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Featured Application: Radiomics may be a useful non-invasive biomarker in the assessment of
response to perioperative chemotherapy in gastric cancer patients.

Abstract: Perioperative chemotherapy (p-ChT) with a fluorouracil plus leucovorin, oxaliplatin, and
docetaxel (FLOT) scheme is the gold standard of care for locally advanced gastric cancer. We aimed
to test CT radiomics performance in early response prediction for p-ChT. Patients with advanced
gastric cancer who underwent contrast enhanced CT prior to and post p-ChT were retrospectively
enrolled. Histologic evaluation of resected specimens was used as the reference standard, and
patients were divided into responders (TRG 1a-1b) and non-responders (TRG 2-3) according to their
Becker tumor regression grade (TRG). A volumetric region of interest including the whole tumor
tissue was drawn from a CT portal-venous phase before and after p-ChT; 120 radiomic features,
both first and second order, were extracted. CT radiomics performances were derived from baseline
CT radiomics alone and ∆Radiomics to predict response to p-ChT according to the TRG and tested
using a receiver operating characteristic (ROC) curve. The final population comprised 15 patients,
6 (40%) responders and 9 (60%) non-responders. Among pre-treatment CT radiomics parameters,
Shape, GLCM, First order, and NGTDM features showed a significant ability to discriminate between
responders and non-responders (p < 0.011), with Cluster Shade and Autocorrelation (GLCM features)
having AUC = 0.907. ∆Radiomics showed significant differences for Shape, GLRLM, GLSZM, and
NGTDM features (p < 0.007). MeshVolume (Shape feature) and LongRunEmphasis (GLRLM feature) had
AUC = 0.889. In conclusion, CT radiomics may represent an important supportive approach for the
radiologic evaluation of advanced gastric cancer patients.
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1. Introduction

Gastric cancer is one of the most common malignant tumors, and it ranks third
worldwide in terms of mortality rates. Recently, with the increased progress in treatment
approaches, patients with pathological stage I disease have achieved a cure rate of 90%;
nevertheless, the prognosis of advanced gastric cancer is still poor in Europe, and the
5-year survival rate is reported to be about 25% [1,2]. Radical gastrectomy with D2 lym-
phadenectomy has historically been the milestone treatment for locally advanced gastric
cancer (Stage IB-III) [3,4]. Since the publication of the MAGIC trial results showing that
three preoperative and three postoperative cycles of epirubicin, cisplatin, and fluorouracil
(ECF) improves progression-free and overall survival, the use of perioperative chemother-
apy (p-ChT) has spread throughout Western countries [5]. Currently in Europe, the gold
standard treatment for patients with locally advanced gastric cancer is radical gastrectomy
with D2 lymphadenectomy and p-ChT with fluorouracil plus leucovorin, oxaliplatin, and
docetaxel (FLOT) [6].

The present trial compared the perioperative docetaxel-based triplet FLOT with an
anthracycline-based triplet of either ECF or ECX (epirubicin, cisplatin, and capecitabine) for
patients with resectable gastric or esophagogastric junction adenocarcinoma. The results of
the trial showed that the patients treated with FLOT achieved a significantly higher rate
of pathological complete regression (16% vs. 6%; p = 0.02) associated with an improved
overall survival with an estimated advantage of 15 months (50 vs. 35 months; p = 0.012)
when compared to the ECF/ECX group. However, not all patients are responders who can
benefit from this approach. In non-responder patients, costly and ineffective preoperative
chemotherapy could be avoided if they are assessed beforehand [7–9]. Currently, the
only objective method of determining whether a patient has responded to preoperative
chemotherapy is the evaluation of the tumor regression grade (TRG) of a surgical specimen.
In order to exclude non-responder patients from preoperative chemotherapy, a diagnostic
method to discriminate responder and non-responder patients should be identified at the
time of the diagnosis.

