

Book of the Short Papers

Editors: Francesco Maria Chelli, Mariateresa Ciommi, Salvatore Ingrassia, Francesca Mariani, Maria Cristina Recchioni

CHAIRS

Salvatore Ingrassia (Chair of the Program Committee) - *Università degli Studi di Catania* Maria Cristina Recchioni (Chair of the Local Organizing Committee) - *Università Politecnica delle Marche*

PROGRAM COMMITTEE

Salvatore Ingrassia (Chair), Elena Ambrosetti, Antonio Balzanella, Matilde Bini, Annalisa Busetta, Fabio Centofanti, Francesco M. Chelli, Simone Di Zio, Sabrina Giordano, Rosaria Ignaccolo, Filomena Maggino, Stefania Mignani, Lucia Paci, Monica Palma, Emilia Rocco.

LOCAL ORGANIZING COMMITTEE

Maria Cristina Recchioni (Chair), Chiara Capogrossi, Mariateresa Ciommi, Barbara Ermini, Chiara Gigliarano, Riccardo Lucchetti, Francesca Mariani, Gloria Polinesi, Giuseppe Ricciardo Lamonica, Barbara Zagaglia.

ORGANIZERS OF INVITED SESSIONS

Pierfrancesco Alaimo Di Loro, Laura Anderlucci, Luigi Augugliaro, Ilaria Benedetti, Rossella Berni, Mario Bolzan, Silvia Cagnone, Michela Cameletti, Federico Camerlenghi, Gabriella Campolo, Christian Capezza, Carlo Cavicchia, Mariateresa Ciommi, Guido Consonni, Giuseppe Ricciardo Lamonica, Regina Liu, Daniela Marella, Francesca Mariani, Matteo Mazziotta, Stefano Mazzuco, Raya Muttarak, Livia Elisa Ortensi, Edoardo Otranto, Ilaria Prosdocimi, Pasquale Sarnacchiaro, Manuela Stranges, Claudia Tarantola, Isabella Sulis, Roberta Varriale, Rosanna Verde.

FURTHER PEPOPLE OF LOCAL ORGANIZING COMMITTEE

Elisa D'Adamo, Christian Ferretti, Giada Gabbianelli, Elvina Merkaj, Luca Pedini, Alessandro Pionati, Marco Tedeschi, Francesco Valentini, Rostand Arland Yebetchou Tchounkeu

Technical support: Matteo Mercuri, Maila Ragni, Daniele Ripanti

Copyright © 2023 PUBLISHED BY PEARSON WWW.PEARSON.COM ISBN 97888919356184AVV

Contents

Preface	ΚII
1 Plenary Sessions	1
Inequality indices: accurate simulation-based inference Maria-Pia Victoria-Feser	2
Examples from the Interface of Neural Models and Spatio-Temporal Statistics in Environmental Applications Christopher K. Wikle, Likun Zhang, Myungsoo Yoo and Xiaoyu Ma	7
Demographic change and sustainability: novel approaches from digital and computational demography Emilio Zagheni	al n.a.
2 Invited Sessions	14
Machine learning in the design, analysis and integration of sample surveys	
Causal Discovery for complex survey data Paola Vicard	15
Data Integration without conditional independence: a Bayesian Networks approa	ach 21
Pier Luigi Conti, Paola Vicard and Vincenzina Vitale	
Mass imputation through Machine Learning techniques in presence of multi-sou data	rce 27
Fabrizio De Fausti, Marco Di Zio, Romina Filippini and Simona Toti	
Machine learning: different uses and perspectives	
Evaluation of pollution containment policies in the US and the role of machine learning algorithms Marco Di Cataldo, Margherita Gerolimetto, Stefano Magrini and Alessandro Spiganti	32

Mauro Bruno, Maria Serena Causo, Alessio Guandalini, Francesco Ortame and Silvia Rus Machine learning, data quality and official statistics: challenges and opportunities	es
Stefano Menghinello	n.a.
Statistical Machine Learning for environmental applications	
Gaussian Processes and Deep Neural Networks for Spatial Prediction Alex Cucco, Luigi Ippoliti, Nicola Pronello, Pasquale Valentini and Carlo Zaccardi	38
How can we explain Random Forests in a spatial framework? Natalia Golini, Luca Patelli and Xavier Barber	42
Recent approaches in coupling deep learning methods with the statistical analy of spatial point patterns Jorge Mateu and Abdollah Jalilian	sis 48
Statistical Process Monitoring for Complex Data in Industry 4.0	
A Kernel-based Nonparametric Multivariate CUSUM for Location Shifts Konstantinos Bourazas, Konstantinos Fokianos, Christos Panayiotou and Marios Polycarp	53 ou
An Approach for Profile Monitoring via Mixture Regression Models Davide Forcina, Antonio Lepore and Biagio Palumbo	58
Anomaly Detection in Circular Data Houyem Demni and Giovanni C. Porzio	63
Advances in Data Science and Statistical Learning [IMS Invited Sess	ion]
Empirical Bayes approximation of Bayesian learning: understanding a common practice Sonia Petrone	n.a.
Generalized Fiducial Inference on Differentiable Manifolds - a geometric perspective Jan Hannig	n.a.
Model-free bootstrap and conformal prediction in regression Dimitris Politis	n.a.
ENBIS Session: System Maintenance, Boosting algorithms for regressand Research Excellence	ssion,
Boosting Diversity in Regression Ensembles Mathias Bourel, Jairo Cugliari, Yannig Goude and Jean-Michel Poggi	69
How ENBIS has contributed to the UK Universities Research Excellence Frame	work 71
Shirley Coleman Maintenance of degrading systems by dynamic programming or reinforcement learning Antonio Pievatolo	75

