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Abstract. The study of degenerations of metrics with special holonomy is an important theme
unifying the study of convergence of Einstein metrics, the study of complete non-compact manifolds
with special holonomy and the construction of spaces with special holonomy by singular perturb-
ation methods. We survey three constructions of degenerating sequences of hyperkähler metrics
on the (smooth 4-manifold underlying a complex) K3 surface—the classical Kummer construc-
tion, Gross–Wilson’s work on collapse along the fibres of an elliptic fibration, and the author’s
construction of sequences collapsing to a 3-dimensional limit—describing how they fit into the gen-
eral theory and highlighting the role played in each construction by gravitational instantons, i.e.
complete non-compact hyperkähler 4-manifolds with decaying curvature at infinity.

1. Hyperkähler metrics in dimension 4

Hyperkähler 4-manifolds are the lowest dimensional non-flat examples of manifolds with special
holonomy.

Definition 1.1. A Riemannian 4-manifold (M4, g) is hyperkähler if the holonomy Hol(g) is con-
tained in SU(2).

Despite its integro-di�erential definition in terms of parallel transport, the holonomy reduction to
SU(2) can be recast in terms of a PDE for a triple of 2-forms satisfying special algebraic properties
at each point [18]. Recall that the space of 2-forms on an oriented 4-dimensional vector space carries
a natural non-degenerate bilinear form of signature (3, 3).

Definition 1.2. Let (M4, µ0) be an oriented 4-manifold with volume form µ0. A definite triple is
a triple ! = (Ê1, Ê2, Ê3) of 2-forms on M such that span(!) = span(Ê1, Ê2, Ê3) is a 3-dimensional
positive definite subspace of �2T ú

x M at every point x œ M .

Given a triple ! of 2-forms on (M, µ0) we consider the matrix Q œ �
!
M, Sym2(R3)

"
defined by

(1.3) 1
2 Êi · Êj = Qij µ0.

! is a definite triple if and only if Q is a positive definite matrix. To every definite triple ! we
associate a volume form µ! by

(1.4) µ! = (det Q)
1
3 µ0

and the new matrix Q! = (det Q)≠ 1
3 Q which satisfies (1.3) with µ! in place of µ0. Note that the

volume form µ! and the matrix Q! are independent of the choice of volume form µ0.
Now, let (M4, µ0) be an oriented 4-dimensional manifold. The choice of a 3-dimensional positive

definite subspace of �2T ú
x M for all x œ M is equivalent to the choice of a conformal class on M ,

see for example [20, §1.1.5]. Thus every definite triple defines a Riemannian metric g! by requiring
that span(!)|x = �+T ú

x M for all x œ M and dvg! = µ!.

Definition 1.5. A definite triple ! is said to be
(i) closed if dÊi = 0 for i = 1, 2, 3;
(ii) an SU(2)-structure if Q! © id;
(iii) hyperkähler if it is both closed and an SU(2)-structure.

1



2 L. FOSCOLO

A closed definite triple is also called a hypersymplectic triple. The metric g! associated to a
hyperkähler triple is hyperkähler in the sense of Definition 1.1.

Let (M,!) be a hyperkähler 4-manifold. We now make a choice of direction in R
3. Up to rotations

we can assume that the chosen direction is e1. We write Ê = Ê1, Êc = Ê2 + iÊ3 and Êc = Ê2 ≠ iÊ3.
The complex 2-form Êc defines an almost complex structure J = J1 on M by declaring a complex
1-form – of type (1, 0) if and only if – · Êc = 0. Since dÊc = 0 the di�erential ideal generated
by the (1, 0)–forms is closed and therefore the almost complex structure J is integrable by the
Newlander–Nirenberg Theorem. Moreover, Êc and Ê are, respectively, a holomorphic (2, 0)–form
and a real (1, 1)–form with respect to J . Since Ê is closed and non-degenerate (M, Ê, J) is a Kähler
surface, with g the induced Kähler metric. Moreover, by the expression for the Ricci curvature in
Kähler geometry, cf. for example [31, §4.6], Ê2 = 1

2Êc · Êc implies that g is Ricci-flat. Since the
choice of direction in R

3 was arbitrary, we see that hyperkähler metrics are Kähler with respect to
a 2-sphere of compatible integrable complex structures—this might be the definition of hyperkähler
manifolds the reader is already familiar with.

The K3 surface. Beside the 4-torus endowed with a flat metric, the only other compact 4-manifold
carrying hyperkähler metrics is the K3 surface. In this note the K3 surface is the smooth 4-manifold
M underlying any simply connected complex surface (M, J) with trivial canonical bundle. The fact
that all such complex surfaces are di�eomorphic to each other was proved by Kodaira [33, Theorem
13]. We say that (M, J) is a complex K3 surface if we make a choice of complex structure. As
above, every simply connected hyperkähler 4-manifold is in particular a complex surface (M, J) with
trivial canonical bundle (trivialised by Êc). Conversely, every complex K3 surface is Kähler [46] and
therefore admits a Kähler Ricci-flat metric by Yau’s Theorem [50]. Since M is simply connected any
Kähler Ricci-flat metric has holonomy contained in SU(2) and therefore is hyperkähler. Examples
of complex K3 surfaces (M, J) are smooth quartics in CP

3, complete intersections of a cubic and
quadric in CP

4 and the double cover of CP2 branched along a sextic.
Note also that every Einstein metric on the K3 surface must be hyperkähler [29, Theorem 1].

Indeed, given any metric g the Chern–Gauss–Bonnet and Signature Formulas are

(1.6) 8fi2‰(M) =
ˆ

M

1
24Scal2 + |W |2 ≠ 1

2 |
¶

Ric |2, 12fi2·(M) =
ˆ

M
|W+|2 ≠ |W≠|2,

where Scal is the scalar curvature,
¶

Ric the traceless Ricci tensor and W = W+ + W≠ is the Weyl
tensor of g, decomposed into its self-dual and anti-self-dual parts. We deduce that every Einstein
metric g on the K3 surface M must be Ricci-flat and anti-self-dual since

1
2fi2

ˆ
M

1
48Scal2 + |W+|2 = 2‰(M) + 3·(M) = 0.

Indeed the Betti numbers of the K3 surface are b0 = 1, b1 = 0, b+ = 3 and b≠ = 19. Furthermore,
the Weitzenböck formula on �+ is

—�+ = ÒúÒ ≠ 2W+ + 1
3Scal = ÒúÒ.

Since b+ = 3, we deduce that (M, g) carries a 3-dimensional space of parallel self-dual 2-forms and
therefore the holonomy of g reduces to SU(2).

Let M be the moduli space of Ricci-flat metrics of volume 1 on the K3 surface M . The deform-
ation theory of Einstein metrics is governed by an index zero elliptic problem and therefore moduli
spaces of Einstein metrics are in general singular. In contrast, metrics with special holonomy often
form smooth moduli spaces. This is the case for hyperkähler metrics and thus M is a smooth
manifold. In fact we also know what this manifold is. Let Gr+(3, 19) = SO(3, 19)/SO(3) ◊ SO(19)
be the Grassmannian of positive 3-planes in R

3,19 ƒ H2(M ;R) and � be the automorphism of the
lattice H2(M ;Z) endowed with the intersection form (equivalently � is the quotient of the group

Looks like there's a missing 1/2 here.

Lorenzo Foscolo
This seems correct to me
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of di�eomorphisms of M by the subgroup of di�eomorphisms acting trivially on cohomology). The
period map

(1.7) P : M æ Gr+(3, 19)/�

associates to each metric the positive definite subspace span[!] = span([Ê1], [Ê2], [Ê3]) µ H2(M,R).
The Local Torelli Theorem [33, Theorem 17] implies that P is a local di�eomorphism.

The period map P in (1.7) is not surjective: smooth hyperkähler metrics correspond to triples
[!] œ H2(M,R) such that

(1.8) [!](�) ”= 0 œ R
3 for all � œ H2(M,Z) such that � · � = ≠2.

Thus the image of P is the complement of codimension-3 “holes” in Gr+(3, 19)/�. In the next section
we describe hyperkähler metrics approaching this excluded codimension-3 locus and explain the
significance of (1.8).

2. Non-collapsed limits

The Kummer construction. We begin with a prototypical example. Soon after Yau’s proof of
the Calabi Conjecture [50] implied that the K3 surface carries hyperkähler metrics, physicists and
mathematicians alike have been interested in finding a more explicit description of these Ricci-
flat metrics. Gibbons and Pope [23] suggested the construction of explicit approximately Ricci-flat
metrics on Kummer surfaces.

Let � ƒ Z
4 be a lattice in R

4 and consider the flat 4-torus T 4 = R
4/�. Consider the Z2–action

on T 4 induced by the involution x ‘æ ≠x of R4. Then T 4/Z2 is a flat 4-orbifold which is singular
at the 16 points of the half-lattice 1

2�. Each singular point is modelled on R
4/Z2. If we identify R

4

with C
2 then T 4 becomes a complex manifold and by blow-up we can resolve T 4/Z2 to a complex

surface (M, J) which is simply connected and satisfies c1(M, J) = 0 and therefore is a complex
K3 surface. The blow-up replaces each singularity with a holomorphic CP

1 with self-intersection
≠2. Thus a tubular neighbourhood of each CP

1 ƒ S2 in M is identified with a disc bundle in the
R

2–bundle T úS2 over S2 with Euler class ≠2.
Gibbons and Pope suggested that Ricci-flat metrics can be brought into this resolution picture.