Radiomics is a tool able to extract ultrastructural quantitative data from previously
acquired medical images (e.g., computed tomography, magnetic resonance imaging, ultra-
sound), providing features that characterize the spatial relationships of signal intensities
in a specific tissue (e.g., a tumoral lesion) [10]. Radiomics has already demonstrated its
usefulness in predicting treatment response across a range of cancer types and imaging
modalities [10–15]. Regarding gastric cancer, CT radiomics has already been shown to
be a promising preoperative non-invasive prognostic biomarker [16]. Pre-treatment ra-
diomics extracted from a baseline CT examination could also be used to provide important
information about the response rate to preoperative chemotherapy for gastric cancer. This
would improve patients’ chances of selection for multimodal treatment [17,18]. Therefore,
radiomics may represent an innovative non-invasive biomarker for the response to peri-
operative chemotherapy in locally advanced gastric cancer. Thus, the aim of this study
is to assess the performance of CT radiomics in predicting the response to perioperative
chemotherapy with a FLOT regimen in gastric cancer patients.

2. Materials and Methods
2.1. Study Population

The current retrospective observational study regards all patients undergoing surgery
for gastric cancer at the Gastrointestinal Surgery Unit of Sant’Andrea University Hospital
between January 2019 and November 2020. The study was conducted in accordance with
the Declaration of Helsinki and its later amendments. Formal Institutional Review Board
approval was not required due to the non-interventional, retrospective nature of the study.
All patients provided signed consent for data treatment and analysis for scientific purposes
before any procedures.

Data were registered in a prospectively maintained database of all patients undergo-
ing gastric resection with perioperative chemotherapy for gastric cancer. The following
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data were included in the study: demographics (age, sex, ASA score, BMI, comorbidities),
characteristics of the tumoral lesion and its pathology, and baseline and post-perioperative
chemotherapy CT examinations. The following inclusion criteria were considered: (1) hav-
ing previously undergone a gastrectomy with a histologically proven diagnosis of gastric
carcinoma with baseline staging CT scan pre- and post-perioperative chemotherapy and
a multidisciplinary team evaluation; (2) preoperative tumor stage as follows: cT2-T4a,
cN0-N3, or M0; (3) age > 18 years old; and (4) having undergone perioperative chemother-
apy with docetaxel, oxaliplatin, leucovorin, and 5-fluorouracil (FLOT). The exclusion
criteria were: (1) unavailability of both baseline and post-perioperative chemotherapy CT
examinations; (2) disease progression (metastatic tumoral spread) during perioperative
chemotherapy not eligible for further surgery; and (3) the use of a different chemotherapy
scheme than FLOT.

Patients were divided into two groups following the Becker TRG classification sys-
tem: non-responders (TRG 1a-1b) and responders (TRG 2-3) [19–21]. Tumor staging was
evaluated according to the American Joint Committee on Cancer (AJCC) Staging System,
8th edition [20]. All patients underwent a total body CT scan and endoscopic ultrasound
for preoperative clinical staging, and the clinical pathway was determined by the multidis-
ciplinary team (MDT).

2.2. CT Acquisition Protocol

Each patient with a histological diagnosis of gastric cancer underwent a pre- and
post-p-ChT total body CT scan with contrast medium injection. CT scans were acquired
on 128-slice CT (GE Revolution EVO Slice CT Scanner, GE Medical Systems, Milwaukee,
WI, USA) in supine position, at end-inspiration and with cranio-caudal scanning. For the
unenhanced imaging, arterial and delayed phase Z-axis coverage included the diaphragm
apex to the iliac bone, and the portal-venous phase was scanned from the sovraclavear
space to the pubic symphysis. For the purposes of this study, only the portal-venous phase
was assessed.

All patients underwent gastric lumen distention by drinking 4 glasses (125 mL) of
water directly before the CT image acquisition. Contrast medium intravenous injection
was tailored for each patient according to lean body weight (LBW): each patient received
0.7 gI/kg LBW [22,23] and the result divided by contrast medium concentration (mgI/mL)
obtaining the volume of administration. Iso-osmolar non-ionic contrast medium (iodixanol
320 mgI/mL, Visipaque 320; GE Healthcare, Cork, Ireland) was administered through an
18–20 gauge antecubital intravenous access, followed by 40 mL of saline solution with a
contrast media injection system (Medrad® Centargo, Bayer) with a flow rate of 3 mL/s.
Post-contrast CT scan timing was based on the bolus-tracking method (Smart Prep, GE,
Milwaukee, WI, USA) by placing a 150 HU-threshold region of interest (ROI) within the
lumen of the abdominal aorta at the celiac tripod level. The late arterial phase (18 s after
threshold reached), portal-venous phase (70 s after the threshold reached), and delayed
phase (180 s after threshold reached) were performed for each patient’s unenhanced phase.