Environmental Exposures and Under-5 Mortality in India: A Survival Analysis of DHS data Vinod Joseph Kannankeril Joseph The impact of temperature on expressed sentiment by migration status: Evidence from geo-located Twitter data Risto Conte Keivabu and Jisu Kim Statistical Learning for health research and omics data An alternative to the Dirichlet-multinomial regression model for microbiome data analysis Roberto Ascari, Sonia Migliorati and Andrea Ongaro Modelling ordinal response to treatment in a real-world cohort study Marco Alfò, Maria Francesca Marino and Silvia D'Elia On the application of the symmetric graphical lasso for paired data Saverio Ranciati and Alberto Roverato The Economic behaviour of Sustainability Airports performances and sustainable practices. An empirical study on Italian data 110 Riccardo Gianluigi Serio, Maria Michela Dickson, Diego Giuliani and Giuseppe Espa Sustainability: still an undefined concept for Italians Raffaele Angelone and Andrea Marletta Quasi-experimental evidence on COVID-19 lockdown effects on Italian household food shopping basket composition and its sustainability Reatrice Riondi and Mario Mazzoechi Advances in statistical methods for complex problems Inferring multiple treatment effects from observational studies using confounder importance learning Omiros Papaspiliopoulos Path analysis in Ising models: an application to cyber-security risk assessment 127 Monia Lupparelli and Giovanni M. Marchetti Causal Regularization Lucas Kania and Ernst Wit Explainable machine learning models Enhancing Markowitz model: inspection of correlations and tail covariances 133	Climate change impacts on fertility in low- and middle-income countries: An analysis based on global sub-national data Côme Cheritel, Roman Hoffmann and Raya Muttarak	n.a.
from geo-located Twitter data Risto Conte Keivabu and Jisu Kim Statistical Learning for health research and omics data An alternative to the Dirichlet-multinomial regression model for microbiome data analysis Roberto Ascari, Sonia Migliorati and Andrea Ongaro Modelling ordinal response to treatment in a real-world cohort study Marco Alfò, Maria Francesca Marino and Silvia D'Elia On the application of the symmetric graphical lasso for paired data Saverio Ranciati and Alberto Roverato The Economic behaviour of Sustainability Airports performances and sustainable practices. An empirical study on Italian data Riccardo Gianluigi Serio, Maria Michela Dickson, Diego Giuliani and Giuseppe Espa Sustainability: still an undefined concept for Italians Raffaele Angelone and Andrea Marletta Quasi-experimental evidence on COVID-19 lockdown effects on Italian household food shopping basket composition and its sustainability Beatrice Biondi and Mario Mazzocchi Advances in statistical methods for complex problems Inferring multiple treatment effects from observational studies using confounder importance learning Omiros Papaspiliopoulos Path analysis in Ising models: an application to cyber-security risk assessment 127 Monia Lupparelli and Giovanni M. Marchetti Causal Regularization Lucas Kania and Ernst Wit Explainable machine learning models Enhancing Markowitz model: inspection of correlations and tail covariances 133	data	
An alternative to the Dirichlet-multinomial regression model for microbiome data analysis Roberto Ascari, Sonia Migliorati and Andrea Ongaro Modelling ordinal response to treatment in a real-world cohort study Marco Alfò, Maria Francesca Marino and Silvia D'Elia On the application of the symmetric graphical lasso for paired data Saverio Ranciati and Alberto Roverato The Economic behaviour of Sustainability Airports performances and sustainable practices. An empirical study on Italian data Ito Riccardo Gianluigi Serio, Maria Michela Dickson, Diego Giuliani and Giuseppe Espa Sustainability: still an undefined concept for Italians Affaele Angelone and Andrea Marletta Quasi-experimental evidence on COVID-19 lockdown effects on Italian household food shopping basket composition and its sustainability 122 Beatrice Biondi and Mario Mazzocchi Advances in statistical methods for complex problems Inferring multiple treatment effects from observational studies using confounder importance learning Omiros Papaspiliopoulos Path analysis in Ising models: an application to cyber-security risk assessment 127 Monia Lupparelli and Giovanni M. Marchetti Causal Regularization n.a. Lucas Kania and Ernst Wit Explainable machine learning models Enhancing Markowitz model: inspection of correlations and tail covariances 133	from geo-located Twitter data	
analysis Roberto Ascari, Sonia Migliorati and Andrea Ongaro Modelling ordinal response to treatment in a real-world cohort study Marco Alfò, Maria Francesca Marino and Silvia D'Elia On the application of the symmetric graphical lasso for paired data Saverio Ranciati and Alberto Roverato The Economic behaviour of Sustainability Airports performances and sustainable practices. An empirical study on Italian data Riccardo Gianluigi Serio, Maria Michela Dickson, Diego Giuliani and Giuseppe Espa Sustainability: still an undefined concept for Italians Raffaele Angelone and Andrea Marletta Quasi-experimental evidence on COVID-19 lockdown effects on Italian household food shopping basket composition and its sustainability Beatrice Biondi and Mario Mazzocchi Advances in statistical methods for complex problems Inferring multiple treatment effects from observational studies using confounder importance learning Omiros Papaspiliopoulos Path analysis in Ising models: an application to cyber-security risk assessment 127 Monia Lupparelli and Giovanni M. Marchetti Causal Regularization Lucas Kania and Ernst Wit Explainable machine learning models Enhancing Markowitz model: inspection of correlations and tail covariances 133	Statistical Learning for health research and omics data	
Marco Alfò, Maria Francesca Marino and Silvia D'Elia On the application of the symmetric graphical lasso for paired data Saverio Ranciati and Alberto Roverato The Economic behaviour of Sustainability Airports performances and sustainable practices. An empirical study on Italian data Ino Riccardo Gianluigi Serio, Maria Michela Dickson, Diego Giuliani and Giuseppe Espa Sustainability: still an undefined concept for Italians Raffaele Angelone and Andrea Marletta Quasi-experimental evidence on COVID-19 lockdown effects on Italian household food shopping basket composition and its sustainability Beatrice Biondi and Mario Mazzocchi Advances in statistical methods for complex problems Inferring multiple treatment effects from observational studies using confounder importance learning Omiros Papaspiliopoulos Path analysis in Ising models: an application to cyber-security risk assessment 127 Monia Lupparelli and Giovanni M. Marchetti Causal Regularization Lucas Kania and Ernst Wit Explainable machine learning models Enhancing Markowitz model: inspection of correlations and tail covariances 133	analysis	
The Economic behaviour of Sustainability Airports performances and sustainable practices. An empirical study on Italian data 110 Riccardo Gianluigi Serio, Maria Michela Dickson, Diego Giuliani and Giuseppe Espa Sustainability: still an undefined concept for Italians 116 Raffaele Angelone and Andrea Marletta Quasi-experimental evidence on COVID-19 lockdown effects on Italian household food shopping basket composition and its sustainability 122 Beatrice Biondi and Mario Mazzocchi Advances in statistical methods for complex problems Inferring multiple treatment effects from observational studies using confounder importance learning n.a. Omiros Papaspiliopoulos Path analysis in Ising models: an application to cyber-security risk assessment 127 Monia Lupparelli and Giovanni M. Marchetti Causal Regularization n.a. Lucas Kania and Ernst Wit Explainable machine learning models Enhancing Markowitz model: inspection of correlations and tail covariances 133		101
Airports performances and sustainable practices. An empirical study on Italian data 110 Riccardo Gianluigi Serio, Maria Michela Dickson, Diego Giuliani and Giuseppe Espa Sustainability: still an undefined concept for Italians 116 Raffaele Angelone and Andrea Marletta Quasi-experimental evidence on COVID-19 lockdown effects on Italian household food shopping basket composition and its sustainability 122 Beatrice Biondi and Mario Mazzocchi Advances in statistical methods for complex problems Inferring multiple treatment effects from observational studies using confounder importance learning n.a. Omiros Papaspiliopoulos Path analysis in Ising models: an application to cyber-security risk assessment 127 Monia Lupparelli and Giovanni M. Marchetti Causal Regularization n.a. Lucas Kania and Ernst Wit Explainable machine learning models Enhancing Markowitz model: inspection of correlations and tail covariances 133		105
Riccardo Gianluigi Serio, Maria Michela Dickson, Diego Giuliani and Giuseppe Espa Sustainability: still an undefined concept for Italians Raffaele Angelone and Andrea Marletta Quasi-experimental evidence on COVID-19 lockdown effects on Italian household food shopping basket composition and its sustainability Beatrice Biondi and Mario Mazzocchi Advances in statistical methods for complex problems Inferring multiple treatment effects from observational studies using confounder importance learning Omiros Papaspiliopoulos Path analysis in Ising models: an application to cyber-security risk assessment 127 Monia Lupparelli and Giovanni M. Marchetti Causal Regularization Lucas Kania and Ernst Wit Explainable machine learning models Enhancing Markowitz model: inspection of correlations and tail covariances	The Economic behaviour of Sustainability	
Riccardo Gianluigi Serio, Maria Michela Dickson, Diego Giuliani and Giuseppe Espa Sustainability: still an undefined concept for Italians Raffaele Angelone and Andrea Marletta Quasi-experimental evidence on COVID-19 lockdown effects on Italian household food shopping basket composition and its sustainability Beatrice Biondi and Mario Mazzocchi Advances in statistical methods for complex problems Inferring multiple treatment effects from observational studies using confounder importance learning Omiros Papaspiliopoulos Path analysis in Ising models: an application to cyber-security risk assessment 127 Monia Lupparelli and Giovanni M. Marchetti Causal Regularization Lucas Kania and Ernst Wit Explainable machine learning models Enhancing Markowitz model: inspection of correlations and tail covariances	Airports performances and sustainable practices. An empirical study on Italian	
Raffaele Angelone and Andrea Marletta Quasi-experimental evidence on COVID-19 lockdown effects on Italian household food shopping basket composition and its sustainability Beatrice Biondi and Mario Mazzocchi Advances in statistical methods for complex problems Inferring multiple treatment effects from observational studies using confounder importance learning Omiros Papaspiliopoulos Path analysis in Ising models: an application to cyber-security risk assessment 127 Monia Lupparelli and Giovanni M. Marchetti Causal Regularization Lucas Kania and Ernst Wit Explainable machine learning models Enhancing Markowitz model: inspection of correlations and tail covariances 133	Riccardo Gianluigi Serio, Maria Michela Dickson, Diego Giuliani and Giuseppe Espa	
food shopping basket composition and its sustainability Beatrice Biondi and Mario Mazzocchi Advances in statistical methods for complex problems Inferring multiple treatment effects from observational studies using confounder importance learning Omiros Papaspiliopoulos Path analysis in Ising models: an application to cyber-security risk assessment 127 Monia Lupparelli and Giovanni M. Marchetti Causal Regularization Lucas Kania and Ernst Wit Explainable machine learning models Enhancing Markowitz model: inspection of correlations and tail covariances 133	·	116
Inferring multiple treatment effects from observational studies using confounder importance learning n.a. Omiros Papaspiliopoulos Path analysis in Ising models: an application to cyber-security risk assessment 127 Monia Lupparelli and Giovanni M. Marchetti Causal Regularization n.a. Lucas Kania and Ernst Wit Explainable machine learning models Enhancing Markowitz model: inspection of correlations and tail covariances 133	food shopping basket composition and its sustainability	
importance learning Omiros Papaspiliopoulos Path analysis in Ising models: an application to cyber-security risk assessment 127 Monia Lupparelli and Giovanni M. Marchetti Causal Regularization Lucas Kania and Ernst Wit Explainable machine learning models Enhancing Markowitz model: inspection of correlations and tail covariances 133	Advances in statistical methods for complex problems	
Monia Lupparelli and Giovanni M. Marchetti Causal Regularization n.a. Lucas Kania and Ernst Wit Explainable machine learning models Enhancing Markowitz model: inspection of correlations and tail covariances 133	importance learning	
Explainable machine learning models Enhancing Markowitz model: inspection of correlations and tail covariances 133		t 127
Enhancing Markowitz model: inspection of correlations and tail covariances 133		n.a.
·	Explainable machine learning models	
	· · · · · · · · · · · · · · · · · · ·	133

