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Abstract
Objective. Brain–Computer Interfaces targeting post-stroke recovery of the upper limb employ
mainly electroencephalography to decode movement-related brain activation. Recently hybrid
systems including muscular activity were introduced. We compared the motor task discrimination
abilities of three different features, namely event-related desynchronization/synchronization
(ERD/ERS) and movement-related cortical potential (MRCP) as brain-derived features and
cortico-muscular coherence (CMC) as a hybrid brain-muscle derived feature, elicited in 13 healthy
subjects and 13 stroke patients during the execution/attempt of two simple hand motor tasks
(finger extension and grasping) commonly employed in upper limb rehabilitation protocols.
Approach. We employed a three-way statistical design to investigate whether their ability to
discriminate the two movements follows a specific temporal evolution along the movement
execution and is eventually different among the three features and between the two groups. We also
investigated the differences in performance at the single-subject level.Main results. The ERD/ERS
and the CMC-based classification showed similar temporal evolutions of the performance with a
significant increase in accuracy during the execution phase while MRCP-based accuracy peaked at
movement onset. Such temporal dynamics were similar but slower in stroke patients when the
movements were attempted with the affected hand (AH). Moreover, CMC outperformed the two
brain features in healthy subjects and stroke patients when performing the task with their
unaffected hand, whereas a higher variability across subjects was observed in patients performing
the tasks with their AH. Interestingly, brain features performed better in this latter condition with
respect to healthy subjects. Significance. Our results provide hints to improve the design of
Brain–Computer Interfaces for post-stroke rehabilitation, emphasizing the need for personalized
approaches tailored to patients’ characteristics and to the intended rehabilitative target.

1. Introduction

Brain–Computer Interface (BCI) systems have been
employed in the last 15 years in the field of post-stroke
motor rehabilitation, for their capability to decode
movement-related brain activity in real-time and feed
it back to the subject visually or via more complex

effectors ranging from neuromuscular stimulation to
exoskeletons [1–4].

Most of the BCI systems employed for post-stroke
rehabilitation record brain activity non-invasively
via electroencephalography (EEG). Recently, hybrid
BCIs exploiting physiological signals other than brain
activity, such as muscular activity derived from
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surface electromyography (EMG), have been used
in a rehabilitative context to increase classification
performance [5] or more interestingly to monitor
motor abnormalities [6].

The EEG correlates of motor activity employed as
control features in BCI systems are potentially numer-
ous ranging from modulation of EEG rhythms [7],
event-related potentials [8] and measures of brain
connectivity or brain-muscle connectivity [9, 10] in
hybrid approaches. Each of them is optimally eli-
cited via ad-hoc paradigms and encodes slightly dif-
ferent neurophysiological information. Sensorimotor
rhythms are oscillations in the EEG occurring in
the alpha (8–12 Hz) and beta (13–30 Hz) bands
and can be recorded over the sensorimotor areas,
whose amplitude typically decreases (i.e. desynchron-
izes) during movement execution. Such event-related
desynchronization (ERD) is typically followed by an
increase in amplitude described as event-related syn-
chronization (ERS) [11]. The movement-related cor-
tical potential (MRCP) occurs naturally right before
the movement attempt, reaching the maximum neg-
ativity near the movement onset [12, 13]. It was
shown to be able to decode movement intention [14]
and to discriminate between different upper-limb
movements [15]. Finally, cortico-muscular coherence
(CMC) is ameasure of synchronization between cent-
ral and peripheral activations, and it can be con-
sidered a simple form of hybrid functional connectiv-
ity measuring the spectral coherence between EEG
and EMG signals [10]. All of these brain and brain-
muscles correlates of movement have been described
in post-stroke populations, showing deviations from
the healthy condition sometimes related to the degree
of motor impairment [6, 16–19].

As such, these correlates have been tested in BCI
contexts for clinical applications [20–23].However, as
of today, there is no clear indication of which neuro-
physiological signal best suits for BCI control in a
post-stroke motor rehabilitation context.

Previous studies compared the performances of
different brain features, such as ERD/ERS andMRCP,
primarily focusing on pre-movement detection [24–
27] or decoding movements across different limbs
[28, 29]. These studies demonstrated that an MRCP-
based approach or a combined approach based on
both brain correlates tends to outperform strategies
based on ERD/ERS features alone. The abilities of
ERD/ERS and MRCP to discriminate between differ-
ent movements of the same limb were investigated
separately with different purposes and experimental
designs. Such studies revealed that EEG-based spec-
tral features alone do not yield robust classification
[30], whereas MRCP allows classification accuracies
above chance level when discriminating between
different movements [15, 31]. Recent studies have
explored the ability of CMC to discriminate among

different movements of the same arm in healthy
subjects [32–34] also comparing its performancewith
that obtained using ERD/ERS features [35]. They
have reported that CMC manages to discriminate
between different movements of the same limb, out-
performing the use of only brain features.

To the best of our knowledge, a comparison of
the ability of different neural correlates to discrimin-
ate between different movements of the same limb in
both healthy and stroke subjects has not been invest-
igated before. Furthermore, no study has focused on
how each feature performs in different time frames
along task execution.

In this study, we compared two different EEG-
derived features, namely ERD/ERS and MRCP, and
one EEG-EMG-based feature named CMC, elicited
in 13 healthy subjects (control group—CTRL) and
13 stroke patients (experimental group—EXP) dur-
ing the execution of simple handmotor tasks, namely
the finger extension (Ext) and grasping (Grasp).
The possibility of discriminating different move-
ments of the same limb, which is crucial for neuro-
prosthetic control [36], is relevant for rehabilitative
BCIs. In fact, with the intent of following the patient
along motor recovery, rehabilitation approaches tar-
get goal-oriented and ecologic exercises, particularly
whenmediated by end effectors such as neuromuscu-
lar stimulation [37]. In this context, appropriate tim-
ing of feedback delivery is crucial for the brain plas-
ticity phenomena underlying motor relearning [21].
We defined an ad-hoc signal processing pipeline for
each of the features and investigated in a three-way
statistical design whether their capability to discrim-
inate two simple movement types using only a two-
dimensional space:

i) follows a specific temporal evolution along the
movement execution,

ii) is different among the two brain and the hybrid
features and is consistent at the single-subject
level separately for the two groups,

iii) is different between the stroke and healthy
subjects and eventually correlates with motor
impairment.

We hypothesize, according to the different neuro-
physiological meaning of the explored features, that
each feature performs better in a specific time frame
according to the dynamics of the required task and
that participants in the EXP group will show differ-
ences in the feature which performs the best.

The ultimate objective is to provide useful hints
to design future BCI systems targeting post-stroke
motor recovery, pursuing a trade-off between system
performances and salient neurophysiological content
of the proposed rehabilitative exercise.
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2. Material andmethods

2.1. Participants
Thirteen patients (EXP group) with a diagnosis of
stroke and thirteen right-handed healthy subjects
(CTRL group) participated in the study.

Healthy subjects did not present any evidence or
known history of neuromuscular disorders, whereas
for stroke participants the following inclusion criteria
were applied: (1) a history of first-ever unilateral, cor-
tical, subcortical, or mixed stroke, caused by ischemia
or haemorrhage (confirmed by magnetic resonance
imaging), that occurred 3–12 months prior to study
inclusion; (2) upper limb hemiparesis that was caused
by the stroke; and (3) age between 18 and 80 years.
The exclusion criteria were presence of other chronic
disabling diseases, such as orthopaedic injuries that
could impair reaching orGrasp; spasticity of each seg-
ment of the upper limb scored higher than 4 on the
modified ashworth scale (MAS) [38]. The two groups
did not show any age difference (two-sided independ-
ent sample t-test, p= 0.31).

Clinical and functional evaluation was performed
by expert physiotherapists before data acquisition
(same day). The upper extremity section of the Fugl-
Meyer assessment scale (FMA-UE, motor domains
only ranging from 0—maximum impairment to 66—
normal function) [39] was performed to describe
patients’ residual arm function. The manual muscle
test (MMT) [40] was evaluated to assess strength in
the paretic upper limb by testing shoulder abduction,
elbow flexion/extension and wrist flexion/extension.
TheNational Institute ofHealth Stroke Scale (NIHSS)
[41] was performed to assess general impairment
derived from stroke. Handedness was assessed in
all participants by means of the short form of the
Edinburgh handedness inventory [42]. Information
about participants’ demographic and clinical data are
reported in table 1, more details on the single-subject
characteristics of the EXP group are provided in table
S1 of the supplementary materials. The dataset used
for the purposes of this study was obtained within
a research project conducted in accordance with the
Declaration ofHelsinki and approved by the local eth-
ics board at Fondazione Santa Lucia, IRCCS, Rome,
Italy (CE PROG.752/2019), whose results were par-
tially published in [6, 20]. All the participants signed
an informed consent.