CT technical parameters were: tube voltage 100 kV; tube current modulation was
applied by using SMART mA (GE Healthcare, Milwaukee, WI, USA) ranging from 130 to
300 mAs; spiral pitch factor 0.98; section collimation 64 × 0.625 mm; rotation time 0.6 s.
All CT images were reconstructed with slice thickness of 1.25 mm with standard soft
tissue reconstruction, by applying iterative reconstruction at 50% (ASiR-V, GE Healthcare,
Milwaukee, WI, USA). No other iterative reconstruction was analyzed [24].

2.3. Image Segmentation Analysis

CT examinations were retrospectively analyzed in consensus by two radiologists (EB
and DC, with 5 and 10 years of experience in abdominal oncology, respectively). For each
patient, both the baseline and post-p-ChT CT scans were analyzed by volumetric tumor
segmentation using 3D Slicer software (version 4.10.2, http://www.slicer.org, accessed on
24 October 2020) that had already been tested on gastric neoplasms [17,25]. The volumetric
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region of interest (VOI) was manually outlined slice-by-slice on portal-venous phase
contrast-enhanced CT examinations to cover the entire gastric cancer area while avoiding
the inclusion of surrounding healthy mucosa, gas, and perigastric fat in the analysis.

2.4. Radiomics Features Extraction

Radiomics features were extracted from the VOIs using a dedicated 3D Slicer radiomics
extension (pyradiomics library, [26]), as shown in Figure 1. No spatial filter alteration
scaling was applied to the radiomic features. In particular, several radiomics features of the
first and second order were extracted as follows: (a) first-order statistics (19 features), (b) 2D
and 3D shape-based features (26 features), (c) gray level co-occurrence matrix (GLCM,
24 features), (d) gray level run length matrix (GLRLM, 16 features), (e) gray level size
zone matrix (GLSZM, 16 features), (f) neighboring gray tone difference matrix (NGTDM,
5 features), and (g) gray level dependence matrix (GLDM, 14 features). From baseline
and post-pChT CT images, a total of 120 radiomic features were extracted. Additionally,
a ∆Radiomics number was obtained using the following formula:

∆Radiomics = Radiomics Post−CHT − Radiomics Post−CHT
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Figure 1. A volumetric manual segmentation performed with 3D Slicer software (version 4.10.2, http://www.slicer.org
(accessed on 24 October 2020)) on a portal-venous phase CT scan of a 78-year-old woman with locally advanced gastric
cancer after perioperative chemotherapy. (a–c) Axial, coronal, and sagittal plane views respectively. (d) The final 3D
representation of the whole tumor segment, avoiding the surrounding healthy mucosa, gas, and perigastric fat.

2.5. Statistical Analysis

Continuous data were expressed as the mean ± standard deviation. Differences in
continuous parametric variables were compared using the unpaired Student’s t test, and
the Mann–Whitney U test was used for the continuous nonparametric variables. The
categorical variables were expressed by numbers and percentages and their comparisons
were calculated with the χ2 test or Fisher’s exact test with or without Yates correction. Our
hypothesis test for all the comparisons performed considered H0 as no differences between
responders and non-responders while H1 represented the presence of differences between
the two groups.

http://www.slicer.org
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The diagnostic performance of radiomic features extracted from baseline CT scans
to differentiate responder from non-responder patients was assessed using the receiver
operating curve (ROC), calculating area under the curve (AUC), sensitivity, specificity,
and accuracy. The diagnostic performance of ∆Radiomics was assessed with ROC curve
analysis. Significance was defined as p < 0.05. Statistical analysis was performed using
the SPSS 25.0 (SPSS, Inc., Chicago, IL, USA) and MedCalc software (MedCalc Software,
version15, Ostend, Belgium).