Population Dynamics, Climate Change and Sustainability

Objective and subjective dimension of economic well-being: an approach bas statistical matching Daniela Marella, Vincenzina Vitale and Pierpaolo D'Urso	sed on 139
Sustainable, Accurate, Fair and Explainable Machine Learning Models Paolo Giudici and Emanuela Raffinetti	n.a.
Flexible Learning for Environmental Sustainability	
Comparison of traffic flow data sources for air pollution modelling Theresa Smith and Nick McCullen	145
Data analysis of photogrammetry-based mapping: the sea cucumbers in the Island as a case-study Gianluca Mastrantonio, Daniele Ventura, Edoardo Casoli, Arnold Rakaj, Giovanna Jona Lasinio and Alessio Pollice	Giglio 150
Understanding forest damage in Germany: Finding key drivers to help with further forest conversion of climate sensitive Nicole Augustin, Heike Puhlmann and Simon Trust	iture 156
Inequalities in higher education outcomes: learning from data	
Inequalities in international students mobility Kristijan Breznik, Giancarlo Ragozini and Marialuisa Restaino	163
Uncovering the interplay of territorial, socioeconomic, and demographic facto high school to university transition Vincenzo Giuseppe Genova, Andrea Priulla and Martina Vittorietti	rs in 169
Statistical Learning of demographic and health dynamics	
Estimating the impact of a vaccine mandate: the case of measles in Italy Chiara Chiavenna	n.a.
Leveraging deep neural networks to estimate age-specific mortality from life expectancy at birth Andrea Nigri	n.a.
Nowcasting Daily Population Displacement in Ukraine through Social Media Advertising Data Claire Dooley, Ridhi Kashyap, Douglas Leasure and Francesco Rampazzo	n.a.
Challenges towards Fairness and Transparency for Data Prod Algorithms and Decision-Support Models	cesses,
Challenges on Ethics, and Privacy in Al Applications to Fintech Catarina Silva, Joana Matos Dias and Bernardete Ribeiro	175
Uncertainty and fairness metrics Anna Gottard	180

Educational Data mining: methods for complex data in students assessment	,
Analysis of University Grades: An IRT Model for Responses and Response Times with Censoring 186 Michela Battauz	
Predicting high schools' students performances with registry's data: a machine learning approach Lidia Rossi, Marta Cannistrà and Tommaso Agasisti	
Using response times to identify cheaters in CAT: A simulation study Luca Bungaro, Bernard P. Veldkamp and Mariagiulia Matteucci 195	
Spatial and Spatio-Temporal Modeling: Theory and Applications	
A geostatistical investigation of the ammonia-livestock relationship in the Po Valley, Italy	
Paolo Maranzano, Kelly McConville, Philipp Otto and Felicetta Carillo	
Bayesian multi-species N-mixture models for large scale spatial data in community ecology Michele Peruzzi 206	
Minimum contrast for point processes' first-order intensity estimation Nicoletta D'Angelo and Giada Adelfio 212	
Statistical Framework for Measuring the Sustainability of Tourism	
Data validity and statistical conformity with Benford's Law: the case of tourism in Sicily Roy Cerqueti and Davide Provenzano	
Exploring the level of digitalization of the Italian museums through a multilevel ordered logit model Claudia Cappello, Sabrina Maggio and Sandra De Iaco 228	
Functional Partial Least-Squares via Regression Splines. An application on Italian Sustainable Development Goals data 232 Ida Camminatiello, Rosaria Lombardo, Jean-Francois Durand and Leonardo S. Alaimo	
Statistical learning for well-being analysis	
Assessing multidimensional poverty of the Italian provinces during Covid-19: a small area estimation approach Mariateresa Ciommi, Chiara Gigliarano, Francesca Mariani and Gloria Polinesi	
The fuzzy set approach as statistical learning for the analysis of multidimensional well-being Gianni Betti, Federico Crescenzi, Antonella D'Agostino and Laura Neri	
What Makes a Satisfying Life? Prediction and Interpretation with Machine-Learning Algorithms n.a. Conchita D'Ambrosio	

Dayesian contributions to Statistical Learning	
A Bayesian framework for early cancer screening Sally Paganin and Jeff Miller	249
Imputing Synthetic Pseudo Data from Aggregate Data: Development and Validation for Precision Medicine Cecilia Balocchi	n.a.
Linear models with assumptions-free residuals: a Bayesian Nonparametric approach Filippo Ascolani and Valentina Ghidini	254
Data Visualization for Smart Insights and Advanced Predictive Analy	ytics
Applications of data visualization for industry Martina Dossi, Stefano Sangaletti, Marilena Di Bari and Federica Bruschini	259
Some Notes on the Use of the Circular Boxplot Giovanni Camillo Porzio and Davide Buttarazzi	n.a.
TERRA: a smart visualization tool for international trade in goods statistics	
Francesco Amato, Mauro Bruno and Maria Serena Causo	265
Methods for the analysis of distributional data	
Clustering of Distributional Data based on LDQ transformation Gianmarco Borrata and Rosanna Verde	271
Dynamic learning from data streams through the combined use of probability density functions and simplicial functional principal component analysis Francesca Fortuna, Fabrizio Maturo and Tonio Di Battista	276
Multivariate Parametric Analysis of Distributional Data Paula Brito	n.a.
Migrants and Refugees in Europe: social, economic and health-rissues	elated
Labor Market Return to Refugees' Human Capital Investment: A Natural Experiment in Sweden Eleonora Mussino	n.a.
Social networks and loneliness among older migrants in Italy Viviana Amati, Eralba Cela and Elisa Barbiano di Belgiojoso	282
The Italian Decree on Security: An Analysis of the Impact on Asylum Application	
Giorgio Piccitto	287
Modelling and Forecasting High-dimensional time series	
Adaptive combinations of tail-risk forecasts Alessandra Amendola, Vincenzo Candila, Antonio Naimoli and Giuseppe Storti	293
Are Monetary Policy Announcements related to Volatility Jumps? Giampiero Gallo, Demetrio Lacava and Edoardo Otranto	299

Alessandro Giovannelli and Tommaso Proietti

3 Contributed Sessions	305
Bayesian nonparametric methods	
Bayesian density estimation for modeling age-at-death distribution Davide Agnoletto, Tommaso Rigon and Bruno Scarpa	306
Bayesian mixing distribution estimation in the Gaussian-smoothed 1- Wasserstein distance Catia Scricciolo	311
Bayesian nonparametric estimation of heterogeneous intrinsic dimension via product partition models Francesco Denti, Antonio Di Noia and Antonietta Mira	316
Bayesian nonparametric multiple change point detection for time series of compositional data Edoardo Marchionni and Riccardo Corradin	322
Galton-Watson process: a non parametric prior for the offspring distribution Massimo Cannas, Michele Guindani and Nicola Piras	328
Hierarchical processes in survival analysis Riccardo Cogo, Federico Camerlenghi and Tommaso Rigon	333
Economics and Statistics	
A regression analysis for count data to investigate the effectiveness of incent on the adoption of 4.0 technologies Stefano Bonnini and Michela Borghesi	ives 339
Statistical analysis on SDGs indicators related to environmental sustainability Najada Firza, Anisa Bakiu and Dante Mazzitelli	344
Empowering futures adopting a spatial convergence of opinions: a Real-Time Spatial Delphi approach Yuri Calleo, Simone Di Zio and Francesco Pilla	349
Stocks price forecasts using Stochastic Differential Equations: an empirical assessment Dario Frisardi and Matteo Spuri	355
The Added-Worker Effect within Italian Households Donata Favaro and Anna Giraldo	361
Health statistics 1	
A model for the natural history of breast cancer: application to a Norwegian screening dataset Laura Bondi, Marco Bonetti and Solveig Hofvind	365

Generalized Bayesian Ensemble Survival Trees: an extension to categorical variables to apply it to real data Elena Ballante	370
Joint modelling of hospitalizations and survival in Heart Failure patients: a disc non parametric frailty approach Chiara Masci, Marta Spreafico and Francesca Ieva	crete 375
Mobility trends in Italy during the first wave of Covid-19 pandemic: analysis on Google data Ilaria Bombelli and Daniele De Rocchi	381
Tracking attitudes towards COVID vaccines: A text mining analysis Leonardo Scarso, Marco Novelli and Francesco Saverio Violante	387
Treatment effect assessment in observational studies with multi-level treatment and outcome Federica Cugnata, Paola Vicard, Paola M.V. Rancoita, Fulvia Mecatti, Clelia Di Serio and Pier Luigi Conti	nt 393
Indicators: composition, uses and limitations	
Are European consumers willing to pay the true price for sustainable food? Luca Secondi and Mengting Yu	9 399
Can the reliability of composite indexes be impacted by uncertainty of individual indicators? Caterina Giusti, Stefano Marchetti and Vincenzo Mauro	406
Initial Coin Offerings and ESG: allies or enemies? Alessandro Bitetto and Paola Cerchiello	411
On the impact of intraclass correlation in the ANVUR evaluation of academic departments Giorgio Edoardo Montanari and Marco Doretti	417
Small area estimation of monetary poverty indicators with poverty line adjusted using local price indexes Luigi Biggeri, Stefano Marchetti, Caterina Giusti, Monica Pratesi, Francesco Schirripa Spagnolo and Gaia Bertarelli	nes 422
Smart Composite Indicators Measuring Corporate Sustainability: A Sensitivity Analysis Camilla Salvatore, Annamaria Bianchi and Silvia Biffignandi	428
Multivariate data analysis 1	
A note on most powerful tests for right censored survival data Maria Veronica Vinattieri and Marco Bonetti	434
Enhancing Principal Components by a Linear Predictor: an Application Well-Being Italian Data Laura Marcis, Maria Chiara Pagliarella and Renato Salvatore	to 439