The missing ingredient is a model Ricci-flat metric on T úS2 that is asymptotic at infinity to the
flat metric on R

4/Z2. Such a metric is explicit and is called the Eguchi–Hanson metric [21].
Note that T úS2 can be identified with the total space of the holomorphic line bundle O(≠2) over

CP
1. This identification endows T úS2 with a complex structure J . In fact, the blow-down of the

zero-section fi : O(≠2) æ C
2/Z2 exhibits O(≠2) as a crepant resolution of C

2/Z2: the standard
holomorphic (2, 0)–form dz1 · dz2 on C

2 descends to C
2/Z2 by Z2–invariance and its pull-back to

O(≠2) extends to a nowhere-vanishing holomorphic (2, 0)–form Êeh
c on O(≠2). We now define a

hyperkähler triple !eh on T úS2 by Êeh
2 = Re Êeh

c , Êeh
3 = Im Êeh

c and Êeh
1 the Kähler form defined

outside the zero-section by

(2.1) Êeh
1 = i

2ˆˆÏeh, Ïeh =


1 + r4 + 2 log r ≠ log
1
1 +


1 + r4

2
.

Here we identify the complement of the zero-section in T úS2 with the complement of the origin in
C

2/Z2 via fi and set r =


|z1|2 + |z2|2. One can check that Êeh
1 extends to a smooth Kähler form

on the whole of T úS2. Note that as r æ Œ, Êeh
1 approaches the flat metric i

2ˆˆÏ0, Ï0 = r2, up to
terms that decay as r≠4.

Now, Gibbons and Pope suggest to remove neighbourhoods of the 16 singular points of T 4/Z2
and replace them with 16 copies of a disc bundle in T úS2 æ S2. This cut-and-paste construction
of the smooth 4-manifold M can be promoted to the construction of a hypersymplectic triple on
M by patching together the flat hyperkähler triple !̂ on T 4/Z2 with 16 copies of the rescaled
Eguchi–Hanson hyperkähler triple. We now provide more details of this construction.

Give a reference for this

suggested

Lorenzo Foscolo
\cf Theorem 7.3.16 in D. Joyce’s book�
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We first need to “prepare” the Eguchi–Hanson metric to be “grafted” into T 4/Z2. Following [8,
§1.1], fix t > 0 and consider a cut-o� function ‰ = ‰t such that ‰(r) = 1 for r Æ 1Ô

t
and ‰(r) = 0

for r Ø 2Ô
t
. Define a new triple !eh,t by Êeh,t

i = Êeh
i for i = 2, 3 and Êeh,t

1 = i
2ˆˆÏ̃eh

t , where

Ï̃eh
t (r) = t2Ï̃eh

1
t≠1r

2
, Ï̃eh = ‰ Ïeh + (1 ≠ ‰) Ï0.

The triple !eh,t coincides with t2!eh for r Æ
Ô

t and with the flat hyperkähler triple !0 on C
2/Z2

for r Ø 2
Ô

t. In the annulus
Ô

t Æ r Æ 2
Ô

t, !eh,t di�ers from !0 by terms of order O(t2). If t is
su�ciently small !eh,t is a closed definite triple which is approximately hyperkähler in the sense
that Q!eh,t ≠ id = O(t2).

Let p1, . . . , p16 denote the singular points of T 4/Z2. We construct a smooth 4-manifold M by
replacing (disjoint) balls B3

Ô
t(pi) in T 4/Z2 with copies of the region {r Æ 3

Ô
t} µ T úS2. Since !eh,t

coincides with the flat triple !0 for r Ø 2
Ô

t, M comes equipped with a natural hypersymplectic
triple !t obtained by gluing !eh,t with the flat hyperkähler triple !̂ of T 4/Z2. !t is an approximate
hyperkähler triple in the sense that Q!t ≠ id = O(t2).

The question now is to deform the approximate hyperkähler triple !t into an exact solution. A
first rigorous proof of such a perturbation was given by LeBrun–Singer [37] (following an earlier
attempt by Topiwala [49]); it uses twistor theory and we will not say anything about it. A di�erent
approach exploits the fact that a complex structure J on M with c1(M, J) = 0 can be readily
constructed by blow-up fi : M æ T 4/Z2 of the complex orbifold T 4/Z2: fiúÊ̂c, where Ê̂c = Ê̂2 + iÊ̂3
is the holomorphic (2, 0)–form on T 4/Z2, extends to a nowhere vanishing holomorphic (2, 0)–form
on M . Indeed, we can arrange our gluing so that Êt

c = Êt
2 + iÊt

3 is closed and satisfies Êt
c · Êt

c = 0
and Êt

c · Êt
c ”= 0. Then the problem of perturbing !t to an exact hyperkähler triple reduces to

solving the complex Monge–Ampère equation

(2.2)
1
Êt

1 + iˆˆu
22

= 1
2Êt

c · Êt
c.

Since (t, u) = (0, 0) is a solution one can hope to solve this equation for small t > 0 by the
Implicit Function Theorem. The main issue is that (0, 0) correspond to a singular solution to the
equation and therefore care is needed in applying the Implicit Function Theorem. This was done
by Donaldson [19] exploiting the conformal equivalence between the cone metric dr2 + r2gRP3 (the
model for the singularities of T 4/Z2 and for the geometry at infinity of the Eguchi–Hanson metric)
and the cylindrical metric dt2 + gRP3 . This conformal rescaling allows one to control constants
in the application of the Implicit Function Theorem since the cylindrical metric has bounded
geometry. Alternatively, one could work with weighted Banach spaces as in analogous constructions
of complete non-compact hyperkähler 4-manifolds by Biquard–Minerbe [8].

The result is a sequence of Kähler Ricci-flat metrics on the K3 surface that develop 16 orbifold
singularities modelled on R

4/Z2 in the limit t æ 0. Each singularity is associated with a 2-sphere
of self-intersection ≠2 which shrinks to zero size as t æ 0. Furthermore, appropriate rescalings of
the sequence close to each singular point converge to the Eguchi–Hanson metric.

We can also introduce further parameters in the construction to recover a full 58-dimensional
family of hyperkähler metrics on the K3 surface close to the singular limit T 4/Z2. Indeed, when
gluing the scaled Eguchi–Hanson metric to the flat metric in a neighbourhood of the point pi we
have the choice of an isometric identification between the tangent cone at a singularity of T 4/Z2 and
R

4/Z2. Since the Eguchi–Hanson metric is U(2)–invariant, this choice lives in SO(4)/U(2) ƒ S2.
In other words, at each singular point we can choose a direction in span(Ê̂1, Ê̂2, Ê̂3) to be identified
with the direction of Êeh,t

1 in span(Êeh,t
1 , Êeh,t

2 , Êeh,t
3 ). In the previous situation, where we define a

complex structure J on M by blow-up, we make the same choice of direction at each singular point
p1, . . . , p16. If di�erent choices are made at di�erent points then M does not come equipped with an
integrable complex structure and instead of solving a complex Monge–Ampère equation we need
to glue hyperkähler triples directly. This can be done as follows.

It's confusing to start sentence with symbol.
Instead, write
"Then $\omega^t$ ...

Is it really a
sequence or
a family?
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Let !t be the closed definite triple on M obtained by gluing 16 copies of Êeh,t with the flat
orbifold triple !̂. We know that ÎQ!t ≠ idÎC0 = O(t2). We look for a triple of closed 2-forms
⌘ = (÷1, ÷2, ÷3) on M such that

(2.3) 1
2

1
Êt

i + ÷i

2
·

1
Êt

j + ÷j

2
= ”ij µ!t .

Decompose ⌘ into self-dual and anti-self dual parts ⌘ = ⌘+ +⌘≠ with respect to g!t . The self-dual
part can be written in terms of a M3◊3(R)–valued function A by

÷+
i =

3ÿ

j=1
Aij Êj .

Denote by ⌘≠ ú⌘≠ the symmetric (3◊3)–matrix with entries (1
2 ÷≠

i ·÷≠
j )/µ!t . Then we can rewrite

(2.3) as
(2.4) Q!t + Q! AT + A Q!t + A Q! AT + ⌘≠ ú ⌘≠ = id.

Now, consider the map
M3◊3(R) ≠æ Sym2(R3); A ‘≠æ Q!t AT + A Q!t + A Q! AT

and its di�erential A ‘æ Q!t AT +A Q!t . Since Q!t is arbitrarily close to the identity as t æ 0, this
linear map induces an isomorphism Sym2(R3) æ Sym2(R3) for t su�ciently small. We can therefore
define a smooth function F : Sym2(R3) æ Sym2(R3) such that Q!t AT + A Q!t + A Q!t AT = S
if and only if A = F(S). Hence we reformulate (2.4) as
(2.5) ⌘+ = F

!
(id ≠ Q!t) ≠ ⌘≠ ú ⌘≠"

.

