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Abstract: For this work, a preliminary study proposed virtual interfaces for remote psychotherapy
and psychology practices. This study aimed to verify the efficacy of such approaches in obtaining
results comparable to in-presence psychotherapy, when the therapist is physically present in the
room. In particular, we implemented several joint machine-learning techniques for distance detection,
camera calibration and eye tracking, assembled to create a full virtual environment for the execution
of a psychological protocol for a self-induced mindfulness meditative state. Notably, such a protocol
is also applicable for the desensitization phase of EMDR therapy. This preliminary study has proven
that, compared to a simple control task, such as filling in a questionnaire, the application of the
mindfulness protocol in a fully virtual setting greatly improves concentration and lowers stress
for the subjects it has been tested on, therefore proving the efficacy of a remote approach when
compared to an in-presence one. This opens up the possibility of deepening the study, to create a
fully working interface which will be applicable in various on-field applications of psychotherapy
where the presence of the therapist cannot be always guaranteed.

Keywords: machine learning; eye tracking; distance detection; camera calibration; trajectory estimation;
EMDR; mindfulness

1. Introduction

In the last decade, requests for virtual psychotherapy have greatly increased, with one
of the main new additions being the introduction of machine learning in trauma treatment.
Machine learning could potentially assist in personalizing treatment approaches, analyzing
patterns in patient responses and optimizing interventions based on individual needs.
However, it also presents the benefit of increasing the efficiency of remote psychotherapy.
The latest trend in the fruition of psychotherapy, especially during and after the COVID
outbreak, has slowly evidenced the need for new approaches that can be operated even
in situations where the physical presence of a therapist cannot be guaranteed. One such
therapy is Eye-Movement Desensitization and Reprocessing (EMDR) therapy [1], a widely
recognized treatment mainly for Post-Traumatic-Stress-Disorder-(PTSD)-suffering patients,
which strictly requires the physical presence and evaluation of a therapist, due to some
constraints in the formalized protocol of the therapy.

In EMDR, the process of “exposure” differs from simple exposure therapy. In tradi-
tional exposure therapy, the patient is gradually exposed to the feared or traumatic stimuli
in a controlled manner, allowing them to confront and process the associated emotions.
By contrast, EMDR incorporates bilateral stimulation, such as eye movements, during the
exposure phase. The eye movement component in EMDR is believed to facilitate the
processing of traumatic memories. Francine Shapiro, the developer of EMDR, proposed
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that bilateral stimulation helps integrate and desensitize distressing memories. The ex-
act mechanism is not fully understood, but it is theorized to be related to the natural
information-processing capacities of the brain.

The EMDR protocol follows eight phases:

1. patient history;
2. preparation;
3. assessment;
4. desensitization;
5. installation;
6. body scan;
7. closure;
8. re-evaluation.

EMDR can also be applied to individuals experiencing mild distress. The protocol
is adaptable, and the treatment steps can be modified to suit the needs of individuals
with milder symptoms. The flexibility of EMDR allows therapists to tailor their approach,
based on the specific requirements and comfort levels of each patient, ensuring effective
and personalized treatment even in cases of mild distress. There are many reports in
the literature of successfully applied EMDR therapies to mild-symptoms patients [2–4].
However, despite the mildness of the condition at hand, the EMDR therapeutic protocol is
structured in the same manner, therefore requiring the already-introduced eight phases.

The desensitization phase of the protocol [5] is the core of EMDR, and it involves
the patient focusing on a target memory while engaging in bilateral stimulation (such as
eye movements) to reduce the emotional intensity associated with the memory. When
performed through visual stimulation, phase 4 requires following closely the movement
of the therapist’s hand. Currently, the visual attention of the patients must be manually
verified by the therapist, a task which can be imprecise due to the fatigue caused by the
long duration of the stimulus administrated by the therapist. Thanks to the most recent
machine-learning techniques and, in particular, gaze recognition and tracking, we can
automatically detect the engagement of the subjects in the desensitization task in the
produced virtual environment. This allows us to analyze the subject’s adherence to the
prescribed movements, offering to the psychotherapist the possibility of evaluating the
patient’s reactions as assessed by the algorithm.