correlated data Farah Naz and Elena Ballante	vith 445
ROBOUT: a multi-step methodology for conditional outlier detection Matteo Farnè and Angelos Vouldis	450
Robustness of the Efficient Covariate-Adaptive Design for balancing covariates in comparative experiments Rosamarie Frieri, Alessandro Baldi Antognini, Maroussa Zagoraiou, and Marco Novelli	456
Separation scores: a new statistical tool for scoring and ranking partially ordered data Marco Fattore	462
Statistics in Society 1	
Community detection analysis with robin on hashtag network Valeria Policastro, Francesco Santelli and Giancarlo Ragozini	468
Film Tourism Motivation through the lens of Trip Advisor data Nicolò Biasetton, Marta Disegna, Girish Prayag and Elena Barzizza	474
Life satisfaction and social activities in later life in Italy: a focus on the Internet use Claudia Furlan and Silvia Meggiolaro	480
Social capital endowment's role in the intergenerational transmission education Alessandra Trimarchi, Maria Gabriella Campolo and Antonino Di Pino Incognito	of 485
Streaming Data from Social Networks to Track Political Trends Emiliano del Gobbo and Barbara Cafarelli	490
The scientific production on gender dysphoria: a bibliometric analysis	
Maria Gabriella Grassia, Marina Marino, Massimo Aria, Rocco Mazza, Luca D'Aniello and Agostino Stavolo	495
Assessment and Education	
A hierarchical modelling approach to explain differential functioning of mathematics items by student's gender Clelia Cascella	500
A latent variable approach to Millennials' knowledge of green finance Maria Iannario, Alessandra Tanda and Claudia Tarantola	506
Archetypal analysis and latent Markov models: A step-wise approach Lucio Palazzo, Rosa Fabbricatore and Francesco Palumbo	512
From high school to university: academic intentions and enrolment of foreign students in Italy Francesca Di Patrizio, Eleonora Trappolini and Cristina Giudici	518
Growth models for the progress test in Italian dentistry degree program Giulio Biscardi, Leonardo Grilli, Carla Rampichini, Laura Antonucci and Corrado Crocett	523 ta

instructors' perceptions Francesco Santelli, Teresa Gentile, Davide Bizjak and Lorenzo Fattori	527
Working Students and job market outcomes: Insights from the University of Florence	532
Gabriele Lombardi, Valentina Tocchioni and Alessandra Petrucci	
Bayesian methods and applications 1	
Analyzing RNA data with scVelo: identifiability issues and a Bayesia implementation Elena Sabbioni, Enrico Bibbona, Gianluca Mastrantonio and Guido Sanguinetti	in 538
Approximate Bayesian Computation for Probabilistic Damage Identification	544
Cecilia Viscardi, Silvia Monchetti, Luisa Collodi, Gianni Bartoli, Michele Betti, Michele Boreale and Fabio Corradi	544
Estimation of scientific productivity with a hierarchical Bayesian mod	del 550
Maura Mezzetti and Ilia Negri	
Heat waves and free-knots splines Gioia Di Credico and Francesco Pauli	555
The Hierarchical Beta-Bernoulli Process as Out-of-Scope Query Detector Marco Dalla Pria and Silvia Montagna	560
Health and mortality	
A novel definition of comorbidity based on the Global Burden of Diseas project weights Angela Andreella, Lorenzo Monasta and Stefano Campostrini	es 566
An Age-Period-Cohort model of gender gap in youth mortality Giacomo Lanfiuti Baldi and Andrea Nigri	572
Kinlessness in adult and old age across Europe Marta Pittavino, Bruno Arpino and Elena Pirani	578
Parameter orthogonalization for Siler mortality model Claudia Di Caterina and Lucia Zanotto	584
Pseudo-observations in survival analysis Marta Cipriani, Alfonso Piciocchi, Valentina Arena and Marco Alfò	590
Sex Gap in Cancer-Free Life Expectancy: The Association with Smoking, Obe and Physical Inactivity Alessandro Feraldi, Cristina Giudici and Nicolas Brouard	esity 595
Women's Exposure to HIV in Africa: the Role of Intimate Partner Violence	599

Mixture Models

An extension of finite mixtures of latent trait analyzers for biclustering bipartite networks Dalila Failli, Maria Francesca Marino and Francesca Martella	605
Constrained Mixtures of Generalized Normal Distributions Pierdomenico Duttilo, Alfred Kume and Stefano Antonio Gattone	611
Mixture-based clustering with covariates for ordinal responses Kemmawadee Preedalikit, Daniel Fernàndez, Ivy Liuc, Louise McMillan, Marta Nai Ruscone and Roy Costilla	617
Partial membership models for soft clustering of multivariate count data Emiliano Seri, Thomas Brendan Murphy and Roberto Rocci	623
Regression for mixture models for extremes Viviana Carcaiso, Ilaria Prosdocimi and Isadora Antoniano-Villalobos	629
Robust matrix-variate mixtures of regressions Salvatore Daniele Tomarchio and Michael P. B. Gallaugher	635
Sampling methods and analysis of survey data	
On the use of auxiliary information to define the sampling design for large-scale geospatial data Chiara Bocci and Emilia Rocco	e 641
Optimal joint inclusion probabilities for spatial sampling Giuseppe Arbia, Piero Demetrio Falorsi and Vincenzo Nardelli	n.a.
Robustness and Balance of Sampling or Experimental Designs and Mixture of Designs Yves Tillé and Ejub Talovic	647
Robustness Bounds for Sampling and Experimental Designs Ejub Talovic and Yves Tillé	654
Statistical Matching: Hotdeck or Propensity Score? Elena Dalla Chiara, Marcello D'Orazio and Federico Perali	661
The Italian experience on register-based statistics considering measurement, coverage and sampling errors Marco Di Zio, Romina Filippini and Simona Toti	667
Space-time statistics	
A Hierarchical Spatio-Temporal Model for Time-Frequency Data: An application bioacoustic analysis Hiu Ching Yip, Gianluca Mastrantonio, Enrico Bibbona, Daria Valente and Marco Gamb	673
An approach to cluster time series extremes with spatial constraints Alessia Benevento, Fabrizio Durante and Roberta Pappadà	679
An integrated space-time model to evaluate the innovation drivers in Italy Emma Bruno, Rosalia Castellano and Gennaro Punzo	685

Revealing the dynamic relations between traffic and crowding using big data for mobile phone network Selene Perazzini, Rodolfo Metulini and Maurizio Carpita	rom 691
SMaC: Spatial Matrix Completion method Giulio Grossi, Alessandra Mattei and Georgia Papadogeorgou	697
The impact of traffic flow and road signs on road accidents: an approach base spatiotemporal point pattern analysis on linear networks Andrea Gilardi and Riccardo Borgoni	ed on 702
Clustering and classification 1	
A clustering model for flow data: an application to international student mobility	y 708
Cinzia Di Nuzzo and Donatella Vicari	
Contingency tables with structural zeros and discrete copulas Roberto Fontana, Elisa Perrone and Fabio Rapallo	713
Levels Merging in the Latent Class Model Christophe Biernacki	719
Model-based clustering of count processes with multiple change Shuchismita Sarkar and Xuwen Zhu	725
Similarity Measures and Internal Evaluation Criteria in Hierarchical Clustering Categorical Data Jana Cibulková, Zdeněk Šulc, Hana Řezanková and Jaroslav Horníček	of 729
Spectral clustering of mixed data via association-based distance Alfonso Iodice D'Enza, Francesco Palumbo and Cristina Tortora	735
Dynamic models and time series	
A graph based convolution Neural Network approach for forecast reconciliatio	n 741
Andrea Marcocchia and Pierpaolo Brutti	
A multivariate hidden semi-Markov model for the analysis of multiple air polluta	ants 747
Marco Mingione, Pierfrancesco Alaimo Di Loro, Francesco Lagona and Antonello Maru	
A smooth transition autoregressive model for matrix-variate time series Andrea Bucci	753
Dynamic network models with time-varying nodes Luca Gherardini, Mauro Bernardi and Monia Lupparelli	759
Time lapse analysis of nuclear calcium spiking in plant cells during symbiotic signaling Ivan Sciascia, Andrea Crosino and Andrea Genre	765
Two-stage weighted least squares estimator of multivariate conditional mean observation-driven time series models Mirko Armillotta	770

