseudo-1D models are representative of each temperature condition from warm Neptune to
ultra-hot Jupiter. The purpose of these pseudo-1D models is to control the correct behavior

2https://code.metoffice.gov.uk/trac/socrates

https://code.metoffice.gov.uk/trac/socrates
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of the retrieval code. If we consider the 1D retrieval code, it should correctly retrieve the
pseudo-1D models. Thus, we can confidently untangle the 3D effects.

7.1.2 Pytmosph3R

Based on the planetary atmospheres described in Section 7.1.1, we used the latest version of
Pytmosph3R (Falco et al., 2022) to generate the transmission spectra. It takes into account
the 3D structure of the atmosphere and uses the monochromatic cross sections calculated
by ExoMol (Yurchenko et al., 2011; Tennyson and Yurchenko, 2012; Barton et al., 2013;
Yurchenko et al., 2014; Barton et al., 2014). Species abundances were established in two
different ways: (i) a constant chemistry model, e.g., where abundances are independent of
temperature and pressure, thus constant everywhere, (ii) an equilibrium chemical model.

The abundances of the constant chemistry model have been chosen close to the equi-
librium ratio for a given temperature representative of each planet. We have taken into
account only the main species: H2O, CO, CH4, CO2, HCN, C2H2, NH3, C2H4, and in
addition TiO, VO, K, Na, SiO, FeH for HD189733 b and WASP-121 b. The values are
given in Table D.2, D.3, and D.4. This theoretical construction, not representative of the real
atmosphere, removes one degree of freedom (chemistry) to check how 1D retrieval models
handle 3D atmospheric thermal structures and thus what can be the biases.

Equilibrium chemistry leads to variable chemical profiles. In the modeled atmospheres,
equilibrium chemistry can be expected in the hottest and densest regions. However, we
know that non-equilibrium chemistry must be accounted for, especially in the upper atmo-
sphere (Cooper and Showman, 2006; Moses et al., 2011, 2013; Venot et al., 2012, 2020b;
Molaverdikhani et al., 2019; Tsai et al., 2021, 2022). This has been very recently imple-
mented in the retrieval code (FRECKLL code developed by Al-Refaie et al. (2022b)) but
this is computationally expensive. We used ACE chemistry (see Section 7.2.2 for details)
to model the input equilibrium chemistry of GJ1214 b and the chemical abundances used
in Parmentier et al. (2016) to model the input equilibrium chemistry of HD189733 b and
WASP-121 b. This theoretical construct, relative to the constant case, focuses on the research
biases that can arise from the chemical retrieval models.

7.1.3 Uncertainty model

7.1.3.1 PandExo - JWST

To simulate JWST observables (spectra Figure 7.1), we utilize the PandExo package (Batalha
et al., 2017). This program is a noise simulator designed for JWST transiting observations of
exoplanets. We make use of the model to simulate one transit of each planet using NIRSpec-
PRISM and one transit using MIRI-LRS. For each planet, we consider a saturation limit of
80% of the full well and a fraction of time out-of-transit to in-transit of 1. For each instrument
and planet, we use the optimize option for the number of groups per integration, which
automatically defines the best settings to carry the observations. The planet and star-specific
parameters used for producing the observables are summarized in Table D.1. PandExo
neither includes the varying stellar noise nor takes into account the transit ingress and egress.
However, we estimate that the produced observables are a good enough approximation
to what one will observe with the JWST facility and should not change the conclusions
of this work. It is worth noting that the three systems studied here have a J-band stellar
magnitude below 11.4, which is the estimated saturation limit of NIRSpec-PRISM. Thus,
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these systems are not observable with this instrument configuration. Yet, we still performed
the computations and studied these systems, as the goal of this analysis is not to prepare
JWST observations per se, but to highlight possible biases introduced by retrievals on
JWST-like data sets.

7.1.3.2 ArielRad - Ariel

This section partially duplicates Section 1.3.1, which is more exhaustive.

7.1.3.2.1 The Ariel Radiometric model ArielRad (Mugnai et al., 2020) is the radio-
metric simulator of the Ariel payload, developed and maintained by the Ariel Consortium.
We will briefly describe ArielRad here; for a technical description, including the detailed
noise model, the reader is encouraged to read the original article. Given the description of
the payload and a list of candidate exoplanets, ArielRad outputs the expected experimental
uncertainty on their measured atmospheric transmission or emission spectra.

The simulation propagates the stellar light through the payload, accounting for each
transmission or dispersion by interposing optical components until reaching the focal planes.
Then, ArielRad evaluates the noise contributions (with margins) from stationary processes,
i.e., stellar photon noise, detector noise, dark current, zodiacal background, and instrument
emission. Jitter noise is computed externally by ExoSim (Sarkar et al., 2021), the end-to-
end time-domain simulator of Ariel observations, and included in the final noise budget.
Then, ArielRad returns the uncertainty estimates on a single transit or eclipse observation.
Ariel defines an observation to last 2.5 times the time between the first and the last contact
between the planetary and the stellar disks to obtain a sufficiently long baseline integration
for the light curve fit and the transit depth estimation (Mugnai et al., 2020). Because the
astronomical measurement is the contrast ratio with the signal from the stellar host, ArielRad
uses the contrast ratio to compute the observed spectrum’s expected Signal-to-Noise Ratio
(SNR).

The Ariel mission adopts a four-tier observation strategy in which, after each observation,
the resulting spectrum from each spectrometer is binned in data analysis according to specific
requirements to optimize the SNR and the mission scientific return (Edwards et al., 2019).
ArielRad, knowing the binning and spectral resolution implemented in the different tiers,
computes the SNR in the spectral bin according to the tier of interest. Then, it estimates the
number of observations required for each planet to reach the tier’s required SNR. From the
number of observations, ArielRad obtains the final noise estimate for a planet by rescaling
the noise on a single observation. These uncertainties can be attached to simulated forward
models of transmission or emission spectra, binned down to the tier spectral resolution to
obtain the simulated observed spectra.

7.1.3.2.2 Computing the errorbars We utilize the general procedure described above
to calculate the Ariel observation uncertainties for the three planetary targets of inter-
est. We use an updated version of the code, which is a wrapper of ExoRad 2.0, the
instrument-independent version of the radiometric simulator publicly available on GitHub3,

3https://github.com/ExObsSim/ExoRad2-public

https://github.com/ExObsSim/ExoRad2-public
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and ArielRad-Payloads, the repository of configuration files for the payload maintained by
the Ariel Consortium. For reproducibility, we report the code versions in Table 7.1.

Table 7.1. Versions of the codes used to generate the Ariel spectra.

Code Version

ArielRad 2.4.25
ExoRad 2.1.111
ArielRad-Payloads 0.0.16

For each planet, we assume a mean molecular weight of 2.3 a.m.u. to simulate H2-He
dominated atmospheres. We use this parameter to calculate the atmospheric scale height
and, consequently, the contrast ratio of the transit. We utilize the Ariel strategy for collecting
data during an observation; therefore, the ratio of observing time in and out of transit is 1/1.5.
Then, for each planet, we estimate the noise and the SNR for a transit observation in Tier 3.
We find that 1, 3, and 4 observations are needed to achieve the Ariel Tier 3 required SNR for
HD189733 b, GJ1214 b, and WASP-121 b, respectively. Then, we rescale the noise by the
square root of the corresponding number of observations, assuming each observation has a
Gaussian noise distribution. Finally, we attach the rescaled noise estimates to the respective
transmission spectra, binned down at the Tier 3 wavelength grid.

Alternatively, given the noise for a single transit observation and the atmospheric
spectrum, we could calculate a more realistic SNR that does not rely on the assumed
atmospheric scale height (Mugnai et al., 2020). However, the SNR would depend on the
assumed atmospheric spectrum, changing the number of observations on a single target.
The resulting analysis would be more akin to an observability study which, again, is not the
scope of this chapter.

All the spectra calculated with the methodology described in this section are shown in
Figure 7.1. This includes 6 input configurations for each planet (listed Table 7.2).

Table 7.2. Spectra input configurations.

Instrument JWST Ariel

Dimension 1D 3D

Chemistry constant equilibrium constant equilibrium constant equilibrium

7.2 Transmission spectra retrievals

7.2.1 TauREx

This section partially duplicates Section 1.3.2, which is more exhaustive.

As a retrieval tool, we used Tau Retrieval for Exoplanets (TauREx 3) 4 a fully Bayesian
4https://github.com/ucl-exoplanets/TauREx3_public

https://github.com/ucl-exoplanets/TauREx3_public
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Figure 7.1. Simulation of observations for HD189733 b, WASP-121 b, and GJ1214 b (gray) with
the corresponding best retrieval configuration in solid yellow, red dashed, and dash-dot blue
lines respectively. Left panels: constant input chemistry. Right: equilibrium input chemistry.
Top and middle: JWST simulated observation for atmospheric with 1D and 3D assumption
respectively. Bottom: Ariel simulated observation for a 3D atmospheric assumption.
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inverse atmospheric retrieval framework (Al-Refaie et al., 2021). TauREx 3 consists of two
main frameworks: the Forward Model framework and the Retrieval framework. The goal
of the Retrieval framework is to fit a Forward Model to an observation. A Forward Model
framework is necessary to provide information about the planet, the host star, temperature-
pressure profiles as well as chemistry and contributions (e.g. CIA, Rayleigh, gray clouds).
TauREx 3 adopts the layer-by-layer approach for the temperature profile, which can be
parameterized in different ways, such as isothermal, a radiative two-stream approximation, a
custom profile loaded from a file, or a multi-point temperature profile. The vertical pressure
profile is equally spaced in log-pressure, between a Pmax and a Pmin value specified by the
user along with a number of layers Nl. The cloud model provided by TauREx 3 is discretized
along P(z), allowing the user to define an opacity value in square meters for layers between
the pressure at the top and the pressure at the bottom of the cloud deck.

TauREx 3 supports equilibrium chemistry using the ACE chemical code (Agúndez et al.,
2012, 2020), FastChem (Stock et al., 2018), GGchem (Woitke et al., 2018), and the Free
chemistry model (Al-Refaie et al., 2022b). In our study, we explore different combinations
of chemistry and contribution parameters. We performed retrievals with and without clouds,
using ACE, FastChem, GGchem, or Free chemistry. To perform retrievals, TauREx 3 can use
several sampling techniques PyMultiNest and MultiNest, PolyChord, or dyPolyChord. For
our study, we used the nested sampling retrieval algorithm Multinest with its Python version
PyMultiNest (Feroz et al., 2009). TauREx 3 is a full Bayesian Retrieval framework, which
returns the final exoplanetary spectrum along with all parameter posterior distributions and
the Bayesian Evidence. For model comparisons, we use the Bayesian Evidence as defined
by Waldmann et al. (2015b) to compute the logarithmic Bayes factor,

∆logE = log
EmodelA

EmodelB

= log EmodelA − log EmodelB , (7.1)

where EmodelA and EmodelB are the evidences of two competing models. According to Ben-
neke and Seager (2013), by translating these Bayes factors into a statistical significance (Kass
and Raftery, 1995), ∆logE≤ 2 does not favor one of the two models, while we can start to
favor one compared to the other with ∆logE≥ 3.

7.2.2 Chemical model

The assumption of chemical equilibrium is a classic hypothesis when considering exo-
planetary atmospheres (Seager and Sasselov, 2000; Burrows et al., 2007, 2008; Fortney
et al., 2008; Madhusudhan et al., 2011; Kataria et al., 2014; Al-Refaie et al., 2021). A
system is at a thermodynamic equilibrium state when there is thermal, mechanical, and
chemical equilibrium at the same time. This equilibrium is characterized by the minimum
of a thermodynamic potential, such as the Gibbs free energy. It happens in exoplanets’
atmospheres when the dynamical timescales can be considered longer than the chemical
reaction timescales and when we suppose negligible the irradiation by a dissociating or
ionizing source (photochemistry or cosmic rays induced processes). For very hot planets
this approximation is close to reality, on the other hand, for cooler planets, vertical mixing
and photodissociation have an effect on the chemical composition and the atmospheres are
no longer at a thermodynamic equilibrium state. This disequilibrium chemical composition
must then be taken into account with a more complex kinetic model (Cooper and Showman,
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2006; Moses et al., 2011, 2013; Venot et al., 2012, 2020b; Molaverdikhani et al., 2019; Tsai
et al., 2021, 2022; Al-Refaie et al., 2022b).

Although several different algorithms have been made to calculate the chemical compo-
sition at equilibrium, we focused on three algorithms for this study: ACE (Agúndez et al.,
2012, 2020), GGchem (Woitke et al., 2018) and FastChem (Stock et al., 2018). The basic
principle of these three models is the same, they start from an initial composition made up of
initial abundances for each molecule taken into account then they iterate until a convergent
state. However, each model has a slightly different procedure, whether in the molecules
taken into account as input, the iteration method, or the network of chemical reactions. We
will study in more detail these differences in this part.

ACE minimizes the total Gibbs free energy by applying the algorithm first introduced
by White et al. (1958). ACE is based on an algorithm implemented in the NASA/CEA
program and presented in detail in Gordon and McBride (1994). For a closed system of N
chemical compounds at a certain temperature and pressure, in the absence of disturbance
(transport, UV radiation, etc.), the equilibrium chemical composition can be calculated
theoretically, thanks to standard-state chemical potential expressed as a function of the
standard-state enthalpy and entropy of the species. These thermodynamic quantities can be
calculated using NASA polynomial coefficients (see e.g. McBride et al. (2002)) in databases
such as NASA/CEA (McBride et al., 2002) or the Third Millennium Thermochemical
Database (Goos et al., 2016). The chemical species used include 105 neutral species
composed of C, H, O, and N, more specifically species up to 2 carbon atoms and the main
nitrogen species (NH3, HCN, N2, NOx). It has been validated for temperatures as low as
300K. The reader is encouraged to consult Venot et al. (2012) for more details on the ACE
code thermodynamic coefficients and calculation of thermochemical equilibrium.

Both FastChem and GGchem use a second type of method for determining the chemical
composition at the equilibrium state. These two programs use the law of mass action
and equilibrium constants, with some subtleties (for FastChem equilibrium constants are
based on Gibbs free energy while for GGchem they are based on partition functions). This
amounts to solving a system of N algebraic equations with N unknowns, which correspond
to the conservation equations for N elements. The partial pressure of each molecule is
defined as the partial pressure of the constituent atoms by the atomization equilibrium
constant. This system of equations can then be solved by any root-finding algorithms like
the Newton–Raphson method for example (Russell, 1934; Brinkley, 1947; Tsuji, 1973).

The thermodynamical data used in FastChem are mainly from the NIST-JANAF database
detailed in Chase (1998). The list of species used has been modified to take into account
molecules that may be of interest in astrophysics with data from Tsuji (1973); Barin and
PLatzki (1995); Burcat et al. (2005); Goos et al. (2016). The total of species used amounts
to 396 neutral and 114 charge species and the code has been validated for parameters down
to 100 K and up to 1000 bar. The reader is directed to Stock et al. (2018) for more details on
the list of species used. We note that the FastChem code has recently been updated with
FastChem 2 (Stock et al., 2022) which is more efficient but not yet available in combination
with TauREx.

Compared to the other two codes we are using, GGchem takes condensation into
account. In fact, the formation of liquids and solids in the atmosphere will have an effect on
the composition at thermodynamic equilibrium. Condensed species can consume certain
elements leaving a significant difference in composition between before condensation and
after condensation (Woitke and Helling, 2004; Juncher et al., 2017). Condensation will
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have an effect, especially at temperatures below 2000 K so this mechanism will mainly
affect GJ1214 b and HD189733 b in our work. The data included in this code includes 552
molecules and 257 condensates, including 38 liquids, and GGchem has been proven robust
down to 100 K. All elements from hydrogen to zirconium are included, as well as the option
to add tungsten and charges. We refer the reader to Woitke et al. (2018) for more details on
the list of species.

7.2.3 Retrieval procedure

All spectra configurations are retrieved with the same set of retrieval models. These models
are representative of all input configurations. We expect each input configuration to be best
retrieved by the corresponding retrieval models.

Each retrieval model assumes a four points temperature-pressure (TP) profile (Ttop,
Tsur f ace, T1, and T2) with the corresponding pressure level P1 and P2 free to converge
between Psur f ace and Ptop. It has already been shown (Rocchetto et al., 2016; Pluriel et al.,
2022) that retrieving an isothermal temperature profile generates biases for hot planets. We
also retrieve the radius of the planet. We duplicate our retrievals by adding a gray cloud level
as a parameter. Finally, we took into account two chemical configurations in the retrievals,
which we call Free and equilibrium chemistry.

Free chemistry is based on vertical constant abundances, taking into account the follow-
ing species: H2O, CO, CH4, CO2, HCN, NH3, FeH, SiO, Na, K, TiO, and VO. Note that
for GJ1214 b we did not retrieve Na, K, TiO, and VO because these species cannot be in
gaseous form under these temperature and pressure conditions. This configuration gives
the model a certain degree of freedom, as it imposes no physical or chemical constraints on
what will be retrieved. In this way, it is possible to retrieve abundances corresponding to
non-equilibrium chemistry, or various other species distributions since the species are not
correlated with each other. However, it could also retrieve non-realistic chemical abundances.
On the other hand, it should be remembered that this is a 1D model and we are therefore
limited when faced with strong vertical variation (which could be compensated for by the
two-layer method of Changeat et al. 2019).

Chemical equilibrium is based on temperature and pressure conditions. Thus, abun-
dances vary with altitude according to the retrieved TP profile, as we assume they are at
chemical equilibrium. As the chemical profiles are not forced to be vertically constant, this
approach should be more accurate for real atmospheres. However, if the observed planet’s
atmosphere exhibits non-equilibrium chemistry (due to quenching and/or photochemistry),
or longitudinal/latitudinal heterogeneities, the retrieved parameters will be erroneous. In
such cases, it may not be possible to find a consistent fit, or the retrieval may find an adequate
fit that corresponds to erroneous parameters. Equilibrium chemistry is calculated using three
different models included in TauREx: ACE, FastChem, and GGchem (details Section 7.2.2).
Metallicity (Z) and C/O ratio, from which abundance profiles are derived, are retrieved.
ACE, FastChem, and GGchem have already been shown in Al-Refaie et al. (2022b) to be
equivalent using the same molecules and without condensation for GGchem. Thus, we
consider all the molecules of each model as well as condensation for GGchem.

Therefore, we end up with 4 retrieval models (Free, ACE, FastChem, GGchem) for
each of the 3 planets (GJ1214 b, HD189733 b, WASP-121 b) considering each of the 6
input configurations (listed Table 7.2). This makes 4×3×6 = 72 retrievals (×2 with clouds).
For better readability of the large number of results, we do not show GGchem results
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for GJ1214 b, where the temperature is not high enough to be affected by the additional
condensation considered by GGchem, and we do not show ACE results for WASP-121 b,
where the missing species in ACE mean that the model is not representative of this type
of planet (see Section 7.2.2 for more details on these chemical models). Retrievals are
compared to each other considering their relative Bayes Factor as described in Sec. 7.2.1,
equation 7.1, following the same idea developed in Tsiaras et al. (2018) with a baseline.
However, we define here the Bayes factor (∆logE) as the difference with the logarithmic
evidence of the worse model (lower one). This allows us to compare the different models
between each other as it is done in Panek et al. (2023).

Table 7.3 shows free parameters and priors for the retrievals. We used a uniform sampling
in log space for the species, the metallicity, the pressure P1 and P2, and the pressure of the
clouds, and a uniform sampling in linear space for the temperatures, the radius, and the C/O
ratio.

Parameters Bounds
GJ1214 b HD189733 b WASP-121 b

Ttop [K] 100 to 2000 500 to 2500 450 to 3750
Tbot [K] 100 to 2000 500 to 2500 450 to 3750
T1 [K] 100 to 2000 500 to 2500 450 to 3750
T2 [K] 100 to 2000 500 to 2500 450 to 3750

log10(P1) [Pa] 2 to 6 2 to 6 2 to 6
log10(P2) [Pa] -1 to 6 -1 to 6 -1 to 6

log10(Pclouds) [Pa] -2 to 6 -2 to 6 -2 to 6
radius [R jup] 0.1 to 0.5 0.5 to 2.0 1.0 to 2.5

Chemistry
Equilibrium

log(Z) -1 to 3 -1 to 3 -1 to 3
C/O 0.01 to 2 0.01 to 2 0.01 to 2

Constant
log10(H2O) -12 to -1 -12 to -1 -12 to -1
log10(CO) -12 to -1 -12 to -1 -12 to -1
log10(CH4) -12 to -1 -12 to -1 -12 to -1
log10(CO2) -12 to -1 -12 to -1 -12 to -1
log10(HCN) -12 to -1 -12 to -1 -12 to -1
log10(NH3) -12 to -1 -12 to -1 -12 to -1
log10(FeH) -12 to -1 -12 to -1 -12 to -1
log10(SiO) -12 to -1 -12 to -1 -12 to -1
log10(Na) -12 to -1 -12 to -1 -12 to -1
log10(K) -12 to -1 -12 to -1 -12 to -1

log10(TiO) -12 to -1 -12 to -1 -12 to -1
log10(VO) -12 to -1 -12 to -1 -12 to -1

Table 7.3. Free parameters and priors for the retrievals.
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7.3 Results and discussion

7.3.1 From 1D to 3D

We present how the transmission spectra are affected considering 1D or 3D GCM models,
with or without equilibrium chemistry.