This study presents a preliminary work for the development of a computer-based
system that will allow the performance of self-induced mindfulness meditation through
the use of advanced and up-to-date machine-learning techniques. The task will be exe-
cuted by administering a visual bilateral stimulation identical to the one used during the
desensitization phase of the EMDR protocol, therefore proving the repeatability of our
system for future EMDR use. Instead of focusing on trauma processing, we will focus on
measuring and possibly lowering the stress levels of the involved subjects. The system
will automatically gather data regarding the patient, measure the distance of the patient
from the screen and ask the patient to reposition themselves to an ideal position, calibrate
the camera to improve the quality of the eye tracking and, finally, execute the mindfulness
protocol by performing visual bilateral stimulation through the use of a virtual light bar
executing on the screen. The whole stimulation will be tracked by a computer-vision-based
algorithm for eye tracking, which will generate a trajectory for the subject’s gaze and
compare it to the expected one, to determine if the patient is correctly executing the task.

Importantly, this study highlights that the role of the psychotherapist is not replaced
or marginalized in any way. On the contrary, the therapist plays a pivotal role as the
facilitator and guide throughout the virtual exercises. The virtual platform serves as a
tool for constant guidance and supervision by the therapist, guaranteeing a personalized
and supportive therapeutic experience. This collaborative approach leverages the synergy
between technology and human expertise, enhancing the overall effectiveness of the virtual
psychotherapy sessions. The virtual-therapy platform prioritizes user comfort, allowing
patients to stop the exercises or the sessions at any moment if they experience discomfort
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or distress. Moreover, patients have the option to switch to a mode where they can see and
interact with the therapist directly, as in a normal video call, fostering a sense of familiarity
and comfort. Obviously, in this latter case, it would be possible to take advantage of
the technological support offered by our system. This flexibility allows us to tailor the
therapeutic experience, based on the needs of the patients.

Several works are available in the literature, in regard to virtual interfaces for psy-
chotherapy, especially in the context of the use of machine learning for their implementation.
The applications and specific techniques are incredibly wide, with several applications
being for diagnosis, screening and support of Alzheimer’s disease and, in general, cognitive
impairment. Such works tackle mainly visual, auditory and motor tasks, with a special
emphasis on the mnemonic part, both with simpler methods, such as decision trees [6],
and with more advanced ones, such as CNNs and GANs [7]. There are also some works
tackling virtual interfaces specifically for eye tracking, with one of the most significant ones
employing CNNs and transfer learning to identify Alzheimer’s disease through the use of
visual memory tasks that require analyzing a set of sequential images with slight differ-
ences between them [8]. Few-to-no works, however, tackle the problem of virtual interfaces
specifically for visual BLS with applications to EMDR and the mindfulness protocol. Other
available approaches for remote EMDR exist in the form of individual light bars or kits
containing light bars, headphones and tactile stimulators; however, they present several
drawbacks:

1. They often require specific software installations, and are not integrated in the hard-
ware available to users;

2. They can be counterintuitive for some users, requiring long instruction manuals and
a high number of cables to function;

3. They have high costs and are, therefore, not available to all users;
4. The light bars and EMDR kits are often shipped from a limited number of countries

(e.g., the USA), therefore being hard to access worldwide.

In addition to physical hardware, several applications, both commercial and non-
commercial, also exist online, to perform remote EMDR with the aid of a virtual light bar
in the form of a moving dot. However, all the approaches available only provide a visual
interface, with the requirement for the therapist to manually check the patient’s execution
of the task on a video call. Due the current infrastructures available, however, the data
transmission is not completely real-time, and delays in the transmission of the patient’s
video can cause reduced efficacy of the treatments, due to the slowed-down response
of the therapist to the subject’s distractions. Our instrument, on the other hand, is not
only real-time and integrated in the hardware already possessed by the subjects, with the
possibility of executing the application on any device provided with a screen and a camera,
but will also be actuated with the aid of machine learning. This will effectively contrast
any possible delays in transmission of the video data to the therapist by performing a
verification of the patient’s adherence to the prescribed movements directly on the client
side, with the therapist performing a validation on the automatically registered distractions.
In our work, we made use of three different machine-learning techniques that were joined
to create a smooth architecture: namely, distance detection, camera calibration and eye
tracking. They provided a solid infrastructure compared to those already available, able to
simulate a virtual light bar and jointly verify the subject’s adherence to the stimulation.