3. Results
3.1. Study Population

Between January 2019 and November 2020, a total of 48 patients underwent a gas-
trectomy with perioperative chemotherapy for gastric adenocarcinoma at our institution.
Twenty-seven patients who underwent chemotherapy regimens other than FLOT, two
patients without available pre- and post-perioperative chemotherapy CT scans, and four
patients who had their radiological disease progression assessed with CT scans after pe-
rioperative FLOT therapy were excluded from the study. Fifteen patients fulfilling the
study criteria were included in the study. Patients were divided into two groups: 9 (60%)
non-responders to p-ChT (TRG1a-1b) and 6 (40%) responders to p-ChT (TRG2-3) (Figure 2).
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3.2. Demographic Characteristics

No significant differences were observed between the two groups concerning the
demographic characteristics age, sex, body mass index (BMI), American Society of Anes-
thesiology (ASA) score, comorbidities, and tumor histotype and location (Table 1). A non-
significant trend of larger tumors was observed in the non-responder group (2.2 ± 0.8 cm
vs. 3.4 ± 1.1 cm; p = 0.073). Ten patients underwent subtotal gastrectomy (30%; p = 0.264)
and 5 patients underwent a total gastrectomy (60%; p = 0.264). Six patients were treated
by open approach (66.7%; p = 0.237) and nine patients by laparoscopy (22.2%; p = 0.237).
Postoperative morbidity occurred more frequently in the non-responder group (14.3%;
p = 0.170), and 30-day mortality was zero in both groups.
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Table 1. Baseline characteristics of the included patients.

Responders
n = 6

Non-Responders
n = 9 p

Age (years, mean ±SD) 59.9 (±12.6) 64.8 (±15.2) 0.224

Gender F/M 3/3 3/6 0.519

BMI (mean, ±SD) 23.8 (±2.2) 24.8 (±3.1) 0.639

ASA (n, %) 0.174
1 0 (0.0%) 1 (11.1%)
2 3 (50.0%) 2 (22.2%)
3 3 (50.0%) 6 (66.6%)
4 0 (0.0%) 0 (0.0%)

Comorbidities (n, %) 3 (50.0%) 4 (44.4%) 0.408

Histotype 0.274
Non poorly cohesive 3 (50.0%) 6 (66.6%)

Poorly cohesive 2 (33.3%) 0 (0.0%)
Poorly cohesive, signet-ring cell 0 (0.0%) 1 (11.1%)

Mixed 1 (16.7%) 2 (22.2%)

Tumor Location 0.255
Cardias 1 (16.7%) 0 (0.0%)

Subcardial 1 (16.7%) 1 (11.1%)
Fundus 0 (0.0%) 0 (0.0%)

Body 0 (0.0%) 1 (11.1%)
Angulus 2 (33.3%) 1 (11.1%)
Antrum 1 (16.7%) 6 (66.7%)
Pylorus 1 (16.7%) 0 (0.0%)

Tumor size (cm, mean ±SD) 2.2 (±0.8) 3.4 (±1.1) 0.073

Body mass index (BMI), American Society of Anesthesiology (ASA).

3.3. Pathological and Long-Term Oncological Outcomes

Pathological examination of the resected specimens showed comparable T stages
(p = 0.315), N stages (p = 0.397), number of retrieved lymph nodes (26.0 vs. 24.2; p = 1.000),
and number of positive nodes between groups (p = 0.388). Furthermore, R0 resection was
achieved in 100% of cases in both groups (p = 1.000). Finally, post-preoperative TNM stage
was comparable between the groups (p = 0.774). Results are listed in Table 2.

Table 2. Oncological outcomes including ypTNM stage, resection margin, node details, and lymphovascular/perineural
invasion in responder vs. non-responder patients.