2.2. Experimental design
Participants were involved in an experimental pro-
tocol already described in [6] and designed to elicit all
three features. All participants were seated in a com-
fortable chair with their forearms placed on the table.
Visual cues were presented on a screen on the desk in
front of them via Matlab’s Psychtoolbox. The exper-
iment was administered according to a block design
approach, including 4 blocks of 40 trials each, with
a break among them. In each block, the subject was

Table 1. Demographic and clinical characteristics of the
participants (mean± standard deviation). C= chronic;
FMA= Fugl-Meyer assessment scale, upper limb section;
H= haemorrhagic; I= ischemic; L= left, LH= left hand,
MAS=modified ashworth scale, MMT=manual muscle test,
MH=mixed hand, MO=months, NIHSS= National Institute
of Health Stroke Scale, R= right, RH= right hand, S= subacute,
YR= years.

GROUP EXP (N= 13) CTRL (N= 13)

AGE (YR) 55.8 (±16.5) 48.5 (±19.3)
HANDEDNESS 10RH+ 2MH+ 1LH 13 RH
TIME FROM
EVENT (MO)

5.5 (±4.5) —

TYPE (S/C) 10 S+ 3 C —
ETIOLOGY (I/H) 7I+ 6 H —
SIDE OF
LESION (R/L)

8 L+ 5 R —

FMA 42.9 (±14) —
NIHSS 2.4 (±1.4) —
MAS 1.6 (±1.5) —
MMT 19.3 (±4.9) —

asked to perform one specific task among the four
proposed: execution/attempt of finger extension and
grasping with the right and the left hand separately
in healthy participants, and with the unaffected (UH)
and affected hand (AH) in stroke participants. Each
block comprised 20 task trials of the same move-
ment type and 20 rest trials presented according to
a semi-random sequence with an inter-trial interval,
consisting of a fixation cross in the middle of the
screen, set at 3 s. Task trials had 8 s duration and
started with 4 s of preparatory period, after which a
go stimulus occurred, and the participant had to per-
form the task for 4 s.

Besides, rest trials lasted 4 s in which the parti-
cipant had to relax. Participants were instructed to
perform the task as fast as they could and hold it at
15% of maximum voluntary contraction (MVC) of
the target muscle until the end of the trial. MVCs last-
ing 5 s were recorded for eachmuscle at the beginning
of the experiment. All details about the block-design
paradigm and the timeline of each trial are reported
in figure 1.

EEG and EMGdata were acquired simultaneously
during the paradigm administration and sampled
respectively at 1 kHz and 2 kHz. EEG signals
were recorded from the scalp with 61 active elec-
trodes arranged according to an extension of 10–20
International System (reference on left mastoid and
ground on right mastoid) by means of BrainAmp
amplifiers (Brain Products GmbH, Germany); sur-
face EMG data were recorded through Pico EMG
sensors (Cometa S.r.l., Italy) from 16 muscles col-
lected in bipolar fashion: extensor digitorum (ED),
flexor digitorum superficialis (FD), triceps bra-
chii (TRI), biceps brachii (BIC), pectoralis major
(PEC), lateral deltoid (Lat_DELT), anterior deltoid
(Ant_DELT) and upper trapezius (TRAP) of both
sides (L: left, R: right). EEG and EMG data were

3
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Figure 1. (a) Experiment timeline: the experiment was organised into four blocks with a break among them, each consisting of 20
task and 20 rest trials. In each block, participants performed one of the proposed tasks (i.e. ExtR, ExtL, GraspR, GraspL), with the
sequence of tasks randomised across participants. A closer look at the timeline of task and rest trials is presented: the brown
dashed line illustrates the activation profile required for the correct execution of the task, corresponding to the target muscle (ED
for Ext and FD for Grasp), as well as the rest period. (b) Depiction of the selected time interval for task trials used to extract the
features: task trials were aligned to the EMG onset, and the time interval [−2,2]s with respect to the EMG onset was selected. A
sliding window approach was used to epoch such interval in 7 1 s-windows shifted of 0.5 s, features were extracted in each
window to evaluate their evolution along motor preparation and execution/attempt phases.

synchronized through the BrainVision TriggerBox
(Brain Products GmbH, Germany).

2.3. Data analysis
The methodological approach followed in this study
is illustrated in figure 2. EEG and EMGdata were pro-
cessed offline (upper dashed box in figure 2) with cus-
tom scripts in Matlab 2021b (The MathWorks, Inc.),
then each of the three features under analysis, i.e.
ERD/ERS, MRCP and CMC, was extracted and used
to classify the movement type according to a sliding
window approach (lower dashed box in figure 2).

Ad-hoc pre-processing pipelines were performed
according to the literature for the extraction of each
feature type, and they are described in the follow-
ing paragraphs (2.3.2, 2.3.3 and 2.3.4). The same
pre-processing pipeline was applied to the EEG sig-
nals used to extract ERD/ERS and CMC features
(in light blue and magenta in the flow chart of
figure 2), whereas MRCP features were derived from
EEG signals pre-processed through a dedicated pre-
processing pipeline (in green in the flow chart of
figure 2).

Artifact rejection was performed for each pipeline
as described in the subsequent paragraphs and only
artifact-free trials common to the three pipelines were
considered for the analysis. The number of rejected
task trials was on average 2.17 and 2.58 for healthy
and stroke participants respectively.

The analysis (feature extraction + movement
classification) was executed for task trials only in the
temporal window [−2,2]s defined according to the
EMG onset (figure 1(b)). The use of EMG onset as
a temporal reference allowed the alignment of all the
task trials with respect to the beginning of the move-
ment and thus defining a window of interest centred
on it. A sliding window approach (1 s-windows shif-
ted by 0.5 s) was applied to task trials in such interval
to consider features’ evolution along the motor task
period (preparation+ execution/attempt).

2.3.1. EMG onset detection
To identify the movement onset, EMG signals were
downsampled to 1000 Hz, band-pass filtered [3–
500]Hz and a notch filter at 50 Hz was applied
to remove power-line artefacts. The electrocardio-
graphic component was rejected through template

4
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Figure 2. Outline of the methodological steps of the analysis. The colours of the boxes indicate the EEG processing steps applied
ad-hoc for the extraction of each type of feature: light blue for ERD/ERS features, light green for MRCP features and magenta for
CMC features. Grey boxes are related to processing steps common to the three features. Brown arrows highlight the EMG
processing pipeline.

matching and subtraction method, resulted to be the
method to achieve the best performance in terms
of the lowest root mean square error in both time
and frequency domain EMG features estimation [43].
Specifically, the approach, presented in [44] was
applied and tailored to our data in terms of (i) the
signal used for the QRS detection, set in our ana-
lysis as the signal band-passed filtered (10–40 Hz)
collected from the left side PEC muscle and, (ii) stat-
istical measure used to compute the template, set as

the median of the QRS complexes. The EMG data
of the target muscle (ED for Ext movements and
FD for Grasp movements) have been processed to
obtain the EMG onset for each task trial applying
the Hodges and Bui algorithm [45] as in [20]. Task
trials in which EMG onset resulted to occur before
2.5 s and after 6.5 s with respect to the cue onset
were considered not compliant with the instruction
given by the visual cues and thus marked as to
reject.

5
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2.3.2. ERD/ERS
For ERD/ERS computation, EEG signals were band-
pass filtered [3–60]Hz and a notch filter at 50 Hz
was applied to remove power-line noise. Independent
Component Analysis was used to remove ocular arti-
facts and data were segmented into 8 s epochs for task
trials and 4 s epochs for rest trials from the cue onset.
To obtain reference-free signals and to enhance the
signal-to-noise ratio, a nearest neighbour Laplacian
was applied to EEG signals [46]. A subset of EEG
channels over the sensorimotor area (FC5, FC3, FC1,
FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6,
CP5, CP3, CP1, CPz, CP2, CP4, CP6, P3, Pz, P4) was
considered for the extraction of ERD/ERS features,
according to evidence from the literature [47, 48].