In regard to distance detection, many approaches available in the literature simply
rely on hardware measurements, but many works, especially in regard to face detection,
prefer metrics based on facial features. The main features used concern eyes—for example,
measurements of the distance between eyes’ corners [9] or between the pupils [10]. Eyes
are, however, not the only possibly usable feature, with another popular option being the
measurement of the distance between face landmarks, such as the nose and the mouth [11].
Due to the absent repeatability of such a tailored approach, other metrics that do not rely
on facial features exist, such as through the measurement of the distance of an object of
known dimension on the scene. An excellent example of use which can also bypass the
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standardized-dimension problem is Dist-YOLO, a modification of YOLOv3 [12] that adds
to the network the possibility of measuring the distance of the bounded objects [13]. Finally,
another recent option uses point-cloud data to estimate distance [14], creating a Bird’s Eye
View (BEV) representation that is used as the input of a standard YOLOv4 network [15].

To perform camera calibration, the most common technique used in the literature is
the use of dots positioned at strategic points of the screen called points of regard, with their
configuration depending on the type of application [16]. The more common schemas are
three-point calibration, generally used for single-line text reading, five-point calibration and
nine-point calibration, mainly used for wide-vision applications with five-point calibration
being a simplified nine-point calibration and, finally, thirteen-point calibration, mostly used
for paragraph reading.

In regard to eye tracking, finally, we have a wide variety of approaches already
available in the literature. Eye tracking can be tackled not only with machine learning,
but also with the Internet of Things and cloud computing [17]. While the Internet of
Things and cloud computing mainly focus on improving the reliability of the system and
computation speed, machine learning instead offers several flexible approaches. Symbolic
regression, in particular, shows great results in improving the calibration phase [18]. Better
approaches are available in the form of neural networks, such as Convolutional Neural
Networks (CNN) and Deep Neural Networks (DNN), but they require a large amount
of data that are not easily available. Among them, many pre-existing deep CNNs work
optimally for vision and perception tasks. Some possibilities are VGGNet [19], which has
also been compared to AlexNet, to check their accuracy in fine-tuning [20]; ResNet [21];
U-Net [22], which is generally combined with DenseNet and obtains similar results to
SegNet [23]; and, finally, Graph Convolutional Networks (GCN) [24], a relatively new
approach that joins classic CNNs to Graph Neural Networks (GNN), with the advantage of
being able to naturally fuse different groups of features, to have more stable training.

In addition to standard CNN approaches, a relatively new approach to eye tracking is
the use of Recurrent Neural Networks (RNN) [25], which improve predictions by analyzing
the previous frames of the captured video, to perform a contextual analysis, especially in a
mixed approach (CNN + RNN). Finally, Generative Adversarial Networks (GAN) have
also shown good results, with CycleGAN being particularly efficient in eye tracking, due
to solving the problem of standard GANs in tracking accuracy by introducing a double
processing of the image, therefore making accuracy trackable [26].

The already-mentioned approaches can also extend to gaze tracking, a subclass of the
eye-tracking problem, which accurately estimates pupil position and the direction of the
gaze, allowing the identification of the point on the screen where they are focusing their
attention [27]. There are several gaze-tracking and estimation methods [28], which can be
categorized as 2D-mapping-based methods, 3D-model-based methods and appearance-
based methods. Standard vision approaches are also functional as a solution to the gaze-
tracking problem, with much emphasis being put on the pre-processing and analysis of the
frames, and various papers have tackled the problem with vision approaches.

This work had two main aims. Firstly, we wanted to verify the efficacy of our eye-
tracking algorithm in reconstructing a trajectory generated by fast eye movements in
following a moving target and catching the distractions of the subjects. Secondly, after veri-
fying the quality of the approach, we wanted to validate our thesis that a virtual approach
can be comparable to an in-presence one and performs better than other relaxation methods,
such as diaphragmatic breathing or a distraction task, such as filling in a questionnaire. Our
work confirmed that the virtual approach performs excellently in decreasing the stress lev-
els of the subjects selected for this study compared to our control group and diaphragmatic
breathing ones. Moreover, our algorithm, when operated under the correct environmental
conditions, is able to correctly discern the number of distractions of the patients. This
effectively makes our approach suitable to be tested on EMDR therapy, given the similarity
in tasks between the desensitization phase of the protocol and the mindfulness meditation,
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with the possibility of furthering the work, to generate a fully virtual interface for the whole
EMDR protocol.