Responders
n = 6

Non- Responders
n = 9 p

T-stage (n, %) 0.315
ypT1 3 (50.0%) 2 (22.2%)
ypT2 1 (16.7%) 3 (33.3%)
ypT3 1 (16.7%) 4 (44.4%)

ypT4a 1 (16.7%) 0 (0.0%)
ypT4b 0 (0.0%) 0 (0.0%)

N-stage (n, %) 0.397
ypN0 5 (83.3%) 4 (44.4%)
ypN1 0 (0.0%) 1 (11.1%)
ypN2 0 (0.0%) 2 (22.2%)
ypN3 1 (16.7%) 2 (22.2%)

M-stage (n, %) 1.000
ypM0 6 (100%) 9 (100%)
ypM1 0 (0.0%) 0 (0.0%)
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Table 2. Cont.

Responders
n = 6

Non- Responders
n = 9 p

R0 resection (n, %) 6 (100%) 9 (100%) 1.000

Retrieved nodes (mean ±SD) 26.0 (±10.5) 24.2 (±7.3) 1.000

Positive nodes (mean ±SD) 2.7 (±6.5) 3.4 (±3.9) 0.388

Node ratio (mean ±SD) 0.1 (±0.3) 0.1 (±0.1) 0.388

Lymphovascular invasion (n, %) 2 (33.3%) 4 (44.4%) 1.000

Perineural invasion (n, %) 1 (16.7%) 3 (33.3%) 0.604

ypTNM stage (n, %) 0.774
yI 3 (50.0%) 3 (33.3%)
yII 2 (33.3%) 4 (44.4%)
yIII 1 (16.7%) 1 (11.1%)
yIV 0 (0.0%) 1 (11.1%)

3.4. Radiomics Features Extraction

Radiomics features of pre-p-ChT CT examinations showed significant differences
between responders and non-responders for Shape, GLCM, First order, and NGTDM fea-
tures. In particular, the extracted radiomics parameters showed significant differences in
LeastAxisLength (Shape feature; p = 0.017), Cluster Shade and Autocorrelation (GLCM features;
p = 0.007 and 0.005, respectively), Skewness (First order feature; p = 0.012), and Strength
(NGTDM feature; p= 0.049). The diagnostic performance of these features was tested with
ROC curves showing AUCs of 0.815 for LeastAxisLength, AUC of 0.907 for both Cluster
Shade and Autocorrelation, an AUC of 0.889 for Skewness, and an AUC of 0.815 for Strength
(all p < 0.011). Complete results are shown in Table 3 and Figure 3.

Table 3. Pre-p-ChT radiomics analysis between responders and non-responders expressed as simple comparison analysis
(Student’s t test/Mann–Whitney U) and the receiver operating characteristic (ROC) curve analysis with the area under the
curve (AUC), sensitivity, specificity, and interclass coefficient (IC).

Features (±SD)
Student’s t Test/Mann–Whitney U ROC Curve Analysis

Responders Non-Responders p AUC Sensibility Specificity 95%CI p

Shape LeastAxisLength 40,710,033,491,504,200
(±10,571,464,896,142,900)

25,790,429,154,707,500
(±10,255,032,505,952,900) 0.017 0.815 88.89% 66.67% 0.53–0.96 0.011

GLCM

Cluster Shade 0.386
(±0.268)

146,046,470,600.51
(±221,971,036,175.30) 0.007 0.907 66.67% 100% 0.64–0.99 <0.0001

Autocorrelation 600,512,843,926.50
(±266,967,395,651.26)

172,336,715,286.11
(±225,325,689,588.11) 0.005 0.907 88.89% 83.33% 0.64–0.99 <0.0001

First
order Skewness −41,087,393,947.19

(±92,868,722,144.65)
−266,130,994,643.65

(±242,387,476,528.67) 0.012 0.889 88.89% 83.33% 0.62–0.99 <0.0001

NGTDM Strength 0.099
(±0.065)

12,828,807,550.54
(±38,486,422,650.55) 0.049 0.815 55.56% 100% 0.53–0.96 0.007

∆Radiomics values showed significant differences between responders and non-
responders for Shape, GLRLM, GLSZM, and NGTDM features. Specific features include
MeshVolume, LeastAxisLength, and SurfaceVolume (Shape features; p = 0.012, 0.036, and 0.020
respectively); LongRunEmphasis (GLRLM feature; p = 0.039); LargeAreaLowGrayLevelEmpha-
sis (GLSZM feature; p = 0.017); and Contrast (NGTDM feature; p = 0.049). Further, ROC
curve analysis showed significant results for the abovementioned ∆Radiomics features
with an AUC of 0.889 for MeshVolume, 0.833 for LeastAxisLength, 0.852 for SurfaceVolume,
0.889 for LongRunEmphasis, 0.833 for LargeAreaLowGrayLevelEmphasis, and 0.796 for Contrast
(all p < 0.007). Full results including sensitivity, specificity, and confidence interval (CI) are
reported in Table 4 and Figure 4.
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achieved is represented by Cluster Shade and Autocorrelation.