Environmental learning and indicators	
Assessing the performance of nuclear norm-based matrix completion methods CO ₂ emissions data Rodolfo Metulini, Francesco Biancalani, Giorgio Gnecco and Massimo Riccaboni	on 776
Deep Learning for smart and sustainable agriculture Amalia Vanacore, Armando Ciardiello, Annalisa Izzo, Pierdomenico Zaffino, Carolina Vecchio, Gennaro Pio Auricchio and Luigi Uccelli	782
Do green transition, environmental taxes and renew-able energy promote ecological sustainability in G7 countries? Evidence from panel quantile regression Aamir Javed, Agnese Rapposelli and Asif Javed	788
Doubly Robust DID for National Parks evaluation: "just" environmental benefits, or socioeconomics impacts as well? Riccardo D'Alberto, Francesco Pagliacci and Matteo Zavalloni	795
On the gap between emitted and absorbed carbon dioxide. Are trees enough to save us? Lorenzo Mori and Maria Rosaria Ferrante	o 801
Small scale analysis of energy vulnerability in the municipality of Palermo Giuliana La Mantia	806
Health statistics 2	
A test for non-differential misclassification error in database epidemiological st	udies 812
Giorgio Limoncella, Leonardo Grilli, Emanuela Dreassi, Carla Rampichini, Robert Platt and Rosa Gini	
Is the COVID-19 'color code' of Italian regions subjected to political manipulation	on? 816
Giovanni Busetta and Fabio Fiorillo	
Modelling multilevel ordinal response under endogeneity: application to DTC patients' outcome Silvia D'Elia	822
Monitoring drugs-based diagnostic therapeutic paths in heart failure patients us state-sequence analysis techniques Nicole Fontana, Laura Savaré and Francesca Ieva	sing 827

Optimal two-stage design based on error rates under a Bayesian perspective 833 Susanna Gentile and Valeria Sambucini Migrants in Italy and return migration Comparing migrant and "native" Italian adolescents in risky behaviours from FSS and SHARE Corona surveys n.a. Daniela Foresta EU-Border crisis on Twitter: sentiments and misinformation analysis 839 Elena Ambrosetti, Cecilia Fortunato and Sara Miccoli XV

Graduates' interregional migration in times of crisis: the Italian case Thais García-Pereiro, Ivano Dileo and Anna Paterno	843
Intentions to stay: The experience of return migrants in Albania Maria Carella, Thaís García-Pereiro, Roberta Pace and Anna Paterno	848
Return migration to home country: a systematic literature review with text minir and topic modelling Cecilia Fortunato, Andrea Iacobucci and Elena Ambrosetti	ng 853
The allocation of time within native and foreign couples living in Italy Giovanni Busetta, Maria Gabriella Campolo and Antonino Di Pino Incognito	860
Eἰλείθυια comes from afar: The foreigners' contribution to fertility by Italian provinces Eleonora Miaci, Cristina Giudici, Eleonora Trappolini, Marina Attili, Cinzia Castagnaro a Antonella Guarneri	866 and
Sustainability assessment	
ESG, sustainability and stock market risk Michele Costa	871
Exploring the effect of consumer motivation and perception of sustainability on choices with a Discrete Choice Experiment Gloria Solano-Hermosilla, Jesus Barreiro-Hurle and Ilaria Amerise	food 875
Sustainability explained by ChatGPT artificial intelligence in a HITL perspective innovative approaches Vito Santarcangelo, Angelo Lamacchia, Emilio Massa, Saverio Gianluca Crisafulli, Massimiliano Giacalone and Vincenzo Basile	e: 881
Measuring economic and ecological efficiency of urban waste systems in Italy: comparison of SFA and DEA techniques Massimo Gastaldi, Ginevra Virginia Lombardi, Agnese Rapposelli and Giulia Romano	a 887
Profile based latent distance association analysis for sparse tables. Application the attitude of EU citizens towards sustainable tourism Francesca Bassi, Josè Fernando Vera and Juan Antonio Marmolejo Martin	n to 893
Sustainable tourism: a survey on the propensity towards eco-friendly accommodations Claudia Furlan and Giovanni Finocchiaro	899
Bayesian methods and applications 2	
A comparison of computational approaches for posterior inference in Bayesian Poisson regression Laura D'Angelo	903
Bias-reduction methods for Poisson regression models Luca Presicce, Tommaso Rigon and Emanuele Aliverti	908
Finite Mixture Model for Multiple Sample Data Alessandro Colombi, Raffaele Argiento, Federico Camerlenghi and Lucia Paci	913

On Bayesian power analysis in reliability Fulvio De Santis, Stefania Gubbiotti and Francesco Mariani	918
Power priors elicitation through Bayes factors Roberto Macrì Demartino, Leonardo Egidi and Nicola Torelli	923
Predictive Bayes factors Leonardo Egidi and Ioannis Ntzoufras	929
Clustering and classification 2	
A Clusterwise Regression Method for Distributional-Valued Data Antonio Balzanella, Rosanna Verde and Francisco de A.T. de Carvalho	935
A novel statistical-significance based semi-parametric GLMM for clustering countries standing on their innumeracy levels Alessandra Ragni, Chiara Masci, Francesca Ieva and Anna Maria Paganoni	939
Introducing a novel directional distribution depth function for supervised classification Edoardo Redivo and Cinzia Viroli	945
Clustering alternatives in the preference-approval context Alessandro Albano, José Luis Garcia-Lapresta, Mariangela Sciandra and Antonella Plai	950 ia
Computational assessment of k-means clustering on a Structural Equation Mobased index	del 955
Mariaelena Bottazzi Schenone, Elena Grimaccia and Maurizio Vichi	
Handling missing data in complex phenomena: an ultrametric model-based approach for clustering Francesca Greselin and Giorgia Zaccaria	961
Economics and labour markets	
A multivariate ranking analysis on the employability of young adults Rosa Arboretti, Elena Barzizza, Nicolo Biasetton, Riccardo Ceccato, Monica Fedeli and Concetta Tino	967
Analysis of the Gender Pay Gap in the Italian Labour Market Giulia Cappelletti and Daniele Toninelli	973
Evaluating the effect of home-based working employing causal Bayesian netwand potential outcomes Lorenzo Giammei	orks 979
Patterns of flexible employment careers. Does measurement error matter? Mauricio Garnier-Villarreal, Dimitris Pavlopoulos and Roberta Varriale	985
Staying or leaving? A nonlinear framework to explore the role of employee we being on retention Ulpiani Kocollari, Fabio Demaria and Maddalena Cavicchioli	II- 991
The CAP instruments impact on GVA and employment: a multivalued treatment approach Montezuma Dumangane and Marzia Free	nt 997

The determinants of leaving the parental home in Italy: 2012-18 Ilaria Rocco and Gianpiero Dalla Zuanna	1003
Environmental modeling	
A Bayesian weather-driven spatio-temporal model for PM10 in Lombardy Michela Frigeri, Alessandra Guglielmi and Giovanni Lonati	1109
A preliminary study on shape descriptors for the characterization of microplasingested by fish Greta Panunzi, Tommaso Valente, Marco Matiddi and Giovanna Jona Lasinio	stics 1015
Artificial neural network in predicting odour concentrations: a case study Veronica Distefano and Gideon Mazuruse	1021
Bayesian analysis of PM10 concentration by spatio-temporal ARIMA and STS models Michela Frigeri and Ilenia Epifani	5 1026
Functional ANOVA to monitor yearly Adriatic sea temperature variations Annalina Sarra, Adelia Evangelista, Tonio Di Battista and Nicola Di Deo	1032
New perspectives in the measurement of biodiversity Linda Altieri, Daniela Cocchi and Massimo Ventrucci	1038
Multivariate data analysis 2	
Feature Selection via anomaly detection autoencoders in radiogenomics stud	
Alessia Mapelli, Michela Carlotta Massi, Nicola Rares Franco, Francesca Ieva, Catharine West, Petra Seibold, Jenny Chang-Claude and the REQUITE and RADprecis Consortia	1044 e
Further considerations on the Spectral Information Criterion Luca Martino	1050
How to increase the power of the test in sparse contingency tables: a simulat study Federica Nicolussi and Manuela Cazzaro	ion 1057
Latent event history models for quasi-reaction systems Matteo Framba, Veronica Vinciotti and Ernst Wit	1063
Quantile-based graphical models for continuous and discrete variables Luca Merlo, Marco Geraci and Lea Petrella	1069
The logratio Student t distribution Gianna Monti and Gloria Mateu-Figueras	1075
Statistics in Society 2	
A decomposition of the changes in tourism demand in Tuscany over the 2019 period Mauro Mussini	9-2021 1079
Bayesian networks as a territorial gender impact assessment tool Flaminia Musella, Lorenzo Giammei, Fulvia Mecatti and Paola Vicar	1084