This study was also attentive to potential constraints, obstacles and ethical concerns
related to the utilization of virtual interfaces in psychotherapy. In the results section, we
provide a detailed overview of the measures taken to ensure ethical standards and address
any potential issues. Additionally, the discussion section includes a thorough exploration
of the limitations and challenges encountered during the study. We acknowledge the
importance of ethical considerations in virtual therapy and propose remedies and strategies
to mitigate these concerns. Our aim is to contribute to the ongoing dialogue on ethical
practices in virtual psychotherapy and to offer insights for future research in this domain.

The article will be structured as follows: Section 2 will analyze the development of
the application, with a particular focus on the data extraction and the choice of algorithms
for distance detection, calibration and eye tracking. Section 3 will briefly introduce our
testing environment and subjects, presenting the results obtained. Section 4 will focus on
the analysis and comparison of the obtained data, with a mention of the future directions
of this work. Finally, Section 5 highlights the conclusions of this study.

2. Materials and Methods

Our interface was developed to account for three different study groups. Group
1 performed a desensitization task, comprised of a dot-following exercise followed by
controlled breathing (see in Figure 1). The dot-following was thoroughly analyzed by our
eye-tracking algorithm. Group 2 performed diaphragmatic breathing, as instructed by the
interface. Finally, Group 3 filled in a questionnaire.

The algorithm described in this section was implemented in the context of a web
application developed with HTML, CSS, PHP and JavaScript. Communication between
the web application and the Python scripts responsible for the machine-learning part was
implemented via the Flask framework. Our system operates in real-time, ensuring that
tasks are executed without noticeable delays. It is important to note that the current state
of data transmission and processing within our system is either below or equivalent to
network latency. In other words, the time taken for data to be transmitted and processed
is comparable to or slightly faster than the delays experienced in the network. The data
regarding the subjects was stored in an SQL database interfaced with the web application,
and all communication with the database was automatically performed by the algorithm
through PHP. The database was structured as follows:

1. db_group1 contained two tables: info, which contained the id number of the subjects
(primary key, therefore unique), their ages, their genders and their initial stress levels;
text, which contained the id number of the subjects (not unique, we had multiple lines
per subject), the repetition number, their impression for the repetition of the task and,
finally, the number of distractions;

2. db_group2 was identical to db_group1, but the text table was instead called task and
did not contain the number of distractions;

3. db_group3 only contained the info table, as we were not interested in the results of
the questionnaires for the purpose of this work.

The aim of the application was to generate a graphic interface, to perform the test-
ing of our algorithm on psychotherapy and, in particular, on a self-induced mindfulness
meditative state. We wanted to compare the effects on lowering stress of a visual-bilateral-
stimulation protocol to the effects induced by a distraction task, such as filling in a ques-
tionnaire, and to another type of self-induced meditation, such as diaphragmatic breathing.
Given the simplicity of our two control tasks, which required no complex coding, due
to the absence of machine-learning intervention, we focused only on the implementation
of the dot-following section of the interface. Our algorithm could be divided into three
consecutive steps, with the block diagram for the application shown in Figure 2:

1. distance estimation of the subject from the screen;
2. calibration of the camera;
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3. generation of an eye trajectory and extraction of the number of distractions.

Figure 1. Block scheme for the workflow of the experiment for Group 1. Group 1 performs a visual
bilateral stimulation actuated by means of the oscillation of a dot on the screen.

The first step was the distance estimation. This step fundamentally had to be per-
formed before any operation with eye tracking, in order to ensure that the subject was at an
optimal distance from the screen, so as to make the eye tracking more precise. Being too far
would make pupil movements too small and unnoticeable for the algorithm, while being
too close would force the subject to move their head to follow the movements of the dot on
the screen. Our application, especially from the perspective of EMDR future use, is strictly
required to have no head movements and for the visual stimulation to be followed only
with the eyes. We ascertained that, with a window of dimension 1707 × 803 (measured on
a Google Chrome window of a 17′′ PC), a distance of around 50 cm was sufficient to solve
both requirements; therefore, we considered these values as our baseline.