Table 4. ∆Radiomics analysis between responders and non-responders expressed as a simple comparison analysis (Student’s
t test/Mann–Whitney U) and receiver operating characteristic (ROC) curve analysis with the area under the curve (AUC),
sensitivity, specificity, and 95% confidence interval (95%CI).

Features (±SD)
Student’s t Test/Mann–Whitney U ROC Curve Analysis

Responders Non-Responders p AUC Sensitivity Specificity 95%CI p

Shape

MeshVolume 47,726,724,383.33
(±116826556826.61)

13,076,118.00
(±30921508.47) 0.012 0.889 66.67% 100% 0.62–0.99 <0.0001

LeastAxisLength 12,285,531,715,430,500
(±14137871167552600)

5,973,056,305,063,620
(±249,77,695,721,154,400) 0.036 0.833 77.78% 100% 0.55–0.97 0.0045

SurfaceVolume 0.014
(±0.05200651)

0.1233
(±0.089998892) 0.020 0.852 88.89% 83.33% 0.57–0.97 0.0021

GLRLM LongRunEmphasis 2,579,499,151,841.67
(±3.283)

149,429,893,302.00
(±1.43237) 0.039 0.889 66.7% 100% 0.62–0.99 <0.0001

GLSZM LargeAreaLowGray-
LevelEmphasis

408,041,364,296.00
(±3.38877)

36,590,288,676.44
(±1.9542) 0.017 0.833 100% 66.67% 0.55–0.97 0.007

NGTDM Contrast 0.00000
(±0.00571308)

0.01000
(±0.00986065) 0.049 0.796 66.67% 83.33% 0.53–0.96 0.005
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4. Discussion

Our results showed significant performances from pre-p-ChT radiomics and ∆Radiomics
in differentiating between responder and non-responder patients with gastric cancer treated
with a FLOT regimen before surgery. The best performance for pre-p-ChT radiomics
showed an AUC of 0.907 for Cluster, Shade, and Autocorrelation (GLCM features) with sensi-
tivity of 66.67% and 88.89% and specificity of 100% and 83.33%, respectively (all p < 0.0001).
Additionally, ∆Radiomics showed interesting results in terms of diagnostic performance
with the best ROC curve showing an AUC = 0.889 for MeshVolume (Shape feature) and for
LongRunEmphasis (GLRLM feature), with sensitivity and specificity of 66.67% and 100% for
both (all p < 0.0001). Up to now, only a few studies have assessed the role of radiomics in
the prediction of response to perioperative or neoadjuvant chemotherapy [17,27–29]. To the
best of our knowledge, no CT radiomics studies predicting the response to perioperative
chemotherapy with a FLOT regimen in gastric cancer patients have been performed.

The potential of radiomics in the early identification of perioperative treatment re-
sponse represents a great opportunity for developing treatment strategies. Neoadjuvant
chemotherapy responders showed an improvement in survival after gastrectomy [27]. The
possibility of the early identification of non-responder patients would allow a differently
tailored therapeutic strategy.

Different aspects of gastric cancer disease and radiomics have been investigated in
several studies, which have included correlations with histological grade [28], staging, and
therapeutic outcome [29–33]. As mentioned above, some studies have reported interesting
results in response to neoadjuvant chemotherapy assessment. In particular, Giganti and
colleagues performed pre-neoadjuvant ChT radiomics on 34 gastric cancer patients, cor-
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relating the extracted features with TRG. Their results indicated that three pre-treatment
radiomic parameters (Entropy, Root Mean Square, and Range) have a possible predictive
value in the discrimination between responders and non-responders in patients naïve
for treatment.