7.3.1.1 Constant chemistry

We will first focus on the simulated spectra assuming constant chemistry simulations which
correspond to the left panels of Figure 7.2.

We consider in this case that the abundances are constant everywhere in the atmosphere
no matter the temperature and pressure conditions. Thanks to this assumption, the effects
on the spectra are only due to the thermal structure of the atmosphere. For our coldest case
GJ1214 b, we see strong differences comparing 1D and 3D transmission spectra. Indeed, the
3D GCM model of GJ1214 b (Charnay et al., 2015) shows large day-night asymmetries with
an extended hot day side combined with a 30◦ eastward shifted hot spot. Due to this shift,
the light coming from the star thus probes through the hot day side with a larger scale height
compared to the limb (which is used to compute the 1D temperature profile of the pseudo-1D
model). This implies hundreds of ppm differences in the transit depth in particular in the
major absorbers, such as carbon dioxide and methane. However, on the water-dominated
bands in the far infrared and in the visible, we see very small differences between 1D and 3D
transmission spectra, in the order of 50 ppm. The altitude where the atmosphere is opaque
on these bands is indeed deep in the troposphere (around 100 mbar). Thus, even when we
take into account the inflated day side in 3D, the effective radius observed is very similar to
that in 1D, because the region where the atmosphere is opaque remains at the same place at
the limb. Therefore, the impact of the 3D structure of the atmosphere will depend on the
wavelength and the composition.

Similar results are shown concerning the hottest study case WASP-121 b. 3D GCM
models show that for highly irradiated atmospheres in tidal locking, the radiative timescale
becomes substantially smaller than the dynamic timescale implying that almost no heat
is transported from the day to the night side. It results in an extremely large day-side
scale height compared to the night side because of the large day-night temperature contrast.
Indeed, Keating et al. (2019) showed that regardless of the day-side temperature, the night-
side temperature of short-period gas giants is relatively uniform, around ∼ 1100 K. This
very inflated day side is thus mainly probed during the transit which explains why 3D
transmission spectra are by thousands of ppm larger than in 1D. Unlike the previous case
GJ1214 b, all absorption bands are shifted. The atmosphere is so inflated for this ultra-hot
Jupiter that the altitude at which the atmosphere is opaque is much higher due to the much
greater scale height.

Interestingly, the results are very different in our intermediate case HD189733 b. Here,
despite a hotter day side compared to the night side, we see less than a 50 ppm difference
between 1D and 3D transmission spectra. This means that the limb represents well the
observable and that such atmospheres are more homogeneous than colder or hotter atmo-
spheres. Here, despite a strong day-night temperature contrast, we observe less than 50 ppm
differences between the 1D and 3D transmission spectra. This is due to the high surface
gravity of the planet, which mitigates the scale height differences between the different sides
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of the planet. Thus, using only the limb is a fair representation of the observable.

7.3.1.2 Equilibrium chemistry

We now look at the equilibrium chemistry simulations which are shown in the right panels
of Figure 7.2. Now, the simulated spectra are impacted by both the effects of the chemical
and the thermal heterogeneities which is more realistic.

For GJ1214 b, the global picture has completely changed compared to constant chemistry.
The largest difference (1000 to 2000 ppm) concerns CO2 bands at 2.5 and 4.5 µm. The
temperature profile of the 1D model is not hot enough to obtain abundant CO2 at the
equilibrium state, whereas the day side of the planet in the 3D model reaches a temperature
where CO2 is abundant enough to show strong signatures. Furthermore, as explained above,
we probe a non-negligible part of the planet’s day-side, hence the presence of broad bands
of CO2. We also see differences in the water bands (between 1 and 2 µm) which weren’t
present in the constant chemistry model. The reason for these differences is the longitudinal
variation in water abundance, which is lower on the day side of the planet. Light from the
star then probes deeper regions corresponding to lower transit depth. Between 5 and 9 µm,
as well as around 3.5 µm, in the region of the methane bands, the 1D and 3D spectra show
fewer discrepancies than the rest of the spectra. Indeed, looking at the methane abundances
in Figure D.7, we see that its presence is drastically reduced in the day side above 100 mbar
which is deeper than where we probe. It results that in these bands, we are not affected
by the hot day side and we are mainly probing at the limb which is equivalent to the 1D
spectrum.

For WASP-121 b, the 1D and 3D spectra show few differences in the whole wavelength
range using equilibrium chemistry compared to constant chemistry. As shown in Figure D.9,
the abundances of almost every species drastically diminished on the day side, mainly due
to thermal dissociation (Parmentier et al., 2018), with the exception of carbon monoxide
which is only divided by two due to its dilution in an H-dominated day side instead of
a H2-dominated atmosphere. This implies that, on the water bands, the spectrum is not
affected by the day side of the atmosphere because water is almost not present there. That’s
why a 1D model manages to fit the spectrum as shown in Pluriel et al. (2020a). However,
we can see in the residuals of Figure 7.2 that in some bands, the fit is clearly less good than
in the other bands. This is particularly true for the CO bands around 2.5 and 4.5 µm, as well
as for the TiO and VO bands in the visible. As we explained, CO is present on the day side
of the atmosphere, where extreme temperatures induce a scale height far greater than the
scale height of the limbs. Consequently, the 1D model does not represent this behavior well,
resulting in a large difference (around 300-400 ppm) at these regions of the spectrum.

The differences between 1D and 3D for HD189733 b with equilibrium chemistry are
very low, as with constant chemistry. Indeed, we see in Figure D.8 that the main species such
as H2O, CH4, CO2, and NH3 do not display strong longitudinal variations. In addition, we
have shown before that due to similar scale height, there is no significant impact comparing
1D and 3D spectra with constant chemistry. As a consequence, a 1D model at the limb is
equivalent to the 3D model meaning that for such warm atmospheres, we are probing near
the limb.
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Figure 7.2. Transmission spectra simulated with Pytmosph3R (Falco et al., 2022) for HD189733 b
(top), WASP-121 b (middle) and GJ1214 b (bottom). Each panel compares two transmission
spectra based on a 1D and a 3D atmosphere, respectively in dashed and solid lines. Left panels:
constant input chemistry. Right: equilibrium input chemistry. The differences between the 3D
and the 1D spectra are plotted below each panel in grey.
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7.3.2 Cloud effect

Even if we have good reasons to think that cloud decks are present in many exoplanets (Par-
mentier et al., 2016; Tsiaras et al., 2018), each atmospheric model used in this study, 1D or
3D, for the three planets, is cloudless. It would be interesting to add clouds in the simula-
tions, in particular, because they affect the short wavelengths observed by JWST and Ariel.
However, the aim of this study is to see the impact of chemical and thermal 3D effects on
the transmission spectra and how to deal with these 3D effects in the context of atmospheric
characterization using 1D retrieval models. For this reason, we chose to not over-complicate
our models. Clouds would require a dedicated chapter. Clouds are nevertheless part of the
retrieval parameters in the TauREx model. This can break up possible degeneracies (Pluriel
et al., 2022; Changeat et al., 2020b), and we verified that the model works correctly by
not retrieving a cloud layer when we knew that none was implemented. For each retrieval
performed, the Bayes factor has always privileged a cloudless model, and in the retrievals
assuming clouds, the cloud deck was always pushed near to the surface pressure thus without
impact on the spectra. We thus decided not to present retrievals including clouds in this
chapter as they bring no more information compared to cloudless retrievals.

7.3.3 What if atmospheres are 1D?

We used the theoretical 1D atmosphere (see Section 7.1.1 for construction) to check the
correct behavior of the 1D retrieval code. We remind that the 3 planets have been chosen
to study the retrieval biases depending on the effective temperature of the planets, from
warm Neptune to ultra-hot Jupiter. Also, the chemical construction with a constant profile or
equilibrium chemistry has been considered to unravel the retrieval biases from temperature
(constant chemistry) and chemistry (equilibrium chemistry). To do so, Free retrievals
(constant chemistry) and equilibrium retrievals are both performed for each configuration
(more details Section 7.2.3).

Figure 7.3 and Table D.2, D.3, D.4 shows that for all configurations the best retrieval
is consistent with the input model configuration. This means that Free retrievals fit better
input constant chemistry and equilibrium retrievals fit better input equilibrium chemistry.
However, the best retrieval is not always more significant than the others and the equilibrium
retrieval models are not all adapted for the different configurations. Figures D.1, D.4, D.5
and D.6 show that the temperature and species profiles are mostly not well retrieved below
the probed altitudes (deeper than ∼ 102 Pa). This part of the atmosphere does not contribute
to the features of the spectra, which explains why they are not well retrieved. However,
the retrieved values could be well constrained while the input values are often outside the
uncertainty. Thus, we cannot trust the retrieved profiles of the lower atmosphere.

7.3.3.1 Temperate-Warm planet: GJ1214 b

The best retrieval is consistent with the input model configuration and significantly better
than the other models with ∆logE≥ 19 for constant input chemistry and ∆logE≥ 7 for
equilibrium input chemistry (Figure 7.3 and Table D.2).

• Constant input chemistry: For lower pressure than ∼ 102 Pa (high altitudes), Free re-
trieval shows a significantly better retrieved temperature profile within 60 K compared
to the input profile (Figure D.1). The main absorber CH4 is retrieved by the Free
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Figure 7.3. Bayes factors for each retrieval (Free, ACE, FastChem and GGchem). By definition, we
put at 0 the retrieval with the lowest Bayesian evidence as it is the reference of the comparison.
Left panels: constant input chemistry. Right: equilibrium input chemistry. Top and middle:
JWST simulated observation for atmospheric 1D and 3D assumption respectively. Bottom:
Ariel simulated observation for a 3D atmospheric assumption. The star represents the highest
Bayes factor. The expected best retrieval is highlighted in bold.
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retrieval within 22% deviation while H2O, CO2 and NH3 giving secondary features
are retrieved within 29% deviation (Figure D.4). This allows the best model to be
significantly in agreement with the input model even if not all input profiles are
included in the uncertainty.

• Equilibrium input chemistry: For lower pressure than ∼ 102 Pa, all retrievals give the
same temperature profile within 90 K of the input model (Figure D.1). All retrievals
also give the same main absorber profiles (CH4 and H2O) below ∼ 102 Pa, where the
input equilibrium chemistry is constant at these temperature and pressure conditions
(Figure D.4). However, ACE is better at retrieving NH3 profile, which varies by 4
orders of magnitude and contributes at 3 µm, which makes ACE the best model in
agreement with input ACE chemical composition. We can highlight that Free and
ACE retrievals prefer to retrieve at least 104% more CH4 and down to 32% less H2O
than input values to better fit the spectrum, with input values out of the uncertainty.
FastChem displays some discrepancies with ACE, as pointed out in Al-Refaie et al.
(2022a) when using an isothermal profile. ACE fits better than FastChem which is
consistent with input ACE composition. However, none of the equilibrium models
can reproduce the input composition. The metallicity is retrieved by ACE within 19%
and the C/O ratio only at 96% deviation to the input value. While FastChem, which is
not considered the best retrieval, has a closer value to input for C/O ratio (76%) and
metallicity (9%) (see Table D.2 and Figure D.10). It shows that even at these "low"
temperatures we already have difficulties to perfectly retrieve the input model.

To summarize for GJ1214 b: the retrievals work well on the temperature, but not
without some biases on the chemistry. Constant chemistry and 1D temperature profiles are
retrieved by Free retrieval within 29% deviation. However, even at such "low" temperatures,
equilibrium input chemistry is best retrieved by equilibrium models because of species
with strong vertical variations (here NH3). In addition, TauREx not only has difficulty in
accurately retrieving the C/O ratio and the metallicity (respectively 96% and 19% deviation
for the best model ACE), but also the values closest to the input are not retrieved by the
more significant model ACE, despite the fact that the best retrieval ACE is consistent with
the input ACE equilibrium chemistry.

7.3.3.2 Warm-hot planet: HD189733 b

The best retrieval is consistent with the input model configuration and significantly better
than the other models with ∆logE≥ 2536 for constant input chemistry and ∆logE≥ 200 for
equilibrium input chemistry (Figure 7.3 and Table D.3).

• Constant input chemistry: For lower pressure than ∼ 102 Pa (high altitudes), Free
retrieval shows a significantly better fit of the temperature profile within 150 K
compared to the input profile (Figure D.1). However, the abundance of the main
absorbers CH4, H2O, NH3, TiO, and VO, are overestimated by 70 to 130%. This
remains a better fit compared to equilibrium chemistry retrievals that show strong
vertical variation in these temperature-pressure conditions (Figure D.5).

• Equilibrium input chemistry: For lower pressure than ∼ 102 Pa, Free and FastChem
retrievals overestimate the temperature profile by more than 250 K while ACE and
GGchem stay mostly within 250 K deviation from the input values. However, these
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two chemical models underestimate the temperature in the upper atmosphere by more
than 500 K (Figure D.1). In this peculiar configuration, with warm-hot temperature,
molecules such as TiO, VO, and K are close to their condensation temperature.
Compare to the isotherm configuration of Al-Refaie et al. (2022a), condensation
occurs at mid and high altitudes where the temperature is lower than in the deep
atmosphere. Thus, a strong bias occurs with FastChem where it considers these
molecules but not their condensates. Therefore, FastChem cannot retrieve properly
this configuration where TiO, VO, and K have strong features in the visible while they
should not be because of their condensation, Figure D.1 shows a wrong temperature
profile, Table D.3 shows wrong retrieved parameters and Figure D.5 shows wrong
species profiles. Thus, GGchem, which considers condensation of these species,
should in theory solve this issue but it surprisingly does not. It shows a better fit
for the temperature profile and species abundances with regards to FastChem. But
still, it does not manage to give a consistent abundance of K, overestimated by a
factor of 2, and shows a strong feature in the visible which bias all the spectra,
since all chemical abundances are correlated. This is explained by the discrepancy
between the K abundance calculated by GGchem and the input abundance calculated
by Parmentier et al. (2016). Al-Refaie et al. (2022a) found a good agreement between
ACE, FastChem, and GGchem because the same molecules are considered in the three
models. However, we show here chemical discrepancies between the two models,
illustrating that using imperfect chemical models with regards to what is actually
observed leads to biased interpretations. ACE, which considers only C, H, O, and N
atoms, ends up giving the best-fit model by getting rid of TiO, VO, and K condensation
issues. The retrieved thermal profile is similar to the one retrieved by GGchem but the
main absorber H2O is now perfectly constrained under 1% deviation (see Figure D.5).
All these biases can be seen in Table D.3 and Figure D.11 on the C/O ratio and the
metallicity. FastChem model is far from input values while ACE has a 24% deviation.
Furthermore, even if the Free is not the more significant model, it is closest to input
values.

To summarize for HD189733 b: the retrievals work well on the temperature for constant
input chemistry (within 150 K) but for equilibrium input chemistry they begin to show
difficulties in retrieving the top of the atmosphere (underestimated by 500 K), as well as
the bottom of the atmosphere. Only the pressures corresponding to the highest atmospheric
contribution (between ∼ 102 and ∼ 100 Pa) are well retrieved (within 250 K). In addition, we
encounter even more chemical abundance bias compared to GJ1214 b. Constant chemistry
profiles are best retrieved by the Free retrieval model (which is consistent) with an overesti-
mation of 70 to 130%. Due to the strong vertical variation, the equilibrium configuration is
better retrieved by an equilibrium model (ACE), which is not the expected one (GGchem),
but which fits very well the main absorber H2O under 1% deviation. However, the study
performed on this planet shows all the limitations of the 3 chemical equilibrium models for
retrievals. At this temperature, the role of condensates (such as TiO, VO, and K here) is es-
sential with their feature in the visible. The discrepancies between the K chemical modeling
of GGchem and the K chemical modeling of Parmentier et al. (2016), bias GGchem retrieval.
This is a good example of what can be encountered when fitting observations with a model
that does not perfectly reproduce the true chemistry. The C/O ratio and the metallicity are
well retrieved by ACE (best model) but not as well as Free. Our results show that we can
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retrieve values closest to input with a model statistically not favored.

7.3.3.3 Ultra hot planet: WASP-121 b

The best retrieval is consistent with the input model configuration and significantly better
than the other models with ∆logE≥ 434 for constant input chemistry and ∆logE≥ 71 for
equilibrium input chemistry (see Figure 7.3 and Table D.4). We observe a higher overall
uncertainty in the retrieved temperature and chemical species profiles compared to the other
two planets. The very hot temperature coupled with a sharp day-to-night gradient brings a
complexity that is more difficult to retrieve with a simpler model.

• Constant input chemistry: in the upper atmosphere, the retrieved thermal profiles
are either overestimated or underestimated by ∼ 1000 K (Figure D.1). This is far
from the input temperature profile (∼ 50% deviation). However, close to a pressure
corresponding to the highest atmospheric contribution, between ∼ 102 and ∼ 100 Pa,
retrieved profiles remain within 500 K (less than 25% deviation), while the best model
(Free) is not significantly better. The abundance of the main absorbers H2O, CH4 and
TiO, FeH in the visible, are overestimated at 66 to 95% for the Free retrieval (best
model). Despite these high values, this is still a better fit than equilibrium chemistry.
The strong vertical variation in equilibrium chemistry under these temperature and
pressure conditions cannot match the constant input chemistry (see Figure D.6).

• Equilibrium input chemistry: we observe here the same behavior as constant input
chemistry for the retrieved temperature profiles (see Figure D.1). There is less than a
10% deviation between ∼ 102 and ∼ 100 Pa for the best retrieval GGchem, but the
retrieved profiles are mostly erroneous outside this range (reaching more than 50%
deviation). Considering the strong temperature gradient between ∼ 102 and ∼ 100 Pa,
we observe the same behavior as HD189733 b regarding the condensation of species
such as TiO, VO, and K. This makes GGchem a better model than FastChem in this
case, as shown in Figures 7.3, D.6. Although GGchem gives the best fit, none of
the retrieval models fit all the main absorbers H2O, TiO, CO2, CO, and VO better
than the others. The Free retrieval is better for H2O and CO2, while GGchem is
better for the other absorbers (despite a strong deviation for both models, reaching
200%). In addition, the best model, GGchem, retrieves an erroneous C/O ratio with a
deviation of 80% and an erroneous metallicity with a deviation of 530%. In contrast,
the Free model ends up giving values close to the input within 13% (see Table D.4
and Figure D.12). Thus, all the models retrieved different parts of the input, but none
of them obtained the entire structure.

To summarize for WASP-121 b: the retrievals perform poorly outside the pressures
corresponding to the highest atmospheric contribution (between ∼ 102 and ∼ 100 Pa). Due to
strong large-scale vertical variation in temperature and species, 1D temperature profiles for
constant and equilibrium chemistry are best retrieved at only 25% between ∼ 102 and ∼ 100

Pa. Constant input chemistry is best retrieved by Free retrieval, overestimated by 66–95%,
and equilibrium input chemistry is best retrieved by GGchem retrieval, but with a deviation
reaching ∼200%. The retrieval models are consistent with the input configurations, but not
without bias on absolute values. GGchem retrieves the wrong C/O ratio and metallicity,
while the Free model is within 13%. The strong vertical gradient on a large scale brings a
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complexity that is difficult to retrieve correctly with a simpler model, which also translates
into greater uncertainty in the retrievals.

7.3.3.4 Summary

The theoretical 1D analysis validates the consistency of the 1D retrievals, but not without a
few biases. This shows that we can trust neither the retrieved parameters below the probed
altitudes (as well as at the top of the atmosphere when moving towards hotter planets), nor
the uncertainties given, which are largely underestimated.

Furthermore, equilibrium chemical models are not equivalent and give significantly
different results:

• ACE cannot retrieve ultra-hot planets whereas it might be a better approximation for
cooler planets.

• FastChem is biased towards warm, even hot planets, where species are close to or
below condensation temperature. This is never the best retrieval model.

• GGchem, which should be a complete model, will still be in competition with a
simplified model for cold and warm planets. Apparently the best option for hot
planets, but Free retrieval can give better retrieved values.