To obtain EEG artefact-free trials, a voltage
threshold (±100 µV) was defined and all trials in
which more than 1 channel exceeded the threshold
were marked as to reject, otherwise, a spherical inter-
polation was performed to replace the noisy channel
and the trial was included in the analysis. EEG data of
task trials were aligned with respect to the EMG onset
and the time interval [−2,2]s was selected and further
divided into 7 consecutive 1 s-windows with 0.5 s of
overlap. For rest trials, the artifact detection was per-
formed by epoching the 4 s-trials in 1 s-windows and
the first artifact-free window was considered for fur-
ther analyses.

To obtain ERD/ERS features, Welch periodogram
(Hann windows of 250 ms duration with 50% over-
lap) was used to compute the power spectrum of the
EEG signals. The computationwas repeated for all the
7 windows of task trials and the only one window
of rest trials. Power spectrum values were averaged
in two frequency bands of interest, normally associ-
ated with brain correlates of voluntary movements
[7]: alpha (8–12 Hz) and beta (13–30 Hz) bands.

To visualize the temporal dynamics of such brain
correlate for each motor task, the mean power spec-
trum of all the 24 EEG channels in each band was
compared (paired t-test, α = 0.05, false discovery
rate—FDR correction) in task and rest condition for
each sliding window, and the grand-average topo-
graphical scalp maps of the 7 task windows were
displayed.

ERD/ERS features were then extracted by means
of a z-score normalization of the PSD values in each
task trial according to the mean and the standard
deviation across trials of the PSD values obtained
in the rest condition. Such normalization was per-
formed to ensure that the difference between the
two motor tasks was not attributable to variations
in resting-state activity across different runs. The
ERD/ERS computation was executed for each chan-
nel, frequency band and window of task trials. Thus,
the initial ERD/ERS feature space was 48 dimensional
(24 EEG channels × 2 frequency bands) for each
window.

2.3.3. MRCP
For MRCP extraction, EEG signals were band-pass
filtered [0.1–1]Hz, segmented in the period [0,8]s
according to task trials’ cue onset, and re-referenced
according to the common average reference [49].
Then, a subset of EEG channels over the frontal and
central sensorimotor area (F5, F3, F1, Fz, F2, F4, F6,
FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz,
C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6) was
selected because the activity of the frontocentral cor-
tex is the major source for MRCPs [50]. Data were
aligned with respect to the EMG onset and the time
interval [−2.5, 2]s was selected for MRCP feature
extraction. The first 500 ms were used for baseline
correction and then removed from the epochs. Trials
withmore than 1 EEG channel in the baseline exceed-
ing in absolute value the amplitude of 100 µV were
marked as to reject, otherwise, a spherical interpola-
tion was performed to replace the noisy channel with
a weighted average of its neighbours.

To extract MRCP features, 21 electrodes of strip
FC, C and CP over the bilateral sensorimotor areas
were selected and the grand-average temporal evolu-
tion along the time interval of interest was displayed
for each motor task. Baseline-corrected EEG data
were downsampled to 20 Hz and the amplitudes of
the time samples in the 1 s-window were considered
as MRCP features in each consecutive window and
trial. Thus, the initial MRCP feature space was 420
dimensional (21 EEG channels× 20 time samples).

2.3.4. CMC
CMC was computed using the EEG signals, pre-
processed as for ERD/ERS features, and the filtered
EMG signals segmented in 8 s epochs for task tri-
als and 4 s epochs for rest trials with respect to the
cue onset. A semi-automatic approach was used to
detect the artefacts in the EMG signals: a statistical
criterion based on the comparison between the EMG
characteristics [51] of each trial and themedian EMG
characteristics of all trials (reference characteristic)
was applied separately for task and rest conditions.
Once the EMG artifacts were detected by the statist-
ical criterion, trials were visually inspected and valid-
ated for rejection. As for the EEG data, also the EMG
data were aligned with respect to the EMG onset and
the time interval [−2,2]s of task trials was selected.

For the extraction of the hybrid EEG-EMG fea-
ture, only the 8 EMG channels over the muscles ipsi-
lateral to the movement (e.g. the 8 muscles of the
right upper limb in ExtR and GraspR) were selec-
ted. EMG signals were rectified [52] and the cortico-
muscular coupling between each EEG-EMG pair was
computed as in [33]. For eachmovement, the charac-
teristic frequency of each EEG-EMG pair was extrac-
ted in three frequency bands of interest shown to
be most informative for CMC features [6, 33]: alpha
(8–12 Hz), beta (13–30 Hz) and gamma (31–60 Hz).

6
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To evaluate the morphology of the feature along the
time interval of interest the grand-average cortico-
muscular patterns with the significant connections in
task condition compared to rest condition were com-
puted as in [6] for each sliding window, band and
motor task.

The single-trial CMC values at the three char-
acteristic frequencies of each EEG-EMG pair were
computed in both task and rest conditions. In each
of the 7 consecutive sliding windows, CMC fea-
tures were extracted as the CMC values in task con-
dition scaled by the mean and the standard devi-
ation of the CMC values in rest trials (z-score stand-
ardization), such normalization was performed to
ensure that the difference between the two motor
tasks was not attributable to variations in resting-
state activity across different runs. Thus, the ini-
tial CMC feature space had dimension 576 (24
EEG channels × 8 EMG channels × 3 frequency
bands).

2.4. Movement classification
2.4.1. Classifier training and testing
To discriminate Ext from Grasp movements in each
limb, data in one of the seven 1 s-windows was
selected to train the classifier. Such window was
chosen a priori according to the literature as follows:
[0.5,1.5]s with respect to EMG onset (holding phase)
for ERD/ERS and CMC-based classification [11, 53]
and the 1 s-window centred on the movement onset
(window [−0.5,0.5]s) for MRCP-based classification
[54]. A feature selection algorithm based on the step-
wise regression [55] with an empty initial model was
applied to reduce the dimensionality of each feature
space to a maximum of 2 features (maxiter = 2)
before training a support vectormachine (SVM) clas-
sifier with a linear kernel.

We set the maximum number of features equal
to 2 as the best compromise between accuracy and
system usability, matching the use of BCI techno-
logy in a clinical context. We have demonstrated
in a previous study how the classification perform-
ances obtained using 10 features (Area Under the
receiver operating characteristic Curve, AUC = 0.9)
were almost comparable to those achieved with 2 fea-
tures (AUC = 0.85) when distinguishing hand Grasp
from Ext [32]. For each feature space, a single-subject
10-iteration cross-validation was applied to train the
SVM classifier: in each iteration, the 80% of Ext and
Grasp observations, randomly selected between the
two classes to train a balanced classifier, was used as
training set.

To test the ability of the trained classification
model to discriminate between the two motor tasks,
at each iteration a pseudo-online validation was per-
formed testing the classifier, not only in the window
used to train the classification model but along the
7 consecutive windows of the observations excluded
from the training set (test set equal to 20% of the

whole dataset’s observations). The chance level was
determined by performing a permutation test, which
involved randomly shuffling the labels in both the
training and test sets. This process was repeated mul-
tiple times to generate a distribution of classification
accuracies under the null hypothesis, allowing us to
estimate the probability of achieving a given accuracy
by chance.

2.4.2. Performance evaluation
For each type of feature, the accuracy [56] was
computed to evaluate its ability to classify two
different hand movements along the analysed win-
dows. Performance values were averaged across the 10
iterations for each participant and side.

Moreover, single-subject performances were eval-
uated for each feature-based classification with a
specific focus on the window utilized for training
the classification model. Such evaluation aimed to
determine intra-subject differences related to the
type of feature used to discriminate Ext from Grasp
movement.

2.5. Statistical analysis
2.5.1. Temporal evolution of the performance along
trial duration
To investigate the dynamic of each type of feature in
discriminating Ext from Grasp movement along the
whole selected time interval (2 s ofmovement prepar-
ation and 2 s of movement execution) in both healthy
and stroke participants, a one-way repeated measures
ANOVA (rmANOVA) was performed for each type
of feature, side and group separately, considering as
within main factor the WINDOW (7 levels: one for
each sliding window) and as dependent variable the
accuracy value.