Now, let H+
!t be the 3-dimensional space of self-dual harmonic 2-forms with respect to g!t . Since

Êt
1, Êt

2, Êt
3 are closed and self-dual (therefore harmonic) and linearly independent (since !t is a

definite triple) we deduce that H+
!t consist of constant linear combinations of Ê1, Ê2, Ê3. By Hodge

theory with respect to g!t we can finally rewrite (2.5) as the elliptic equation
(2.6) d+a + ⇣ = F

!
(id ≠ Q!t) ≠ ⌘≠ ú ⌘≠"

, dúa = 0,

for a triple a of 1-forms on M and a triple ⇣ œ H+
!t ¢ R

3. Here 2 d+a = da + úda is the self-dual
part of da.

Instead of the Monge–Ampère equation (2.2), one must now solve (2.6) applying the Implicit
Function Theorem close to the singular limit t æ 0 to deform !t into an exact hyperkähler triple.
Assuming this can be done, if we now count parameters in the construction we find

(i) 10 moduli of the flat metric on T 4;
(ii) the choice of scale t of the Eguchi–Hanson metric and gauge Â œ SO(4)/U(2) ƒ S2 for

each singular point.
Thus we have 10 + 3 ◊ 16 = 58 parameters in total, exactly the dimension of the moduli space of
Ricci-flat metrics (without any normalisation for the volume) on the K3 surface.

Orbifold singularities. From a broader perspective the Kummer construction furnishes the pro-
totypical example of the appearance of orbifold singularities in non-collapsing sequences of Einstein
4–manifolds. By work of Anderson [1, Theorem C], Nakajima [42, Theorem 1.3] and Bando–Kasue–
Nakajima [7, Theorem 5.1], we know that a sequence of Einstein 4-manifolds (Mi, gi) with a uniform
lower bound on volume and upper bounds on diameter and Euler characteristic converges (up to
subsequences) to an Einstein 4-orbifold MŒ with finitely many singular points. The formation of
orbifold singularities is modelled on complete Ricci-flat ALE spaces which appear as rescaled limits,
or “bubbles”, of the sequence (Mi, gi) around points that approach one of the singularities of the
orbifold MŒ. We now provide a more detailed description of these results.

Theorem 2.7. Fix �, C, V, D > 0 and let (M4
i , gi) be a sequence of Einstein 4-manifolds satisfying

I think these are all
missing t superscripts

after passing
to a
subsequence

Lorenzo Foscolo
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(i) |Ric(gi)| Æ �;
(ii) ‰(Mi) Æ C;
(iii) Vol(Mi, gi) Ø V ;
(iv) diam(Mi, gi) Æ D.

Then a subsequence converges to an Einstein orbifold (MŒ, gŒ) with finitely many isolated singular
points {x1, . . . , xn} with n Æ n(�, C, V, D). More precisely, (Mi, gi) converges to (MŒ, gŒ) in the
Gromov–Hausdor� sense and there are smooth embeddings fi : MŒ \ {x1, . . . , xn} æ Mi such
that fú

i gi converges to the smooth Einstein metric gŒ|MŒ\{x1,...,xn} in CŒ over compact sets of
MŒ \ {x1, . . . , xn}.

Here are some ingredients in the proof of the theorem. First of all, there exists a subsequence
that converges to a compact metric space (MŒ, dŒ) in Gromov–Hausdor� topology and one has
to understand the structure of MŒ. The Bishop–Gromov volume comparison and hypotheses (iii)
and (iv) imply the non-collapsing condition Vol (B1(p)) Ø v for all p œ Mi and all i and some
uniform v > 0. Moreover, the hypotheses of the Theorem guarantee that we have uniform control
on the Sobolev constant of (Mi, gi). Since the Einstein equation implies the di�erential inequality
—|Rmgi | + c |Rmgi |2 Ø 0, Moser iteration now yields the following Á–regularity result: there exists
Á > 0, C > 0, r0 > 0 such that for all 0 < r < r0

(2.8)
ˆ

B2r(p)
|Rmgi |2 dvgi < Á =∆ sup

Br(p)
|Rmgi | Æ Cr≠2

Aˆ
B2r(p)

|Rmgi |2 dvgi

B 1
2

.

Given (i), the bound (ii) is equivalent to a global bound ÎRmgiÎL2 Æ C Õ by the Gauss–Chern–
Bonnet Formula (1.6). Then (2.8) fails only for a definite number of balls. Together with a bootstrap
argument using the Einstein equation, we conclude that (MŒ, gŒ) is a smooth Einstein manifold
away from a definite number of points x1, . . . , xn. A first step in analysing the structure of these
singular points is to study their tangent cone. Fix a = 1, . . . , n. Consider a sequence ri æ 0 and
consider the sequence of pointed manifolds (MŒ, r≠2

i gŒ, xa). The pointed Gromov–Hausdor� limit
(Ya, oú) of a subsequence ik æ Œ is called a tangent cone to MŒ at xa. A priori it depends on the
sequence of rescaling ri. Now, since ÎRmgŒÎL2 is bounded by the lower continuity of the energy,
we have

´
B2r(xa)\Br(xa) |Rmgi |2 dvgi æ 0 as r æ 0. Then using (2.8) one can show that the annulus

B2(oú) \ B1(oú) in Ya is flat. In fact Ya is a flat cone Ya = C(S3/�a) which is smooth outside of its
vertex oú.

Not only does the available theory characterises the singularities of non-collapsed limits of Ein-
stein 4-manifolds; it also explains how these singularities arise. The key notion is the one of ALE
(asymptotically locally Euclidean) manifolds.

Definition 2.9. A complete Riemannian 4-manifold (W 4, h) is ALE of rate ‹ < 0 if there exists a
finite group � µ SO(4) acting freely on R

4\{0}, a compact set K µ W , R > 0 and a di�eomorphism
f :

!
R

4 \ BR(0)
"

/� æ W \ K such that
|Òk(fúh ≠ hR4/�)| = O(r‹≠k).

Here the norm and covariant derivative are computed using the flat metric hR4/�.

Theorem 2.10. In the same notation and in addition to the statements of Theorem 2.7, for each
a = 1, . . . , n there exist xa,i œ Mi and ri æ Œ such that, up to subsequences,

(i) B(xa,i, ”) µ Mi converges to B(xa, ”) µ MŒ for all ” > 0 su�ciently small;
(ii) (Mi, r2

i gi, xa,i) converges to a Ricci-flat ALE 4-manifold (Wa, ga, xa,Œ) of rate ≠4 in the fol-
lowing sense: for each R > 0 there exists maps fa,i : B(xa,Œ, R) æ Mi such that fú

a,i(r2
i gi)

converges in CŒ to ha on B(xa,Œ, R) µ Wa.

The points xa,i and scales ri are chosen so that |Rmgi |(xa,i) = r2
i is essentially the maximum of

|Rmgi | in a small ball that is converging to a neighbourhood of xa in Gromov–Hausdor� topology.

characterise

in the
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The existence of a limit (Wa, ha) which is a complete Ricci-flat manifold with finite energy and
maximal volume growth—i.e. ÎRmhaÎL2 < Œ and limræŒ r≠4Vol(Br(xa,Œ)) > 0—follows by ar-
guments based on (2.8) as before. The fact that any such manifold is ALE of rate ‹ = ≠4 follows
from [7, Theorem 1.5].

In fact, the tangent cone at infinity of Wa might not match the tangent cone at the orbifold
singularity xa œ MŒ and a series of blow-ups at di�erent scales might be necessary to capture the
full picture of the degeneration of Mi to MŒ. Such bubbling-o� of a “bubble-tree” of ALE Ricci-flat
orbifolds was made precise by Bando [6] and Anderson–Cheeger [3]. We will see later some explicit
examples of this phenomenon, cf. Remark 3.3.

ALE gravitational instantons. Theorem 2.10 provides the motivation for the study and ideally
the classification of all Ricci-flat ALE 4-manifolds. It is here that the hyperkähler case di�ers
dramatically from the more general Ricci-flat case: ALE hyperkähler 4-manifolds were constructed
and classified by Kronheimer [34, 35] following earlier work of Eguchi–Hanson, Gibbons–Hawking
and Hitchin (the classification was extended to non-simply connected Kähler Ricci-flat ALE 4-
manifolds by Suvaina [9]); in contrast, not a single example of an ALE Ricci-flat 4-manifold with
generic holonomy SO(4) is currently known and the question of whether Ricci-flat ALE 4-manifolds
must have special holonomy is widely open.

A gravitational instanton is a complete non-compact hyperkähler 4-manifold with finite energy
ÎRmÎL2 . We will see later that often stronger assumptions of curvature decay have to be imposed
to obtain better control of the asymptotic geometry at infinity. Note that since every hyperkähler
manifold is in particular Ricci-flat, gravitational instantons have constrained volume growth: the
volume of a geodesic ball of radius r grows at most as r4 and at least linearly in r. By the result
of Bando–Kasue–Nakajima [7, Theorem 1.5] mentioned above, gravitational instantons of maximal
volume growth are ALE hyperkähler 4-manifolds in the sense of Definition 2.9.