We need to be careful with equilibrium models. Our study shows that if one part of the
chemistry modeling is wrong, all the chemical abundances will be biased since everything is
correlated. This agrees with the conclusion of Al-Refaie et al. (2022a) using an isotherm
configuration.

7.3.4 But atmospheres are 3D!

7.3.4.1 Constant chemistry

Given the 3D thermal structure, we used theoretical atmospheric models with constant
chemistry (see Section 7.1.2) to disentangle the 3D effects of temperature without being
biased by chemistry. Section 7.3.3 confirms the overall correct behavior of the retrieval code
or highlights any biases we may encounter. So, we can be confident in this approach to focus
on thermal 3D effects. To this end, Free retrievals (constant chemistry) and equilibrium
retrievals are performed for each configuration (more details in Section 7.2.3). The aim is
also to compare the biases of the JWST and Ariel instruments.

Figure 7.3 shows that the Free retrieval finds the best solution compared to equilibrium
chemistry (except for GJ1214 b in the Ariel configuration). This is consistent with the input
constant chemistry. For GJ1214 b in the Ariel configuration, ACE retrieval has a better
Bayes factor but within 1.5 deviations compared to the others. Therefore, all models are
statistically equivalent and none is preferred. We observed a stronger deviation of the Bayes
factor for the JWST configuration compared to the Ariel one. This could simply be due to
the higher resolution on a larger wavelength range for the JWST configuration or this may
be linked to some particular wavelength band such as the lack of data points in the visible
for the Ariel configuration where strong features for hot planets (such as TiO, VO, and K)
are located.
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7.3.4.1.1 Temperate-Warm planet: GJ1214 b All retrieval models for the Ariel spec-
trum are within a Bayes factor deviation of 1.5 which makes all models equivalent (see
Table D.2). However, the JWST spectrum is better retrieved by the Free retrieval with
∆logE= 33 compared to the second-best model. The higher resolution of the JWST spec-
trum, compared to the Ariel spectrum, gives more constraints on H2O and CH4 features
at low wavelength (between 1 and 2 µm), but probably also at higher wavelength (above
4 µm). Yet, this does not translate to closer-to-truth retrieved profiles, although the retrieved
uncertainties are smaller. Figure D.2 and D.3 show consistent inputs and retrieved tempera-
ture profiles for GJ1214 b. At low altitudes (deeper than ∼102 Pa) there is high uncertainty
because these altitudes are not probed. Higher in the atmosphere (probed altitudes), the
temperature day-night variation is within 300K and all models retrieve the limb profiles.
H2O and CH4 are responsible for the main features of the spectra. Both retrieved values
of the Free retrieval are around 20% lower than the input. For the JWST spectrum, the
uncertainty is lower but the input value is not within the uncertainty. While, for the Ariel
spectrum, the CH4 input value is within the uncertainty. Thus, even with more data point,
the retrieved chemical abundances is not closer to the input and the uncertainties cannot be
trusted.

7.3.4.1.2 Warm-hot planet: HD189733 b The best retrieval (Free) is consistent with the
input model configuration and significantly better than the other models with ∆logE≥ 3048
for the JWST spectrum and ∆logE≥ 34 for the Ariel spectrum (see Figure 7.3 and Table D.3).
Discrepancies between retrieval models are the same as those explained in Section 7.3.3.
Figure D.2 and D.3 show that the biases on the temperature profiles are the same as in
Section 7.3.3. Temperatures retrieved below ∼ 102 Pa correspond mainly to those of the
limb. For the Ariel spectrum, the temperature is slightly warmer, but the solution for
the JWST spectrum remains within the Ariel uncertainties, which are significantly higher.
Equilibrium chemistry cannot reproduce the constant input chemistry, while Free retrieval
gives consistent results but not without significant deviation (between 26% to 134%). Even
with a variation of less than 500 K between day and night side, only temperature variation
can bias the retrieval of species abundances. While VO is detected in the JWST spectrum, it
is not in the Ariel spectrum. Retrieved uncertainties on the Ariel spectrum are larger than on
the JWST spectrum. However (and to the exception of VO) the same molecules are detected
with both observatories. The lack of detection of VO with Ariel is due to the coarser spectral
resolution in visible light which is still sufficient to detect TiO.

7.3.4.1.3 Ultra hot planet: WASP-121 b The best retrieval (Free) is consistent with the
input model configuration and significantly better than the other models with ∆logE≥ 1310
for the JWST spectrum and ∆logE≥ 60 for the Ariel spectrum (see Figure 7.3 and Table D.4).
Discrepancies between retrieval models are the same as those explained in Section 7.3.3.
Figure D.2 and D.3 show that the Free retrieval (best model) finds a temperature at the
top of the atmosphere higher than the input model, and a temperature at the bottom of the
atmosphere lower than the input model. The temperature transition occurs in the atmosphere
where species absorption contributes the most, around ∼ 102 Pa. The temperature gradient
is steep, crossing all possible temperatures from day to night side. The chemical abundances
of the main absorbers H2O, TiO, FeH, VO, CO are retrieved between 44% and 100% for
the JWST spectrum and between 48% and 100% for the Ariel spectrum, with the exception
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of TiO with a deviation of 7% from the input value. However, TiO feature does not match
the input spectrum for both JWST and Ariel configurations. The retrieved spectra are
outside the uncertainties, by several sigma. The much higher JWST resolution in the visible
compared with Ariel surprisingly does not provide better constraints on TiO. While we
already encounter difficulties in retrieving input values with a 1D atmosphere, the huge
temperature gradient between day and night brings even more biases. The end result is a
temperature from both the day and night sides that does not allow the retrieval models to
find input spectra and species profiles. There is not even thermal inversion retrieved by the
best model.

7.3.4.1.4 Summary The conclusion in Section 7.3.3 remains the same in 3D. Secondly,
using for retrievals a 4-point temperature profile gives good results for the cooler planets but
not for hotter ones, which need at least 2D retrievals, as has already been pointed out in more
detail by Pluriel et al. (2022). The higher resolution of the JWST spectrum, particularly
in the visible, reduces uncertainties but does not provide a better fit. In addition, the input
values will be out of uncertainty, making them unreliable. The lower atmosphere is still
poorly retrieved, especially as we move towards hotter planets. Nevertheless, this is still a
good detection of input species. Finally, the low resolution in the visible wavelength range
of the Ariel spectrum has missed the detection of the visible absorber VO but never TiO
with a retrieval similar to that of the JWST spectrum.

7.3.4.2 Equilibrium chemistry

Here the 3D thermal structure, as well as equilibrium chemistry, are considered as input.
Considering the conclusion of Section 7.3.3 and 7.3.4.1, this will highlight biases due to the
variability of chemical abundances in the atmospheres of warm to ultra-hot planets. Sec-
tion 7.3.4.1 has already shown the temperature biases from the 3D structure. As previously
done, Free retrievals (constant chemistry) and equilibrium retrievals are both performed for
each configuration (more details in Section 3.3).

Figure 7.3 shows that the equilibrium retrievals always find the best solution compared to
Free chemistry (except for the WASP-121 b JWST configuration). This is consistent with the
input equilibrium chemistry. The retrieval models of the Ariel spectrum have less deviation
from each other than the JWST spectrum. This is due to the lower spectral resolution across
all wavelength bands, but particularly in the visible bands. Between visible and infrared
the chemical species contributing to the spectral signatures are different, TiO, VO, and K
against H2O, CH4, CO2, CO, and NH3. If we try to retrieve both parts at the same time,
both will be biased, as the signature may come from different parts of the atmosphere, at
different temperatures.

7.3.4.2.1 Temperate-Warm planet: GJ1214 b The ACE model provides the best fit to
both JWST and Ariel spectra with ∆logE≥ 10 and ∆logE≥ 5 respectively (see Table D.2),
which is consistent with the ACE input chemistry modeling. Figure 7.3 also shows that
the JWST spectrum is secondly best retrieved by the Free model, while the Ariel spectrum
is secondly best retrieved by the FastChem model. FastChem’s retrievals poorly fit the
CO and the visible bands, because of the chemical modeling differences with the input
ACE chemistry modeling. Retrievals on the Ariel spectrum circumvent this issue thanks
to its low spectral resolution in visible light. The main difference from the previous input
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configuration is that the equilibrium chemistry results in a strong dichotomy of CO2 between
the day and night side (see Figure D.7). As a result, the retrieved temperature profiles
correspond to the day side (see Figure D.2 and D.3). Table D.2 and Figure D.13 shows that
the temperature bias on the day side still keeps a good agreement on the C/O ratio and the
metallicity retrieved, within 20%.

7.3.4.2.2 Warm-hot planet: HD189733 b The ACE model retrieves the JWST spectrum
much better than the other models with ∆logE≥ 208, as already explained in Section 7.3.3.
However, the Ariel spectrum is equivalently retrieved by ACE and GGchem (Figure 7.3
and Table D.3), again due to the lack of constraint in the visible wavelength bands where
discrepancies between chemical models appear. ACE is as significant as GGchem, but
Table D.3 and Figure D.14 show that GGchem better retrieves the C/O ratio and metallicity.
Figure D.3 shows that the temperature at the top of the atmosphere is unconstrained by the
huge uncertainty. This part of the atmosphere, therefore, makes no significant contribution
to the features of the spectra. In contrast, Figure D.2 shows that increasing resolution
adds an erroneous constraint on the temperature of the top of the atmosphere. Only the
temperature around pressures corresponding to the highest atmospheric contribution (around
∼ 102 Pa), is consistent between equilibrium models and the input temperature profiles.
The temperature retrieved at these pressures is that of the limb. Figure D.8 shows a good
agreement between the retrieved species profiles.

7.3.4.2.3 Ultra hot planet: WASP-121 b The GGchem model retrieves the Ariel spec-
trum better than the other models with ∆logE≥ 7, as already explained in Section 7.3.3.
However, the JWST spectrum is better retrieved by the Free model with ∆logE≥ 52 (see
Figure 7.3 and Table D.4). Table D.4 and Figure D.15 show that GGchem retrieves for Ariel
configuration the C/O ratio very well at 5% but not the metallicity (75% deviation), while for
JWST configuration it is higher than 44% considering all retrieval models. The high spectral
resolution of JWST imposes too tight constraints on the thermal contrast and thus, on the
chemical distribution. This shows that such a contrasted atmosphere cannot be retrieved by
a 1D model with correlated chemistry. However, the higher degree of freedom of the Free
retrieval allows a better match. The temperature profiles retrieved between the Free model
and the GGchem model are similar (within 500 K below 104 Pa, see Figure D.2 and D.3).
The conclusions on temperature biases are the same as for HD189733 b. But Figure D.9
shows that species abundances are more difficult to retrieve.

7.3.4.2.4 Summary In addition to the previous biases from Section 7.3.3 and 7.3.4.1, the
biases coming from the chemistry show that, even on a warm planet, it would make sense to
fit the different molecular features separately to disentangle the temperature variation that
brings chemical variability. Otherwise, using a 1D retrieval model will bias all different
spectral contributions. Furthermore, only the pressure where the contribution is highest
should be considered as a significantly good retrieval of the observation. The rest should be
treated with caution. All models remain good at detecting input molecules.
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JWST Ariel

1D 3D

constant equilibrium constant equilibrium constant equilibrium

GJ HD WASP GJ HD WASP GJ HD WASP GJ HD WASP GJ HD WASP GJ HD WASP
Species detection ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C/O × ∼ × ✓ ∼ × ✓ ✓ ✓
Metallicity (Z) ✓ ✓ × ✓ ∼ × ✓ ✓ ×

Top of the atmosphere [∼ 100 Pa - ∼ 10−4 Pa]
Temperature profile ✓ ✓ × ✓ × × Limb Night × Day × Night Night Day × Day Day Day
Chemical profile ✓ ∼ ∼ ✓ ∼ × ✓ ∼ ∼ Day × × ✓ ∼ ∼ Day Day ×

Middle of the atmosphere [∼ 102 Pa - ∼ 100 Pa]
Temperature profile ✓ ✓ ∼ ✓ ✓ ✓ Limb Day Limb Limb Limb Limb Limb Day Limb Limb Limb Limb
Chemical profile ✓ ∼ ∼ ✓ ✓ ∼ ✓ ∼ ∼ Limb Limb × ✓ ∼ ∼ Limb Limb ×

Bottom of the atmosphere [∼ 106 Pa - ∼ 102 Pa]
Temperature profile ∼ × × × ✓ × ✓ × × ✓ Night Night ✓ × × ✓ × ×

Chemical profile ✓ ∼ ∼ × ✓ ∼ ✓ ∼ ∼ × ∼ × ✓ ∼ ∼ ✓ × ×

Table 7.4. Overview of the ability of the best retrievals to recover the input values. For species detection, C/O ratio, metallicity (Z), and chemical profiles, it
focuses only on the main absorbers. The temperature and chemical profiles are split depending on the region of the atmosphere, where around the highest
atmospheric contribution (between ∼ 102 Pa and ∼ 100 Pa) the atmosphere is globally well retrieved, contrary to the bottom of the atmosphere (between
∼ 106 Pa and ∼ 102 Pa). See Section 7.3.3 and 7.3.4 for more details on the specific biases.
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Chapter 8
Proposed Observations

A defining moment in the field has been the recent launch and start of the scientific operations
of the James Webb Space Telescope (JWST), coinciding with my “coming of age” as a Ph.D.
student in my second year. Soon after, at a specialization course on exoplanet atmospheres1,
we were challenged to write a proposal to observe exoplanets using the JWST, inspired by
the observing time awarded in Cycle 1 General Observers (GO). Teamwork and a compelling
target were of the essence. I teamed up with fellow student Jiří Žák to take on this challenge,
identifying the young multi-planet system TOI-942 as an enticing target. Section 8.1 reports
the scientific and technical justification given in Cycle 2 GO. The idea being to leverage
the exceptional infrared sensitivity and photometric stability of the JWST to carry out a
comparative study of disequilibrium chemistry in TOI-942’s two Neptune-like planets early
in the era of stellar erosion.

While waiting for the outcome of the referee process, we decided to complement this pro-
posal with ground-based, high-resolution observations with the Very Large Telescope (VLT).
Targeting the same system, we submitted two more proposals in European Southern Obser-
vatory (ESO) Cycle P112. Section 8.2 details the proposed observation with the Echelle
SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO) to
constrain the dynamical evolution of the system. The state-of-the-art ESPRESSO is essential
to improving current measurements taken with the High Accuracy Radial velocity Planet
Searcher for the Northern Hemisphere (HARPS-N). On the other hand, Section 8.3 reports
the proposal to use the CRyogenic high-resolution InfraRed Echelle Spectrograph (CRIRES)
to study the atmospheric escape of the highly irradiated Neptunes.

* * *

This chapter aims to show that, by strategically interconnecting these cutting-edge
facilities from ground and space, we can comprehensively probe the atmospheres and
evolution of the TOI-942 planets. Only the CRIRES proposal was scheduled for observation
at the time of writing. The JWST proposal was graded in the second quintile, with only
the first quintile being awarded observing time. The referee pointed to minor weaknesses
related to the current knowledge of the masses and eccentricities while praising the overall
scientific merit of the observations and instrument choice. These issues are currently being

1Exo-Atmospheres Summer School in Les Houches

https://exo-atmospheres.sciencesconf.org/?forward-action=index&forward-controller=index&lang=en
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addressed using several years’ worth of HARPS-N now public data, and an updated proposal
is being prepared for Cycle 3 GO at the time of writing. The ESPRESSO proposal was in
the second quartile, which we will resubmit targeting a late 2024 transit of TOI-942 c.

During my doctoral work, I have contributed to several additional observing proposals
as Co-Investigator: 1 for HST in Cycle 31, 1 for ESPRESSO in Cycle P113, and 4 for JWST
in Cycle 3 GO. These proposals are not discussed in this chapter for brevity. However, the
experience I gained from these collaborations has been invaluable in shaping my scientific
interests and future research directions.

8.1 JWST Cycle 2 GO (PI)
A comparative study of disequilibrium chemistry in the at-
mospheres of very young Neptunes

8.1.1 Scientific Justification

8.1.1.1 Background information

The formation of planetary systems and the origins of life are among the early science
motivations (McElwain et al., 2023) of the James Webb Space Telescope (JWST). With
the discovery of more than 5000 exoplanets, a deeper understanding of the true nature of
exoplanets and their formation-evolution histories is finally within reach.

Planetary atmospheres are unique windows into the interior composition of planets,
which holds the record of how and where they formed. At the same time, they connect the
planet to its host star and are shaped by the stellar environments. Transiting exoplanets
provide detailed access to their atmospheres, as the signals from the planet and the host
star can be effectively separated (Sing, 2018). In this respect, multiband photometry and
spectroscopy of transiting exoplanets are currently the most promising techniques for charac-
terizing exoplanetary atmospheres (Madhusudhan, 2019). However, studies of atmospheric
composition and thermodynamics have been limited in sensitivity and spectral range (Bean
et al., 2018; Birkmann et al., 2022). JWST, with its broad spectral coverage and unprece-
dented sensitivity and stability, is already revolutionizing exoplanetary science (Ahrer et al.,
2023; Alderson et al., 2023; Greene et al., 2016; Fu et al., 2022; Rustamkulov et al., 2023;
Tsai et al., 2023a). JWST allows detailed studies of the composition and thermodynamics
of exo-atmospheres and of fundamental processes shaping the atmospheres such as dise-
quilibrium chemistry, mass loss, and thermal heating (Komacek et al., 2022; Roudier et al.,
2021; Showman et al., 2020). Understanding these processes is the key to disentangling the
present interaction between the planet and its star, and the formation-evolution history of the
system (Barnes, 2010; Owen, 2020; Rogers et al., 2011; Welbanks et al., 2019).

In the early stages of planetary evolution (first ≈100 Myr), processes such as mass loss
and tidal heating are most influential (David et al., 2016; Ginzburg and Sari, 2017; Owen,
2020; Valsecchi et al., 2015). They shape the subsequent atmospheric properties and the
trends in the observed planetary population (bulk planetary parameters and orbits). Transit
spectroscopy of young planets can characterize these processes (Cridland et al., 2016; David
et al., 2016), thus providing evolutionary links to more evolved systems (Berezutsky et al.,
2022; Kubyshkina et al., 2022a,b). Recently, it has been found that the ratio of C-, O-,
and N-bearing species can be used to probe the interiors of planets and their evolutionary
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history (Cridland et al., 2019; Moses et al., 2011; Pacetti et al., 2022; Schneider and Bitsch,
2021; Turrini et al., 2021). The ratio of CH4/CO2 in particular, because these molecules are
strong absorbers in warm gas giants (Fortney et al., 2020). Their presence is mutually linked
through the temperature as they are the main atmospheric carbon carriers. For instance,
the more abundant CH4, the more depleted CO2 is. As the abundance of methane above
the clouds is independent of metallicity and depends solely on the thermal structure of the
atmosphere, this molecule can be used as an effective “thermometer” (Fortney et al., 2016).
Therefore, methane can probe disequilibrium effects that modify the composition and thermal
structure of the atmosphere. Moreover, multi-planet systems offer us opportunities to test
planetary evolution and migration theories, e.g., the link between migration and composition,
or the formation of compact architectures (Choksi and Chiang, 2020; Krissansen-Totton and
Fortney, 2022; Martioli et al., 2021; Newton et al., 2021; Owen and Campos Estrada, 2020).

Multi-planet transiting systems around young stars (< 100 Myr) are thus ideal labora-
tories for obtaining a comprehensive characterization of extrasolar systems (Weiss et al.,
2022), and can be used to address the following questions: “What is the chemical abundance
of trace gases in the atmospheres of young planets?”, “How can the inferred abundances be
compared to the predictions of theoretical models?”, “What can we learn about their thermal
structure?”, “What are the properties and origin of clouds/hazes, if present?”, and “What
can the chemical abundances in multi-planet systems tell us about the differences in the
formation pathways of the individual planets?”.

8.1.1.2 Program’s goals

We propose to perform transmission spectroscopy of two planets in the TOI-942 system to
probe the molecular composition and the thermodynamical state of their atmospheres. More-
over, we will perform comparative planetology studies on their characteristics, including
their compositional differences, caused solely by the different formation histories.

8.1.1.3 The multi-planet transiting system TOI-942

TOI-942 is a ≈50 Myr old star of spectral type K2.5V that hosts two transiting exo-Neptunes
at close-in orbits. The planets were first discovered by TESS and later confirmed by ground-
based photometric and spectroscopic observations (Carleo et al., 2021; Zhou et al., 2021;
Wirth et al., 2021). Both planets have a mass comparable to that of Neptune and a slightly
larger radius. The inner and outer planets have orbital periods of 4.3 and 10.2 days and
equilibrium temperatures of about 1010 and 750 K, respectively. Detailed information on
the system is presented in Table 8.1.