To compare the ability of ERD/ERS, MRCP and
CMC features to discriminate finger extension from
grasping in both healthy and stroke participants, a
one-way rmANOVAwas performed for each window,
side, and group separately. The FEATURE TYPE (3
levels: ERD/ERS, MRCP, CMC) was considered as
within main factor and the accuracy as the depend-
ent variable.

2.5.2. Between-groups differences in classification
performance
A one-way ANOVA was applied to the accuracy val-
ues obtained by each feature-based classification con-
sidering as factor the three groups: CTRL—control
group executing the task with the right hand; EXP
UH—stroke group executing the task with the UH;
EXP AH—stroke group attempting the task with the
AH. The test was repeated in each of the 7 consecutive
windows analysed.

The statistical significance level was set to p< 0.05
in all the statistical tests, a Tuckey’s post-hoc test
was performed to assess differences among the levels
of the main factor of the ANOVAs performed. All
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the results were corrected for multiple comparisons
according to the FDR procedure [57].

3. Results

3.1. Features morphology
The topographical representations of the three differ-
ent types of features obtained in stroke participants
during Ext and Grasp attempts with the AH are
illustrated in figure 3. ERD in beta band appears to
be stronger and more widespread across the sensor-
imotor area for Ext compared to Grasp movement.
During Ext movement attempts, ERD is present dur-
ing the movement preparation phase and intensifies
during the motor execution phase. In contrast, dur-
ing Grasp movement attempts, ERD occurs only dur-
ing the motor execution phase, figure 3(a).

The MRCP waveforms show a peak around 0 s
(EMG onset), more prominent in the hemisphere
contralateral to the movement (left hemisphere).
Differences in peak amplitude, latency, and topo-
graphical distribution are observed between the two
motor tasks, figure 3(b).

Besides, CMC patterns in beta band show signi-
ficant connections during the movement execution
phase. Few connections and low CMC values due to
a high inter-subject variability as well as to the reduc-
tion in CMC weight were obtained during the move-
ment attempted with AH, as observed in previous
studies [6]. Differences in network density and type
of muscles involved in the CMC pattern during the
movement attempt phase are shown between the two
motor tasks, figure 3(c).

The topographical representations of the three
features for healthy participants and stroke parti-
cipants during the movements executed with the UH
are shown in figures S1 and S2 of supplementary
materials, whereas the morphology of the features in
the other frequency bands of interest is reported in
figures S3-S5. For the sake of brevity, for the CTRL
group only results related to motor tasks performed
with the right hand (dominant hand) were reported
in the study.

3.2. Temporal evolution of the classification
performance along trial duration and
across-features differences
As for the CTRL group, the rmANOVA revealed sig-
nificant differences in accuracy values concerning the
main factor, WINDOW, for the three features separ-
ately (ERD/ERS: F(6,72) = 12.78, p < 0.01; MRCP:
F(6,72) = 5.56, p < 0.01; CMC: F(6,72) = 28.37,
p < 0.01). The temporal evolution of Ext-vs-Grasp
classification accuracies observed across the seven
consecutive timewindows separately for the three fea-
tures is depicted in figure 4(a) whereas the results of
the post-hoc analysis on the main factor WINDOWS
for the 3 features are reported in figure 4(b).

Accuracy levels during the motor preparation
phase ([−1.5,0.5]s with respect to EMG onset),
closely approximated the chance level without any
statistically significant difference among each other.
Moving forward to windows related to movement
execution (time interval [0,1.5]s), an increase in the
accuracywas observed. As for ERD/ERS, the first win-
dow in which the accuracy resulted as significantly
different from the previous ones was the fifth (centred
on 0.5 s) where performances moved from slightly
above chance level to 70%–80% and remained almost
constant up to the end of the trial. No differences
were found among the last 3 windows as revealed by
the post-hoc test. As for the CMC, the first statistical
difference along the trial was described in the win-
dow containing the EMG onset (t = 0 s) in which the
accuracy reached values around 85% and remained
stable around 85%–90% for the entire trial duration
(no differences among the last 4 windows as revealed
by the post-hoc test). MRCP-based classification dis-
played accuracy values close to chance level for all
the windows except for the window centred in 0 s
(i.e. movement onset) where a prominent peak in
accuracy (74%) was found as statistically different
with respect to all the other windows. To summarise,
the first significant classification accuracy values were
obtained in the window centred in 0.5 s for ERD/ERS
while in the window centred in 0 s for MRCP and
CMC.

Results of the rmANOVAs on the accuracy for the
main factor FEATURE TYPE are shown in figure 4(c)
for each temporal window. No statistical differences
among the three feature types were observed dur-
ing the movement preparation phase (first three win-
dows). CMC-based classification showed the highest
accuracywith respect to the ERD/ERSduring the time
interval [0,1]s. The worst performances were found
for MRCP-based classification in all the movement
execution windows except for the window centred in
0 s in which no significant differences were found
among MRCP accuracies, ERD/ERS and CMC ones.

The EXP group, when executing movements with
the UH, reported Ext-vs-Grasp classification per-
formance trends resembling that of the CTRL group
in the preparation ([−1.5,0.5]s) and the holding
phase ([0.5,1.5]s), as shown in figure 5(a). The only
deviations from the CTRL group worth noting are
related to the factor FEATURE TYPE (figure 5(c)).
We did not find any significant difference between
CMC and the other two features at the movement
onset. Here, the accuracies were around 70%–80%
for all the three features highlighting an increase on
average of the performances based on MRCP and a
delay in movement detection based on CMC when
the task is executed by the EXP group with UH with
respect to CTRL. In fact, CMC reached perform-
ances of 95% only in the window centred on 0.5 s,
where both CMC and ERD/ERS were statistically dif-
ferent from MRCP which was at chance level. CMC
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Figure 3. Grand-average (N = 13) topographical representation of the three features under analysis in the EXP group during
Ext and Grasp movements attempted with the affected hand (AH). (a) Topographical scalp maps of the event-related
desynchronization/synchronization (ERD/ERS) in beta (13–30 Hz) frequency band in the 7 sliding windows under analysis.
Hot colours code for t-values when task> rest (synchronisation), blue colours code for t-values when task< rest
(desynchronization). (b) Movement related cortical potential (MRCP) waveforms (mean—AV± standard error—SE) in
the time interval of interest ([−2,2]s with respect to the EMG onset) for the 21 EEG channels of the sensorimotor area. (c)
Corticomuscular coherence (CMC) patterns estimated in beta (13–30 Hz) frequency band in three windows within the interval of
interest, centred at−1 s, 0 s and 1 s with respect to EMG onset. The 2D body model is seen from the above: scalp with the nose
pointing up the top and arms in front of the participant. Only statistically significant CMC values are represented (paired t-test
between task and rest trials, α=0.05 FDR correction). The colour bar codes for the CMC average value (across participants) in
the task trial. The EEG time series recorded over different scalp positions from patients with right-sided lesions were flipped along
the midsagittal plane so that the ipsilesional side was common to all stroke participants. A similar procedure was also applied to
EMG data in all stroke participants with left affected hand (right hemisphere lesion). Both flipping procedures thus ensured to
label the left hemisphere and contralateral right hand as ‘affected’ in all the stroke participants, independently from their actual
lesion side. EXT: finger extension movement, GRASP: grasping movement.
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Figure 4. (a) Temporal trend of the Ext-vs-Grasp classification accuracies obtained in the 13 healthy participants (CTRL group)
during tasks performed with the right hand along the 7 consecutive windows tested for the three feature types. The time represents
the centre of each window with respect to the EMG onset (t = 0 s), the chance level for classification accuracy is represented by a
dashed horizontal line. (b) Results of the one-way rmANOVA with main factor WINDOW for the three feature types separately;
(c) results of the one-way rmANOVA with main factor FEATURE TYPE for each of the 7 consecutive windows. Lines show
statistically significant differences as revealed by Tuckey’s post-hoc test (p< 0.05, FDR corrected for multiple comparisons).

outperformed ERD/ERS-based classification in the
last window (holding phase) centred in 1.5 s.