We chose to use as our metric the dimension of the eye of the subject, which was
extrapolated through eye detection. The estimated dimension was compared to the ex-
pected eye dimension, in correlation to the distance from the screen. To extract the eye
dimension we chose to employ cascade classifiers, a class of machine-learning algorithms
used in ensemble learning, mainly for face recognition. In particular, we chose to use
Haar-cascade classifiers, first introduced in 2001 as a fast and efficient way to perform
object detection [29]. This approach uses Haar-like features extracted from the training
images by employing three different rectangle features, as shown in Figure 2. The regions
make use of the natural lighting properties of a face, with the white regions indicating high
luminosity and the black regions indicating low luminosity, to identify features in an image.
The features are then confronted with the expected one (e.g., a face or eyes), to check if the
feature corresponds to the one we want to extract.

We used two different pre-trained Haar-cascade classifiers from the OpenCV open
library available on GitHub, one for the face detection and one for the eye detection. We
first segmented the face window with the first classifier, and then used it as a baseline to
extract the eye window with the second classifier. Usually, with this algorithm, we either
detect both eyes but with slightly different dimensions (e.g., ±5 pixels) or only one, in cases
of peculiar lighting conditions. It is sufficient for our application that only one eye is visible
and measurable, however, so we simply considered the first recognizable eye as the one
we would use for our distance check. The Haar classifier generates eye windows with a
width:height ratio of 1:1 (i.e., squares); therefore, we could use either dimension of the eye
to verify the distance from the screen. Moreover, the bigger the screen was, the smaller
the eye needed to be; therefore, their values were inversely proportional. We could easily
determine the required height of the eye through a simple proportion:

window_width : 1707 =
1

eye_height
:

1
7

, (1)

with 1/7 being the expected height of the eye’s bounding box. This value was then com-
pared to the height estimated by the Haar classifier, in order to determine the correctness
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of the subject’s distance from the screen, and only when the two values coincided did we
confirm that the subject was at the optimal distance from the screen. Compared to the
State-of-the-Art approaches, the proposed solution is much easier to implement, requires no
training, due to using pre-trained models, and offers high precision with a low computation
time. Moreover, it presents an innovative use of Haar-cascade classifiers not only applied to
object detection, but also in the context of distance detection by employing the dimension
of the generated bounding boxes.

Figure 2. (a) Edge features are used mainly for eyebrows and nose segmentation. (b) Line features
are used mainly for lips and pupil segmentation. (c) Four-rectangle features are used for diagonal
segmentation, e.g., if the face is tilted.

Once the distance calibration had been completed, we needed to perform camera
calibration, in order to improve the performance of the eye tracking. Camera calibration
is a fundamental step in computer vision, a subclass of machine learning. While for this
specific application we only tested horizontal movements, we also needed to check for
distractions of the subjects along the vertical axis; therefore, a simple three-point calibration
schema was not sufficient for our task. We instead used a nine-point calibration schema,
which was more suited to our needs. This schema, in fact, calibrated the algorithm to
recognize screen-wide eye movements, therefore allowing us to catch distractions even on
the vertical and diagonal plane with higher accuracy. Moreover, as we were working on
a big screen, a screen-wide calibration was necessary, to be able to catch the wide pupil
movements that the subjects performed. The calibration worked by showing, for 5 s each, a
still dot on the screen in the positions marked in the schema in Figure 3, preceded by a 2 s
fixation cross, to identify the spawn point of the dot. The chosen dot color was a brownish
yellow, while the background was black, to make the dot pop up more and to reduce the
possibility of reflections in the subjects’ irises, which could hinder the process. The dot was
also much smaller compared to the one used during the dot-following exercise to reduce
pupil wandering. The idea was to simulate the conditions that would be replicated during
the experiment and also for the calibration phase, in order to calibrate the eye tracker under
similar conditions. The eye tracker captured the pupil position of the subject, generated
an estimate of the average fixation point for each calibration point, and then compared it
to the overall average fixation point. The procedure for the pupil-position extraction was
identical to the one used for the eye tracking, and will therefore be explained later on. The
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result was that the camera was re-calibrated to make the predictions of the fixation point
more precise by estimating the center of the eye-bounding box through the nine calibration
points. While this implicated an increase in the accuracy of the eye tracker, it must be noted
that the precision was not influenced, as it was only dependent on the hardware quality.
With our algorithm, calibration and eye tracking were performed together, so at this stage
we simply automatically recorded singular videos for the calibration.

Figure 3. The main four schemas used for camera calibration. In our algorithm, we used the
nine-point one.