TOI-942 TOI-942b TOI-942c
V mag 11.982 ± 0.026 Mp (MJup) 0.050 ± 0.020 0.084 ± 0.060
J mag 10.231 ± 0.022 Rp (RJup) 0.409 ± 0.011 0.505 ± 0.011
K mag 9.639 ± 0.023 Period (d) 4.324241 ± 9.2 × 10−6 10.15622 ± 1.8 × 10−5

Ms (M⊙) 0.788+0.037
−0.031 a (AU) 0.0472 ± 0.0007 0.0860 ± 0.0015

Rs (R⊙) 1.022+0.018
−0.020 Teq (K) 1010+26

−19 750+19
−14

Teff (K) 4928+125
−85 Incl. (deg) 89.994+0.050

−0.053 89.696+1.24
−0.65

Age (Myr) 50+30
−20 Ecc. (deg) 0.34+0.10

−0.14 0.32+0.23
−0.16

Table 8.1. Properties of the host star TOI-942 and the exoplanets TOI-942 b and c.
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Figure 8.1. Transmission spectrum of TOI-942c with an atmosphere containing constant vertical
abundances of the trace gases CH4, H2O, CO2, HCN, CO, and NH3, each with a mixing ratio of
10−4, with line lists from ExoMol (Tennyson et al., 2016). Absorption contributions from the
trace gases are shown individually, along with the total contribution from Rayleigh scattering.

Both planets are excellent targets for transmission spectroscopy observations needed
to characterize their atmospheres (Kempton et al., 2018). The molecular signatures of
expected major atmospheric gases, such as H2O, CH4, NH3, CO2, CO, and HCN, are
simultaneously observable only with JWST instrumentation (Figure 8.1), which provides
the necessary wavelength coverage and sensitivity to constrain their abundances with high
confidence (Rigby et al., 2022).

8.1.1.4 Chemical disequilibrium

Often, theoretical models of exo-atmospheres assume a molecular composition given by
chemical equilibrium where the detailed molecular abundances depend solely on the temper-
ature, pressure, and elemental composition. However, this is not always the case (Baxter
et al., 2021; Miller-Ricci Kempton et al., 2012; Roudier et al., 2021; Tsai et al., 2023a).
Chemical disequilibrium is caused by different physical processes such as photolysis from
stellar irradiation, vertical mixing, the presence of clouds/hazes, atmospheric escape, tidal
heating, and circulation mechanisms. These processes affect pressure-temperature profiles
and atmospheric abundances, leading to deviations from chemical equilibrium and a wide
range of inferred atmospheric metallicities (Fortney et al., 2020; Moses, 2014). Warm
exo-Neptunes can be used to probe disequilibrium chemistry: planets with equilibrium tem-
peratures between 650 and 750 K are expected to have CH4-dominated atmospheres (Moses
et al., 2022). However, observations showed increased abundances of CO and CO2 and a
lack of CH4 (Benneke et al., 2019), difficult to explain with current atmospheric models.
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Missing methane was also reported in the atmosphere of a temperate planet (Tsiaras et al.,
2019). Reports of CH4 depletion have become known as the “missing methane problem”.
A possible explanation is an increased internal temperature from tidal heating, enhancing
the CO and CO2 abundances at the expense of CH4 (Fortney et al., 2020).

As listed in Table 8.1, the eccentricities for TOI-942 b and c are 0.34 and 0.32 (Wirth
et al., 2021), quite high for such close-in planets. Thus, we can expect tidal heating due to
eccentricity damping (Agúndez et al., 2014; Leconte et al., 2010; Millholland et al., 2020)
will occur in both planets. For TOI-942b, the ratio between the tidal heat flux and the
energy received from the star is about Ltide/Lirr ≈ 10−2 while for TOI-942c about ≈ 10−3.
In addition to changes in atmospheric chemistry, tides can significantly inflate the radii of
exo-Neptunes when Ltide/Lirr ≥ 10−5 (Millholland, 2019). The total positive energy budget
of the planet is composed mainly of two contributions: the stellar flux and the internal heat
of the planet, which originates from planetary formation and tidal damping (Baraffe et al.,
2010; Millholland et al., 2020). Therefore, placing observational constraints on pressure-
temperature profiles can link the thermal budget of the highly irradiated outer atmospheric
layers and the very interior of the planet.

But how can we measure the effects of disequilibrium chemistry in TOI-942 b and c?
Theoretical models (Fortney et al., 2020) that consider disequilibrium chemistry effects in
planets with comparable equilibrium temperatures show that the abundances of C-, N-, and
O-bearing molecules will have a diverse and complex behavior. For instance, we can use the
CH4/CO2 and CH4/CO ratios from detailed transmission spectroscopy of TOI-942 b and
c as probes to quantify processes responsible for disequilibrium chemistry (Fortney et al.,
2020; Stevenson et al., 2010).

Above the lower, denser layers of the atmospheres of gas giants, generally governed
by chemical equilibrium reactions, different disequilibrium processes become important
at different altitudes. Vertical transport of material can create quenching, where chemical
reactions progressively slow down with altitude until the quenching point is reached and
the chemical profiles become constant (Madhusudhan et al., 2016). Using state-of-the-art
retrieval codes, e.g. (Al-Refaie et al., 2021; Mukherjee et al., 2023), we will measure the
abundances of CH4, CO, CO2, H2O, HCN, NH3 at varying altitudes and by computing
their ratios, we can infer where the quenching point is for different reactions. Another
disequilibrium mechanism in still higher layers is photochemistry, caused by high-energy
photons from the star that photodissociate various chemical compounds. The incoming
stellar flux and spectral distribution strongly depend on the stellar type and age. Hence, for
TOI-942, we expect a considerable flux of extreme ultraviolet radiation to impact the upper
layers of the atmospheres, driving chemical disequilibrium via photodissociation.

SO2 from photochemistry was recently inferred in the upper atmosphere of WASP-39b
using JWST data (Alderson et al., 2023; Rustamkulov et al., 2023; Tsai et al., 2023a).
Given the inverse relationship between planetary mass and bulk metallicity (Thorngren
et al., 2016), it is plausible that SO2 could be present in higher abundances in TOI-942’s
planets. For exo-Neptunes, theoretical predictions (Guzmán-Mesa et al., 2022) of observable
photochemistry products include increased CO and CO2 abundances at the expense of CH4.
Our results from synthetic retrievals (Figure 8.2) show that we will be able to constrain the
abundances of CH4 and CO2 to 2 orders of magnitude below the expected equilibrium values.
Furthermore, Moses et al. (2011) predicts that HCN is formed via photodissociation of NH3
and recombination with C atoms from CH4. In cool to moderately warm gas giants, HCN
has extended vertical distribution and high abundances (MacDonald and Madhusudhan,
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Figure 8.2. Synthetic spectrum of TOI-942b for one transit, with an atmosphere containing the
trace gases CH4, H2O, CO2, NH3, and HCN, each with a vertical mixing ratio of 10−4. The
spectrum was binned to R=100, and scattered with errorbars from PandExo (Batalha et al., 2017).
The fully saturated region is masked and does not affect the retrieval results significantly. The
marginalized posteriors for each molecule show that we can retrieve the input abundances with
high confidence (the retrieved values are well within 1-σ from the true values).

2017) and thus could be a candidate for detection on planet c.

8.1.1.5 Aerosols

The presence of aerosols has been inferred in the atmospheres of exoplanets (Chachan
et al., 2019; Kreidberg et al., 2014; Wakeford et al., 2017); however, their true nature is
still not fully understood (He et al., 2023). Possible candidates include mineral condensate
clouds (Helling et al., 2020) and hazes based on sulphur or hydrocarbon precursors (Adams
et al., 2019). Both clouds and hazes mute the strength of spectral features. Clouds damp
the features more uniformly (Wakeford and Sing, 2015) while hazes produce a detectable
slope in the visible to near-infrared part of the transmission spectrum (Helling, 2019). Haze
formation is strongly linked to the UV radiation received from the host star (Kawashima
and Ikoma, 2019). Kawashima et al. (2019) investigated transmission spectra of warm
exo-Neptunes with JWST in the presence of strong hydrocarbon hazes and concluded that
several strong molecular features would still be accessible in the near-infrared beyond
≈2 µm. Constantinou et al. (2023) recently emphasized the need for retrievals that include
the contribution of aerosols. By obtaining transmission spectra with JWST for both planets,
we will characterize hazes and clouds (if present) with high confidence from the spectral
slope at short wavelengths (below 1.1 µm) and the strength of the features and compare
their properties with theoretical calculations and previous observations in the literature. We
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will be able to consistently test models that predict aerosol formation in different stellar
environments for exo-Neptunes by directly comparing their predictions to the observations.

8.1.1.6 Distinct evolutionary paths of TOI-942b and TOI-942c

We will perform comparative planetology of the two exo-Neptunes and search for similarities
or differences in the formation histories through their composition. For instance, we can
address the following questions: “Did both planets form in the same compositional region
of the proto-planetary disk?”, and “Did TOI-942c form instead farther away, and the current
compact architecture is the result of convergent migration of the two planets?”. The high
eccentricities of TOI-942 b and c (see Table 8.1) indicate that the dynamical history of the
system has been significantly more violent than that of the solar system (Carleo et al., 2021).
Combined with the fact that their orbital configuration is currently stable, this suggests that
the system underwent a phase of dynamical instability in its past. The young age of the
system offers the unique opportunity of studying the product of dynamical instability before
the interactions with the star alter the atmospheric composition of one of the planets.

Both planets are found within the Neptunian desert (Mazeh et al., 2016; Szabó M et al.,
2023) (see Figure 8.3). They are expected to have a detectable mass loss, which is one of
the possible shaping mechanisms of the desert (Demangeon et al., 2018). However, due to
their different orbital separations, they are predicted to have distinct evolutionary paths. The
mass loss of TOI-942b should be strong enough to strip the atmosphere of the planet, which
will bring the planet out of the desert, with only the stripped core remaining. In contrast, it
should not be sufficient to remove the atmosphere completely on TOI-942c (Kubyshkina
et al., 2022b). This scenario can be readily tested as part of this program.

8.1.1.7 Stellar activity

Stellar activity introduces a systematic variation in the measured transit depth of the planets,
biasing the inferred atmospheric properties and their physical interpretation. Stellar activity
correlates with spectral type and age (France et al., 2016; Soderblom et al., 1991). Our target
is an early K-type dwarf; thus, stellar activity is expected (Carleo et al., 2021). An attempt
will be made to perform multi-epoch photometric measurements of TOI-942 from ground
for each transit. These observations will be used to characterize the stellar activity (e.g.,
spots and faculae) and to reduce the uncertainty on the stellar SED needed to compute the
transmission model. Even without these measurements, it is possible to reliably recover the
transmission spectrum within the noise level (McCullough et al., 2014) using an approach
such as in (Cracchiolo et al., 2021a,b; Zellem et al., 2017), with the extended wavelength
coverage of JWST that allows for a detailed characterization of the host star.

8.1.1.8 Evolutionary links to older systems

Comparison between TOI-942 and other exo-Neptunian systems holds the key to answering
important questions, such as: “To what extent can stellar irradiation impact the atmospheres
of Neptune-class planets?” and “How does internal heat shape the thermal structure of
their atmospheres and the resulting molecular spectral features?”. The obtained molecular
abundances in the atmosphere of TOI-942b will be directly compared to those of another
Neptune, HAT-P-26b, observed in JWST Cycle 1 GO. While TOI-942b and HAT-P-26b have
a similar type of host star, planetary mass, and equilibrium temperature, HAT-P-26b has
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Figure 8.3. Positions of TOI-942 b and c on the diagram showing the logarithm of the period (in
days) on the x-axis and the logarithm of the planetary radius (in Earth radii) on the y-axis (figure
adapted from (Smith et al., 2021)). Both planets are within the Neptunian desert (Mazeh et al.,
2016), the region to the left of the blue dashed lines. The color scale indicates the number of
planets per grid element.
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a less eccentric orbit and a considerably larger radius. Furthermore, HAT-P-26 is significantly
older, at ≈ 9 Gyr. TOI-942b is expected to have a hotter interior, given its younger age
(shorter internal cooling) and significant eccentricity (tidal heating). We will test this by
comparing the abundance ratios CH4/CO2 and CH4/H2O between the two systems (Fortney
et al., 2020).

8.1.1.9 Program’s significance to astronomy in general

“Understanding the connections between stars and the worlds that orbit them” (National
Academies of Sciences, 2021) and “[. . . ] the conditions for planet formation and the
emergence of life” (ESA, 2015) are science priorities identified by scientists in the USA,
EU and worldwide. While thousands of exoplanets have been discovered to date, spanning a
huge range of the parameter space in terms of masses, sizes and orbits, there is still no certain
link between the presence, size, or orbital parameters of a planet and the stellar environment
in which it has formed and evolved. Planets are the end product of star formation, and the
understanding of their true nature has become a focal point of the astronomical community.
Spectroscopic observations of transiting exoplanets provide us with unique opportunities
to link the chemistry of a planet’s surface and atmosphere to its formation environment.
Moreover, they are essential to understanding whether the stellar type drives the physics and
chemistry of the planet’s birth and evolution. Characterizing planetary atmospheres will
inform us of the planetary composition which, in turn, will tell us about the stellar and disk
environment within which it has formed.

8.1.1.10 Program’s importance to the specific sub-field of astronomy it addresses

By observing two warm exo-Neptunes in the very young (≈50 Myr) system TOI-942 and
obtaining their transmission spectra with JWST, we will characterize their atmospheres
in detail, including their chemical abundances and thermal structure. We will focus on
disequilibrium effects linked to the stellar environment at an unparalleled age. This informa-
tion will enable us to test models of the formation and evolution of exoplanetary systems
and address open questions on underlying processes shaping the observed population of
exo-Neptunes. These observations will lead to a more comprehensive understanding of
the Neptunian desert. The retrieved abundances will shed new insight into atmospheric
chemistry and the “missing methane problem” by revealing the interplay between CH4 and
CO2 at a very young age.

8.1.2 Technical Justification

8.1.2.1 Overall experiment design

We will perform transmission spectroscopy of two exoplanets using JWST time series
observations with the NIRSpec instrument using the PRISM configuration. For each planet,
we will observe one transit and a baseline equal to the transit duration evenly split before
and after the transit event to ensure proper analysis and detrending of the light curve.

8.1.2.2 Selection of instrument, modes, exposure times

Given the magnitude of the star (Jmag = 10.23) and the need for broad wavelength coverage,
we select the NIRSpec PRISM. This setup allows observing the wavelength range from 0.6
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to 5.3 µm continuously. This spectral range covers prominent molecular bands (Figure 8.1),
as well as strong atomic features such as the Balmer alpha, the potassium doublet and the
helium triplet. Our scientific case cannot be satisfied by other facilities, either ground-based
(due to telluric contamination) or from space (given the limited wavelength range and
sensitivity of other telescopes). The resolution of the NIRSpec PRISM is R≈100. This
allows sampling molecular bands with several data points and also detecting strong atomic
features (Rustamkulov et al., 2023).

We used the JWST Exposure Time Calculator and the ExoCTK website to finalize our
modes and exposure times selection. For NIRSpec, we select the 1.6 x 1.6 fixed slit aperture
with the Bright Object Time Series mode optimized for transiting exoplanets, enabling high
photometric precision time-series spectroscopy. We have chosen the SUB512 subarray as it
provides faster read-out time, saturates fewer pixels and also contains un-illuminated pixels
in the trace that may be used as reference pixels to correct for 1/f noise (Rustamkulov et al.,
2023; Schlawin et al., 2020).

For both planets, we select five groups per integration to maximize the duty cycle while
avoiding unnecessary saturation. We reach an observing efficiency of 79 %. Over the course
of the transit plus the time-base out-of-transit, a total of 18370 and 23162 integrations will
be taken for TOI-942 b and c, respectively. We acknowledge that a portion of the spectrum
will be saturated. We can retrieve the signal from the partially saturated pixels as shown
in Rustamkulov et al. (2023); however, our science case is feasible even without it. Our
synthetic retrievals (Figure 8.2) show that the NIRSpec PRISM is superior (based on the
retrieved properties) to any other setup with the equivalent required time.

8.1.2.3 Justify time-critical observations

Our observations are time-critical as they are exoplanetary transits. The APT is updated
with our refined ephemerides from ground-based photometry with 1-m class telescopes.
Thus, our transit opportunities have an uncertainty on the time of observations of less than
10 minutes. There are 36 available transits for TOI-942b and 15 for TOI-942c during JWST
cycle 2. We have discarded transit opportunities when both planets are transiting.

8.2 VTL/ESPRESSO Cycle P112 (PI)
Unruly Neptunes: constraining the evolution of the very young transiting
system TOI-942

8.2.1 Scientific Rationale

The formation and evolution of planetary systems are among the most outstanding and
challenging topics in exoplanet research (Winn and Fabrycky, 2015). Many exoplanets
have similar observable properties despite having different formation and migration histo-
ries (Dawson and Johnson, 2018). By measuring the spin-orbit alignment we can infer
fundamental aspects related to their evolutionary history (Campante et al., 2016). In partic-
ular, this parameter reveals valuable clues about the dynamical evolution of multi-planet
systems and their interactions with protoplanetary disks or other bodies (Matsakos and
Königl, 2017).

The Rossiter-McLaughlin (R-M) effect is a spectroscopic phenomenon that occurs during
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exoplanet transits and results in a distortion in the stellar spectral lines. This distortion
allows us to measure the sky-projected spin-orbit angle λ between a planet’s orbital plane
and its host star’s equatorial plane (Queloz et al., 2000). There are several techniques
to characterize the R-M effect using spectroscopic data. The classical approach is to fit
a parametric model to the radial velocity anomaly. This method is widely used, but it
suffers from some limitations, such as degeneracies between parameters, and is sensitive
to stellar activity. Recent work updates this method to allow to measure the spin-orbit
alignment even in the presence of stellar spots or high rotational broadening, the so-called
“re-loaded approach” (Cegla et al., 2016, 2018). Another approach to characterize the R-M
effect is Doppler tomography (Collier Cameron et al., 2010), which takes advantage of
temporal variations of a large number of stellar lines to reconstruct the “Doppler shadow”.
Measurements of λ reveal a large diversity in orbital orientations, varying from well-aligned
to slightly misaligned planets to planets on polar and even retrograde orbits (Albrecht et al.,
2012). Furthermore, λ can be used to investigate the exchange of angular momentum
between the planet and its host star (Winn et al., 2005). Using λ and an independent
measurement of is, which is the inclination angle of the stellar spin axis with respect to
the line-of-sight, we can derive ψ, which is the true obliquity angle between the planetary
orbit and the stellar equator. ψ gives us more information about the dynamical history and
evolution of exoplanet systems than λ alone, because it reflects the actual orientation of both
axes without projection effects.

Planets emerge from their native circumstellar discs on circular orbits coplanar with
the equatorial plane of their stars. Violent dynamical events like planet-planet scattering,
resonance breaking, and global phases of chaotic evolution will excite these initially circular
and planar orbits, increasing their eccentricities and inclinations. The Normalized Angular
Momentum Deficit (NAMD) is a metric that measures the dynamical excitation of a plan-
etary system produced by such violent events during its dynamical history (Turrini et al.,
2020), encoded in the planetary eccentricities and inclinations. The NAMD can be used to
compare the violence of the dynamical histories of planetary systems with different orbital
architectures. One way to constrain the absolute orbital inclinations and thus the NAMD of
exoplanet systems is to measure their spin-orbit alignment. However, currently there are
very few R-M effect measurements for planets younger than 100 Myr, and even fewer for
young multi-planet transiting systems, with observations indicating that all of these planets
have orbits with projected obliquity λ < 15◦ (Albrecht et al., 2022).

TOI-942 is a ≈60 Myr old star of spectral type K2.5V that hosts two transiting exo-
Neptunes at close-in orbits. TOI-942b and c were first discovered by TESS and later
confirmed by ground-based photometric and spectroscopic observations (Carleo et al., 2021;
Zhou et al., 2021). Both planets have a mass comparable to that of Neptune and a slightly
larger radius. The two planets have orbital periods of 4.3 and 10.2 days and equilibrium
temperatures of about 1010 and 750 K, respectively. Both have significantly eccentric
orbits (0.34 and 0.32 for b and c (Wirth et al., 2021)). The inner planet resides within the
Neptunian desert and the outer one at its border (Figure 8.4); both planets are predicted to
be undergoing significant mass loss with different amplitudes (Kubyshkina et al., 2022a).