Figure 5(d) shows the trends of the performances
in discriminating the twomotor tasks obtained in the
EXP group when attempting the movements with the
AH.The temporal trends obtained are similar to those
previously described when patients moved the UH.
The only changes lay in the absence of a significant
difference between CMC and ERD/ERS during the
movement execution windows (figure 5(f), [0,1.5]s)
when the movement is attempted with the AH and
in a generalised increase of ERD/ERS-based perform-
ances in the preparation phase.

3.3. Investigating differences in classification
performance among the three features at the
single-subject level
As expected, the best classification accuracy was
achieved on average in the window used to train the
classification model (window suggested by literature:
window centred in the EMG onset for MRCP-based
classification, window centred in 1 s for ERD/ERS and
CMC-based classifications).

To investigate the intra-subject differences related
to the type of feature used, tables 2 and 3 show the
performance achieved by testing the ability of each
feature-based classification to discriminate Ext from
Grasp movement within that window.

In the CTRL group, overall, using CMC features
showed the highest average performance and the low-
est inter-subject variability (95% on average with a
standard error of 1%) with respect to the other two
classifications based on ERD/ERS and MRCP which
reached 80% and 74% respectively. Looking at the

accuracies obtained for each participant in CTRL
group for the three features reported in table 2, we
noticed a strong consistencywithin the group testified
by the fact that the accuracies obtained at the single-
subject level reflected the trend obtained on average
in the group. Few exceptions were noticed for par-
ticipants H6 and H10 where ERD/ERS-based classi-
fication performed as well as CMC-based one (90%–
100%) and for participants H1 in which MRCP-
based classification performed as well as CMC-based
one (90%).

Similar results were obtained in the EXP group for
movements performed with UH: CMC-based clas-
sification resulted to achieve on average the highest
accuracy and the lowest inter-subject variability,
with some participants in which CMC-based and
ERD/ERS-based classification showed to perform
similarly. Whereas lower accuracy and higher inter-
subject variability were obtained when using MRCP
features, as shown in table 3.

For movements attempted with the AH by the
EXP group, the classification accuracy in discrimin-
ating the twomotor tasks within the best window res-
ulted to be higher on average of 80% regardless of the
feature type.

In each participant, at least one of the features led
to performance equal to or higher than 90%. In most
of the patients, CMC-based classification had not the
highest accuracy as in the CTRL and EXP UH but
the values were comparable with those obtained for
ERD/ERS. MRCP-based classification showed high
accuracy in most patients, in some cases outperform-
ing those obtained by means of ERD/ERS (S1, S2, S3,
S4, S10) and CMC (S1), as shown in table 3.
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Figure 5. (a), (d) Temporal trend of the Ext-vs-Grasp classification accuracies obtained in the 13 stroke participants (EXP group)
during tasks performed with (a) the unaffected hand (UH) and (d) the affected hand (AH) along the 7 consecutive windows
tested for the three feature types. The time represents the centre of each window with respect to the EMG onset (t = 0 s), the
chance level is represented by a dashed horizontal line. (b), (e) results of the one-way rmANOVA with main factor WINDOW for
the three feature types separately during UH (b) and AH (e); (c), (f) results of the one-way rmANOVA with main factor
FEATURE TYPE for each of the 7 consecutive windows during UH (c) and AH (f). Lines show statistically significant differences
as revealed by Tuckey’s post-hoc test (p< 0.05, FDR corrected for multiple comparisons).

Table 2. Single-subject classification accuracies in healthy participants (CTRL group) obtained within the optimal window (used for
training the classifier) by the event-related desynchronization/synchronization (ERD/ERS)-based classification, movement related
cortical potential (MRCP)-based classification and the cortico-muscular coherence (CMC)-based classification of Ext-vs-Grasp
movements performed with the right hand. The last two columns contain the mean value obtained in the group and the related
standard error (SE).

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 Mean SE

ERD/ERS 81% 73% 80% 86% 84% 96% 79% 78% 75% 92% 63% 73% 83% 80% 2%
MRCP 89% 53% 73% 61% 79% 80% 71% 78% 74% 82% 74% 83% 60% 74% 3%
CMC 90% 100% 100% 90% 93% 100% 100% 87% 100% 91% 87% 93% 100% 95% 1%

3.4. Between-groups differences in classification
performance
Figure 6 shows the comparison of the temporal
dynamics of the classification performance for each
feature type separately in the three groups under ana-
lysis (CTRL, EXP UH and EXP AH). The only statist-
ical difference highlighted by the ANOVA was found

in the window [0.5,1.5]s for the ERD/ERS-based clas-
sification between the CTRL and EXP AH group.

4. Discussion

This study explored the potential of three dis-
tinct neurophysiological counterparts of the hand
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Table 3. Single-subject classification accuracies in stroke participants (EXP group) obtained within the optimal window (used for
training the classifier) by the ERD/ERS-based classification, the MRCP-based classification and the CMC-based classification of
Ext-vs-Grasp movements performed with the unaffected hand (UH) and attempted with the affected hand (AH). The last two columns
contain the mean value obtained in the group and the related standard error (SE).

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 Mean SE

UH
ERD/ERS 88% 86% 85% 76% 95% 85% 92% 74% 80% 85% 95% 93% 74% 85% 2%
MRCP 80% 68% 90% 84% 75% 83% 60% 54% 82% 80% 90% 88% 88% 79% 3%
CMC 100% 94% 96% 95% 94% 98% 83% 93% 92% 93% 99% 98% 93% 94% 1%

AH
ERD/ERS 83% 90% 88% 90% 100% 90% 100% 88% 85% 78% 90% 92% 85% 89% 2%
MRCP 95% 95% 95% 93% 92% 66% 79% 73% 78% 85% 60% 78% 85% 83% 3%
CMC 87% 100% 91% 97% 93% 90% 100% 93% 88% 98% 96% 95% 86% 93% 1%

movements to discriminate between two simple
motor tasks i.e. finger extension from grasping in
both healthy and stroke participants.

We found that the temporal dynamics of discrim-
inant accuracy across the consecutive time windows
were in accordance with the expectations derived
from the physiology of movement and related lit-
erature. In particular, ERD/ERS and CMC-based
classification showed a significant increase in per-
formance during the motor execution phase [20,
58], whereas MRCP-based classification showed a
prominent peak in accuracy at movement onset [54].
This is in line with what was previously described
in healthy subjects during hand Grasp movements,
where movement-vs-rest differences were found
almost 400 ms before and 150 ms after movement
onset for MRCP and ERD/ERS, respectively [59].
Our results showed slightly delayed temporal dynam-
ics that was probably due to different experimental
protocols i.e. contrast between 2 movements versus a
single movement against rest.

The temporal dynamics of ERD/ERS, MRCP
and CMC features’ accuracies were similar between
healthy subjects and stroke patients when executing
the movement with the unaffected hand in the pre-
paration and holding phase, whereas they diverged
when the affected hand was involved. Specifically, in
healthy subjects CMC-based classification managed
to distinguish between the two movements not only
at movement onset but throughout the movement
execution phase, showing a faster temporal dynamic
compared to ERD/ERS-based classification for which
a similar profile, even if shifted in time and lower in
general for accuracy, was observed.

The classification accuracies observed in healthy
participants in the window used to train the clas-
sifier (on average 95% for CMC-based classifica-
tion, 80% for ERD/ERS-based classification and 74%
for MRCP-based classification) were similar to pre-
vious data on discriminative abilities of CMC [34]
and MRCP [15, 31]. However, a direct comparison
with the performances obtained in these previous
studies is challenging due to the different number
of classes considered. Our classification performance
encourages the use of ERD/ERS to distinguish dif-
ferent movements of the same hand, such as finger

extension from grasping [60]. Indeed, our classifica-
tion accuracies resulted to be higher than those repor-
ted in a similar study assessing the ability of ERD/ERS
and CMC to discriminate upper limb movements
[35].

At the single subject level, CMC outperformed
both ERD/ERS and MRCP consistently in healthy
participants. Stroke participants, especially when
executing the movement with the affected hand, were
characterized by a higher variability across subjects
in terms of which feature provided the best accur-
acy. In the EXP group, CMC performances at move-
ment onset decreased on average whereas ERD/ERS
and MRCP accuracies increased on average. For both
ERD/ERS it was observed that higher classification
accuracies were obtained in EXP AH with respect to
CTRL in the window used to train the classifier.