Massimo Attanasio, Vincenzo G. Genova and Michele Tumminello	1088
Companies' sustainability disclosure and contrast to hunger: the role of social inclusion Chiara Di Maria and Rodolfo Damiano	l 1093
Passing network-based performance indicator in football: evidence from UEF Champions League 2016-2017 Riccardo Ievoli, Lucio Palazzo and Giancarlo Ragozini	A 1099
Topic Modeling for the travel and tourism industry: classical and innovative methods compared Fabrizio Di Mari	1105
Bayesian methods and applications 3	
An Importance Sampling Algorithm For Bayesian Logistic Regression with Independent Gaussian Scale Mixture Prior Paolo Onorati and Brunero Liseo	1111
Bayesian analysis of Amazon's best-selling books via finite nested mixture me	odel 1117
Laura D'Angelo and Francesco Denti	
Binomial Extended Stochastic Block Model for Brain Networks Valentina Ghidini, Sirio Legramanti and Raffaele Argiento	1121
Detecting latent spatial patterns in mass spectrometry brain imaging data via Bayesian mixtures Giulia Capitoli, Simone Colombara, Alessia Cotroneo, Francesco De Caro, Riccardo M Chiara Schembri, Alfredo G. Zapiola and Francesco Denti	1127 Iorandi,
Efficient expectation propagation for high-dimensional probit models Augusto Fasano, Niccolo Anceschi, Beatrice Franzolini and Giovanni Rebaudo	1133
Model-based clustering of non-stationary time series with common historical change times Riccardo Corradin, Luca Danese, Wasiur KhudaBukhsh and Andrea Ongaro	1139
Functional Data Analysis	
A functional Ground Motion Model for Italy built with a weighted analysis of reconstructed seismic curves Teresa Bortolotti, Riccardo Peli, Giovanni Lanzano, Sara Sgobba and Alessandra Mena	1145 afoglio
Conditional Gaussian Graphical Models for Functional Variables whit Partial Separable Operators Rita Fici, Gianluca Sottile and Luigi Augugliaro	1149
Does the Inflation Factor need tuning? Simulation-based adjustment for Outline Detection via the Functional Boxplot Annachiara Rossi, Andrea Cappozzo and Francesca Ieva	er 1155
Functional Graphical Models to map Brexit debate on Twitter Nicola Pronello, Emiliano del Gobbo, Lara Fontanella, Rosaria Ignaccolo, Luigi Ippolit and Sara Fontanella	1160 i

Measuring Dependence in Multivariate Functional Datasets Francesca Ieva, Michael Ronzulli and Anna Maria Paganoni	1166
Robust Statistical Process Monitoring of Multivariate Functional Data Christian Capezza, Fabio Centofanti, Antonio Lepore and Biagio Palumbo	1173
The effects of mobility restrictions on public health: a functional data analysis Italy over the years 2020 and 2021 Veronica Mazzola, Giovanni Bonaccorsi, Piercesare Secchi and Francesca Ieva	for 1179
Machine Learning and text mining	
A vocabulary-based approach for risk detection in textual annotations of contr of public procurement Giulio Giacomo Cantone, Simone Del Sarto and Michela Gnaldi	acts 1185
Explainable Machine Learning based on Group Equivariant Non-Expansive Operators (GENEOs). Protein pocket detection: a case study Giovanni Bocchi, Alessandra Micheletti, Patrizio Frosini, Alessandro Pedretti, Andrea Frosini, Filippo Lunghini, Carmine Talarico and Carmen Gratteri	1191 R.
Hedging global currency risk with factorial machine learning models Paolo Pagnottoni and Alessandro Spelta	1197
InstanceSHAP: An instance-based estimation approach for Shapley values Golnoosh Babaei and Paolo Giudici	1203
Networks & Nature Based Solutions: an application for Milan hydric resources Alessia Forciniti and Emma Zavarrone	1209
The Roe v. Wade sentence: an analysis of tweets trough Symmetric Non-Neg Matrix Factorization Maria Gabriella Grassia, Marina Marino, Rocco Mazza and Agostino Stavolo	gative 1215
Multivariate data analysis 3	
A comparison of different techniques for handling missing covariate values in propensity score methods Anna Zanovello, Alessandra R. Brazzale and Omar Paccagnella	1219
A New Penalized Estimator for Sparse Inference in Gaussian Graphical Mode Adaptive Non-Convex Approach Daniele Cuntrera, Vito M.R. Muggeo and Luigi Augugliaro	els: An 1224
A tool for assessing weak identifiability of statistical models Antonio Di Noia, Francesco Denti and Antonietta Mira	1230
Computing Highest Density Regions with Copulae Nina Deliu and Brunero Liseo	1235
Parameter estimation via Indirect Inference for multivariate Wrapped Normal distributions Francesca Labanca and Anna Gottard	1241

Sequential marginal likelihood selection for the estimation of sparse correlation matrices	on 1246
Claudia Di Caterina and Davide Ferrari	1210
Nonparametric statistical methods	
A Comparison of Distribution-Free Control Charts Michele Scagliarini	1252
Characterizing Heterogeneity of Causal Effects in Air Pollution in Florida Dafine Zorzetto	1257
Comparing three robust procedures for CANDECOMP/PARAFAC estimation Valentin Todorov, Violetta Simonacci, Michele Gallo and Nikolay Trendafilov	1262
How active is a genetic pathway? Comparative analysis of post-hoc permutat based methods Anna Vesely and Angela Andreella	ion- 1268
Non Parametric Combination methodology: a literature review on recent developments Elena Barzizza, Nicolò Biasetton and Riccardo Ceccato	1274
Regression modeling	
A Quantile Regression Model to Evaluate the Performance of the Italian Cour Law	ts of 1280
Carlo Cusatelli, Massimiliano Giacalone and Eugenia Nissi	
A variable selection procedure based on predictive ability: a preliminary study logistic regression Rosaria Simone and Mariarosaria Coppola	on 1285
Comparison of binary regressions with asymmetric link function for imbalance data Michele La Rocca, Marcella Niglio and Marialuisa Restaino	ed 1291
New advances in Regression Forests Mila Andreani, Lea Petrella and Nicola Salvati	1297
On the Optimal Non-Convexity of Penalty in Sparse Regression Models Daniele Cuntrera, Vito M.R. Muggeo and Luigi Augugliaro	1303
Using expectile regression with latent variables for digital assets Beatrice Foroni, Luca Merlo and Lea Petrella	1309
4 Program	1315

Computing Highest Density Regions with Copulae

Nina Deliu^a and Brunero Liseo^b

^aMEMOTEF, Sapienza Università di Roma, nina.deliu@uniromal.it ^bMEMOTEF, Sapienza Università di Roma, brunero.liseo@uniromal.it

Abstract

We investigate the problem of deriving highest density regions (HDRs) from multivariate data samples. We are interested in estimating minimum volume sets that contain a given probability. In the case of unknown distribution probabilities f, the problem involves their estimation, which may be challenging in multidimensional settings. Motivated by the ubiquitous role of copula modelling in modern statistics, we explore their use in the context of HDR estimation. Rather than directly estimating the multivariate f, we propose to estimate the marginals and their dependence structure, i.e., the copula structure, separately. We evaluate this new method, using both a parametric and a nonparametric approach, in a number of synthetic experiments and considering a real dataset.

Keywords: Highest density regions, Copula modelling, Kernel density estimation

1. Introduction

A ubiquitous problem in statistics is to derive statistical intervals or *regions* (in the multivariate setting) for population parameters or other unknown quantities. Given a random sample of data, they provide a way to quantify the uncertainty about a quantity of interest, or simply a way to summarize the information contained in a distribution. In this work, we are interested in statistical *regions* for summarizing probability distributions and we focus on one approach to addressing this problem: *highest density regions* (HDRs, 1). As the name suggests, an HDR specifies the set of points of highest density: the density for every point inside the region is greater than that for every point outside it. More specifically, as we will better discuss in Section 2, the concrete problem is to estimate minimum volume sets of the form $R(f_{\alpha}) = \{\mathbf{x} : f_{\mathbf{X}}(\mathbf{x}) \ge f_{\alpha}\}$, such that $P(\mathbf{X} \in R(f_{\alpha})) \ge 1 - \alpha$, where $f_{\mathbf{X}}$ is the probability distribution of the variable of interest $\mathbf{X} \in \mathbb{R}^d$ and $1 - \alpha$, with $\alpha \in (0, 1)$, a prespecified coverage probability. In principle, HDRs can be derived for any probability distribution and their scope can be widely different. The following are possible applications of HDRs.

Forecasting The goal is to obtain a "prediction region" for a set of observable variables in order to inform any required action (for illustrative examples, see e.g., 1; 2);

Anomaly detection The goal is to detect abnormal observations from a sample: if a data point does not belong to a region of normal or concentrated data, then it is regarded as anomalous (see e.g., 3);

Unsupervised or semi-supervised classification Identify areas or clusters with a relatively high concentration of a given phenomenon, e.g., areas with remarkably high coronavirus incidence (4).

Such regions are of interest in Bayesian analysis as well, in the formulation of *highest posterior* density regions and credibility regions (5; 6). In that context, they are based on a posterior distribution.

Because of their flexibility "to convey both multimodularity and asymmetry in the forecast density", HDRs are argued to be a "more effective summary of the forecast distribution than other common forecast regions" (1). However, to build an accurate HDR, one needs to know (or accurately estimate) the

underlying probability distribution. Methods for estimating f such as the kernel density estimator (KDE, 7) or the local likelihood approach (8) work very well for unidimensional problems, but they may be inefficient for multidimensional problems (9). For example, the bandwidth selection in KDE, recognized as the most crucial and difficult step (see e.g., Chapter 2 in 10), has no definite and unique solution. Further, high-dimensional data pose challenges also from the algorithmic/computational perspective. Altogether, these aspects hamper the ability to derive an appropriate HDR.