We now state Kronheimer’s results. Let � be a finite group of SU(2) that acts freely on C
2 \ {0}.

Such groups are classified by simply-laced Dynkin diagrams, i.e. the Dynkin diagrams of type ADE.
The Kleinian (or Du Val) singularity C

2/� admits a (unique) minimal resolution fi : X� æ C
2/�:

X� is a smooth complex surface, fi is an isomorphism outside of fi≠1(0) and X� does not contain any
rational curve with self-intersection ≠1 (which could be blown-down to produce another smooth
resolution). The exceptional locus fi≠1(0) is a configuration of rational curves with self-intersection
≠2 that intersects according to the Dynkin diagram of �. Finally, X� has trivial canonical bundle,
i.e. it admits a no-where vanishing holomorphic (2, 0)-form Êc that outside of fi≠1(0) restricts to
the pull-back of the standard complex volume form dz1 · dz2 on C

2/�. In the following theorem
we forget the complex structure and regard X� as a smooth 4-manifold.

Theorem 2.11. Let � be a finite group of SU(2) that acts freely on C
2 \ {0} and X� be the smooth

4-manifold underlying the minimal resolution of C2/�.
(i) Let ↵ œ H2(X�,R) ¢ R

3 satisfy

(2.12) ↵(�) ”= 0 œ R
3 for all � œ H2(X�,Z) such that � · � = ≠2.

Then there exists an ALE hyperkähler structure ! on X� with [!] = ↵.
(ii) If (X,!) is an ALE hyperkähler 4-manifold asymptotic to C

2/� then X is di�eomorphic to
X� and [!] satisfies (2.12). Moreover, if (X,!) and (X Õ,!Õ) are two such manifolds and
there exists a di�eomorphism f : X æ X Õ such that [fú!Õ] = [!] then (X,!) and (X Õ,!Õ)
are isomorphic hyperkähler manifolds.

The hyperkähler structures in (i) are obtained by the so-called hyperkähler quotient construction.
For example, the Eguchi–Hanson metric can be described as the hyperkähler quotient of H

2 by
U(1) acting by ei◊ · (q1, q2) = (ei◊q1, e≠i◊q2). The hyperkähler moment map for this U(1)–action
is µ(q1, q2) = q1iq1 ≠ q2iq2 œ ImH ƒ R

3. Given ⇣ œ R
3, the hyperkähler quotient construction

guarantees that, when smooth, µ≠1(⇣)/U(1) is a hyperkähler manifold. When ⇣ = 0 we have the

change the dashes to commas

wide open
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subgroup
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flat metric on C
2/Z2 and when ⇣ ”= 0 we have the Eguchi–Hanson hyperkähler structure on T úS2

scaled and rotated so that [!](S2) = ⇣.
For the classification result in (ii) Kronheimer exploits twistor theory and the natural “1-point”

conformal compactification of an ALE gravitational instanton to an anti-self-dual 4-orbifold. More
recently, Conlon–Hein [17, Corollary D] have obtained a di�erent proof of this result that does
not use twistor theory: with respect to any complex structure, an ALE gravitational instanton
asymptotic to C

2/� must be the crepant resolution of a member of the versal Cú–deformation of
the Kleinian singularity C

2/�; every such deformation has a unique crepant resolution and the
latter admit a unique ALE Kähler Ricci-flat metric in each Kähler class.

3. Codimension one collapse

If we include hyperkähler orbifolds with finitely many isolated singularities, the period map (1.7)
can be extended as a map from the completion of the moduli space M of Einstein metrics on the K3
surface with unit volume in the Gromov–Hausdor� topology onto Gr+(3, 19)/� [2, Theorem IV].
However Gr+(3, 19)/� is non-compact so we must still consider sequences of hyperkähler metrics
that do not converge in Gromov–Hausdorf topology. This amounts to understanding collapsing
sequences of hyperkähler metrics on the K3 surface.

Let (M, gi) be a sequence of unit-volume hyperkähler metrics with diam(M, gi) æ Œ. Then
Volgi(B1(p)) æ 0 as i æ Œ for all p œ M , since otherwise we would bound the diameter
of (M, gi) in terms of the total volume [45, Theorem I.4.1]. Under these assumptions, Ander-
son [2, Theorem II] showed that (M, gi) collapses in the sense of Cheeger–Gromov outside finitely
many points x1, . . . , xn, where the number n is controlled by the Euler characteristic ‰(M). This
means that for x œ M \ {x1, . . . , xn} the injectivity radius injgi

(x) converges to zero and that
we control the curvature after rescaling the metric so that the injectivity radius stays bounded:
injgi

(x)2|Rmgi |gi(x) Æ ‘0, for a universal constant ‘0 > 0. In fact, Cheeger and Tian [11, Theorems
0.1 and 0.8] have proven the much stronger result that the collapse occurs with bounded curvature
away from a definite number of points.

Cheeger–Tian’s result implies that Cheeger–Fukaya–Gromov’s theory of collapse with bounded
curvature [10] can be applied outside of finitely many points. The most important feature of this
theory in our discussion is that the limiting geometry acquires continuous symmetries. Here we
describe these symmetries only at the level of the local geometry around each point in the region
that collapses with bounded curvature, referring to for the globalisation of this local picture. Let
(Mn

i , gi) be a sequence of manifolds with sectional curvature bounded by a uniform constant K > 0.
If pi œ Mi and 3r œ (0, 1Ô

K
) then we can consider the sequence of Riemannian metrics ĝi = expú

pi
gi

on the ball B3r(0) µ R
n ƒ TpiMi. For each i there exists a pseudo-group �i of local isometries of

(Br(0), ĝi) whose action induces the equivalence relation x ≥�i y if and only if exppi
(x) = exppi

(y) œ
Mi. Up to passing to a subsequence, (Br(0), ĝi) converges in C1,– to (Br(0), ĝŒ) (the limit and the
convergence are smooth if we control higher order derivatives of the curvature, as in the Einstein
case) and the pseudogroups �i converge to a pseudogroup �Œ of isometries of (Br(0), ĝŒ). The
Gromov–Hausdor� limit of (Br(pi), gi) is (Br(0), ĝŒ)/�Œ. Since �i acts in an increasingly dense
fashion, �Œ contains continuous isometries: in fact, a neighbourhood of the identity in �Œ is
isomorphic to a neighbourhood of the identity in a nilpotent Lie group.

Now, this general theory of Riemannian collapse with bounded curvature motivates us to study
hyperkähler metrics in dimension 4 with a triholomorphic Killing field, i.e. a Killing field that
preserves the hyperkähler triple as well as the metric, as models for regions that collapse with
bounded curvature. Thought experiments based on the Kummer construction suggest that we
should study gravitational instantons with non-maximal volume growth as models for regions that
collapse with unbounded curvature. Indeed, consider the Kummer construction of Ricci-flat metrics
on the K3 surface along a family of split tori T 4 = T 4≠k ◊T k

‘ with a T k–factor of volume ‘k æ 0. We
can then think of the 2-spheres arising in the resolution of the 16 singularities of T 4/Z2 as coming

seems to
be a
missing
reference
here
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in 2k–tuple aligned along the collapsing k-torus over each of the 24≠k singular points of T 4≠k/Z2.
If we now rescale the sequence of Kähler Ricci-flat metrics on the K3 surface by ‘≠2 around one
of these 2k–tuple, in the limit ‘ æ 0 we should obtain a complete hyperkähler metric asymptotic
to (R4≠k ◊ T k)/Z2. In the case k = 1, the appearance of gravitational instantons asymptotic to
(R3 ◊ S1)/Z2 as rescaled limits was suggested by Page [44]. Hyperkähler metrics asymptotic to
(R4≠k ◊ T k)/Z2 for k = 1, 2, 3 have been constructed by Biquard–Minerbe [8] using a non-compact
version of the Kummer construction (earlier Hitchin [30] used twistor methods in the case k = 1).

The Gibbons–Hawking Ansatz. The Gibbons–Hawking ansatz [24] describes 4-dimensional hy-
perkähler metrics with a triholomorphic S1–action (or more generally metrics with a triholomorphic
Killing field).

Let U be an open set of R3 and fi : P æ U be a principal U(1)–bundle. Suppose that there exists
a positive harmonic function h on U such that údh is the curvature d◊ of a connection ◊ on P .
Then the metric
(3.1a) ggh = h fiúgR3 + h≠1◊2

on P is hyperkähler. Indeed, we can exhibit an explicit hyperkähler triple !gh that induces the
metric ggh. Fix coordinates (x1, x2, x3) on U µ R

3 and define

(3.1b) Êgh
i = dxi · ◊ + h dxj · dxk,

where (ijk) is a cyclic permutation of (123). One can check that !gh is an SU(2)–structure inducing
the Riemannian metric ggh. Moreover, the requirement that !gh is also closed is equivalent to the
abelian monopole equation
(3.2) ú dh = d◊

The fibre-wise circle action on P preserves !gh and fi is nothing but a hyperkähler moment map for
this action. Conversely, every 4-dimensional hyperkähler metric with a triholomorphic circle action
is locally described by (3.1).