The higher classification accuracy observed for
CMC-based classification, more consistently among
healthy subjects, is not unexpected. Indeed, CMC is
an intrinsically hybrid feature which encodes com-
munication between the cortical (EEG) activity and
the muscular (EMG), and it is fairly obvious that
in the attempt to distinguish one movement from
another in the same body district (i.e. Ext from
Grasp), the information coming from the muscles is
capital.

In the context of BCI applications for post-
stroke motor recovery, the necessity to record EEG
and EMG simultaneously adds relevant complex-
ity to both the set-up and the necessary algorithms
for data processing. However, this study demon-
strated the superior discriminative power of CMC
with respect to the other EEG-derived features.
This was especially consistent in healthy subjects
while it showed some pitfalls in the case of stroke
patients when executing the movement with the
AH. Specifically, ERD/ERS andMRCP outperformed
CMC in some patients and the temporal evolution
of CMC-based accuracy was slower in this group.
These findings confirm that CMC is affected by the
stroke-derived hemiparetic condition, in line with the
vast literature showing a correlation between such
motor impairment and CMC parameters [61, 62].
Furthermore, CMC encodes information that is rel-
evant to characterise common post-strokemovement
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Figure 6. Temporal trends of the Ext-vs-Grasp classification
accuracies obtained along the 7 consecutive windows in 13
healthy participants (CTRL group), in 13 stroke
participants when performing the movement with the
unaffected hand (EXP UH) and when attempting the
movement with the affected hand (EXP AH) for each
feature-based classification: (a) ERD/ERS (b) MRCP and
(c) CMC-based classification. The time represents the
centre of each window with respect to the EMG onset
(t = 0 s), the chance level is represented by a dashed
horizontal line. The asterisk shows a statistically significant
difference as revealed by Tuckey’s post-hoc test (p< 0.05,
FDR corrected for multiple comparisons).

abnormalities [6] that may constitute one of the tar-
gets of BCI-based post-stroke rehabilitation (e.g. to
contrast abnormal muscular recruitment, spasticity,

and co-contractions), thus justifying the additional
complexity of the recording setup and data processing
in a rehabilitative context.

The observation that the ‘best’ discriminating fea-
ture in the optimal time window varied among stroke
patients, being sometimes identified in ERD/ERS or
MRCP, prompts us to consider the need to personalize
BCI approaches for rehabilitation in order to facilitate
adherence and participation to the treatment itself.
The ability to efficiently deliver correct and contin-
gent feedback in rehabilitation contexts is import-
ant to guarantee consistency, adherence to treatment
and ultimately enhance neuroplasticity subserving
favourable motor outcomes.

It is also worth mentioning that ERD/ERS, dif-
ferently from the other two features, has been widely
employed in paradigms based on motor imagery [9,
22, 63] rather than execution, more easily applicable
in very severe patients with no residualmotor activity.

All this information should be considered when
designing paradigms for rehabilitative BCIs, evaluat-
ing the importance of fast/contingent feedback, the
need to verify the maintenance of a given motor task
over time, and the capability of the target patient pop-
ulation to perform the required task.

Our most unexpected finding is probably related
to the higher classification accuracies for ERD/ERS
in stroke patients with respect to healthy subjects,
observed in the window used to train the classifier
and a general trend, even if not significant, for MRCP
at movement onset. As said, only EEG-derived fea-
tures performed generally less well than the EEG-
EMG feature to distinguish between two movements
in the same body segment. Both the sensory-motor
event-related frequency modulation and the MRCP
are recorded at the scalp level and reflect phenom-
ena involving largely overlapping neural populations
for both the Grasp and Ext movements. However,
these features in stroke subjects that perform the
movements with their impaired hand are capable
of discriminating between the two movements bet-
ter than in healthy subjects. Our interpretation, cor-
roborated by available evidence [16, 64, 65], is that
the effort required on behalf of patients to perform
the movements increases their discriminability at the
scalp level. Indeed, the requiredmovements were per-
formed quite effortlessly by healthy subjects, likely
involving the minimum necessary neural resources.
Conversely, for hemiparetic patients, the very act of
exercising their affected hand holds a higher salience
which eventually results in the recruitment of larger
neural populations.Moreover, the presence of a lesion
in the brain affecting areas devoted to hand motor
control likely resulted in a differential involvement of
nearby brain areas depending on the specific type of
hand movement required. The trend of MRCP clas-
sification accuracy, higher in patients when attempt-
ing the movement with the AH, supports these hypo-
theses. Indeed, although the impact of stroke on
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MRCP peak amplitude remains controversial [19,
66], most studies reported an increase in MRCP peak
negativity after stroke [18, 67], with a subsequent
reduction during motor recovery [19].

As regards the capability of the selected features
to classify the movements before movement onset
(an aspect which might be of interest in rehabilit-
ative and assistive context e.g. to control movement
effectors [25, 68]), our results were altogether unsat-
isfying (except for 70% of accuracy with ERD/ERS).
Our interpretation of this negative finding is that the
preparation phases for the two movements are hardly
discriminable, while at movement onset (for MRCP)
and during maintenance (for ERD/ERS and CMC),
the sensory afferents play a crucial role in movement
discrimination.

A further limit of our study is that the use of a
slidingwindow approach rather than real-timemove-
ment classification may not entirely replicate real-
world BCI applications, thus an online study should
be performed for the direct translation of findings
to practical rehabilitation scenarios. In addition, the
training of the classifier was conducted on a window
selected a priori for all the patients on the basis of pre-
vious knowledge of motor tasks [11, 53, 54]. Future
works should generalise this point by tailoring offline
the training window on a single patient.

Furthermore, as the dataset dimension is limited,
our machine learning approach only includes train-
ing and testing datasets, with a consequent impact on
the generalisability of the results. Larger studies will
allow the construction of a validation dataset in addi-
tion to the training and test datasets, on which the
hyperparameters of the model can be tuned provid-
ing an unbiased evaluation of the model fitted to the
training dataset.

The block-design approach for data collection
might have affected the classification performances
reported in this manuscript. To mitigate this risk, we
randomized the blocks’ order across participants and
normalised the data through z-score with respect to
the rest period.

5. Conclusions

This study provides valuable insights into the poten-
tial of different neurophysiological correlates in dis-
criminating hand movements, especially in the con-
text of post-stroke rehabilitation. Three distinct
neurophysiological counterparts of hand movement,
extracted from the same dataset in stroke patients
showed distinct characteristics in terms of classific-
ation accuracies along the different time windows
explored. This underlines the importance of a com-
prehensive observation of the motor-related brain
phenomena beyond the mere pursue of the highest
accuracy. Indeed, while accuracy is definitely pivotal

in determining the efficacy of assistive BCI (i.e. BCIs
for communication and control), several other factors
should be taken into account in rehabilitative con-
texts (e.g. feedback modality). Our results emphas-
ize the need for personalized BCI approaches, tailored
to patients’ motor impairment and characteristics.
The personalization of control features is crucial to
enhance patient engagement and adherence to treat-
ment.Moreover, it underlines the importance of eval-
uating the temporal dynamics of such feature-based
movement classifications in order to choose a fea-
ture that can provide a fast and contingent feed-
back right after the movement attempt or continu-
ous feedback duringmovementmaintenance, accord-
ing to the required application. Future works should
test in real-time the ability of the investigated fea-
tures to discriminate different movement types in
stroke patients. Moreover, other movements even
more complex should be included to increase the
knowledge about such features and investigate their
potentiality in BCI for rehabilitation purposes. From
a methodological point of view, more complicated
classifiers (e.g. non-linear) should be tested in order
to assess whether the results obtained from the fea-
tures comparison are dependent on the approach
used or could be generalized.
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[27] Ibáñez J, Serrano J I, Del Castillo M D, Monge-Pereira E,
Molina-Rueda F, Alguacil-Diego I and Pons J L 2014
Detection of the onset of upper-limb movements based on
the combined analysis of changes in the sensorimotor
rhythms and slow cortical potentials J. Neural Eng. 11 056009

[28] Wang J, Bi L and Fei W 2023 EEG-based motor BCIs for
upper limb movement: current techniques and future
insights IEEE Trans. Neural Syst. Rehabil. Eng. 31 4413–27

[29] Liu T, Huang G, Jiang N, Yao L and Zhang Z 2020 Reduce
brain computer interface inefficiency by combining sensory
motor rhythm and movement-related cortical potential
features J. Neural Eng. 17 035003