TOI-942 offers a unique opportunity to study the dynamical evolution and migration
history of close-in planets. The range of possible NAMD values derived for the system
using the relative orbital inclinations (Figure 8.5) provides a lower limit to its excitation,
but nevertheless reveals that TOI-942 experienced a violent and chaotic past and requires
planet-planet interactions to account for its observed state as the planets are not in resonance
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Figure 8.4. Positions of TOI-942b and c on the diagram showing the logarithm of the period (in days)
on the x-axis and the logarithm of the planetary radius (in Earth radii) on the y-axis (adapted
from (Smith et al., 2021)). The Neptunian desert (Mazeh et al., 2016) is the region inside the
blue dashed lines.
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Figure 8.5. NAMD lognormal distribution of TOI-942 computed varying the orbital and physical
parameters of the two planets within their confidence intervals (Carleo et al., 2021). Also shown
are the NAMD values of the solar system, Trappist-1, TOI-216 and Pr 0211 for comparison.
TOI-216 has the highest NAMD among the compact systems, Pr 0211 has the highest NAMD
among all analyzed multi-planet systems. The larger the NAMD, the more violent has been the
dynamical history of the system. Increasing the obliquity of TOI-942c would shift the NAMD of
the system toward that of TOI-216.

and have eccentric orbits (Carleo et al., 2021). However, the spin-orbit alignment of both
planets is crucial for quantifying how violent this history was and for understanding how
these events occurred. (Wirth et al., 2021) measured the obliquity of the inner planet using
two transits and found a projected obliquity λ = 1+41

−33 deg and ψ = 2+27
−23 deg. This implies

that the events that shaped the orbits of the two planets were more effective in the planar
direction than in the vertical one, which is consistent with the low mutual inclinations of the
two planets (Carleo et al., 2021). By measuring the obliquity of the outer planet, we can
unravel the history of the system and the migration of the planets, and determine whether
they formed in-situ or farther from the star and whether their compact configuration is due
to convergent high-eccentricity migration. Moreover, a misaligned orbit of TOI-942c could
indicate a hidden perturber on an outer orbit. These migration mechanisms are still poorly
understood, especially given the scarcity of R-M effect measurements of young systems:
our observations would add to the precious few R-M effect measurements for a multi-planet
transiting system of 100 Myr or younger. In addition, this would enable us to constrain the
ongoing migration and test the predictions of migration theories for multi-planet systems
at such a young age. Finally, given the constraints on their mutual inclinations and the
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Figure 8.6. Simulated R-M effect for TOI-942c using the formulation by (Hirano et al., 2011). Simu-
lated ESPRESSO data points for prograde orbit are shown in blue. For comparison, the much
larger green errorbar is the mean uncertainty taken from 1800s HARPS-N exposures (Carleo
et al., 2021). Distinct possible alignments of the orbit are shown in colored dashed lines.

obliquity of the outer planet, we will be able to reduce the uncertainty on the obliquity of
the inner planet as well. This will allow to constrain the three-dimensional geometry of
the system and its implications for planet formation and evolution.

8.2.2 Immediate Objective

We propose to use the state-of-the-art ESPRESSO instrument to perform high-resolution
spectroscopic measurements of TOI-942c during a transit event. Our immediate objectives
are:

1. To measure the Rossiter-McLaughlin effect and constrain the spin-orbit alignment of
TOI-942c (Figure 8.6).

2. To investigate the migration history and dynamical excitation of the very young (≈60
Myr) multi-planet system and test various scenarios for its formation and architecture.

We will employ both the classical and the “re-loaded” approach to characterize the
R-M effect, as well as Doppler tomography to rule out any biases in the analysis. We
will use indicators from the spectra that correlate directly with the red noise (increased
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by the stellar activity) to model it and detrend the RV time series (Huerta et al., 2008).
Furthermore, our team has access to 1-m class telescopes able to capture a simultaneous
transit to independently assess the level of stellar activity. The high stellar activity and the
presence of spots limited previous R-M effect observations, which constrained the obliquity
of the inner planet to within 50 deg of its host star’s plane of rotation (Wirth et al., 2021).
ESPRESSO provides the stability and precision that are essential for this science case,
allowing us to detect even a slight misalignment in the orbit of the outer planet (our
estimated uncertainty on the spin-orbit alignment is less than 10 deg). This will shed light
on whether TOI-942c has experienced past interactions with the inner planet (low-obliquity
scenario) or whether it interacted with a larger, currently undiscovered body (high-obliquity
scenario). As a by-product of these observations, we will also search for strong optical
absorbers (sodium, hydrogen, potassium) to characterize the atmosphere of TOI-942c and
compare it with older Neptune-like planets.

8.3 VTL/CRIRES Cycle P112 (Co-PI)
Vanishing Worlds: Comparative Study of Atmospheric Mass
Loss of Two Very Young Neptunes

8.3.1 Scientific Rationale

Under the action of X-ray and ultraviolet irradiation from their host stars, exoplanets can lose
part of their atmosphere. Such atmospheric evaporation significantly influences planetary
evolution, including the early evolution on Mars and other planets in the solar system (Lam-
mer et al., 2008). Photo-evaporation may also explain the population of observed exoplanets.
In particular, evaporation is suspected to be the cause of the “Neptune desert”, a region close
to the host stars which presents a deficit in Neptunian exoplanets (Mazeh et al., 2016). The
radii of these planets lie between the terrestrial planets that are believed to form in-situ (Mat-
sumoto and Kokubo, 2017) and the giant planets that are thought to form outside the snow
line before migrating inwards (Armitage and Rice, 2005). Neptunes in close orbits are
proposed to form helium-dominated atmospheres through hydrodynamic escape of
hydrogen (Hu et al., 2015), however current observations suggest that at least the “escaping
atmosphere” has a higher than expected H/He ratio. The atmospheric characterization of
planets undergoing hydrodynamic escape provides information about the planetary proper-
ties and the escaping mechanism, and hints about their formation history and evolutionary
pathways (Lampón et al., 2023).

Escaping atmospheres of transiting planets were previously studied using the Lyman-
alpha line (Vidal-Madjar et al., 2003). However, this line is heavily affected by interstellar
absorption and geocoronal emission. Furthermore, due to its location in the UV region, there
is a very limited number of instruments capable of investigating this line.

The presence of helium in an evaporating atmosphere was predicted by theory (Seager
and Sasselov, 2000), and the metastable helium line at 1083 nm was soon identified as a
suitable indicator of atmospheric escape (Oklopčić and Hirata, 2018; Spake et al., 2018).
Not all escaping atmospheres have a helium signature amenable for detection, as the
excitation of helium atoms is more favorable at small orbital separations and around stars
with higher extreme-ultraviolet flux (which ionizes the helium ground state), and lower
mid-ultraviolet flux (which ionizes the helium metastable state (Oklopčić, 2019)). As can be



8.3 VTL/CRIRES Cycle P112 (Co-PI). Vanishing Worlds: Comparative Study of Atmospheric
Mass Loss of Two Very Young Neptunes 215

Figure 8.7. Properties of the host star play a significant role in populating the metastable triplet
state. The fraction of helium (relative to all He atoms/ions) in a planetary upper atmosphere that
populates the excited, metastable triplet state, is shown as a function of altitude (in planetary
radii). Different curves represent exoatmospheres irradiated with stellar SEDs of different
spectral types. Higher fraction of triplet helium in a planetary atmosphere produces stronger
transit absorption in the 1083 nm line (Oklopčić, 2019).

seen in Figure 8.7, planets orbiting K-dwarfs have well-populated metastable triplet states
and are thus most suitable for detection studies.

Large photometric surveys such as TESS, WASP, and KELT have detected excellent
candidates for atmospheric studies of evaporating exoplanets. Such transiting planets are
amenable to high-resolution transmission spectroscopy, which analyses the imprint of the
planetary atmosphere as the planet transits in front of the star. Spectra are obtained before
and after the transit to create a high SNR stellar template. A series of high-cadence spectra
is obtained during the transit to resolve the moving signal originating in the planetary
atmosphere. Subsequently, the in-transit data are compared to the template to extract the
planetary signal. This method was used by (Wyttenbach et al., 2015) and (Allart et al.,
2018), among others, to detect the presence of strong atomic absorbers. This technique was
also successful recently in detecting helium ((Nortmann et al., 2018) – see Figure 8.8, (Kirk
et al., 2020)).

TOI-942 is a K2.5V star with an age of ≈60 Myr that hosts two transiting Neptunes
with close-in orbits, as discovered by TESS and later confirmed by ground-based radial
velocity and transit follow-up observations (Carleo et al., 2021; Zhou et al., 2021). The
inner and outer planets have masses of 0.05 and 0.08 MJup, radii of 0.41 and 0.51 RJup,
orbital periods of 4.3 and 10.2 days and equilibrium temperatures of about 1010 and 750 K,
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Figure 8.8. The transmission spectrum of WASP-69b observed by CARMENES. The predicted
positions of the helium triplet lines are marked by blue vertical dashed lines. The best-fit model
(red) shows a net blue shift, which indicates an escaping atmosphere (Nortmann et al., 2018).
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Figure 8.9. Positions of TOI-942b and c with the logarithm of the period on the x-axis and the
logarithm of the planetary radius (in Earth radii) on the y-axis (figure adapted from (Smith et al.,
2021)). The Neptunian desert (Mazeh et al., 2016) is the region inside the blue dashed lines. The
color scale indicates the number of planets per grid element.

respectively. The physical parameters place TOI-942b inside the Neptunian desert while
TOI-942c is located just on the border of the desert (Figure 8.9). This suggests that TOI-
942b is undergoing significant atmospheric escape due to the high XUV flux from its host
star. The detection of atmospheric escape signatures around TOI-942b would support this
scenario. Moreover, TOI-942c is also expected to exhibit a detectable mass loss rate due
to its proximity to the star (Kubyshkina et al., 2022b). As TOI-942 is one of the youngest
known multi-planet systems, this study would provide the first evidence of atmospheric
evaporation at such an early stage for both planets. Furthermore, this would also mark the
first detection of atmospheric escape on two planets in the same system and allow us to
test theoretical models of mass loss as a function of orbital distance and planetary properties
within the same stellar environment.

The mass loss rate of TOI-942b (Figure 8.10) is predicted to be∼1.2×1012 g s−1 (Kubyshk-
ina et al., 2022b) – about 10 times higher than the similarly sized, but significantly older
planet GJ 3470b, for which a strong helium detection was reported (Palle et al., 2020).
Our detection will be able to challenge hydrodynamical models at an unprecedented age.
TOI-942b will likely lose most of its atmosphere and turn into a super-Earth-like planet of
half its current size and will reside on the lower boundary of the Neptunian desert.

The mass loss of TOI-942c is predicted to be ∼3.5 × 1011 g s−1 (Kubyshkina et al.,
2022b) – about 3 times higher than the mass loss of GJ 3470b. However, the scale of the
mass loss will not be enough to completely strip the atmosphere in the future as for the



8.3 VTL/CRIRES Cycle P112 (Co-PI). Vanishing Worlds: Comparative Study of Atmospheric
Mass Loss of Two Very Young Neptunes 218

Figure 8.10. Estimated equivalent width of the helium triplet scaled with a stellar radius for TOI-
942b and c based on empirical relationship we found for the planets with the observed helium
triplet absorption.

inner planet; hence, the two planets are expected to end up on two distinct evolutionary
paths due to the atmospheric escape. Detection of significant mass loss could be used to test
whether photoevaporation is the driving mechanism in shaping atmospheric evolution for
these planets.

8.3.2 Immediate Objective

We will observe single transits of TOI-942b and TOI-942c with CRIRES (R ∼ 40, 000),
covering the spectral range from 950 to 1100 nm (spectral orders 51 to 59). This region
contains the metastable helium line which is present in evaporating atmospheres and which
we aim to detect.

CRIRES’s high-spectral resolution and the large collecting capability of the VLT will
allow both spectral and temporal resolution of the helium signature via transmission spec-
troscopy. Its detection will allow us to constrain mass loss, planetary winds, and possible
pre- or post-transit absorption hinting at a leading/trailing atmosphere. We will use 1D hy-
drodynamic spherically symmetric models coupled with a non-local thermodynamic model
to analyze the He I triplet state (Lampón et al., 2020). In case of non-detection, we will still
be able to set strong limits on the planetary thermospheric temperature and mass loss rate
which will put tight constraints on the future evolution of the planets. We will be able to
place observations of other exo-Neptunes with escaping atmospheres in a broader context
and test theoretical models at a yet unexplored age regime. Mass loss detection would
also be in synergy with a submitted JWST cycle 2 proposal to investigate the atmospheric
composition of TOI-942b and c as mass loss is known to alter the composition of planetary
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atmospheres (Hu et al., 2015).
Thanks to CRIRES’s high spectral resolution and stability, we will be able to clearly

disentangle the faster varying planetary signal from the stellar activity signal. This has
been a major concern for previous studies that employed low-resolution spectroscopy.
Moreover, CRIRES will enable us to study atmospheric details inaccessible to the low-
resolution method and retrieve multiple parameters from the resolved helium signature, such
as atmospheric winds, rotation, thermospheric temperature, H/He ratio, heating efficiency of
the upper atmosphere, and the hydrodynamic escape regime(Lampón et al., 2020, 2021).
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Chapter 9
Conclusions and Future Perspectives

The tumultuous growth of the relatively new field of exoplanets - planets outside our solar
system - set the stage for this thesis (Section 1.1). The confirmed existence of thousands of
such celestial bodies opened the door to numerous questions on their true nature and to make
sense of the peculiarities of our own planetary system in a suddenly huge parameter space.
Whilst some underlying trends behind the observed diversity of exoplanets have found
convincing explanations, observations are still in the early phase and significant selection
biases exist. The observation of a statistically significant sample of exoplanets has become
a major goal in the community. Various observing techniques are available and can give
complementary cues to address the hottest questions, such as “What are the main physical
processes that shape planetary atmospheres?”, “What are exoplanets made of?”, “How do
planets and planetary systems form and evolve?”, and even “What are the conditions for
the emergence of life?”. Among the various techniques, transit spectroscopy is among
the most promising, and it has been successfully utilized to obtain the first atmospheric
characterization of exoplanets (Section 1.1.5). With transit spectroscopy, we can measure
the wavelength-dependent modulation of the stellar flux as the planet transits in front of the
star, and we can use this information to infer the composition and structure of the planet’s
atmosphere. So far, a small sample of exoplanets has measured spectra, with limited spectral
coverage and a strong bias toward hot Jupiters. New ground and space-based observatories
have recently come online, most notably the JWST. While the JWST is undoubtedly the
most sensitive space telescope of the next decade, it is not intended to conduct a survey of
the exoplanet population as a whole. Instead, the Atmospheric Remote-Sensing Infrared
Exoplanet Large-survey (Ariel) - to be launched in 2029 - is the first space telescope entirely
dedicated to conducting the first spectroscopic survey of a large and diverse sample of
hundreds of exoplanets (Section 1.2).

Ariel is uniquely equipped to perform simultaneous observations over the full 0.5 to
7.8 µm spectral band, and an optimized observing strategy will ensure maximum target
coverage while addressing layered questions from the population to individual planets. To
extract the information content of the spectroscopic data, retrieval tools such as TauREx 3
have been developed that given an observation return the most probable set of atmospheric
parameters with an associated confidence interval. Ariel integrates these tools with simula-
tors of the expected experimental uncertainties and systematics to produce representative
spectra and learn about their information content ahead of the mission launch. Among
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these simulators are ArielRad (Section 1.3.1) and ExoSim 2 (Section 1.3.3). ArielRad
is the Ariel Radiometric Model that, given the description of the payload and the target,
returns the estimates for the measured signal and the noise. ArielRad is the cornerstone to
perform detailed investigations of the payload and the target selection observable by Ariel.
ExoSim 2, on the other hand, is the time-domain simulator of a target observation, and given
the detailed payload model, can assess time-varying noise and systematics with the highest
fidelity. It constitutes a formidable tool to produce realistic observations and prepare the
data reduction pipeline.

In the three years of my Ph.D. research, I have navigated deep into this field with a focus
on the link between instrumentation and observation. This leitmotiv has led me to develop a
new simulator, and a fresh mind about how to interpret the data, ultimately bridging the two
communities. The following sections draw the curtain and offer a review of my technical
and scientific contributions and a glimpse of future work in this ever-fascinating field.

9.1 Technical Contributions

A major contribution to the software side is the development of the Physical Optics Simulator
(PAOS). Accurate assessment of the optical performance of advanced telescopes and imaging
systems is essential to achieve an optimal balance between optical quality, system complexity,
costs, and risks. PAOS is an open-source code that implements Physical Optics Propagation
(POP) in Fresnel approximation and paraxial ray tracing to analyze complex waveform
propagation through both generic and off-axes optical systems, enabling the generation
of realistic Point Spread Functions (PSFs) across various wavelengths and focal planes.
Developed using a Python 3 stack, PAOS includes an installer, documented examples, and
a comprehensive guide. It addresses limitations in other POP codes, offering extensive
customization options and the liberty to access, utilize, and adapt the software library to
the user’s application. With a generic input system and a built-in Graphical User Interface
(GUI), PAOS ensures seamless user interaction and facilitates simulations. The versatility of
PAOS enables its application to a wide array of optical systems, extending beyond its initial
use case. PAOS presents a fast, modern, and reliable POP simulation tool for the scientific
community, enhancing the assessment of optical performance in various optical systems and
making advanced simulations more accessible and user-friendly.

In this thesis, I have included reports on different analyses using PAOS to investigate
several aspects related to Ariel’s optical performance. Specifically, to ensure that Ariel
achieves (i) sufficiently compact PSFs to operate as light-bucket and (ii) sufficiently sampled
PSFs to mitigate Line of Sight (LoS) pointing jitter, as per design. Concerning the former,
Section 2.3 reports on the analysis of the maximum amplitude of wavefront aberrations that
are compatible with the top-level performance requirement on optical quality. The results
of this analysis, done from first principles in optics, were validated with PAOS, and are
currently being updated to further support the activities related to the manufacturing of the
Primary Mirror (M1). With regard to the PSF sampling analysis, in the study summarized
in Section 4.1, I investigate the PSF sampling across the Ariel focal planes. Critically
sampled focal planes are key to mitigating systematic uncertainties, such as photometric
noise from pointing jitter. The PSFs produced with PAOS were imported in ExoSim 2 and
used to produce realistic observations of the Ariel Fine Guidance System (FGS) focal planes.

These simulations were used in the payload performance analysis for the Preliminary
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Design Review (PDR). I contributed to this analysis, and the results are reported in Chapter 3,
detailing the current Ariel performance parameters and margins, optical efficiency, and noise
budget. Using ArielRad, we demonstrated that the mission can perform the observations of
the Mission Reference Sample 2019 (MRS19), a list of 1000 candidate targets presented
in Edwards et al. (2019), during its 4-year nominal lifetime. Moreover, observations of 557
targets in the deep survey tier can be completed, 57 more than the required 500. Finally, in
this chapter, I included a detail-rich report on the photometric stability that can be achieved
by the mission, presented at the payload PDR. Photometric stability is a critical aspect of
the mission, and it is a key driver for the mission’s scientific performance. A result of this
analysis was a small non-compliance with the jitter noise requirement for bright targets
from 1.95-2.1 µm in Ch0 of the Ariel Infra-Red Spectrometer (AIRS). This non-compliance
does not impact overall science capabilities and was expected to be resolved with improved
detrending techniques.

This has been confirmed by the analysis presented in Section 4.2, where I led the effort
by the Simulators Software, Management, and Documentation (S2MD) working group to
develop a more effective detrending algorithm. This algorithm was tested on simulated
photometric data with ExoSim 2 for constant and time-varying signals, using a representative
jitter timeline provided by Airbus. The decorrelation is based on the assumption that the first
few moments of light distribution along both spatial axes are sufficient to capture the spatial
information of the PSF modulated by the jitter. The results show that, even absent calibration
information, the algorithm can effectively decorrelate the jitter signal, with a residual jitter
noise compliant with the requirement. In addition, the main transit parameters such as
the planetary radius can be retrieved with good accuracy, although small discrepancies are
observed between the measured planetary radius and the input value that need to be further
investigated. The algorithm is now being applied across the entire Ariel wavelength range,
with results to be included in a future update of the payload performance analysis as well as
in a dedicated publication.

Other technical work I conducted during the course of my Ph.D. includes a vignetting
analysis of the AIRS PSFs in the presence of pointing jitter, which was instrumental in
re-designing the size of the AIRS field stops to avoid cutting signal frequencies. However,
this work was not included here for length constraints. Other notable analyses not covered
here are a study to support the Radius of Encircled Energy (rEE) requirement for the Ariel
Optical Ground Support Equipment (OGSE), a validation with PAOS of Ariel PSFs using
Structural, Thermal, and Optical Performance (STOP) analysis inputs, and an investigation
of astrophysical sources for flat fielding including zodiacal light and solar system planets.