The basic example of the Gibbons–Hawking construction is given in terms of so-called Dirac
monopoles on R

3. Fix a set of distinct points p1, . . . , pn in R
3 and consider the harmonic function

h = m +
nÿ

j=1

kj

2|x ≠ pj | ,

where m Ø 0 and k1, . . . , kn are constants. Since R
3 \ {p1, . . . , pn} has non-trivial second homology,

we must require kj œ Z for all j in order to be able to solve (3.2). If these integrality constraints are
satisfied then údh defines the curvature d◊ of a connection ◊ (unique up to gauge transformations)
on a principal U(1)–bundle P over R

3 \ {p1, . . . , pn} which restricts to the principal U(1)–bundle
associated with the line bundle O(kj) æ S2 on a small punctured neighbourhood of pj . The pair
(h, ◊) is a solution of (3.2) which we call a Dirac monopole with singularities at p1, . . . , pn.

The Gibbons–Hawking ansatz (3.1) associates a hyperkähler metric ggh to every Dirac monopole
on the open set where h > 0. When kj > 0 then ggh is certainly defined on the restriction of P to
a small punctured neighbourhood of pj . By a change of variables one can check that ggh can be
extended to a smooth orbifold metric modelled on C

2/Zkj by adding a single point.

Remark 3.3. By considering clusters of points p1, . . . , pn coalescing together at di�erent rates one
can easily constructs sequences of (non-compact) hyperkähler metrics developing orbifold singular-
ities modelled on bubble-trees of ALE spaces.

In particular ggh is a complete metric whenever m Ø 0 and kj = 1 for all j = 1, . . . , n. When
m = 0 one can check that ggh is an ALE metric in the sense of Definition 2.9. When m > 0 (by
scaling we can then assume that m = 1) ggh has a drastically di�erent asymptotic geometry called
ALF (asymptotically locally flat).

tuples

tuples
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Definition 3.4. A gravitational instanton (M, g) is called ALF if there exists a compact set K µ M
such that the following holds. M \K is the total space of a circle fibration fi : M \K æ (R3 \BR)/�,
where R > 0 and � is a finite subgroup of O(3) acting freely on S2. Passing to a �–cover we can
always assume that fi is a principal circle bundle. Define a model metric gŒ on M \ K by choosing
a connection ◊ on (the �–cover of) fi and setting gŒ = fiúgR3 + ◊2. Then we have

(3.5) |Òk
gŒ(g ≠ gŒ)|gŒ = O(r‹≠k)

for some ‹ < 0 and all k Ø 0.
There are only two possibilities for �: if � = id we say that M is an ALF gravitational instanton

of cyclic type; if � = Z2 we say that M is an ALF gravitational instanton of dihedral type.

Recall that gravitational instantons have constrained volume growth: Vol
!
Br(p)

"
grows at least

linearly in r and at most as r4. Under the assumption of faster than quadratic curvature decay,
i.e. |Rm| = O(r≠2≠‘) for some ‘ > 0 (or a slightly weaker finite weighted energy assumption),
Minerbe [39, Theorem 0.1] has shown that if we assume a uniformly submaximal volume growth,
Vol

!
Br(p)

"
Æ Cra for some 3 Æ a < 4 and all p, say, then the volume growth is at most cubic,

a Æ 3. Minerbe also described the asymptotic geometry of gravitational instantons of cubic volume
growth and faster than quadratic curvature decay: they are all ALF spaces as in Definition 3.4.

ALF gravitational instantons. Now we describe the classification of ALF gravitational instan-
tons obtained by Minerbe [40] and Chen–Chen [13] in the cyclic and dihedral case respectively.

Let Hk be the total space of the principal U(1)–bundle associated with the line bundle O(k)
over S2 radially extended to R

3 \ BR for any R > 0. ◊k will denote the (unique up to gauge
transformation) SO(3)–invariant connection on Hk. The Gibbons–Hawking ansatz (3.1) yields a
hyperkähler metric

(3.6) gk =
3

1 + k

2r

4
(dr2 + r2gS2) +

3
1 + k

2r

4≠1
◊2

k

on Hk for all k œ Z. Here r is a radial function on R
3. Finally, on H2k we consider the Z2–action

which is generated by the simultaneous involutions on the base R
3 and the fibre: on R3 we act by

the standard involution x ‘æ ≠x and the involution on the fibre S1 = R/2fiZ is the one induced by
the standard involution on the universal cover R. We refer to this involution of H2k as its standard
involution.

Definition 3.7. Let (M4, g) be an ALF gravitational instanton.
(i) We say that M is of type Ak for some k Ø ≠1 if there exists a compact set K µ M , R > 0

and a di�eomorphism „ : Hk+1 æ M \ K such that

|Òl
gk+1(gk+1 ≠ „úg)|gk+1 = O(r≠3≠l)

for every l Ø 0.
(ii) We say that M is of type Dm for some m Ø 0 if there exists a compact set K µ M , R > 0

and a double cover „ : H2m≠4 æ M \ K such that the group Z2 of deck transformations is
generated by the standard involution on H2m≠4 and

|Òl
g2m≠4(g2m≠4 ≠ „úg)|g2m≠4 = O(r≠3≠l)

for every l Ø 0.

Chen–Chen [13, Theorem 1.1] have shown that every ALF gravitational instanton is either of
type Ak for some k Ø ≠1 or Dm for some m Ø 0. The constraints k Ø ≠1 and m Ø 0 were derived
earlier by Minerbe [38, Theorem 0.1] in the cyclic case and by Biquard–Minerbe [8, Corollary 3.2]
in the dihedral case.
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ALF spaces of cyclic type. We saw that gravitational instantons of type Ak can be constructed from
Dirac monopoles on R

3 with k +1 singularities via the Gibbons–Hawking ansatz. These are usually
called multi-Taub–NUT metrics. The case k = 0 is the Taub–NUT metric on R

4 and k = ≠1 is
R

3 ◊ S
1 with its flat metric. Minerbe [40, Theorem 0.2] has shown that every ALF space of cyclic

type must be isometric to a multi-Taub–NUT metric.

ALF spaces of dihedral type. ALF metrics of dihedral type are not globally given by the Gibbons–
Hawking construction and in most cases are not explicit. A number of di�erent constructions have
appeared over the past decades, but only recently Chen–Chen [13, Theorem 1.2] have shown that
all these constructions yield equivalent families of ALF metrics.
m = 0: The D0 ALF manifold is the moduli space of centred charge 2 monopoles on R

3 with its nat-
ural L2–metric, known as the Atiyah–Hitchin manifold. The metric admits a cohomogeneity
one isometric action of SO(3) and is explicitly given in terms of elliptic integrals [4, Chapter
11]. The D0 ALF metric is rigid modulo scaling.

m = 1: The Atiyah–Hitchin manifold is di�eomorphic to the complement of a Veronese RP
2 in

S4 and therefore it retracts to RP
2 and is not simply connected. The double cover of the

Atiyah–Hitchin manifold is a D1 ALF space. As a smooth manifold it is di�eomorphic
to the complement of RP

2 in CP
2, or equivalently to the total space of O(≠4) over S2.

This rotationally invariant D1 ALF metric admits a 3-dimensional family of D1 ALF
deformations, sometimes referred to as the Dancer metrics.

m = 2: D2 ALF metrics were constructed by Hitchin [30, §7] using twistor methods and by
Biquard–Minerbe [8, Theorem 2.4] using a non-compact version of the Kummer construc-
tion: one considers the quotient of R3◊S

1 by an involution and resolves the two singularities
gluing in copies of the Eguchi–Hanson metric.

m Ø 3: Dm ALF metrics (for all m Ø 1) appeared in the work of Cherkis–Kapustin [16] on moduli
spaces of singular monopoles on R

3 and were rigorously constructed by Cherkis–Hitchin [15]
using twistor methods and the generalised Legendre transform. In the case m Ø 3 a more
transparent construction due to Biquard–Minerbe [8, Theorem 2.5] yields Dm ALF metrics
by desingularising the quotient of the Taub–NUT metric by the binary dihedral group
Dm of order 4(m ≠ 2) using ALE dihedral spaces. Using complex Monge–Ampère methods
Auvray [5] has then constructed 3m–dimensional families of Dm ALF metrics on the smooth
4-manifold underlying the minimal resolution of C2/Dm.

ALF gravitational instantons and collapsing Ricci-flat metrics on the K3 surface. Des-
pite this rich theory of ALF gravitational instantons, until recently it has remained unclear how
they can appear as models for the formation of singularities in collapsing sequences of hyperkähler
metrics on the K3 surface. In [22] the author exploited singular perturbation methods to construct
examples of Ricci-flat metrics on the K3 surface collapsing to a 3-dimensional limit and exhibit
ALF gravitational instantons as the “bubbles” appearing in the process.
Theorem 3.8. Let T 3 = R

3/� be a 3-torus for some lattice � ƒ Z
3. Endow T 3 with a flat metric

gT 3. Let · : T 3 æ T 3 be the standard involution x ‘æ ≠x and denote by q1, . . . , q8 its fixed points.
Fix a ·–symmetric configuration of further 2n distinct points p1, ·(p1), . . . , pn, ·(pn). Denote by T ú

the complement of {q1, . . . , q8, p1, . . . , ·(pn)} in T 3.
Let m1, . . . , m8 œ ZØ0 and k1, . . . , kn œ ZØ1 satisfy

(3.9)
8ÿ

j=1
mj +

nÿ

i=1
ki = 16.