[30] Quandt F, Reichert C, Hinrichs H, Heinze H J, Knight R T
and Rieger J W 2012 Single trial discrimination of individual
finger movements on one hand: a combined MEG and EEG
study NeuroImage 59 3316–24

[31] Schwarz A, Höller M K, Pereira J, Ofner P and
Müller-Putz G R 2020 Decoding hand movements from
human EEG to control a robotic arm in a simulation
environment J. Neural Eng. 17 036010

[32] de Seta V, Colamarino E, Cincotti F, Mattia D,
Mongiardini E, Pichiorri F and Toppi J 2022
Cortico-muscular coupling allows to discriminate different
types of hand movements 2022 44th Annual Int. Conf. IEEE
Engineering in Medicine & Biology Society (EMBC) pp 2324–7

[33] Colamarino E, de Seta V, Masciullo M, Cincotti F, Mattia D,
Pichiorri F and Toppi J 2021 Corticomuscular and
intermuscular coupling in simple hand movements to enable
a hybrid brain–computer interface Int. J. Neural Syst.
31 2150052

[34] Tang Z, Yu H, Lu C, Liu P and Jin X 2019 Single-trial
classification of different movements on one arm based on
ERD/ERS and corticomuscular coherence IEEE Access
7 128185–97

[35] Lou X, Xiao S, Qi Y, Hu X, Wang Y and Zheng X 2013
Corticomuscular coherence analysis on hand movement
distinction for active rehabilitation ed C-H Im Comput.
Math. Methods Med. 2013 908591

15

https://orcid.org/0000-0002-4098-9461
https://orcid.org/0000-0002-4098-9461
https://orcid.org/0000-0002-4098-9461
https://orcid.org/0000-0002-3092-2511
https://orcid.org/0000-0002-3092-2511
https://orcid.org/0000-0002-3092-2511
https://orcid.org/0000-0002-8279-1699
https://orcid.org/0000-0002-8279-1699
https://orcid.org/0000-0002-8279-1699
https://doi.org/10.1177/1073858417737486
https://doi.org/10.1177/1073858417737486
https://doi.org/10.3390/s23136001
https://doi.org/10.3390/s23136001
https://doi.org/10.1155/2021/9967348
https://doi.org/10.1155/2021/9967348
https://doi.org/10.1016/B978-0-444-63934-9.00009-3
https://doi.org/10.3389/fnbot.2017.00035
https://doi.org/10.3389/fnbot.2017.00035
https://doi.org/10.1186/s12984-023-01127-6
https://doi.org/10.1186/s12984-023-01127-6
https://doi.org/10.1016/0304-3940(94)90556-8
https://doi.org/10.1016/0304-3940(94)90556-8
https://doi.org/10.1007/BF00235441
https://doi.org/10.1007/BF00235441
https://doi.org/10.1162/NECO_a_00838
https://doi.org/10.1162/NECO_a_00838
https://doi.org/10.1097/00004691-199911000-00002
https://doi.org/10.1097/00004691-199911000-00002
https://doi.org/10.1016/S1388-2457(99)00141-8
https://doi.org/10.1016/S1388-2457(99)00141-8
https://doi.org/10.1113/JP281314
https://doi.org/10.1113/JP281314
https://doi.org/10.1016/0168-5597(94)90126-0
https://doi.org/10.1016/0168-5597(94)90126-0
https://doi.org/10.1016/j.clinph.2010.07.010
https://doi.org/10.1016/j.clinph.2010.07.010
https://doi.org/10.1371/journal.pone.0182578
https://doi.org/10.1371/journal.pone.0182578
https://doi.org/10.3389/fneur.2017.00187
https://doi.org/10.3389/fneur.2017.00187
https://doi.org/10.3389/fnhum.2014.01033
https://doi.org/10.3389/fnhum.2014.01033
https://doi.org/10.1016/S0022-510X(96)00291-2
https://doi.org/10.1016/S0022-510X(96)00291-2
https://doi.org/10.1109/ACCESS.2021.3127939
https://doi.org/10.1109/ACCESS.2021.3127939
https://doi.org/10.3389/fnhum.2022.1016862
https://doi.org/10.3389/fnhum.2022.1016862
https://doi.org/10.1152/jn.00918.2015
https://doi.org/10.1152/jn.00918.2015
https://doi.org/10.1002/ana.24390
https://doi.org/10.1002/ana.24390
https://doi.org/10.1016/S1388-2457(02)00057-3
https://doi.org/10.1016/S1388-2457(02)00057-3
https://doi.org/10.1088/1741-2552/ab598f
https://doi.org/10.1088/1741-2552/ab598f
https://doi.org/10.1088/1741-2560/12/3/036007
https://doi.org/10.1088/1741-2560/12/3/036007
https://doi.org/10.5220/0005214002190226
https://doi.org/10.1088/1741-2560/11/5/056009
https://doi.org/10.1088/1741-2560/11/5/056009
https://doi.org/10.1109/TNSRE.2023.3330500
https://doi.org/10.1109/TNSRE.2023.3330500
https://doi.org/10.1088/1741-2552/ab914d
https://doi.org/10.1088/1741-2552/ab914d
https://doi.org/10.1016/j.neuroimage.2011.11.053
https://doi.org/10.1016/j.neuroimage.2011.11.053
https://doi.org/10.1088/1741-2552/ab882e
https://doi.org/10.1088/1741-2552/ab882e
https://doi.org/10.1109/EMBC48229.2022.9871383
https://doi.org/10.1142/S0129065721500520
https://doi.org/10.1142/S0129065721500520
https://doi.org/10.1109/ACCESS.2019.2940034
https://doi.org/10.1109/ACCESS.2019.2940034
https://doi.org/10.1155/2013/908591
https://doi.org/10.1155/2013/908591


J. Neural Eng. 21 (2024) 066015 V de Seta et al

[36] Ofner P, Schwarz A, Pereira J, Wyss D, Wildburger R and
Müller-Putz G R 2019 Attempted arm and hand movements
can be decoded from low-frequency EEG from persons with
spinal cord injury Sci. Rep. 9 7134

[37] Biasiucci A et al 2018 Brain-actuated functional electrical
stimulation elicits lasting arm motor recovery after stroke
Nat. Commun. 9 2421

[38] Bohannon R W and Smith M B 1987 Interrater reliability of
a modified ashworth scale of muscle spasticity Phys. Ther.
67 206–7

[39] Fugl-Meyer A R, Jääskö L, Leyman I, Olsson S and Steglind S
1975 The post-stroke hemiplegic patient. 1. a method for
evaluation of physical performance Scand. J. Rehabil. Med.
7 13–31

[40] Fan E, Ciesla N D, Truong A D, Bhoopathi V, Zeger S L and
Needham DM 2010 Inter-rater reliability of manual muscle
strength testing in ICU survivors and simulated patients
Intensive Care Med. 36 1038–43

[41] Goldstein L B, Bertels C and Davis J N 1989 Interrater
reliability of the NIH stroke scale Arch. Neurol. 46 660–2

[42] Oldfield R C 1971 The assessment and analysis of
handedness: the Edinburgh inventory Neuropsychologia
9 97–113

[43] Xu L, Peri E, Vullings R, Rabotti C, Van Dijk J P and
Mischi M 2020 Comparative review of the algorithms for
removal of electrocardiographic interference from trunk
electromyography Sensors 20 4890

[44] Abbaspour S and Fallah A 2014 Removing ECG artifact from
the surface EMG signal using adaptive subtraction technique
J. Biomed. Phys. Eng. 4 33–38 (available at: https://pmc.ncbi.
nlm.nih.gov/articles/PMC4258854/)

[45] Hodges P W and Bui B H 1996 A comparison of computer-
based methods for the determination of onset of muscle
contraction using electromyography Electroencephalogr. Clin.
Neurophysiol. 101 511–9

[46] McFarland D J 2015 The advantages of the surface Laplacian
in brain–computer interface research Int. J. Psychophysiol.
97 271–6

[47] Nakamura A, Yamada T, Goto A, Kato T, Ito K, Abe Y,
Kachi T and Kakigi R 1998 Somatosensory homunculus as
drawn by MEG NeuroImage 7 377–86