9.2 Scientific Contributions

On the science side, I have been involved in a series of studies of simulated transmission
spectra. An important focus of investigation in preparation for the Ariel mission is the
expected information content of the spectra collected during the mission’s reconnaissance
survey. This unprecedented survey of hundreds of transit and eclipse spectra aims to
address population-level questions and guide further observation in higher tiers for detailed
characterization. While rich in information content that can be exploited, spectra collected
in the first tier of the mission are not designed to enable high-confidence spectral retrieval
of atmospheric parameters. Instead, alternative techniques to exploit the spectra are being
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developed, and Chapter 5 presents a systematic study of the full MRS19 population simulated
with gaseous atmospheres observed in transit. Several techniques are successfully introduced
that enable the extraction of information from the spectra, including (i) a χ2 metric based
on band averages to identify planets with no above-noise spectral features, (ii) a model-
independent molecular metric comparing different selected spectral bands to a normalization
band to predict the atmospheric composition, and (iii) a suite of four different machine
learning methods that can successfully predict whether a molecule is present in a majority
of cases. These techniques are not without bias, and I led further investigations focused
on determining whether an atmospheric molecule is present with an associated calibrated
probability.

This study is reported in Chapter 6, where we introduce a P-statistic that utilizes
abundance posteriors from spectral retrieval to infer the probability of a molecule’s presence
in a given planet’s atmosphere in Tier 1. We employ calibration and Receiver operating
characteristic (ROC) curves to assess the reliability of the P-statistic on our target population
under different atmospheric models assumed in the retrievals. This analysis demonstrates
that the P-statistic predicts probabilities that correlate well with input abundances when
retrieval models have comparable or higher complexity than the data. However, the P-
statistic’s representativity declines when the retrieval model’s complexity is lower, expressed
as the inclusion of fewer than the expected molecules. We study forecasting biases and find
them not to adversely affect the classification of the survey. The P-statistic can effectively
identify interesting atmospheres, detect molecular presence, and guide the promotion of
targets from Tier 1 to higher Tiers. In addition, we discuss how to quantitatively assess
the completeness of the Tier 1 sample, an aspect that requires further investigation. This
information can be used to infer population-wide properties such as the fraction of planets
that bear a molecule, which can inform theoretical models of exoplanetary formation and
evolution, capitalizing on the reconnaissance survey observations. More work has been
initiated to further develop the P-statistic and extend it to rocky planets and secondary
atmospheres, and we plan to present the results in a future publication.

Another study I co-authored during my doctoral work is reported in Chapter 7. In this
chapter, we investigate how the 3D atmospheric structure biases the interpretation of exo-
planet transmission spectra using 1D retrieval models. Simulated observations with JWST
and Ariel are generated for three exoplanets (GJ1214b, HD189733b, WASP-121b) spanning
a range of temperatures. Retrievals are performed on the simulated data to assess biases
in retrieved parameters compared to the known input models. We find several important
biases arise from using 1D retrieval models on 3D atmospheres. First, temperatures are
only accurately retrieved at pressures corresponding to the highest atmospheric contribution.
Outside this region, temperatures can be biased by hundreds of K. This indicates a limitation
in how well 1D models can characterize the full thermal structure. Second, with equilibrium
chemistry, the abundances of species with strong vertical variations are inaccurate. This goes
on to bias all correlated parameters derived from these abundances. One way to mitigate
this issue is by retrieving different spectral features separately, which helps disentangle
the effects of temperature variation. Third, different equilibrium chemistry models can
give significantly different results when applied to the same data. In some cases, simpler
models actually outperform more complex ones, especially when the input assumptions of
the complex model are imperfect. This demonstrates the challenges in selecting appropriate
chemistry models for retrieval. Fourth, higher spectral resolution (e.g. with JWST) does
not necessarily provide better constraints compared to lower resolution (e.g. Ariel). This is
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due to the biases mentioned above that affect the interpretation of extremely high-quality
observations with JWST, indicating that more complex retrieval models are needed. Finally,
uncertainties from 1D retrievals are underestimated and should not be trusted, especially
for hotter exoplanets where biases are more severe. In summary, through this work, we
demonstrate that 1D retrieval assumptions can lead to significantly biased interpretations
of 3D atmospheres. While improved 3D modeling is needed, caution must be exercised
when deriving physical parameters from transmission spectra, especially with high-quality
observations.

9.3 Future Directions

During my Ph.D., I have been involved in several studies that have led to a series of
publications. I have been conducting research in a field that is still in its early days, and
I have been fortunate to be part of a team and a mission that will shape the future of
exoplanetary science. However, there is still much work to be done, and I have identified
several areas that I believe are worth pursuing. In the following, I will briefly discuss some
of these areas and how my work can inform future studies in this field.

First, I feel that there are still under-explored synergies between ground and space-based
observatories. The two communities have been working primarily in parallel for a long time,
and there is a lot of potential for further collaboration. I have been submitting observing
proposals to ground-based facilities to complement the observation of an intriguing system
from JWST (see Chapter 8). While I have been successful in obtaining observing time
for one of the ground-based instruments I have been requesting, I still have to obtain the
JWST time. This is a lengthy process, but I believe that once the space and ground-based
observations are completed, the insights from combining the two datasets will be worth it.

Second, synergies between space missions (existing and proposed) also have yet un-
tapped potential. I have been working on a paper to explore synergies between Ariel and
Twinkle, a small satellite mission with expected launch in 2025. Twinkle will be able to
observe a large number of targets in the near-infrared, and it is expected to provide a first
glimpse of the atmospheric composition of some of the Ariel targets. Therefore, accurate
simulations of spectra obtained with Twinkle will be essential to guide the selection of
Twinkle targets in a synergistic way with Ariel.

Finally, and most importantly, some results obtained so far by the community using brute-
force approaches in atmospheric studies would likely benefit from analytical approaches
to improve interpretability. I have identified a formalism that I believe can be used to this
end. The Fisher information formalism is a well-known mathematical-statistical framework
that can be used to assess the information content of observations before the data is ever
taken. It was first employed in the field of cosmology and some recent studies have begun
using it for exoplanets, however not to characterize the information content of atmospheric
spectra. During the last part of my Ph.D., I have been working on a publication to leverage
this powerful approach in atmospheric studies. I hope it will become standard practice to use
this analytical formalism alongside spectral retrieval tools and machine learning techniques
to interpret the data and prepare for future missions and observations.
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Appendix A
Bayesian Inference

In this appendix, we provide a brief introduction to Bayesian inference, and we describe the
Bayesian inference methods used in this thesis. Bayesian inference provides a framework to
solve the inverse problem of inferring the model parameters given some data. Figure A.1
illustrates the difference between the direct and the inverse problems. The direct problem is
usually straightforward to solve. However, the inverse problem is usually ill-posed, and it
may have multiple solutions, requiring a statistical approach to select the best model that
describes the data.

Bayesian inference has grown in popularity in astrophysics in the last decades, as
the inverse problem is rather ubiquitous. In our case, the inverse problem is to infer the
properties of a planet given its observed transmission spectrum. Immediately, we can see a
number of issues arising from this problem. First, the observed spectrum is noisy, and the
noise distribution is unknown. Second, the forward model that describes the atmospheric
processes that produce the spectrum is only approximate. Third, the atmospheric processes
are non-linear, and the model parameters are correlated. Therefore, we need Bayesian
inference and sophisticated optimizing strategies to map the parameter space and find the
best model that describes the data.

A.1 Bayes’ theorem

Bayesian inference is based on Bayes’ theorem, named after the English mathematician
Thomas Bayes. Few ingredients are required to write Bayes’ theorem. The data obtained
from an experiment or an observation is denoted byD. The model parameters are denoted by
θ, and M is the model. Then, p(θ|D,M) is the posterior probability of the model parameters
given the data. The likelihood, p(D|θ,M), is the probability of the data given the parameters
and the model. The initial knowledge about the model parameters is denoted by p(θ|M), and
it is called the prior. The Bayes’s theorem states that:

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
. (A.1)

The denominator is the probability of the data given the model, and it is called the evidence.
The evidence normalizes the posterior probability and is independent of the model parame-
ters. It is also computationally expensive to evaluate. Therefore, most sampling methods
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Figure A.1. (a) The direct problem: Describe the tracks of a dragon. (b) The inverse problem:
Describe a dragon given its tracks. From Bohren and Huffman (1983).
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used in parameter estimation problems – such as standard MCMC techniques (Metropolis
et al., 1953; Hastings, 1970; Goodman and Weare, 2010) – do not compute the evidence
and sample from the unnormalized posterior probability. The entire process described in
Equation A.1 can be viewed as an update of the prior knowledge of the model parameters
using the information from the data, resulting in the posterior probability. Then, the posterior
can be marginalized over each parameter to obtain constraints on individual parameters.

A.2 Model comparison

The computation of the evidence is required to compare competing models and select the
best model that describes the data. The evidence can be written as an integral over the
parameter space:

p(D|M) =
∫

p(D|θ,M)p(θ|M)dθ. (A.2)

Being the average of the likelihood over the prior, the evidence favors models with a
compact parameter space over more complicated ones (Occam’s razor), unless the likelihood
is significantly higher for the more complicated model.

Two competing models can be compared using the Bayes factor, which is the ratio of
the evidences of the two models:

B12 =
p(D|M1)
p(D|M2)

(A.3)

This comparison omits the factor p(M1)/p(M2), which is the prior odds of the two models,
often considered to be unity. The Bayes factor can be interpreted as the relative probability
of the two models given the data. An interpretation of the Bayes ratio is shown in Table A.1.

Table A.1. Interpretation of the Bayes factor as given in Kass and Raftery (1995).

log(B12) Interpretation

0 to 0.5 No Evidence
0.5 to 1 Some Evidence
1 to 2 Strong Evidence
> 2 Decisive Evidence

A.3 Nested sampling

Evaluating the evidence (Equation A.2) is a challenging task for standard MCMC techniques.
To overcome this issue, Skilling (2004) introduced the nested sampling algorithm, which
turned the problem on its head. Nested sampling is a Monte Carlo method that produces a
direct estimate of the evidence, while posterior samples are an optional by-product.

The algorithm starts by randomly drawing N "active" (or "live") samples from the full
prior distribution. The samples are then sorted by their likelihood, and the sample with the
lowest likelihood is removed from the live set and replaced by a new sample drawn from the
prior such that its likelihood is higher than the removed sample. At the next iteration, the
sample with the lowest likelihood is removed and replaced in the same way. This process
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results in ever-shrinking iso-likelihood contours and continues until a user-defined condition
on the likelihood change is reached (evidence tolerance). Once converged, the posterior
distribution can be built from the discarded live points ("trace"). The algorithm is illustrated
in Figure A.2.

Figure A.2. Cartoon illustrating (a) the posterior of a two-dimensional problem; and (b) the
transformed L(X) function where the prior volumes, Xi, are associated with each likelihood, Li.
From Feroz et al. (2019).

An analogy is useful to explain the nested sampling algorithm. Imagine a group of
people standing on a hill, where the people represent our "live" samples and their altitude on
the hill is our "likelihood". Whoever is standing on the lowest point of the hill is removed
and replaced by a new person on a higher point, randomly chosen from anywhere on the hill
higher than where the removed person was. The position of the removed person is recorded.
The next person to be removed will be at a higher altitude, until a point is reached where
everyone will be standing near the top of the hill and the process will have to stop. Note that
this would work even if the hill has two peaks, as everyone will eventually end up on the
highest peak. By reconstructing the positions of the removed people, we can map the shape
of the hill, our "posterior" distribution.

Mathematically, the nested sampling algorithm is based on the following transformation:
instead of evaluating the computationally expensive integral in Equation A.2, we can write it
as a 1-dimensional integral over the prior volume, X, as follows. The prior volume is defined
by dX = p(θ|M)dθ, so that

X =
∫
L(θ)>λ

p(θ|M)dθ (A.4)

where we have used the symbol L to denote the likelihood. L(θ) = λ defines the iso-
likelihood contour. Assuming that L(X) (the inverse of Equation A.4) is a monotonically
decreasing function, we can write the evidence, denoted by E, as follows:

E =
∫ 1

0
L(X)dX (A.5)
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The evidence can be approximated numerically using standard quadrature methods as the
sum of the likelihoods, L(Xi) ≡ Li, weighted by the dXi intervals:

E ≈
N∑

i=1

Li∆Xi (A.6)

Using the simple trapezium rule, the weights are ∆Xi =
1
2 (Xi−1 − Xi+1). With the evidence

computed, the posterior distribution can be built by weighting the discarded live points by
pi:

pi =
Li∆Xi

E
(A.7)

and sample-based estimates of the posterior moments can be computed.
The MultiNest algorithm (Feroz and Hobson, 2008; Feroz et al., 2009, 2019) uses

ellipsoids to approximate iso-likelihood contours. By drawing the new samples from
multidimensional ellipsoids defined by the current live points instead of the full prior
volume, the algorithm efficiently traverses the parameter space and multimodal posteriors
can be explored. The algorithm is illustrated in Figure A.3.

Figure A.3. Cartoon of ellipsoidal nested sampling from a simple bimodal distribution. In (a) we see
that the ellipsoid represents a good bound to the active region. In (b)–(d), as we nest inwards
we can see that the acceptance rate will rapidly decrease as the bound steadily worsens. (e)
illustrates the increase in efficiency obtained by sampling from each clustered region separately.
From Feroz and Hobson (2008).
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Appendix B
PAOS – Complementary material

B.1 Wavefront propagation

In this section, we present how the Physical Optics Simulator (PAOS) implements Gaussian
beams and other aspects of wavefront propagation in the Python class WFO. First, Sec-
tion B.1.1 discusses the problem of aliasing and the strategy to minimize aliasing errors
in PAOS. Then, Section B.1.2 to Section B.1.6 give an overview of Gaussian beams and
the relevant concepts for the PAOS implementation, giving first the definition and, when
appropriate, also an example script. Other important aspects of wavefront propagation in
PAOS, such as propagators, paraxial phase shift, and the treatment of the apertures and stops,
are discussed in Section B.1.7 to Section B.1.10.

B.1.1 Aliasing

To analyze wave propagation using the Fresnel approximation, a major issue to consider
is aliasing errors (Lawrence et al., 1992). These errors result from the discrete nature of
numerical calculations, which can distort the amplitude and phase of the optical wave.

An acceptable initial sampling condition is not sufficient to avoid aliasing. The beam
spreads during propagation due to diffraction and can grow outside the bounds of the
computer array. When that happens, the amplitude of the beam complex is folded back,
creating aliasing errors. To prevent this, the propagator selection is crucial, as it affects the
size and sampling of the array at each propagation step.

In the continuous case, the far- and near-field propagation expressions are mathematically
equivalent; in the discrete case, they differ due to the evaluation of their quadratic phase
factors. The near-field propagator has a slowly varying (well-behaved) quadratic phase
factor at short propagation distances and a rapidly varying (aliasing) one at large propagation
distances. The far-field propagator behaves oppositely: it aliases at short propagation
distances but is well-behaved at long propagation distances. Therefore, either the near-field
or the far-field propagator should be chosen depending on the system configuration and
propagation distance to minimize aliasing errors.

However, some optical systems may not allow using the Fresnel number to define the
near- and far-field regions. In such cases, a Gaussian pilot beam can be used as a reference
for propagator selection (Lawrence et al., 1992). A Gaussian beam (see Section B.1.2)
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has several properties, such as being analytically propagatable, that make it an effective
surrogate for the actual beam.

Instead of tracking the Gaussian beam parameters during propagation to adjust the
sampling exactly, which would change the units continuously, PAOS uses a region of constant
sampling period near the Gaussian beam waist and a region of linearly increasing sampling
period far from the waist. The switch is made at the Rayleigh range (see Section B.1.3),
which serves as an alternative to the concepts of near-and far-field regions (Lawrence et al.,
1992).

B.1.2 Gaussian beams

A Gaussian beam has an irradiance profile that follows an ideal Gaussian distribution (Self,
1983):

I(r) = I0e
− 2r2

w(z)2 =
2P

πw(z)2 e
− 2r2

w(z)2 (B.1)

where I0 is the intensity of the beam on the axis, r is the radial distance, w is the radial
distance where the intensity falls to I0/e2, or 13.5% of its value on-axis, and w(z) is the
semi-diameter of the beam and encompasses 86.5% of the total beam power, P.

Due to diffraction, a Gaussian beam will converge and diverge from the beam waist w0,
an area where the diameter of the beam reaches a minimum size. Therefore, the dependence
of w(z) on z, the longitudinal distance from the waist w0 to the plane of w(z). A Gaussian
beam spreads out as (e.g. Self, 1983; Lawrence et al., 1992):

w(z)2 = w2
0

1 +
 λz
πw2

0

2 = w2
0

1 + (
z
zR

)2 (B.2)

where zR is the Rayleigh distance. Thus, a Gaussian beam is defined by only three parameters:
w0, zR, and the divergence angle θ. The complex amplitude of a Gaussian beam is of the
form (e.g. Lawrence et al., 1992):

a(r, 0) = e
− r2

w2
0 e−

jkr2
R (B.3)

where k is the wavenumber and R is the radius of the quadratic phase factor, henceforward
phase radius. At the waist, where the wavefront is planar, this reduces to:

a(r, 0) = e
− r2

w2
0 (B.4)

B.1.3 Rayleigh distance

The value of z, where the cross-sectional area of the beam is double that at the waist, defines
the Rayleigh distance of a Gaussian beam. This occurs when w(z) increases to

√
2w0.

Explicitly:

zR =
πw2

0

λ
(B.5)

The physical significance of the Rayleigh distance is that it indicates the region where the
curvature of the wavefront reaches a minimum value. Since

R(z) = z +
z2

R

z
(B.6)
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the phase radius is R = 2zR in the Rayleigh range.

B.1.4 Gaussian beam propagation

To the accuracy of Fresnel diffraction, which implies (Lawrence et al., 1992):

1. aperture sizes significantly larger than the wavelength;

2. modest numerical apertures;

3. thin optical elements,

a Gaussian beam propagates as follows:

a(r, z) = e− j[kz−θ(z)]e
− r2

w(z)2 e−
jkr2
R(z) (B.7)

where θ(z) is a piston term referred to as the phase factor, given by

θ(z) = tan−1
(zR

z

)
(B.8)

which varies from π to −π when propagating from z = −∞ to z = ∞.
In PAOS, the propagation of the Gaussian beam is described using ABCD matrix optics.

A complex radius of curvature q(z), also called complex beam parameter, is defined as
follows (Yariv, 1989):

1
q(z)
=

1
R(z)

−
jλ

πnw(z)2 (B.9)

where n is the index of refraction. Propagating a Gaussian beam from some initial po-
sition (1) through an optical system (ABCD) to a final position (2) gives the following
transformation (Yariv, 1989):

1
q2
=

C + D/q1

A + B/q1
(B.10)

In PAOS, the initial sampling interval is proportional to D, the diameter of the input
beam, and N, the size of the grid:

dxi = dyi =
D × zoom

N
(B.11)

where dxi and dxi are the initial sampling intervals along the sagittal and tangential directions,
respectively. The zoom parameter is the reciprocal of the ratio between the initial beam
width and the grid width. Note that N values that are not powers of 2 are considered invalid;
this ensures that the FFT algorithm is used (Brigham and Morrow, 1967).

In Listing B.1 we report an example of how to use the Python class WFO to focus a
non-apodized circular beam with a thin paraxial lens. Note that all lens units are in meters.
The propagation distance is set equal to the focal length of the paraxial lens. The listing
shows the values for the beam waist and the Rayleigh range at the focus position, as well as
the distance to the focus before and after propagation1.

1The interested reader may readily verify the results using the tool available at https://www.
edmundoptics.com/knowledge-center/tech-tools/gaussian-beams/.

https://www.edmundoptics.com/knowledge-center/tech-tools/gaussian-beams/
https://www.edmundoptics.com/knowledge-center/tech-tools/gaussian-beams/
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1 from paos.classes.wfo import WFO
2 wfo = WFO(beam_diameter=1.0, wavelength=3.0e-6, grid_size=512, zoom=4)
3 wfo.lens(lens_fl = 1.0)
4 dtf = wfo.distancetofocus # dtf = 1.0 m
5 wfo.propagate(dz = 1.0)
6 dtf = wfo.distancetofocus # dtf = 0.0 m
7 w0 = wfo.w0 # w0 = 1.9 micron
8 zr = wfo.zr # zr = 3.8 micron

Listing B.1. Gaussian beam propagation.
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Figure B.1. Evolution of the Gaussian beam semi-diameter as a function of distance to focus, for the
optical system in Listing B.1, where we continue the propagation after the focus.
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B.1.5 Gaussian beam magnification

Gaussian beam magnification can also be described using ABCD matrix optics. From Equa-
tion B.10 and the definition of magnification change in the ABCD formalism given in Equa-
tion B.25, we have the following:

q2 = M2q1 (B.12)

Using also Equation B.9, it follows that:

R2 = M2R1
w2 = Mw1
zR,2 = M2zR,1
w0,2 = Mw0,1
z2 = M2z1

(B.13)

Note that in the current version of PAOS, we set the Gaussian beam width along x. So, only
the sagittal magnification changes the properties of the Gaussian beam, and the tangential
magnification changes only the curvature of the propagating wavefront.