The scope of this work is to propose an alternative approach to build HDRs using *copulae* so as to overcome the direct estimation of the multivariate f. Specifically, copulae allow to relax the estimation of multivariate random vectors, by separately estimating the marginals and their dependence structure, i.e., the copula model (11). Motivated by the ubiquitous role of copula modelling in modern multivariate statistics, specifically multivariate density estimation, we explore its use the context of HDR estimation.

2. Problem Setting: Highest Density Regions

Assume we have access to a sample $\mathbf{s}_n = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ of independent and identically distributed (iid) observations, drawn from a probability measure \mathbb{P} . Each data point can be multidimensional, that is $\mathbf{x}_i \in \mathbb{R}^d$, with $d \geq 1$. We denote by $x_i^{(j)}$ the j-th coordinate of \mathbf{x}_i , for $j = 1, \dots, d$ and $i = 1, \dots, n$. For simplicity, we restrict our analysis to bivariate data points with d = 2, and we focus on continuous random variables $\mathbf{X} = (X^{(1)}, X^{(2)}) \in \mathbb{R}^2$. Let $f_{\mathbf{X}}$ denote the probability density function (PDF) of \mathbf{X} and $F_{\mathbf{X}}$ its cumulative density function (CDF). Then, given a coverage probability $1 - \alpha$, with $\alpha \in (0, 1)$, the $100(1 - \alpha)\%$ HDR is defined as the subset $R(f_{\alpha})$ of the sample space of \mathbf{X} such that:

$$R(f_{\alpha}) \doteq \{\mathbf{x} : f_{\mathbf{X}}(\mathbf{x}) \ge f_{\alpha}\},$$
 (1)

where f_{α} is the largest constant such that $P(\mathbf{X} \in R(f_{\alpha})) \geq 1 - \alpha$.

It follows from the definition that the boundary of an HDR consists of those values of the sample space with equal density. Hence a plot of a bivariate HDR is a form of contour plot. One of the most distinctive properties of HDRs is that, of all regions of probability coverage $100(1-\alpha)\%$, the HDR has the smallest region possible in the sample space. Clearly, an HDR always contains the global mode, and in the case of multimodal distributions, it often consists of several disjoint subregions, each containing a local mode. This provides useful information which is "masked" by other types of statistical regions.

To estimate an HDR for \mathbf{X} according to Eq. (1), one needs to know the density function $f_{\mathbf{X}}$. If this is known, the typical way to compute HDRs is the density quantile approach (1), which is based on the following rationale. Let $\mathbf{Y} = f_{\mathbf{X}}(\mathbf{X})$ be the random variable obtained by transforming \mathbf{X} by $f_{\mathbf{X}}$ (bounded and continuous in \mathbf{x}). Consider a set of independent observations from the distribution of \mathbf{X} , say $\mathbf{s}_m = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}$. It follows that independent observations from the distribution of \mathbf{Y} can be obtained as $\{f_{\mathbf{X}}(\mathbf{x}_1), \dots, f_{\mathbf{X}}(\mathbf{x}_m)\}$. Consider now the ordered sample $\{f_{(1)}, \dots, f_{(m)}\}$ with $f_{(j)}$ the j-th largest of $f_{\mathbf{X}}(\mathbf{x}_i)$, $i = 1, \dots, m$, so that $f_{(j)}$ is the (j/m) sample quantile of \mathbf{Y} . Then, given a constant $\alpha \in [0, 1]$, and denoted with $\lfloor \cdot \rfloor$ the floor operator, we have that:

$$\hat{f}_{\alpha} \doteq f_{\lfloor \alpha m \rfloor} \to f_{\alpha}$$
, and $R_m(\hat{f}_{\alpha}) \doteq \{\mathbf{x} \colon f_{\mathbf{X}}(\mathbf{x}) > \hat{f}_{\alpha}\} \to R(f_{\alpha})$, as $m \to \infty$.

Basically, the HDR can be derived based on the sample quantile of $\mathbf{Y} = f_{\mathbf{X}}(\mathbf{X})$.

However, in most real-world scenarios, the density function is unknown. If we have access to a sample of iid observations $\mathbf{s}_n = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, then we can estimate it, and subsequently obtain an estimate of the $100(1-\alpha)\%$ HDR by using the again the density quantile approach with

$$\hat{R}_n(\hat{f}_\alpha) \doteq \{\mathbf{x} : \hat{f}(\mathbf{x}) > f_{|\alpha n|}\},\tag{2}$$

where \hat{f} is a possibly consistent estimator of f.

Note that for small n it may not be possible to get a reasonable density estimate. Besides, with few observations and no prior knowledge of the underlying density function, there seems little point in attempting to summarize the sample space. In higher dimensions, the difficulty of selecting an appropriate region is even greater due to the density estimation challenges (see e.g., 9; 10).

3. Using Copulae for Deriving HDRs

A general d-dimensional copula $C:[0,1]^d \to [0,1]$ is a joint cumulative density function whose d marginals are uniform over [0,1]. Consider, without major loss of generality, the bivariate case d=2, with $F_{\mathbf{X}}$ the joint CDF of the random vector $\mathbf{X}=(X^{(1)},X^{(2)})$, and $F_{X^{(1)}}=F_1$ and $F_{X^{(2)}}=F_2$ its marginals. Then, it follows from the *probability-integral transform* (12) that the joint distribution of (F_1,F_2) is a copula, say $C_{\mathbf{X}}$, and its expression can be derived by noting that

$$C_{\mathbf{X}}(u^{(1)}, u^{(2)}) = \mathbb{P}(F_1(X^{(1)}) \le u^{(1)}, F_2(X^{(2)}) \le u^{(2)}) = F_{\mathbf{X}}(F_1^{-1}(u^{(1)}), F_2^{-1}(u^{(2)})).$$

Letting $u^{(j)} \doteq F_j(x^{(j)}), j = 1, 2$, this yields the following result due to Sklar (13):

$$F_{\mathbf{X}}(x^{(1)}, x^{(2)}) = C_{\mathbf{X}}(F_1(x^{(1)}), F_2(x^{(2)})), \quad \forall \mathbf{x} = (x^{(1)}, x^{(2)}) \in \mathbb{R}^2.$$

In summary, we can decompose the bivariate CDF $F_{\mathbf{X}}$ into a composition of the two marginal distribution functions and a two-dimensional copula $C_{\mathbf{X}}$. $C_{\mathbf{X}}$ is the copula of $F_{\mathbf{X}}$ and describes the dependence structure of F_1 and F_2 . We refer to (11) for book-length treatment of the foregoing ideas.

In case the bivariate distribution has density f, and if this is available, it holds further that

$$f_{\mathbf{X}}(x^{(1)}, x^{(2)}) = c_{\mathbf{X}}(F_1(x^{(1)}), F_2(x^{(2)})) f_1(x^{(1)}) f_2(x^{(2)}),$$

with c being the copula density and f_1 and f_2 the marginal densities. The main advantage of this representation over the one involving the joint PDF is that an estimate of $f_{\mathbf{X}}$ can be obtained by estimating the marginals and the copula density separately, evading potential high-dimensional data challenges (see e.g., 14). Furthermore, copulae offer a flexible framework that can capture complex dependency structures.

If \hat{c} is an estimate of the copula density, we propose to estimate the $100(1-\alpha)\%$ HDR as

$$\hat{R}_n(\hat{f}_\alpha) = \{ \mathbf{x} : \hat{c}_{\mathbf{X}}(\hat{F}_1(x^{(1)}), \hat{F}_2(x^{(2)})) \hat{f}_1(x^{(1)}) \hat{f}_2(x^{(2)}) > f_{|\alpha n|} \},$$

with \hat{f}_j and \hat{F}_j consistent estimators of the marginals f_j and F_j , j=1,2. While here, for the sake of space, we focus on the bivariate case, we emphasize that the approach can be easily extended to higher dimensions, as copulae naturally apply to multidimensional contexts (see e.g., *vine copula* methods; 14).

4. Empirical Evaluation

Simulation studies We start with simulation studies, considering the following four data-generation scenarios, with constant parameters fixed at $\mu_1 = 0$, $\mu_2 = 1$, $\sigma_1 = \sigma_2 = 2$, and $w_1 = 1 - w_2 = 0.7$ over an increasing number of sample sizes (from 50 to 10,000). For copula specifications, we refer to (11).

SC1: Gaussian marginals $\mathcal N$ – Gaussian copula C^{Gauss}

$$f_1 = \mathcal{N}(\mu_1, \sigma_1), \quad f_2 = \mathcal{N}(\mu_2, \sigma_2), \quad C = C_{\rho=0.7}^{\text{Gauss}}$$

SC2: Gaussian $\mathcal N$ & Student t marginals – Clayton copula C^{Clay}

$$f_1 = \mathcal{N}(\mu_1, \sigma_1), \quad f_2 = t_{\nu=10}, \quad C = C_{\alpha=2}^{\text{Clay}}$$

SC3: Gaussian $\mathcal N$ & Gaussian mixture marginals – Student t copula $C^{\mathbf t}$

$$f_1 = \mathcal{N}(\mu_1, \sigma_1), \quad f_2 = w_1 \mathcal{N}(\mu_2, \sigma_2) + w_2 \mathcal{N}(\mu_2 + 10, \sigma_2), \quad C = C_{\rho=0.4, \nu=6}^{\mathsf{t}}$$

SC4: Gaussian ${\mathcal N}$ mixture marginals – Gaussian copula C^{Gauss}

$$f_1 = w_1 \mathcal{N}(\mu_1, \sigma_1) + w_2 \mathcal{N}(\mu_1 + 10, \sigma_1), \quad f_2 = w_1 \mathcal{N}(\mu_2, \sigma_2) + w_3 \mathcal{N}(\mu_2 + 10, \sigma_2), \quad C = C_{\rho=0.7}^{Gauss}$$

For each scenario, we evaluate the following three methods.