For each j = 1, . . . , 8 fix a Dmj ALF space Mj and for each i = 1, . . . , n an Aki≠1 ALF space Ni.
Then there exists a 1-parameter family of hyperkähler metrics {g‘}‘œ(0,‘0) on the K3 surface

with the following properties. We can decompose the K3 surface into the union of open sets K‘ fit8
j=1 M ‘

j fi
tn

i=1 N ‘
i such that as ‘ æ 0:
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(i) (K‘, g‘) collapses to the flat orbifold T ú/Z2 with bounded curvature away from the punc-
tures;

(ii) for each j = 1, . . . , 8 and k Ø 0, (M ‘
j , ‘≠2g‘) converges in Ck,–

loc to the Dmj ALF space Mj;
(iii) for each i = 1, . . . , n and k Ø 0, (N ‘

i , ‘≠2g‘) converges in Ck,–
loc to the Aki≠1 ALF space Ni.

The metric g‘ is constructed by gluing methods: we first construct an approximate hyperkähler
metric by patching together known models and then perturb it to an exact solution. The construc-
tion of the approximate hyperkähler metric proceeds as follows. The ALF gravitational instantons
provide models for the collapsing geometry near points of curvature concentration. We aim to con-
struct a model for the collapsing sequence of hyperkähler metrics on regions where the curvature
remains bounded using the Gibbons–Hawking ansatz over the punctured 3-torus T ú. We look for
a Dirac monopole (h, ◊) on T ú with the following singular behaviour: h is a harmonic function on
T ú with prescribed singularities at the punctures

h ≥ 2mj ≠ 4
2rj

as rj æ 0, h ≥ ki

2ri
as ri æ 0.

Here rj and ri denote the distance functions from the points qj and pi, ·(pi) with respect to the
flat metric gT 3 . The balancing condition (3.9) guarantees the existence of the harmonic function h.
Since the weights mj and ki are integers and the configuration of punctures is ·–invariant, one can
also show the existence of a connection ◊ with curvature údh on a principal circle bundle over T ú.

Fix a (small) positive number ‘ > 0. The Gibbons–Hawking ansatz (3.1) yields a hyperkähler
metric

ggh
‘ = (1 + ‘h) fiúgT 3 + ‘2(1 + ‘h)≠1 ◊2

over the region where 1 + ‘h > 0. Unless h is constant (which corresponds to Page’s suggestion of
considering the Kummer construction starting with T 3 ◊ S1

‘ for a circle factor of length 2fi‘ æ 0)
there must exists some j with mj = 0, 1 and therefore the harmonic function 1 + ‘h must become
negative somewhere. The key observation is that by taking ‘ su�ciently small (which geometrically
corresponds to making the circle fibres have small length) it is possible to construct highly collapsed
hyperkähler metrics ggh

‘ outside of an arbitrarily small neighbourhood of the punctures. More
precisely, one can prove that there exists ‘0 > 0 such that for every ‘ < ‘0 we have 1 + ‘h > 1

2 on
the complement of

tk
j=1 B8‘(qj).

Now, as we know from Definition 3.7 the asymptotic model of any ALF metric (up to a double
cover in the dihedral case) can be written in Gibbons–Hawking coordinates. The configuration of
punctures and weights on T 3 was chosen so that, after taking a Z2–quotient, we are able to glue in
copies of ALF spaces to extend the Gibbons–Hawking metric ggh

‘ to an approximately hyperkähler
triple !‘: close to the fixed point qj of the Z2–action on T 3 we glue in the Dmj ALF space Mj (this
explains why we need 8 of them in the theorem); close to the image of pi, ·(pi) in T 3/Z2 we glue in
the Aki≠1 ALF space Ni. In this way one obtains a closed definite triple !‘ which is approximately
hyperkähler in the sense that |Q!‘ ≠ id| æ 0 as ‘ æ 0. The approximate hyperkähler triple is
then deformed into an exact solution by solving an equation like (2.6) using the Implicit Function
Theorem in appropriately chosen weighted Hölder spaces.

4. Collapse and elliptic fibrations

In this final section we describe an influential work of Gross–Wilson [27] on the behaviour of
hyperkähler metrics on the K3 surface collapsing to a 2-dimensional limit along the fibres of an
elliptic fibration. We will also discuss more recent work of Hein [28] and related work by Chen–Chen
[12–14] on gravitational instantons with non-maximal volume growth, in which elliptic fibrations
also play a key role.
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The Gross–Wilson’s construction. A complex surface (i.e. a complex manifold of complex
dimension 2) (M, J) is said to be elliptic if it admits a holomorphic map fi : M æ C onto a smooth
complex curve C such that the generic fibre is a smooth curve of genus 1. If fi : M æ C has a
holomorphic section ‡, then the generic fibre becomes a smooth elliptic curve. We say that M is a
minimal elliptic surface if there are no (≠1)–curves contained in the fibres.

If (M, J) is an elliptic complex K3 surface not all fibres can be smooth elliptic curves because
‰ (M) = 24. The possible singular fibres of elliptic surfaces have been classified by Kodaira. They
are distinguished by the monodromy. Work locally with a minimal elliptic surface fi : M æ —
over a disc with a section ‡ and assume that all fibres except possibly the one over the origin
are smooth elliptic curves. Using ‡, one can describe the restriction M |—ú of M to the punctured
disc as fi : (—ú ◊ C)/� æ —ú, for a family of lattices � µ C defined by (possibly multi-valued)
holomorphic functions ·1, ·2 on —ú. The monodromy is the representation of the fundamental group
of —ú on the mapping class group of the smooth fibre. We can think of it as the conjugacy class
of the matrix A œ SL(2,Z) generating the action of fi1(—ú) on the oriented pair (·1, ·2). We refer
to [41, Tables I.4.1 and I.4.2] for Kodaira’s list and limit ourself to the example of a singular fibre
of type I1. In this case M |—ú is isomorphic to (—ú ◊ C)/(·1Z + ·2Z) with ·1 = 1, ·2 = 1

2fii log z.
Since ·2(ei◊z) = ·2(z) + ◊

2fi , the monodromy around an I1 fibre is

(4.1)
3

1 1
0 1

4
.

The singular fibre fi≠1(0) is a pinched torus, i.e. a 2-sphere with south and north poles identified.
Generically a complex K3 surface that admits an elliptic fibration (necessarily over CP

1) has
exactly 24 singular fibres, all of type I1. Let fi : M æ CP

1 be such such an elliptic K3 surface
with 24 singular I1 fibres. Up to changing the complex structure of M preserving the fibration
fi : M æ CP

1 we can always reduce to the case that fi has a holomorphic section. Gross–Wilson
studied the behaviour of Kähler Ricci-flat metrics on M as we fix this complex structure and deform
the Kähler class so that the elliptic fibres of fi shrink to zero size. In other words, they considered
a sequence of Kähler classes converging to the class [fiúÊFS] at the boundary of the Kähler cone of
M and described the behaviour of the Kähler Ricci-flat metric given by Yau’s Theorem along this
sequence. Here ÊFS is the Fubini–Study metric on CP

1. Gross–Wilson’s description of the collapsing
Ricci-flat metrics is achieved by a gluing construction.

The semi-flat metric. The model for the collapsing Ricci-flat metrics away from the singular fibres
is provided by a certain semi-flat metric [27, §2], i.e. a metric that restricts to a flat metric on each
elliptic fibre.

Let fi : M æ CP
1 be an elliptic K3 surface with a section and restrict the fibration to a small

disc — µ CP
1. Fix a holomorphic coordinate z on —. We assume that fi : M |— æ — is a minimal

elliptic fibration with a section such that all fibres are smooth. Using the given holomorphic section,
we can identify M |— with (— ◊ Cw)/(·1Z + ·2Z) as before. Without loss of generality we assume
that Im(·1·2) > 0. Fix a holomorphic symplectic form Êc on M . In coordinates z, w we can assume
that Êc = dz·dw. Given Á > 0, we construct a semi-flat metric Êsf,Á using the following ingredients.

(i) For each z œ — define a flat Kähler metric Êz,Á on fi≠1(z) by choosing a dual basis
›1(z), ›2(z) to ·1(z), ·2(z) and setting Êz,Á = Á ›1(z) · ›2(z). Changing basis to dw, dw
yields Êz,Á = i

2Wdw · dw, with W = Á
Im(·1·2) .

(ii) Define Ê—,Á as the unique Kähler metric on — such that the pairing T 1,0— ◊ (— ◊C) æ C

induced by Êc is isometric with respect to the Hermitian metrics induced by Êz,Á and Ê—,Á.
Explicitly, Ê—,Á = i

2W ≠1dz · dz.
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(iii) The family of lattices ·1Z + ·2Z defines a flat connection on the trivial bundle — ◊ C by
declaring ·1 and ·2 flat sections. The associated connection 1-form is

� dz = 1
Im(·1·2)

!
Im(·1w)d·2 ≠ Im(·2w)d·1

"
.