[48] Graimann B, Huggins J E, Levine S P and Pfurtscheller G
2002 Visualization of Significant ERD/ERS Patterns in
Multichannel EEG and ECoG Data Clin (Neurophysiol)
pp 11343–7

[49] Schwarz A, Ofner P, Pereira J, Sburlea A I and
Müller-Putz G R 2017 Decoding natural reach-and-grasp
actions from human EEG J. Neural Eng. 15 016005

[50] Xu B, Deng L, Zhang D, Xue M, Li H, Zeng H and Song A
2021 Electroencephalogram source imaging and brain
network based natural grasps decoding Front. Neurosci.
15 797990

[51] Roland T 2020 Motion artifact suppression for insulated
EMG to control myoelectric prostheses Sensors 20 1031

[52] De Seta V, Toppi J, Pichiorri F, Masciullo M, Colamarino E,
Mattia D and Cincotti F 2021 Towards a hybrid EEG-EMG
feature for the classification of upper limb movements:
Comparison of Different Processing Pipelines 2021 10th Int.
IEEE/EMBS Conf. on Neural Engineering (NER) (IEEE)
pp 355–8

[53] Riddle C N and Baker S N 2006 Digit displacement, not
object compliance, underlies task dependent modulations
in human corticomuscular coherence NeuroImage
33 618–27

[54] Birbaumer N, Elbert T, Canavan A G and Rockstroh B 1990
Slow potentials of the cerebral cortex and behavior Physiol.
Rev. 70 1–41

[55] Rawlings J O, Pantula S G and Dickey D A 1998 Applied
Regression Analysis: A Research Tool (Springer)

[56] Sokolova M and Lapalme G 2009 A systematic analysis of
performance measures for classification tasks Inf. Process.
Manage. 45 427–37

[57] Benjamini Y and Yekutieli D 2001 The control of the false
discovery rate in multiple testing under dependency Ann.
Stat. 29 1165–88

[58] Babiloni C, Carducci F, Cincotti F, Rossini P M, Neuper C,
Pfurtscheller G and Babiloni F 1999 Human movement-
related potentials vs desynchronization of EEG alpha
rhythm: a high-resolution EEG study NeuroImage
10 658–65

[59] Savíc A M, Lontis E R, Mrachacz-Kersting N and
Popovíc M B 2020 Dynamics of movement-related
cortical potentials and sensorimotor oscillations
during palmar grasp movements Eur. J. Neurosci.
51 1962–70

[60] Seeber M, Scherer R and Müller-Putz G R 2016 EEG
oscillations are modulated in different behavior-related
networks during rhythmic finger movements J. Neurosci.
36 11671–81

[61] Krauth R et al 2019 Cortico-muscular coherence is reduced
acutely post-stroke and increases bilaterally during
motor recovery: a pilot study Front. Neurol.
10 126

[62] Guo Z, Qian Q, Wong K, Zhu H, Huang Y, Hu X and
Zheng Y 2020 Altered corticomuscular coherence (CMCoh)
pattern in the upper limb during finger movements after
stroke Front. Neurol. 11 410

[63] Choi K and Cichocki A 2008 Control of a Wheelchair by
Motor Imagery in Real Time Intelligent Data Engineering and
Automated Learning (IDEAL) (Springer) pp 330–7

[64] Jankelowitz S K and Colebatch J G 2005 Movement related
potentials in acutely induced weakness and stroke Exp. Brain
Res. 161 104–13

[65] Wright D J, Holmes P, Russo F D, Loporto M and Smith D
2012 Reduced motor cortex activity during movement
preparation following a period of motor skill practice PLoS
One 7 e51886

[66] Yilmaz O, Cho W, Braun C, Birbaumer N and
Ramos-Murguialday A 2013 Movement related cortical
potentials in severe chronic stroke 2013 35th Annual Int.
Conf. IEEE Engineering in Medicine and Biology Society
(EMBC) pp 2216–9

[67] Li H et al 2020 EEG changes in time and time-frequency
domain during movement preparation and execution in
stroke patients Front. Neurosci. 14 827

[68] López-Larraz E, Antelis J M, Montesano L, Gil-Agudo A and
Minguez J 2012 Continuous decoding of motor attempt and
motor imagery from EEG activity in spinal cord injury
patients 2012 Annual Int. Conf. IEEE Engineering in Medicine
and Biology Society pp 1798–801

16

https://doi.org/10.1038/s41598-019-43594-9
https://doi.org/10.1038/s41598-019-43594-9
https://doi.org/10.1038/s41467-018-04673-z
https://doi.org/10.1038/s41467-018-04673-z
https://doi.org/10.1093/ptj/67.2.206
https://doi.org/10.1093/ptj/67.2.206
https://doi.org/10.2340/1650197771331
https://doi.org/10.2340/1650197771331
https://doi.org/10.1007/s00134-010-1796-6
https://doi.org/10.1007/s00134-010-1796-6
https://doi.org/10.1001/archneur.1989.00520420080026
https://doi.org/10.1001/archneur.1989.00520420080026
https://doi.org/10.1016/0028-3932(71)90067-4
https://doi.org/10.1016/0028-3932(71)90067-4
https://doi.org/10.3390/s20174890
https://doi.org/10.3390/s20174890
https://pmc.ncbi.nlm.nih.gov/articles/PMC4258854/
https://pmc.ncbi.nlm.nih.gov/articles/PMC4258854/
https://doi.org/10.1016/S0921-884X(96)95190-5
https://doi.org/10.1016/S0921-884X(96)95190-5
https://doi.org/10.1016/j.ijpsycho.2014.07.009
https://doi.org/10.1016/j.ijpsycho.2014.07.009
https://doi.org/10.1006/nimg.1998.0332
https://doi.org/10.1006/nimg.1998.0332
https://doi.org/10.1016/S1388-2457(01)00697-6
https://doi.org/10.1088/1741-2552/aa8911
https://doi.org/10.1088/1741-2552/aa8911
https://doi.org/10.3389/fnins.2021.797990
https://doi.org/10.3389/fnins.2021.797990
https://doi.org/10.3390/s20041031
https://doi.org/10.3390/s20041031
https://doi.org/10.1109/NER49283.2021.9441390
https://doi.org/10.1016/j.neuroimage.2006.07.027
https://doi.org/10.1016/j.neuroimage.2006.07.027
https://doi.org/10.1152/physrev.1990.70.1.1
https://doi.org/10.1152/physrev.1990.70.1.1
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1006/nimg.1999.0504
https://doi.org/10.1006/nimg.1999.0504
https://doi.org/10.1111/ejn.14629
https://doi.org/10.1111/ejn.14629
https://doi.org/10.1523/JNEUROSCI.1739-16.2016
https://doi.org/10.1523/JNEUROSCI.1739-16.2016
https://doi.org/10.3389/fneur.2019.00126
https://doi.org/10.3389/fneur.2019.00126
https://doi.org/10.3389/fneur.2020.00410
https://doi.org/10.3389/fneur.2020.00410
https://doi.org/10.1007/s00221-004-2051-6
https://doi.org/10.1007/s00221-004-2051-6
https://doi.org/10.1371/journal.pone.0051886
https://doi.org/10.1371/journal.pone.0051886
https://doi.org/10.1109/EMBC.2013.6609976
https://doi.org/10.3389/fnins.2020.00827
https://doi.org/10.3389/fnins.2020.00827
https://doi.org/10.1109/EMBC.2012.6346299

	Brain and muscle derived features to discriminate simple hand motor tasks for a rehabilitative BCI: comparative study on healthy and post-stroke individuals
	1. Introduction
	2. Material and methods
	2.1. Participants
	2.2. Experimental design
	2.3. Data analysis
	2.3.1. EMG onset detection
	2.3.2. ERD/ERS
	2.3.3. MRCP
	2.3.4. CMC

	2.4. Movement classification
	2.4.1. Classifier training and testing
	2.4.2. Performance evaluation

	2.5. Statistical analysis
	2.5.1. Temporal evolution of the performance along trial duration
	2.5.2. Between-groups differences in classification performance


	3. Results
	3.1. Features morphology
	3.2. Temporal evolution of the classification performance along trial duration and across-features differences
	3.3. Investigating differences in classification performance among the three features at the single-subject level
	3.4. Between-groups differences in classification performance

	4. Discussion
	5. Conclusions
	References