Method1: Direct estimation of the bivariate density We use the nonparametric KDE (7), and consider the asymptotically optimal solution proposed in (15) for the bandwidths selection.

Method2: Indirect fully-parametric copula-based estimation of the bivariate density For the estimation of the marginals, we consider the true data-generation processes models (with no misspecification) and maximum likelihood fitting. For the copula model, we perform both model selection (with the AIC criterion) and parameter estimation (with maximum likelihood estimation).

Method3: Indirect fully-nonparametric copula-based estimation of the bivariate density For the marginal densities, we use the standard KDE. For the copula model, we use a KDE approach with the *transformation local likelihood estimator* of (16). We use the R KDECOPULA package, adopting the method with quadratic polynomials and nearest-neighbor bandwidths (17).

To quantify the performance of the methods in the simulation study, we call *positive* those points which should be outside the region and *negative* the others. Let FP, TP, FN and TN be, respectively, the number of false positive, true positive, false negative, and true negative points. Well-established measures of inefficiency are the False Negative (Positive) Rates (FNR and FPR), and the Total Error Rate (ER):

$$\text{FNR} = \frac{FN}{FN + TP}; \quad \text{FPR} = \frac{FP}{FP + TN}; \quad \text{ER} = \frac{FN + FP}{FN + FP + TN + TP}.$$

All methods are evaluated based on $\alpha = 0.05$, that is a coverage probability of 95%.

Results As depicted in Figure 1, the three methods lead to slightly different results, with the two copula-based approaches outperforming the direct KDE (Method1). Compared to the nonparametric Method3, the parametric copula-based approach (Method2) shows the lowest ER across all different scenarios and sample sizes, with an exception for the largest sample sizes, where the difference is negligible.

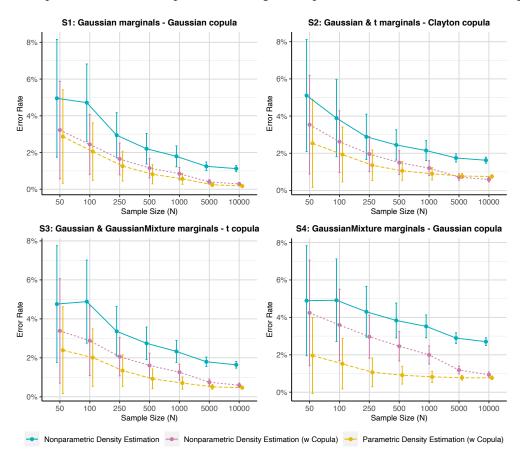


Figure 1: Total error rate (mean and error bars (mean \pm SD), averaged across 10^4 MC samples) of the three compared methods across the different scenarios and for different sample sizes.

Looking at the FPR and FNR, results are very similar across different scenarios and we only discuss scenario S2. As displayed in Figure 2, Method1 has the best FPR performance, with a value close to 0. Rather than being a result of optimal performance, this is due to the fact almost or all data points were classified as highest density points, with no *positives* detected. This is also reflected in its FNR, highlighting a low ability to correctly place *positives* outside the HDR. The two copula-based approaches result in overall better performances, with a slight superiority of the parametric Method2. This was expected as simulation schemes consisted of only parametric copula families, and there is no misspecification.

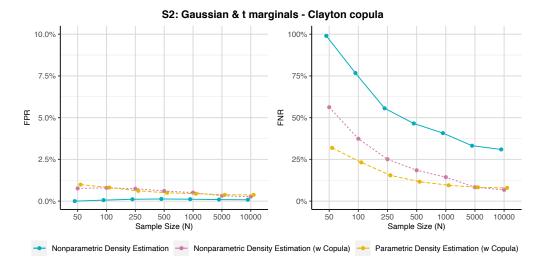


Figure 2: FPR and FNR (averaged across 10^4 MC samples) of the three compared methods for different sample sizes, relatively to scenario S2.

Application to MAGIC Data We apply the proposed methods for constructing a HDR for the joint distribution of two variables from the MAGIC dataset (https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope). The data simulate the registration of high-energy gamma particles in a ground-based atmospheric Cherenkov gamma telescope. We focus on gamma observations (overall n=12,332), and consider the two variables "fConc1" and "fM3Long". In such a case (as deduced from Figure 3), the parametric approach is inappropriate for both the estimation of the marginal distribution and, more importantly, the copula model. Thus, we illustrate the derived HDR using the nonparametric Method1 and Method3 only. While in absence of the underlying truth it is not possible to reliably evaluate the two methods, it seems that the copula-based approach (Method3; right plot), more sensibly excludes the tail data points (which may be expected to have a lower density) from the HDR.

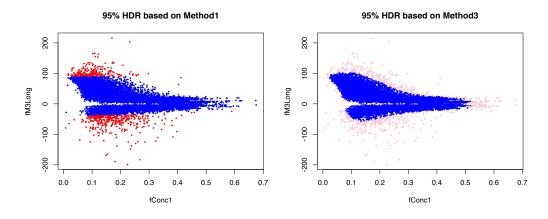


Figure 3: 95% HDR for two variables from the MAGIC dataset with Method1 and Method2.

5. Concluding Remarks

In this work, we proposed an alternative strategy for deriving HDRs in multivariate contexts using *copulae*, and evaluated both a parametric and a nonparametric approach. Compared to traditional kernel density estimation, the copula-based HDR resulted in lower missclasification errors in a number of simulation scenarios and possibly in real data. Although in this work we focused on the bivariate case (d=2), we expect to see remarkable advantages over an increased number of variables d>2. In fact, the extension of the common KDE to high dimensions has proven challenging in terms of both computational efficiency and statistical inference. We aim to pursue such a direction in future work, exploring, e.g., the use of vine copulae to construct flexible dependence models for an arbitrary number of variables using only bivariate building blocks.

References

- [1] Rob J Hyndman. Computing and graphing highest density regions. *The American Statistician*, 50(2):120–126, 1996.
- [2] Jae H Kim, Iain Fraser, and Rob J Hyndman. Improved interval estimation of long run response from a dynamic linear model: A highest density region approach. *Computational Statistics & Data Analysis*, 55(8):2477–2489, 2011.
- [3] Ingo Steinwart, Don Hush, and Clint Scovel. A classification framework for anomaly detection. *Journal of Machine Learning Research*, 6:211–232, 2005.
- [4] Paula Saavedra-Nieves. Nonparametric estimation of highest density regions for COVID-19. *Journal of Nonparametric Statistics*, 34(3):663–682, 2022.
- [5] George EP Box and George C Tiao. *Bayesian Inference in Statistical Analysis*. John Wiley & Sons, 2011.
- [6] Noyan Turkkan and T Pham-Gia. Computation of the highest posterior density interval in Bayesian analysis. *Journal of Statistical Computation and Simulation*, 44(3-4):243–250, 1993.
- [7] Emanuel Parzen. On estimation of a probability density function and mode. *The Annals of Mathematical Statistics*, 33(3):1065–1076, 1962.
- [8] Nils Lid Hjort and M Chris Jones. Locally parametric nonparametric density estimation. *The Annals of Statistics*, 24(4):1619–1647, 1996.
- [9] Han Liu, John Lafferty, and Larry Wasserman. Sparse nonparametric density estimation in high dimensions using the rodeo. In *Artificial Intelligence and Statistics*, pages 283–290. PMLR, 2007.
- [10] Matt P Wand and M Chris Jones. Kernel smoothing. CRC press, 1994.
- [11] Roger B Nelsen. An introduction to copulas. Springer Science & Business Media, 2007.
- [12] George Casella and Roger L Berger. Statistical Inference. Cengage Learning, 2021.
- [13] Abe Sklar. Fonctions de répartition à n dimensions et leurs marges. *Publications de l'Institut Statistique de l'Université de Paris*, 8:229–231, 1959.
- [14] Thomas Nagler and Claudia Czado. Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas. *Journal of Multivariate Analysis*, 151:69–89, 2016.
- [15] José E. Chacón, Tarn Duong, and M. P. Wand. Asymptotics for general multivariate kernel density derivative estimators. *Statistica Sinica*, 21(2):807–840, 2011.
- [16] Gery Geenens, Arthur Charpentier, and Davy Paindaveine. Probit transformation for nonparametric kernel estimation of the copula density. *Bernoulli*, 23(3):1848–1873, 2017.
- [17] Thomas Nagler. kdecopula: An R Package for the Kernel Estimation of Bivariate Copula Densities. *Journal of Statistical Software*, 84(7):1–22, 2018.