The final step was the eye tracking and the consequent analysis of the extracted data.
We worked on recordings that were captured in real-time during the execution of the visual
BLS. The application fully used OpenCV to perform computer-vision operations on the
extracted frames. In particular, the algorithm extracted the face mesh, which identified the
location of the person in the frame with the main landmarks (eyes and lips), identified the
irises of the subject for both eyes by generating both a mask and a bounding box and, finally,
performed the estimation of the gaze trajectory for both eyes, generating a prediction for
both eyes singularly and a joint trajectory.

We used MediaPipe, a machine-learning library with many pre-trained solutions
for computer vision, to first generate a face mesh on the given frame. Two deep neural
networks, a detector and a regressor, generated a mesh of 468 3D points identifying each
face in the scene. The mesh was then used to determine the orientation of the face and if
the user was looking at the screen. We simply checked that the amplitude of each angle
{XZ, YZ, XY} was included in the window (−29,+29) degrees. We then extracted the eye-
bounding boxes by using the eye landmarks. Finally, we performed image thresholding,
generally used for image segmentation and separation of subject and background [30], and
the connected component analysis, to identify the biggest connected component and to
segment the iris. In particular, we used a low-pass filter to filter out the lighter areas of
the eye windows. Depending on the threshold, we had different behaviors, as shown in
Figure 4. If the threshold was too low, many of the lighter areas were not considered as part
of a connected component and, consequently, the computation of the biggest connected
component returned a region smaller than the real iris. On the contrary, if the threshold was
too high, the computed biggest connected component included areas of the eye outwith
the iris, especially if the eye was not properly illuminated. With a median value and
proper illumination, however, we had near-perfect segmentation of the irises for both eyes,
which, in turn, lead to smoother movement detection and gaze-trajectory reconstruction.
The segmentation of the iris through inscription in an ellipse also allowed us to identify the
center of the iris, which was used to reconstruct the eye trajectory. The resulting iris center
for each frame was compared to the expected one, and if the estimated iris center did not
fall within the vicinity of the expected position, we identified a distraction. We calculated
the vicinity by considering the dimension of the dot on the screen and an allowed margin of
error due to the speed of the moving dot. Note that we only counted a mismatched position
as a distraction if the position of the iris center was incorrect for more than 15 consecutive
frames, i.e., for longer than 0.5 s. This corresponded, on average, to a sequence of three
fixations plus one cascade. The reason was that, as we were working with a moving target,
we needed to consider the subjects’ reaction times, in registering that the position of the
dot had changed between frames.
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Figure 4. (a) Iris segmentation with low threshold. (b) Iris segmentation with medium threshold.
(c) Iris segmentation with high threshold.

While numerous solutions for gaze tracking exist in the literature, including specific
applications for eye-controlled PCs, the presented approach introduces two key innovations
in the context of attention analysis. The first novelty lies in the method employed to compare
the expected gaze direction to the estimated one. Unlike the majority of approaches in the
literature, which directly compare the point of regard on the screen, our method involves
a direct comparison between gaze trajectories. This introduces two crucial advantages.
The primary one is the elimination of the need to perform a change of reference system
from eye coordinates to screen coordinates, thereby reducing the likelihood of estimation
errors. Consequently, the second advantage is a reduction in computation time, enabling a
faster assessment of distractions. Given its potential future application in Eye-Movement
Desensitization and Reprocessing (EMDR), it is essential that our application can identify
distractions as quickly as possible.

On the other hand, the second novelty pertains to the application of eye tracking in
measuring attention on a moving target. Few works in the literature address this aspect,
with one of the most recent employing Hidden Markov Models (HMMs) as a solution
to the problem [31]. In comparison to this solution, which—although well-established
in the literature—is computationally intensive, our infrastructure is much lighter, easily
reproducible, and swift. A single-frame analysis requires only a few milliseconds, enabling
near-instantaneous tracking of the iris center position and, consequently, its correspondence
to the position of the moving dot on the screen.