Discrepancies with our study in terms of different significant radiomic features could
be related to the small population sample and to their use of filtered radiomics that enhance
some features more than others. Another interesting study performed by Li Z. et al.
assessed the role of radiomics in the response to neoadjuvant chemotherapy prediction.
The authors enrolled 30 patients and performed radiomics on pre-treatment CT on both
arterial and portal-venous phases. Results showed how portal-venous phase radiomics
performed better than arterial phase radiomics in the prediction of TRG, with an AUC
of 0.72 compared to one of 0.60 [17]. These results are important in terms of radiomics
application due to the increased availability of portal-venous phase in comparison to
arterial phase in oncologic studies, and this reinforced our decision to test radiomics on the
portal-venous phase, even though more data are needed for confirmation.

Moreover, Sun K-Y. et al. performed a combined multivariate analysis on 106 patients
divided into training and validation cohorts. The researchers proposed a RAD score se-
lected by the randomized decision tree method, and then integrated it into a RAD clinical
score. Results showed how RAD score alone showed the best performance in assessing
response to neoadjuvant ChT compared to RAD clinical score and clinical score only (AUC
0.82 vs. 0.70 and 0.62 respectively). Their study identified 25 radiomic features signifi-
cantly related to response to neoadjuvant chemotherapy including GLCM and GLRLM,
with more than half of the features belonging to the latter group [30]. Our study found
ten radiomic features (five for each analysis performed); among these features, GLCM
and GLRLM showed interesting results. GLCM and GLRLM are features expressing the
signal heterogeneity within a lesion. They represent the relative relationship between the
distribution and location of the gray level. In general, these features (GLCM and GLRLM)
are more pronounced in patients with lack of response to neoadjuvant chemotherapy.
They are possible expressions of the more pronounced intra-tumoral heterogeneity in
non-responders than responders. The Cluster Shade represents a measure of the skewness
and uniformity of the GLCM, and Autocorrelation expresses the magnitude of the fineness
or coarseness of a lesion’s texture. Although our results regarding Cluster Shade are in
line with this trend, Autocorrelation showed the opposite trend and further investigation
is needed to explore this. Among GLRLM features, LongRunEmphasis, a measure of the
distribution of long run lengths, showed greater value, longer run lengths, and more coarse
structural textures. Our ∆Radiomics for this feature showed that responders had a wider
delta compared to non-responders. This is explicable with a reduced LongRunEmphasis
after p-ChT in responders. As already reported in many studies conducted on different
tumor types, the heterogeneity of radiomics features is greater in more aggressive tumors
in terms of proliferation, angiogenesis, and metastatic spread. These characteristics have
often resulted in chemotherapy resistance [31,32].

The ∆Radiomics data of our study are also in line with a study performed by Mazzei
et al. [33]. The study authors analyzed ∆Radiomics on pre-ChT in 23 advanced gastric
cancer patients. On multivariate analysis, their results showed a significant correlation be-
tween the delta GLCM Contrast features and complete pathological response. Additionally,
our analysis showed how Contrast features have good diagnostic ability in differentiating
responders from non-responders.

Despite the interesting results, our study has some limitations, as follows: (a) the small
cohort of patients made it impossible to perform training and validation for sub-groups
and led to possible instability of the results; (b) the lack of multivariate analysis with
clinical and radiological findings; (c) the lack of correlation with histologic and molecular
expressions of the tumor; (d) the lack of radiomics analysis on the arterial phase; (e) the
lack of different iterative reconstruction levels applied to CT acquisition that might alter
radiomic features (we applied fixed iterative reconstruction percentages to avoid bias since
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this aspect was beyond the aim of the study); and finally (f) the manual segmentation of
the whole gastric tumor.

5. Conclusions

Our preliminary results suggest the potential role of radiomics in the assessment of
response to perioperative chemotherapy in gastric cancer patients. This new non-invasive
imaging biomarker could be integrated into the comprehensive evaluation of gastric cancer
patients to provide an early assessment of patient response to chemotherapy and provide
improved therapeutic management. However, further investigations are needed to confirm
the data before they are given full consideration in the clinical setting.
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