Listing B.2 shows a practical example of how to use the Gaussian beam magnification
implemented in the Python class WFO. The values of the waist and Rayleigh range are

1 from paos.classes.wfo import WFO
2 Ms, Mt = 1.0, 3.0
3 wfo = WFO(beam_diameter=1.0, wavelength=3.0e-6, grid_size=512, zoom=4)
4 w0 = wfo.w0 # w0 = 0.5
5 zr = wfo.zr # zr = 2.62e5
6 wfo.Magnification(Ms, Mt)
7 w0 = wfo.w0 # w0 = 1.5
8 zr = wfo.zr # zr = 2.36e6

Listing B.2. Gaussian beam magnification.

reported before and after magnification. They can be easily compared with the respective
relations reported in Equation B.13.

B.1.6 Gaussian beam change of medium

A change of medium affects the complex radius of curvature of a Gaussian beam. Us-
ing Equation B.14, the complex radius of curvature changes as:

q2 = q1n2/n1 (B.14)

From this relation and Equation B.9, it follows that:

R2 = R1n2/n1
w2 = w1
zR,2 = zR,1n2/n1
w0,2 = w0,1
z2 = z1n2/n1

(B.15)

Moreover, since λ2 = λ1n2/n1, the focal ratio changes as:

f#,2 = f#,1n1/n2 (B.16)
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Listing B.3 illustrates a thin lens that modifies the curvature of an input beam, fol-
lowed by a medium change. The reported Gaussian beam parameters vary as described
in Equation B.15 and Equation B.16.

1 from paos.classes.wfo import WFO
2 wfo = WFO(beam_diameter=1.0, wavelength=3.0e-6, grid_size=512, zoom=4)
3 wfo.lens(lens_fl = 1.0)
4 w0 = wfo.w0 # w0 = 1.9 micron
5 fratio = wfo.fratio # fratio = 1.0
6 n1, n2 = 1.0, 2.0
7 wfo.ChangeMedium(n1n2 = n1/n2)
8 w0 = wfo.w0 # w0 = 1.9 micron
9 fratio = wfo.fratio # fratio = 2.0

Listing B.3. Gaussian beam change of medium.

B.1.7 Wavefront propagation

As discussed in the previous sections, PAOS propagates the pilot Gaussian beam through all
the optical surfaces to calculate the beam width at all points in space. The Gaussian beam
surrogates the actual beam, and the Gaussian beam parameters inform the POP simulation.
In particular, the Rayleigh distance zR is used to inform the choice of specific propagators.
For a given point, the two inequalities:

inside↔ |z − z(w)| ≤ zR

outside↔ |z − z(w)| > zR
(B.17)

describe all four possibilities in moving from inside or outside to inside or outside the
Rayleigh range (R), defined as the region between −zR and zR from the beam waist. Explic-
itly, these possibilities are (Lawrence et al., 1992, fig. 24):

(i) II(z1, z2): inside R to inside R

(ii) IO(z1, z2): inside R to outside R

(iii) OI(z1, z2): outside R to inside R

(iv) OO(z1, z2): outside R to outside R

Three primitive operators are needed to move from any point in space to any other: plane-to-
plane (PTP), waist-to-spherical (WTS), and spherical-to-waist (STW). PAOS implements all
four possible propagations combining these primitive operators.

B.1.8 Paraxial phase correction

For any optical element that can be modeled using its focal length f (e.g., mirrors, thin
lenses, and refractive surfaces), the paraxial phase effect is given by:

t(x, y) = e jk(x2+y2)/2 f (B.18)
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where t(x, y) is the complex transmission function. In other words, the element imposes
a quadratic phase shift, which depends on the initial and final position compared to the
Rayleigh range.

PAOS uses the Gaussian beam parameters to impose the phase shift. The code imple-
mentation consists of four steps:

1. estimate the Gaussian beam curvature after the element (object space);

2. check the initial position;

3. estimate the Gaussian beam curvature after the element (image space);

4. check the final position.

By combining the results of steps 2 and 4, PAOS selects the propagator, and the phase
shift is imposed accordingly by defining a phase bias, as described in (Lawrence et al., 1992,
p. 174).

B.1.9 Aperture

The actual wavefront propagated through an optical system intersects real optical elements
(e.g., mirrors, lenses, slits) and can be obstructed, producing distinct diffraction patterns.
PAOS supports circular, elliptical, and rectangular aperture shapes. For each, PAOS imple-
ments an appropriate aperture mask, projected on the plane orthogonal to the beam.

For instance, consider a wavefront normal to the sagittal direction and propagating with
a slope angle in the tangential direction uy. At some position z, the wavefront is centered
in (xc, yc) and intersects an elliptical aperture centered in (xa, ya) with semi-axes (ϕx, ϕy).
PAOS sets this aperture as: ya − yc, ϕx,

1√
u2

y + 1
ϕy

 (B.19)

Listing B.4 shows how to simulate the propagation of the wavefront through one such
aperture. By changing the obscuration value to True, the same aperture can be used as an
obscuration.

B.1.10 Stop

An aperture stop (or diaphragm) is an element of an optical system that determines how
much light reaches the image plane. It is often the boundary of the primary mirror. An
aperture stop can significantly affect the sizes of system aberrations, by preventing some of
the severely aberrated rays from reaching the image (Born et al., 1999). PAOS implements a
generic stop by normalizing the wavefront at the current position to unit energy.

Listing B.5 demonstrates how to use the class WFO to implement an aperture stop
immediately after wavefront initialization.
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1 import numpy as np
2 from paos.classes.wfo import WFO
3 phi_x = 0.5 # m
4 phi_y = 0.4
5 xa = 0
6 ya = 0.1
7 field = {"us": 0.0, "ut": 0.1}
8 vt = np.array([0.0, field["ut"]])
9 phi_y *= np.sqrt(1 / (vt[1] ** 2 + 1))

10 ya = ya - vt[0]
11 wfo = WFO(beam_diameter=1.0, wavelength=3.0e-6, grid_size=512, zoom=4)
12 aperture_shape = "elliptical" # or "rectangular"
13 obscuration = False # if True, applies obscuration
14 aperture = wfo.aperture(xa, ya, hx=phi_x, hy=phi_y, shape=aperture_shape ,

obscuration=obscuration)

Listing B.4. Elliptical, off-axis aperture.

1 from paos.classes.wfo import WFO
2 wfo = WFO(beam_diameter=1.0, wavelength=3.0e-6, grid_size=512, zoom=4)
3 wfo.make_stop()
4 E = (wfo.amplitude ** 2).sum() # E = 1.0

Listing B.5. Aperture stop.

B.1.11 Paraxial ray-tracing

PAOS implements the method raytrace to perform diagnostic ray-tracing. This method
receives as inputs the field slopes and the optical chain, then prints the ray positions and
slopes in the tangential and sagittal planes for each surface of the optical chain. Listing B.6
reports an example of how to access this method. The next PAOS version may add support

1 from paos.core.raytrace import raytrace
2 raytrace(field={"us": 0.0, "ut": 0.0}, opt_chain=opt_chains[0])

Listing B.6. Paraxial ray-tracing.

for one of the existing Python codes that implement full ray-tracing (e.g., pyrate2). The
main purpose is to obtain the expected maps of aberrations by the realistic elements of the
optical chain, such as mirrors, without having to rely on external code.

B.2 ABCD matrices

In this section, we show how the ABCD matrix method implemented in the Python class
ABCD can be used to model the effects of the propagation step (Section B.2.1), thin lens (Sec-
tion B.2.2), dioptre (Section B.2.3), change of medium (Section B.2.4), thick lens (Sec-
tion B.2.5), and magnification (Section B.2.6) on the input ray. The most common matrix

2https://salsa.debian.org/mess42/pyrate

https://salsa.debian.org/mess42/pyrate
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operators are presented in an introductory manner, giving first the definition and then an
example script using the class ABCD.

In each example, we consider a light ray propagating in the tangential plane (YZ),
parameterized by the vector v⃗t = (y, uy), where uy is the slope, i.e., the tangent of the angle,
which equals the angle in paraxial approximation. The same definitions also apply in the
sagittal plane (XZ), modified when necessary when the cylindrical symmetry is violated; the
relevant vector is v⃗s = (x, ux).

B.2.1 Propagation

Either in free space or in a refractive medium, a propagation from point z1 to point z2 over a
distance T is given by: (

y2
u2

)
=

(
1 T
0 1

) (
y1
u1

)
= T̂

(
y1
u1

)
(B.20)

i.e., a propagation changes only y.
Listing B.7 shows how to propagate a light ray v⃗t = (0, 1) over 50 mm. Note that PAOS

considers a distance “positive” when the propagation is left→ right.

1 from paos.classes.abcd import ABCD
2 thickness = 50.0 # mm
3 abcd = ABCD(thickness=thickness)
4 (A, B), (C, D) = abcd.ABCD # A=1, B=50, C=0, D=1
5 vt = np.array([0, 1])
6 vt = abcd() @ vt # vt = np.array([50, 1])

Listing B.7. ABCD propagation.

B.2.2 Thin lens

A thin lens changes only the slope angle u, and this is given by:(
y2
u2

)
=

(
1 0
−ψ 1

) (
y1
u1

)
= L̂

(
y1
u1

)
(B.21)

where ψ = 1
f is the lens optical power.

Listing B.8 shows how to simulate the effect of a thin lens with a radius of curvature
R = 20 mm on a light ray v⃗t = (1, 0).

1 from paos.classes.abcd import ABCD
2 r = 20.0 # mm
3 abcd = ABCD(curvature=1.0/r)
4 (A, B), (C, D) = abcd.ABCD # A=1, B=0, C=-0.05, D=1
5 vt = np.array([1, 0])
6 vt = abcd() @ vt # vt = np.array([1, -0.05])

Listing B.8. ABCD thin lens.
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B.2.3 Dioptre

When light propagates from a medium with refractive index n1 into a dioptre of refractive
index n2, the slope angle u varies as follows:(

y2
u2

)
=

(
1 0
−
ψ
n2

n1
n2

) (
y1
u1

)
= D̂

(
y1
u1

)
(B.22)

The dioptre power is ψ = n2−n1
R , where R is the dioptre radius of curvature. Following the

standard convention, R > 0 if the center of curvature is at the right of the dioptre, and R < 0
if at the left.

Listing B.9 shows how to simulate the effect of a dioptre with refractive index n = 1.25
and a radius of curvature R = 20 mm on a light ray v⃗t = (1, 1).

1 from paos.classes.abcd import ABCD
2 n1, n2 = 1.0, 1.25
3 r = 20.0 # mm
4 abcd = ABCD(curvature = 1.0/r, n1 = n1, n2 = n2)
5 (A, B), (C, D) = abcd.ABCD # A=1, B=0, C=-0.01, D=0.8
6 vt = np.array([1, 1])
7 vt = abcd() @ vt # vt = np.array([1, 0.79])
8 n1/n2 = abcd.n1n2 # n1/n2 = 0.8

Listing B.9. ABCD dioptre.

B.2.4 Medium change

The limiting case of a dioptre with R→ ∞ represents a medium change.(
y2
u2

)
=

(
1 0
0 n1

n2

) (
y1
u1

)
= N̂

(
y1
u1

)
(B.23)

B.2.5 Thick lens

A real (thick) lens is modeled as follows:(
y2
u2

)
= D̂bT̂ D̂a

(
y1
u1

)
(B.24)

i.e., propagation through the dioptre Da (first encountered by the ray), then propagation
in the medium, followed by the exit dioptre Db. Note that the limiting case in which the
thickness of the dioptre, T , is negligible and can be set to zero gives back the thin lens. If a
dioptre has R→ ∞, the lens is plano-concave or plano-convex, depending on the curvature
of the other.

Listing B.10 shows how to simulate the effect of a bi-convex lens (Ra is positive and Rb

is negative) made of ZnSe (Zinc selenide), modeled with a refractive index n = 2.403. This
thick lens will cause the beam to converge3.

3The interested reader may readily check this result using the tool provided at https://www.
edmundoptics.com/knowledge-center/tech-tools/focal-length/.

https://www.edmundoptics.com/knowledge-center/tech-tools/focal-length/
https://www.edmundoptics.com/knowledge-center/tech-tools/focal-length/
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1 from paos.classes.abcd import ABCD
2 r1, r2 = 20.0, -20.0 # mm
3 n_os, n_l, n_is = 1.0, 2.403, 1.0
4 center_thickness = 5.0
5 abcd = ABCD(curvature = 1.0/r1, n1 = n_os, n2 = n_l)
6 abcd = ABCD(thickness = center_thickness) * abcd
7 abcd = ABCD(curvature = 1.0/r2, n1 = n_l, n2 = n_is) * abcd
8 f_eff = abcd.f_eff # f_eff = 7.454 mm

Listing B.10. ABCD thick lens.

B.2.6 Magnification

We can model a change in magnification as follows:(
y2
u2

)
=

(
M 0
0 1/M

) (
y1
u1

)
= M̂

(
y1
u1

)
(B.25)

i.e., a magnification modifies both y and u.
Listing B.11 shows how to magnify a light ray v⃗t = (1, 1) by a factor of 2.

1 from paos.classes.abcd import ABCD
2 abcd = ABCD(M=2)
3 (A, B), (C, D) = abcd.ABCD # A=2, B=0, C=0.5, D=0
4 vt = np.array([1, 1])
5 vt = abcd() @ vt # vt = np.array([2, 0.5])

Listing B.11. ABCD magnification.

B.3 Refractive index

The following sections discuss how PAOS implements the refractive index of optical materi-
als in the Python class Material. Section B.3.1 describes the chromatic dependence of the
refractive index, while Section B.3.2 discusses the relevant modelization for the thermal and
pressure dependencies.

B.3.1 Chromaticity of refractive index

The relation between the refractive index and wavelength can be modeled using an empirical
relation such as the Sellmeier equation, a development in particular of Cauchy’s work on
classical dispersion theory. In its original form (Sellmeier, 1872), it is given as follows:

n2(λ) = 1 +
∑

i

Kiλ
2

λ2 − Li
(B.26)

where n is the refractive index, λ is the wavelength, and Ki and
√

Li are the Sellmeier
coefficients, determined from precision measurements. Limitations in the accuracy of this
model are present where the absorption is not negligible. Physically, each term of the



B.3 Refractive index 242

sum represents an absorption resonance of strength Ki at wavelength
√

Li. Close to each
absorption peak, a more precise dispersion model is required to avoid non-physical values.

PAOS implements the Sellmeier 14 equation to estimate the index of refraction relative
to air for a particular optical glass at its reference temperature and pressure as indicated in
the catalog, typically:

Tre f = 20◦C
Pre f = 1 atm

(B.27)

The Sellmeier 1 form of the original equation consists of only three terms and is implemented
as follows:

n2(λ) = 1 +
K1λ

2

λ2 − L1
+

K2λ
2

λ2 − L2
+

K3λ
2

λ2 − L3
(B.28)

where the wavelength in micrometers has to be inserted.
Listing B.12 shows an example script to estimate the refraction index of BK7 for a range

of wavelengths from visible to infrared using the class Material.

1 import numpy as np
2 from paos.util.material import Material
3 material = Material(wl=np.array([0.5, 1.5, 2.5]))
4 bk7 = material.materials["BK7"]
5 n = material.sellmeier(bk7["sellmeier"]) # n = [1.5214 1.5013 1.4860]

Listing B.12. BK7 index of refraction.

B.3.2 Temperature coefficient of refractive index

The refractive index of the dispersive medium depends not only on wavelength but also on
temperature. The relationship between the change in refractive index and the change in
temperature is called the temperature coefficient of the refractive index. This coefficient is
defined as the deviation of the curve, dn/dT , and can have a positive or negative value. The
values of the temperature coefficient can be given as absolute (measured under vacuum) and
relative (measured under dry air at standard pressure).

PAOS defines the refractive index of air under standard conditions as the reference
index; all other indices are relative. The air reference index of refraction is estimated as
follows (Kohlrausch, 1986):

nair,re f =

1.0 + 10−8 ·

(
6432.8 +

2949810 λ2

146 λ2 − 1
+ 25540

λ2

41 λ2 − 1

) (B.29)

where λ is in micrometer units. Under different temperatures and pressures, this reference
index is scaled as (Kohlrausch, 1986):

nair = 1 +
P

(
nair,re f − 1

)
1.0 + 3.4785 · 10−3(T − 15)

(B.30)

4Notation from Zemax.
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PAOS calculates the refractive index of an optical material at a given pressure and
temperature using the formula:

n(∆T ) =
n2 − 1

2n
D0∆T + n (B.31)

where ∆T is the difference between the operative temperature of the material Toper and the
reference temperature Tre f , n is the refractive index estimated using Equation B.28, and D0
is a temperature constant of the material.

Listing B.13 reports an example script to estimate the refraction index of SAPPHIRE
for a given wavelength under reference and operating (ambient) temperature and pressure.
Note that PAOS can easily model systems used in a vacuum by changing the air pressure to
zero, and this can be set dynamically, as shown in the script.

1 from paos.util.material import Material
2 wl = 1.95 # micron
3 Tref, Tamb = 20.0, -223.0 # Celsius
4 Pamb = 1.0 # atm
5 material = Material(wl, Tambient=Tamb, Pambient=Pamb)
6 n_ref, n_amb = material.nmat(name="SAPPHIRE") # n_ref=1.7392, n_amb

=1.7367
7 material.Tambient = -223.0
8 material.Pambient = 0.0
9 n_ref, n_amb = material.nmat(name="SAPPHIRE") # n_ref=1.7388, n_amb

=1.7362

Listing B.13. Thermal dependence of the refractive index of SAPPHIRE.

Listing B.14 shows how to access the plotting routine in the Material class to plot the
refractive index vs wavelength of supported optical materials at their operating and reference
temperature.

1 import numpy as np
2 from paos.util.material import Material
3 mat = Material(wl=np.linspace(0.5, 2.5, 100), Tambient=-223, Pambient

=1.0)
4 mat.plot_relative_index(material_list=[’Caf2’, ’Znse’]) # Plot selected
5 available_materials = list(mat.materials.keys())
6 mat.plot_relative_index(material_list=available_materials) # Plot all

Listing B.14. Plot relative index of refraction.

Figure B.2 reports a plot of the relative index of refraction of two optical materials, CaF2
and ZnSe5, at their reference and operating temperatures, as can be accomplished using
Listing B.14.

From this figure, it can be seen that the temperature coefficient is responsible for a
wavelength-dependent vertical offset between the two curves; also, for different materials,
this offset can be positive or negative.