The semi-flat metric is then

(4.2) Êsf,Á = i
2W ≠1dz · dz + i

2W (dw ≠ �dz) · (dw ≠ �dz).

(Êsf,Á, Re Êc, Im Êc) is a hyperkähler triple and Êsf,Á|fi≠1(z) is the flat metric with volume Á.
The construction of the semi-flat metric can be extended to the situation where M |— has a

singular fibre over the origin z = 0. We simply replace — with the punctured disc —ú and use
Kodaira’s normal form for M |—ú . For example, if fi≠1(0) is a fibre of type I1 then M |—ú is isomorphic
to (—ú ◊C)/(·1Z+ ·2Z) with ·1 = 1, ·2 = 1

2fii log z. Note that the assumption Im(·1·2) > 0 forces
— to be strictly contained in the unit disc in C. The semi-flat metric (4.2) on the complement of a
singular fibre of type I1 admits a tri-holomorphic S1–action and, following [27], we can rewrite it
in Gibbons–Hawking coordinates.

First of all, since W Im (�dz) = ≠ Im(w) dW , the imaginary part of W (dw ≠ � dz) is closed.
Hence there exists a function t : —ú ◊ C æ R, unique up to the addition of a constant, such that
≠W ≠1dt = Im(dw≠� dz). Then fi : (—ú ◊C)/·1Z æ —ú ◊Rt is a principal U(1)–bundle. Explicitly,
t = ≠2fiÁIm(w)

log |z| . Taking the quotient by ·2Z we obtain a principal U(1)–bundle (—ú ◊ C)/(·1Z +
·2Z) æ —ú ◊ R/ÁZ. Its Euler class evaluated on |z| = const is ±1, depending on the orientation.
Now set h = W ≠1, dw ≠ � dz = ◊ ≠ ih dt and use polar coordinates reiÂ = z. The semi-flat metric
(4.2) can then be written in Gibbons–Hawking coordinates (3.1)

(4.3) gsf,Á = ≠ log r

2fiÁ

1
dr2 + r2dÂ2 + dt2

2
+ 2fiÁ

≠ log r
◊2.

The Ooguri–Vafa metric. The second building block in Gross–Wilson’s construction is the Ooguri–
Vafa metric, an explicit (incomplete) hyperkähler metric defined in a neighbourhood of a singular
fibre of type I1. This metric was first constructed in [43]. A more thorough analysis is given in [27,
§3]. The Ooguri–Vafa metric is a periodic version of the Taub–NUT metric, in the sense that it
can be constructed by the Gibbons–Hawking ansatz on R

2 ◊ S1 with a harmonic function h with
a Green’s function singularity at a point. Since R

2 ◊ S1 is parabolic, its Green’s function changes
sign and therefore the Ooguri–Vafa metric is only defined on a small enough neighbourhood of the
Green’s function singularity.

Fix Á > 0 su�ciently small so that 2Á < 1. Let — be the unit disc in C with coordinate z = reiÂ.
Let t be a periodic coordinate of period Á and consider the product — ◊ S1

t , where S1
t = R/ÁZ. By

abuse of notation we denote by 0 the point with coordinates z = 0 and t = 0 (mod ÁZ). Consider
the power series

(4.4) h(z, t) = 1
2

ÿ

mœZ

A
1


r2 + 4fi2(t ≠ mÁ)2 ≠ a|m|

B

,

where
a|m| = 1

2|m|fiÁ if m ”= 0 and a0 = log 4fiÁ≠2“
fiÁ .

Here “ is the Euler constant, “ = limnæŒ
qn

k=1 k≠1 ≠ log n. The series converges uniformly on
compact sets of (— ◊ S1

t ) \ {0} to the Green’s function of R2 ◊ S1
t with singularity at 0. Whenever

z ”= 0, h can be expressed as

h(z, t) = ≠ 1
2fiÁ

log r + 1
2fiÁ

ÿ

mœZú
K0

3 |m|r
Á

4
e

2fimi
Á t,

to be flat

"Then ...

What does it mean to say this space is parabolic?

subsets
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where K0 is the second modified Bessel function. In particular, due to the exponential decay of the
Bessel function, for all k Ø 0 there exists a constant Ck > 0 such that

(4.5)
----Ò

k
3

h(z, t) + 1
2fiÁ

log r
4---- Æ Ck

Á
e≠ r

Á

for all r Ø 2Á.
One can now use the harmonic function h defined in (4.4) in the Gibbons–Hawking ansatz (3.1)

to produce a hyperkähler metric—the Ooguri–Vafa metric—on a circle bundle X over —◊S1
t . As in

the case of the multi-Taub–NUT metrics, a change of coordinates shows that the Gibbons–Hawking
metric on X extends smoothly over a point corresponding to the singular points 0 of h.

By (4.5) the Ooguri–Vafa metric approaches the semi-flat metric (4.3) up to terms that decay
exponentially fast as Á æ 0. It remains to check that the Ooguri–Vafa metric is defined on an
elliptic fibration over a disc with a singular fibre of type I1 over the origin. Choose the complex
structure such that dz and ◊ ≠ ihdt span the space of (1, 0)–forms. In this complex structure the
projection fi : X æ — is an elliptic fibration and fi≠1(0) is the only singular fibre. One can identify
the periods and therefore the monodromy of this elliptic fibration by integrating the (1, 0)–form
◊ ≠ ihdt over a basis {“1, “2} of the first homology of a fibre fi≠1(z). If one chooses “1 to be an
orbit for the S1–action on the circle bundle X æ — ◊ S1

t and “2 to be the circle parametrised by t
in the base then one finds easily that the monodromy coincides with (4.1). Alternatively, one can
identify fi≠1(0) with a pinched torus, since the restriction of the circle fibration X over {z = 0}◊S1

t
degenerating at the point 0 is a 2-sphere with the two poles identified.

Behaviour of Ricci-flat metrics. For Á > 0 su�ciently small, Gross–Wilson now patch together the
semi-flat metric (4.2) with 24 copies of the Ooguri–Vafa metric to obtain an approximate Ricci-flat
metric ÊÁ on the elliptic K3 surface M . The error (measured in terms of appropriate Hölder norms
of the Ricci-potential of ÊÁ) is of order e≠C/Á. This exponential decay is crucial for the perturbation
argument to work. Indeed, by Yau’s proof of the Calabi Conjecture there exists a unique function
uÁ on M such that

(4.6) (ÊÁ + iˆˆuÁ)2 = 1
4Êc · Êc,

ˆ
M

uÁ Ê2
Á = 0.

Gross–Wilson run through Yau’s proof of the existence of uÁ keeping careful track of all the constants
involved (e.g. the Sobolev constant in the Moser iteration argument to prove the C0–estimate). All
these constants do blow-up as Á æ 0, but only polynomially in Á≠1. Since the error is exponentially
small the Implicit Function Theorem can still be applied to obtain the following theorem [27,
Theorems 5.6 and 6.4].

Theorem 4.7. Let fi : (M, Êc) æ CP
1 be an elliptic K3 surface with a holomorphic section and

24 singular I1 fibres. For Á > 0 su�ciently small let ÊÁ be the Kähler metric on X constructed
by gluing the semi-flat metric (4.2) to 24 copies of the Ooguri–Vafa metric. Let uÁ be the unique
solution to (4.6).

(i) For every k Ø 2, – œ (0, 1) and every simply connected set U µ CP
1 with closure contained

in the complement of the 24 points p1, . . . , p24 corresponding to singular fibres there exist
constants C, c > 0 such that ÎuÁÎCk,–(U) Æ Ce≠c/Á.

(ii) (X, Ê‘) converges in Gromov–Hausdor� sense to CP
1 endowed with the distance induced

by the (singular) metric Ê0 limit of the semi-flat metric (4.2) away from the 24 singular
points. Away from p1, . . . , p24, Ê0 satisfies Ric(Ê0) = ÊW P , where ÊW P is the pull-back to
CP

1 \ {p1, . . . , p24} of the Weil–Peterson metric on the moduli space of elliptic curves.

Similar results—convergence after rescaling to the semi-flat metric on the locus of smooth fibres
and global Gromov–Hausdor� convergence to CP

1 as in (ii)—have been obtained more recently for
arbitrary elliptic K3 surfaces without a detailed picture of the collapsing hyperkähler metrics in a
neighbourhood of the singular fibres, cf. [25, 26].

subset  (should it also be open?)

in the

Lorenzo Foscolo
open subset
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ALG and ALH gravitational instantons. In [28] Hein constructs families of gravitational
instantons with quadratic and lower-than-quadratic volume growth. The metrics are constructed
by applying Tian–Yau’s method to a rational elliptic surface, i.e. a complex surface (X, J) which
is birationally equivalent to CP

2 and which admits a minimal elliptic fibration with a section. All
rational elliptic surfaces can be constructed in the following way. Let C1 be a smooth plane cubic
and C2 a second distinct cubic. The pencil {⁄1C1 + ⁄2C2 | [⁄1 : ⁄2] œ CP

1} has C1 · C2 = 9 base
points (counted with multiplicities). After blowing them up we obtain a rational elliptic surface
fi : X æ CP

1: X is a minimal elliptic surface because we blew-up just enough to resolve all the
tangencies of the pencil and X has at least a section given by the (≠1)–curve obtained in the last
blow-up. As for the K3 surface, if X is a rational elliptic surface not all fibres can be smooth elliptic
curves because ‰(X) = ‰

1
CP

2#9CP22
= 12.

The crucial point now is that the class of an elliptic fibre in a rational elliptic surface is an anti-
canonical divisor: there exists a holomorphic symplectic form Êc on M = X \ fi≠1(Œ) with simple
poles along fi≠1(Œ). (Here we choose an a�ne coordinate on the base of the fibration CP

1 so that
the chosen elliptic fibre is the fibre over Œ.) Assuming the existence of an appropriate complete
background metric Ê0 on M , Tian and Yau’s method [47,48] can be applied to construct a Ricci-flat
Kähler metric on M by solving the complex Monge–Ampère equation

1
Ê0 + iˆˆu

22
= 1

2Êc · Êc

on the complement of fi≠1(Œ). In order to be able to solve this Monge–Ampère equation it is
necessary to assume that Ê0 is already an approximate solution at infinity, in the sense that the
Ricci potential of Ê0 decays with a certain rate. Note that the choice of the background Ê0 is not
obvious nor unique: the flat and Taub–NUT metrics on C

2 = CP
2 \ CP

1 are di�erent complete
hyperkähler metrics with the same holomorphic symplectic form [36]. In the case of rational elliptic
surfaces, Hein exploits the elliptic fibration to construct a good background Kähler metric Ê0 which
is approximately Ricci-flat at infinity. The type of fibre fi≠1(Œ) removed dictates the asymptotics
of the metric Ê0 using Kodaira’s normal form for a neighbourhood of fi≠1(Œ) and a semi-flat metric
as in Gross–Wilson’s construction.

The simplest examples of Hein’s construction are those obtained by removing a smooth elliptic
fibre (a fibre of type I0 in Kodaira’s classification): in this case the metric is ALH.

Definition 4.8. A gravitational instanton (M, g) is called ALH if there exists a compact subset
K µ M and a di�eomorphism f : R+ ◊ T 3 æ M \ K such that

|Òk
gflat(f

úg ≠ gflat)|gflat = O
1
e≠”t

2

for all k Ø 0 and some ” > 0. Here gflat = dt2 + gT 3 for a flat metric gT 3 on T 3.

Examples of ALH metrics have also been obtained by Biquard–Minerbe [8] by desingularising
the flat orbifold (R ◊ T 3)/Z2 by gluing in 8 copies of the Eguchi–Hanson metric. More recently,
Chen–Chen [14, Theorem 1.5] have given a complete classification of ALH gravitational instantons.

Theorem 4.9. Let M be the smooth 4-manifold underlying the minimal resolution of (R◊T 3)/Z2,
where T 3 = R

3/(Zv1 + Zv2 + Zv3). For each i = 1, 2, 3 let Fi be the element of H2(T 3,Z) corres-
ponding to span(vj , vk), where ‘ijk = 1. Then H2(M,Z) is spanned by F1, F2, F3 and the classes of
the 8 (≠2)–curves introduced by the resolution M æ (R ◊ T 3)/Z2.

(i) Let ↵ œ H2(M,R) ¢ R
3 satisfy

(4.10)
↵(�) ”= 0 œ R

3 for all � œ H2(M,Z) such that � · � = ≠2,

the matrix with rows ↵(Fi), i = 1, 2, 3, is positive definite.

Then there exists an ALH hyperkähler structure ! on M with [!] = ↵, unique up to
triholomorphic isometries acting trivially on H2(M,R).

(ii) If (X,!) is an ALH gravitational instanton then X is di�eomorphic to M and [!] satisfies
(4.10).

semi-colon
might be
better. Unless
you mean
something
other than
punctuation
here?
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ALH gravitational instantons can be used to produce hyperkähler metrics on the K3 surface that
develop a long neck. Indeed, if (M,!) and (M,!Õ) are two ALH gravitational instantons asymptotic
to the same flat cylinder dt2 +gT 3 , then one can cut o� their cylindrical ends for t ∫ 1 and glue the
resulting manifolds with boundary to produce a sequence of approximately Ricci-flat metrics on the
K3 surface that develop a very long neck. Alternatively, by rescaling the metrics in the sequence
so that the diameter stays bounded, one produces in this way a sequence of approximately Ricci-
flat metrics that collapse to a closed interval with curvature concentration at the two end points.
Chen–Chen [14, §5] show that these approximate solutions can be perturbed into exact hyperkähler
metrics with the same collapsing behaviour.

Hein’s examples of gravitational instantons defined on the complement of a singular fibre of type
Iú

0 , II, III, IV in Kodaira’s classification are also easily understood, in particular those examples
that arise from isotrivial elliptic fibrations. Let E be a smooth elliptic curve admitting a Zr–
subgroup of automorphisms for r = 2, 3, 4 or 6. Thus E is any elliptic curve if r = 2; a Weierstrass
equation for E is y2 = x3 + x if r = 4, with Z4–action generated by (x, y) ‘æ (≠x, iy); if r = 3
or 6 then E : y2 = x3 + 1 and the Z3 and Z6–actions are generated by (x, y) ‘æ (e2fii/3x, y) and
(x, y) ‘æ (e2fii/3x, ≠y) respectively. Now consider the orbifold (CP1 ◊E)/Zr, where the cyclic group
Zr acts diagonally on CP

1 and E. Resolve the singularities and blow down all (≠1)–curves in the
fibres to obtain a rational elliptic surface with only two singular fibres over 0 and Œ and such
that all smooth fibres are isomorphic. Corresponding to r = 2, 3, 4, 6 this construction yields four
pairs of singular fibres—(Iú

0 , Iú
0 ), (II, IIú), (III, IIIú) and (IV, IV ú) in Kodaira’s notation. Unless

r = 2, the two fibres in each pair are di�erent because the Zr–action on CP
1 has di�erent weights

at 0 and Œ. By removing the fibre of non–ú–type in each pair, one obtains a crepant resolution
of T úE/Zr and the resulting semi-flat metric coincides with the flat metric on T úE/Zr. In fact, in
this case some of Hein’s Ricci-flat metric can also be obtained from the Kummer-type construction
of Biquard–Minerbe [8], gluing rescaled ALE spaces to resolve the singularities of the flat orbifold.
When we remove the fibre of ú–type in each pair, Hein’s Ricci-flat metric is asymptotic to the
twisted product of a flat metric on E and of a flat 2-dimensional cone which is not a quotient of
C [28, Theorem 1.5 (ii)].

All these examples have faster than quadratic curvature decay and their asymptotic geometry is
called ALG. The recent classification result of Chen–Chen [14, Theorem 1.4] states that all ALG
gravitational instantons arise from (a slight improvement of) Hein’s construction on the complement
of a fibre of type Iú

0 , II, IIú, III, IIIú, IV or IV ú. Furthermore, we note that constructions of
sequences of Ricci-flat metrics on the K3 surface obtained by desingularising orbifolds (E1 ◊E2)/Zr

for a product of Zr–invariant elliptic curves with Vol(E2) æ 0 could provide examples of collapsing
sequences of hyperkähler metrics with ALG spaces of type Iú

0 , II, III, IV as rescaled limits.
By removing a singular fibre with infinite monodromy, Hein is also able to produce examples

with more exotic asymptotic geometry, often referred to as gravitational instantons of type ALGú

and ALHú. The examples of type ALGú (ALHú) have quadratic volume growth (volume growth
r

4
3 ) and are obtained by removing a fibre of Kodaira type Iú

b , b = 1, . . . , 4, (Ib, b = 1, . . . , 9) from
a rational elliptic surface. These examples do not have faster than quadratic curvature decay and
do not fit into Chen–Chen’s classification.

The asymptotic geometry of the ALGú and ALHú examples can be constructed using the
Gibbons–Hawking ansatz on (the Z2–quotient of) R

2 ◊ S1 and R ◊ T 2, respectively, with a fi-
nite number of punctures. Since R

2 ◊ S1 and R ◊ T 2 are parabolic, the sum of Green’s functions
used as the harmonic function in the Gibbons–Hawking construction is only positive at infinity and
the construction provides only good asymptotic models. We expect that a gluing construction as in
Theorem 3.8 using Atiyah–Hitchin spaces as building blocks together with the Gibbons–Hawking
construction on R

2 ◊ S1 and R◊ T 2 will yield families of ALGú and ALHú gravitational instantons
close to a collapsed limit (R2◊S1)/Z2 and (R◊T 2)/Z2, respectively. We also expect that extensions
of Theorem 3.8 where one considers sequences of flat metrics on T 3 collapsing to T 2 and S1 should

metrics
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provide examples of collapsing Ricci-flat metrics with ALGú and ALHú gravitational instantons
as rescaled limits. More generally, it is expected that ALG, ALH, ALGú and ALHú gravitational
instantons will play an important role in understanding relations between collapsing sequences of
Ricci-flat metrics on the K3 surface and degenerations of a compatible complex structure, cf. for
example [32] and forthcoming work by Hein–Sun–Viaclovsky–Zhang.
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