5To compare the ZnSe curve with this plot, the reader may consult the online refractive index database at
https://refractiveindex.info/?shelf=main&book=ZnSe&page=Marple.

https://refractiveindex.info/?shelf=main&book=ZnSe&page=Marple
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Figure B.2. Plots of the relative index of refraction as a function of wavelength for CaF2 (left panel)
and ZnSe (right panel) at the reference (dashed line) and an operating temperature (solid line).
Standard pressure is assumed. The wavelength range shown roughly matches Ariel’s spectral
range.
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Appendix C
Tier 1 – Complementary material

C.1 Analytical derivation of the molecular metric

As mentioned in Section 5.1.4, the metric here presented is (i) sensitive to the molecules, (ii)
independent from the planet size, and (iii) independent from the scale height. To show it, we
start by using the following notation: in transmission spectroscopy we are measuring

∆ f
f

(λ) =
R2

pl + 2Rpl · z(λ)

R2
⋆

(C.1)

where f is the measured flux from the star, ∆ f is the difference between the flux measured
during the transit and the one measured out of transit, Rρ and R⋆ are the planet and the star
radii respectively; z(λ) is the measured wavelength dependent transit depth. Now, applying
the definition of z(λ) from Lecavelier Des Etangs et al. (2008),

z(λ) = H ln

ϵabsσabs(λ)P0

τeq

√
2πRpH

k2
BT 2

p

 (C.2)

where ϵabs and σabs are the abundance and cross section of the main absorbent abs at the
λ wavelength. H is the scale height to which correspond the P0 pressure and the τeq is the
equivalent optical depth. Therefore, we have

∆ f
f

(λ) =
R2

pl + 2RplH ln
(
ϵabsσabs(λ)P0

τeq

√
2πRpH
k2

BT 2
p

)
R2
⋆

=
R2

pl + 2RplH · Z(λ)

R2
⋆

(C.3)

where, for simplicity, we called

Z(λ) = ln

ϵabsσabs(λ)P0

τeq

√
2πRpH

k2
BT 2

p

 (C.4)

Therefore, to measure S bandi in Equation 5.1 corresponds to computing the mean in the
band:
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S bandi =

(
∆ f
f

)
bandi

=
R2

pl

R2
⋆

+
2RplH

R2
⋆

·

∑M
j Z j

M
=

R2
pl

R2
⋆

+
2RplH

R2
⋆

· Zbandi (C.5)

where Z j is the equivalent of Equation C.4 in the jth spectral bin and Zbandi =

∑M
j Z j

M .
Therefore, the dispersion of Equation 5.2 is computed as

σbandi =
2RplH

R2
⋆

√∑M
j (Z j − Zbandi)2

M
=

2RplH

R2
⋆

· σZbandi
(C.6)

where σZbandi
=

√∑M
j (Z j−Zbandi )

2

M .
By combining the previous equations as done in Equation 5.3, we finally obtain

Mmol =
1
N

N∑
i

2RplH
R2
⋆

(
Zbandi − Znorm

)
2RplH

R2
⋆

√
σ2

Zbandi
+ σ2

Znorm

=
1
N

N∑
i

Zbandi − Znorm√
σ2

Zbandi
+ σ2

Znorm

(C.7)

Therefore, we remove the planet and star radii dependence in the measurement. Similarly to
what has been done in Désert et al. (2009), the subtraction between Zbandi and Znorm finally
removes the scale height dependency as

Zbandi − Znorm = ln
(
ϵabs, bandiσabs, bandi

ϵabs,normσabs,norm

)
(C.8)

where ϵabs, bandiσabs, bandi is the equivalent of ϵabsσabs(λ) in the band. This factor identifies
the contribution of the main absorber in the band. Therefore, if we compare a band where a
certain molecule has a strong feature, with one that is not supposed to give contributions to
the spectrum, we can identify the molecular presence, compared to what is present in the
second band.

So, finally Mmol becomes

Mmol =
1
N

N∑
i

ln
( ϵabs, bandiσabs, bandi
ϵabs,normσabs,norm

)
√
σ2

Zbandi
+ σ2

Znorm

(C.9)

So, as promised, the metric is also sensitive to the molecular content.
To summarize, we removed the star, planet, and atmosphere size dependencies by

subtracting the interesting feature bands for a normalization band and dividing the results by
the combined dispersion. This results in a metric that is sensitive to the molecules contained
in the atmosphere, but introduces a bias. In fact, the spectral dispersion σZbandi

depends on
both the atmospheric feature dispersion and the observational noise.

C.2 P-statistic – Complementary figures
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Figure C.1. Same as Figure 6.4. Detection reliability for the R2 retrievals, that implement a model
that is over-representative of the simulated atmospheres, by including CO, HCN, and H2S as
additional trace gases.
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Figure C.2. Same as Figure 6.6. Predictor assessment for the R2 retrievals, that implement a model
that is over-representative of the simulated atmospheres, by including CO, HCN, and H2S as
additional trace gases.



C.2 P-statistic – Complementary figures 249

10 5

6

4

2

Tr
ue

CH4

id. trend

SNRCH0
7
24
50
67

SNRCH0
7
24
50
67

2.5 0.0 2.5100

101

102

|T
ru

e|
 / 

y = 5

3 0 3

6

4

2

Tr
ue

> 2 : 18;  > 3 : 2;  > 5 : 0

±3 ±5 

10 5
Retrieved

H2O

id. trend

SNRCH0
7
30
53
67

SNRCH0
7
30
53
67

2.5 0.0 2.5
Retrieved - True

y = 5

3 0 3
(Retrieved - True)/

> 2 : 4;  > 3 : 1;  > 5 : 0

±3 ±5 

10 5

CO2

id. trend

SNRCH0
7
24
50
67

SNRCH0
7
24
50
67

2.5 0.0 2.5

y = 5

3 0 3

> 2 : 16;  > 3 : 5;  > 5 : 1

±3 ±5 

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
is

ta
nc

e 
to

 t
ru

e 
va

lu
e 

(
)

Bias assessment  Retrieval R2

Figure C.3. Same as Figure 6.8 for the R2 retrievals, that implement a model that is over-
representative of the simulated atmospheres, by including CO, HCN, and H2S as additional trace
gases.
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Appendix D
ARES VI – Complementary figures and
tables

D.1 Planet-Stellar parameters

These parameters were used to simulate the transmission spectra and as input into PandExo.

Parameters GJ1214 b HD189733 b WASP-121 b
R∗ [Rsun] 0.21 0.75 1.46
T∗ [K] 3250 5052 6459
Z∗ 0.29 -0.02 0.13
log(g) 5.03 4.49 4.24
Rp [Rjup] 0.243 1.13 1.91
References Charbonneau et al. (2009) Stassun et al. (2017) Delrez et al. (2016)

Cloutier et al. (2021) Addison et al. (2019)
Table D.1. Planet-Stellar parameters.

D.2 Retrievals results

Tables of values retrieved by all retrieval models for all input configurations considering
the best solution for each retrieval are shown here. For Free retrievals, we calculate the
metallicity using TauREx 3 which includes it in the available derived parameters, while we
compute the C/O ratio using formula 2 from Lee et al. (2013) and the marginalized posterior
distributions of CO, CH4, CO2, and H2O from each retrieval (best solution).
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JWST Ariel

1D 3D

constant equilibrium constant equilibrium constant equilibrium

Parameters Input Free ACE Fast Free ACE Fast Free ACE Fast Free ACE Fast Free ACE Fast Free ACE Fast
Tsur f [K] 970 348 330 770 1037 1097 1092 1303 950 1055 1165 1422 918 1084 1162 1064 1086 1128
T1 [K] 639 745 875 1035 1345 1341 756 305 306 407 391 317 684 610 325 621 673 533
T2 [K] 215 236 189 331 378 334 426 560 602 306 580 674 443 569 597 331 470 579
Ttop [K] 198 628 627 185 212 334 536 306 335 1234 619 532 524 350 367 983 814 833
log10(P1) [Pa] 4.67 2.25 2.63 3.95 4.38 4.24 4.98 2.15 2.15 2.44 2.00 2.09 4.72 4.55 2.44 4.59 4.61 4.06
log10(P2) [Pa] 0.131 1.58 2.08 2.24 3.13 2.91 3.26 1.20 1.27 -0.648 1.31 1.37 2.60 2.61 1.06 0.32 2.52 1.68
log10(H2O) -1.00 -1.15 -1.17 -1.09 -1.24 -1.13 -1.26
log10(CO) -2.00 -2.24 -8.62 -2.11 -4.86 -5.59 -7.48
log10(CH4) -1.52 -1.63 -1.21 -1.64 -2.27 -1.61 -2.27
log10(CO2) -2.00 -2.10 -9.34 -2.06 -1.57 -1.82 -1.46
log10(HCN) -6.22 -8.16 -8.35 -8.37 -8.21 -6.93 -7.29
log10(NH3) -3.30 -3.45 -3.19 -3.45 -9.23 -3.57 -8.52
Radius [R jup] 0.243 0.242 0.248 0.247 0.241 0.240 0.238 0.242 0.241 0.244 0.245 0.240 0.240 0.242 0.240 0.241 0.247 0.245 0.247
C/O 0.458 0.459 0.442 0.90 0.898 0.807 0.255 0.145 0.29 0.441 0.313 0.309 0.169 0.33 0.461 0.371
log10(Z) 2.00 2.14 2.20 1.53 1.91 1.96 2.02 1.82 1.58 2.01 1.83 2.06 1.79 1.61 2.06 1.93
logE - 4642 4623 4619 4631 4640 4633 4619 4585 4575 4547 4557 4504 736 737 736 731 740 735

Table D.2. Retrieval results of GJ1214 b. Best retrieval of each configuration is highlighted in bold.
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JWST Ariel

1D 3D

constant equilibrium constant equilibrium constant equilibrium

Parameters Input Free ACE Fast GGchem Free ACE Fast GGchem Free ACE Fast GGchem Free ACE Fast GGchem Free ACE Fast GGchem Free ACE Fast GGchem
Tsur f [K] 1352 1554 508 503 626 1760 836 1610 1313 503 980 899 705 1612 729 1371 1400 1610 1038 1451 1641 1509 1103 1433
T1 [K] 731 517 969 1643 1382 834 694 732 745 1898 1864 1541 1509 879 735 761 1194 1531 2265 1431 1557 1098 667 1158
T2 [K] 1140 507 536 677 659 1267 1251 1322 1308 720 688 664 1069 1367 1175 1426 1239 555 587 578 1048 1175 1179 1182
Ttop [K] 931 760 501 501 2299 535 1264 516 1020 501 502 501 1411 548 1748 522 1311 681 1653 655 1440 1509 1569 1242
log10(P1) [Pa] 4.31 0.228 3.53 3.06 2.65 2.68 2.00 2.28 4.18 3.12 2.69 2.90 3.63 2.87 2.01 2.35 4.46 4.12 3.00 4.20 4.49 4.18 3.29 4.58
log10(P2) [Pa] 2.52 -2.63 0.552 2.63 2.42 2.39 1.59 2.12 2.13 2.85 2.47 2.20 3.27 2.60 1.91 2.22 1.61 1.03 2.56 1.22 1.33 1.51 1.21 1.64
log10(H2O) -3.15 -2.87 -3.19 -2.90 -3.44 -3.05 -3.71
log10(CO) -4.00 -7.86 -3.12 -7.92 -3.30 -7.92 -3.92
log10(CH4) -3.40 -3.04 -5.34 -3.05 -6.17 -3.28 -7.77
log10(CO2) -7.70 -9.16 -5.89 -9.15 -6.58 -9.37 -7.05
log10(HCN) -7.00 -9.19 -9.32 -9.09 -7.99 -8.41 -9.11
log10(NH3) -4.52 -4.29 -6.53 -4.34 -6.30 -5.49 -8.89
log10(FeH) -8.05 -7.93 -11.8 -7.91 -10.8 -9.43 -10.2
log10(SiO) -4.70 -8.55 -9.52 -8.44 -9.37 -7.59 -8.22
log10(New Astron.) -5.52 -8.00 -8.73 -11.7 -9.18 -7.06 -6.80
log10(K) -6.70 -11.7 -11.9 -7.75 -11.9 -7.36 -8.28
log10(TiO) -10.0 -9.75 -11.9 -9.77 -12.0 -9.63 -11.4
log10(VO) -9.00 -8.68 -11.9 -8.70 -11.9 -9.97 -11.2
Radius [R jup] 1.13 1.13 1.13 1.13 1.13 1.16 1.12 1.13 1.12 1.12 1.13 1.13 1.13 1.12 1.12 1.13 1.12 1.12 1.13 1.12 1.13 1.12 1.12 1.12 1.12
C/O 0.550 0.962 0.726 0.797 0.54 0.677 0.0377 0.418 0.921 2.00 0.874 0.58 0.614 0.0368 0.308 0.954 1.87 0.869 0.38 0.676 0.143 0.544
log10(Z) 0.00 0.00139 0.417 -0.047 0.02 0.0864 1.22 0.359 -0.444 -0.989 0.263 -0.18 0.144 1.34 0.541 0.0480 -0.858 -0.163 -0.44 0.150 1.03 0.0782
logE - 5818 3282 -1089 3146 5545 5747 3390 5365 5792 2744 -3708 2102 5541 5749 3253 5354 843 809 791 809 840 848 840 848

Table D.3. Retrieval results of HD189733 b. Best retrieval of each configuration is highlighted in bold.
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JWST Ariel

1D 3D

constant equilibrium constant equilibrium constant equilibrium

Parameters Input Free Fast GGchem Free Fast GGchem Free Fast GGchem Free Fast GGchem Free Fast GGchem Free Fast GGchem
Tsur f [K] 2045 3206 2122 2422 2590 1830 880 3342 475 2736 928 3277 1805 1273 3473 2372 1604 1558
T1 [K] 1519 641 1652 3446 586 2828 908 709 465 1282 521 1081 614 622 779 1265 836 1151
T2 [K] 975 2290 776 978 2658 766 3745 2704 3016 2195 2162 2394 3671 2799 2554 2048 2186 2143
Ttop [K] 2877 596 2714 2737 468 3596 3727 784 466 705 1269 710 3003 558 837 2373 844 2664
log10(P1) [Pa] 4.78 2.01 2.53 3.63 2.02 3.10 2.05 2.51 3.52 2.40 3.81 2.10 2.18 2.84 2.46 3.78 4.30 3.11
log10(P2) [Pa] 3.22 0.31 2.43 3.21 -0.616 2.37 1.68 2.40 3.47 1.56 3.28 1.57 1.33 2.67 1.98 1.30 3.45 0.989
log10(H2O) -3.30 -3.08 -3.16 -3.62 -4.12 -3.58 -4.05
log10(CO) -3.30 -3.24 -3.18 -3.97 -3.14 -4.07 -3.16
log10(CH4) -5.00 -4.71 -9.31 -9.60 -9.81 -9.24 -9.50
log10(CO2) -7.40 -7.98 -6.73 -9.36 -7.15 -9.37 -7.69
log10(HCN) -6.40 -8.52 -9.29 -9.23 -9.86 -8.87 -9.35
log10(NH3) -5.22 -4.99 -6.89 -9.09 -9.64 -9.23 -9.29
log10(FeH) -5.70 -5.46 -9.55 -6.28 -9.42 -6.82 -10.6
log10(SiO) -4.22 -4.22 -5.48 -6.12 -5.53 -8.11 -7.41
log10(New Astron.) -5.52 -1.80 -8.96 -5.28 -7.22 -3.64 -3.66
log10(K) -6.70 -9.58 -10.9 -11.2 -10.6 -10.1 -9.39
log10(TiO) -7.00 -6.75 -7.41 -7.25 -7.93 -6.97 -7.62
log10(VO) -9.00 -8.90 -11.2 -11.5 -9.36 -11.0 -10.9
Radius [R jup] 1.91 1.95 1.92 1.94 1.89 1.93 1.89 1.98 1.95 2.03 1.92 1.97 1.91 1.98 1.99 1.94 1.94 1.96 1.96
C/O 0.550 0.772 0.897 0.48 0.0365 0.114 0.862 0.883 0.90 0.792 0.266 0.924 0.669 0.88 0.883 0.523
log10(Z) 0.00 -0.222 0.132 0.02 1.23 0.800 -0.214 -0.804 -0.14 -0.708 -0.992 0.169 -0.308 0.20 -0.678 -0.614
logE - 4938 4201 4504 4851 4541 4922 4396 2152 3086 4872 4550 4820 641 566 581 761 749 768

Table D.4. Retrieval results of WASP-121 b. Best retrieval of each configuration is highlighted in bold.
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D.3 Temperature profiles

The input temperature profiles at the equator using the 1D and 3D thermal structure, over-plot
with the temperature profiles of all the retrieval models are shown here.
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Figure D.1. JWST simulations. Top to Bottom: Temperature pressure profiles at the equator
assuming 1D atmospheres for HD189733 b, WASP-121 b and GJ1214 b respectively. Substellar
point at 180◦ longitude. Left panels: constant input chemistry. Right: equilibrium input
chemistry. We over-plot the best TP-profiles of Free, ACE, FastChem and GGchem retrievals
respectively in black solid, dashed, dotted and dashed-dotted lines. The retrieval having the
highest Bayes factor is plotted in red.
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Figure D.2. Same as Figure D.1 using 3D thermal structure for the atmospheres.
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Figure D.3. Same as Figure D.2 for Ariel simulations.
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D.4 Abundances profiles

The input abundances profiles at the equator using the 1D and 3D thermal structure, over-plot
with the abundances profiles of all the retrieval models are shown here.
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Figure D.4. JWST simulation with constant chemistry assuming 1D atmosphere for the thermal
structure. Main absorbers volume mixing ratio (VMR) profiles at the equator on GJ1214 b.
Substellar point at 180◦ longitude. We over-plot the best TP-profiles of Free, ACE, FastChem
and GGchem retrievals respectively in black solid, dashed, dotted and dashed-dotted lines. The
retrieval having the highest Bayes factor is plotted in red.
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Figure D.5. Same as Figure D.4 for HD189733 b.
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Figure D.6. Same as Figure D.4 for WASP-121 b
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Figure D.7. Same as Figure D.4 for GJ1214 b with Ariel simulation assuming 3D atmosphere for
the thermal structure.
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Figure D.8. Same as Figure D.4 for HD189733 b with Ariel simulation assuming 3D atmosphere
for the thermal structure.



D.4 Abundances profiles 262

10 15 10 13 10 11 10 9 10 7 10 5 10 3

Abundance [vmr]

10 4

10 2

100

102

104

106

Pr
es

su
re

 [
Pa

]

H2O

Free
FastChem
GGchem

10
40
70
100
130
160
190
220
250
280
310
340

Lo
ng

it
ud

e 
[°

]

10 32 10 28 10 24 10 20 10 16 10 12 10 8 10 4

Abundance [vmr]

10 4

10 2

100

102

104

106

Pr
es

su
re

 [
Pa

]

CH4

Free
FastChem
GGchem

10
40
70
100
130
160
190
220
250
280
310
340

Lo
ng

it
ud

e 
[°

]

10 14 10 12 10 10 10 8 10 6

Abundance [vmr]

10 4

10 2

100

102

104

106

Pr
es

su
re

 [
Pa

]

CO2

Free
FastChem
GGchem

10
40
70
100
130
160
190
220
250
280
310
340

Lo
ng

it
ud

e 
[°

]

10 7 10 6 10 5 10 4 10 3

Abundance [vmr]

10 4

10 2

100

102

104

106

Pr
es

su
re

 [
Pa

]

CO

Free
FastChem
GGchem

10
40
70
100
130
160
190
220
250
280
310
340

Lo
ng

it
ud

e 
[°

]

10 26 10 23 10 20 10 17 10 14 10 11 10 8 10 5

Abundance [vmr]

10 4

10 2

100

102

104

106

Pr
es

su
re

 [
Pa

]

NH3

Free
FastChem
GGchem

10
40
70
100
130
160
190
220
250
280
310
340

Lo
ng

it
ud

e 
[°

]

10 35 10 31 10 27 10 23 10 19 10 15 10 11 10 7

Abundance [vmr]

10 4

10 2

100

102

104

106

Pr
es

su
re

 [
Pa

]

TiO

Free
FastChem
GGchem

10
40
70
100
130
160
190
220
250
280
310
340

Lo
ng

it
ud

e 
[°

]

10 32 10 28 10 24 10 20 10 16 10 12 10 8

Abundance [vmr]

10 4

10 2

100

102

104

106

Pr
es

su
re

 [
Pa

]

VO

Free
FastChem
GGchem

10
40
70
100
130
160
190
220
250
280
310
340

Lo
ng

it
ud

e 
[°

]

10 11 10 9 10 7 10 5

Abundance [vmr]

10 4

10 2

100

102

104

106

Pr
es

su
re

 [
Pa

]

K

Free
FastChem
GGchem

10
40
70
100
130
160
190
220
250
280
310
340

Lo
ng

it
ud

e 
[°

]

Figure D.9. Same as Figure D.4 for WASP-121 b with Ariel simulation assuming 3D atmosphere
for the thermal structure.
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D.5 Corner plots

The corner plot of the retrievals, over-plot with the input C/O ratio, metallicity (Z) and radius
of the planet (Rp) for equilibrium chemistry are shown here.
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Figure D.10. JWST simulation with equilibrium chemistry on GJ1214 b assuming 1D atmosphere for
the thermal structure. We over-plot Free, ACE, FastChem and/or GGchem retrievals respectively
in blue, orange, green and red. The input value is indicated by the black line for the input C/O
ratio, metallicity (Z) and radius of the planet (Rp) values.
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Figure D.11. Same as Figure D.10 for HD189733 b.
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Figure D.12. Same as Figure D.10 for WASP121 b.
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Figure D.13. Same as Figure D.10 for GJ1214 b with Ariel simulation assuming 3D atmosphere for
the thermal structure.
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Figure D.14. Same as Figure D.10 for HD189733 b with Ariel simulation assuming 3D atmosphere
for the thermal structure.
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Figure D.15. Same as Figure D.10 for WASP121 b with Ariel simulation assuming 3D atmosphere
for the thermal structure.
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Alfnoor The Thousand Lights Simulator: a tool for automated quantitative exoplanetary
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ExoRad 2.0 The generic point-source radiometric simulator for exoplanet observations. 31,
33, 126, 180

Kepler The Kepler space telescope. 4, 5, 11, 13

L2 Sun-Earth Lagrange Point 2. 26, 27, 80

PROPER An Optical Propagation Library for IDL, MatLab, and Python. 56, 64–66
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