3. Results
3.1. Preparation

The subjects for this study were divided into three groups. The data collected with our
infrastructure were treated in accordance with ethical concerns, with the video recordings
for the patients being visioned only by the examinators. Moreover, the anagraphic data of
our subjects (age and gender) stored in our SQL database were associated with a randomly
generated code, rendering it impossible to reconstruct the identity and data of specific test
subjects, in accordance with privacy. Due to the execution of the application completely
on the user side, we also eliminated any possibility of data leakage in transferring data.
In any case, all the people involved were of age and of varied demographics, as shown in
Table 1. Concerning the exclusive use of a virtual interface for psychotherapy, which could
raise doubts, such as autonomy issues or a lessened competence of the algorithm compared
to human expertise, all the experiments were performed in the presence of a therapist
and an operator. These professionals guided the subjects throughout the experiment
and intervened as needed, addressing any concerns or issues that may have arisen. This
approach ensured a supportive and supervised environment, mitigating concerns related
to the exclusive reliance on the virtual interface. They also provided validation for the
efficacy of the task by manually checking the eye movements of the involved subjects in
performing the visual BLS. Finally, the subjects were free to interrupt the experiment at any
time, in case of discomfort.
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Table 1. Demographics and gender of the subjects involved in the study.

Group Average Age Males Females Others

Group 1 42 1 3 0
Group 2 53.75 2 2 0
Group 3 31.5 1 2 1 1

1 Genderfluid.

The first group performed the complete mindfulness protocol, consisting of a dot-
following-plus-respiration task. During the whole BLS, the previously calibrated eye
tracker monitored the movements of each subject’s eyes, to make sure the subject’s gaze
did not stray from the movement of the dot. After each visual BLS, they were asked to
perform diaphragmatic breathing, to return to a state of calm, and they had to state their
opinions on the experience before repeating the set. In total, each subject performed 10
stimulations of this type, for a total time of around 5 min of exercise.

The second group performed a simplified task that removed the visual BLS and was,
therefore, comprised only of the diaphragmatic breathing part, an exercise which was, in
itself, a meditation and relaxation technique. The subjects performed five repetitions of
diaphragmatic breathing of around 6 s each, followed by an evaluation of the sensations
felt. In this case too, the subjects performed 10 sets of stimulations of this type for a total of
around 5 min of exercise. This group worked as a middle ground between a control group
and a visual-task group.

Finally, the third group was our control group, and they did not perform any kind
of visual or respiration task in order to provide an estimation of the lowering of stress, in
case no visual bilateral stimulation was administered to the subjects. Instead, they were
subjected to questionnaires with no relation whatsoever to the experiment, with a duration
similar to that of a standard session for another group (around 5 min). They served as a
baseline for our study, and they provided the data for patients who do not receive any kind
of treatment. For our study, we chose to make them fill in a questionnaire of 25 items on
general knowledge of English.

All the subjects were asked to give an estimate of their stress level at the beginning
of the exercise, on a scale from 1 to 5, and to re-evaluate the stress level at the end of the
exercise, also giving an overall evaluation of their experience with the experiment. The tests
were all realized in-presence and with the same apparatus, to have consistency in the results,
with the database for the subjects’ data stored locally on the PC. The textual responses given
by the subjects during the exercise were analyzed, to verify the quality of the relaxation
at the increase of the number of repetitions of the exercise. Finally, the obtained graphs
were manually compared to the recording of the eye movements, to validate them by
checking the match between the estimated iris oscillation and the physical ones recorded in
the videos.

In order to not have any interference in the eye and iris detection, all the glasses-
wearing subjects for Group 1 were asked to remove them. They executed the exercise
in a room with natural lights of medium intensity, to simplify eye recognition and iris
segmentation for the algorithm. All the subjects performed the exercise while sitting on a
chair and with the PC in front of them at eye level. The subjects rested their backs against
the chairs, in order to reduce the oscillations of their bodies and to increase the quality
of the eye tracking. Regardless of the group they belonged to, they were asked to sit as
centered as possible in front of the screen and in a relaxed and open position, to favor
relaxation during the test. In Figure 5, we show the experimental setup for our study.
Despite the more complex experimental setup used for this study, it must be noted that our
framework can be run on any PC and does not require any specific apparatus nor a specific
screen dimension to function correctly.
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Figure 5. Experimental setup for our study. The subjects had at their disposal an adjustable (both in
height and in rotation) 27′′ monitor with an external webcam with 30 fps, a mouse and a keyboard to
interact with the web application. The chair they performed the experiment on allowed the subject’s
back to fully rest against it, in order to minimize accidental oscillations of the subject during the
execution of the dot-following. As shown in the picture, the room had a uniform natural-colored
lighting that did not negatively impact on the darkness of the image. The light was generated by
artificial lighting.

Depending on the group, the subjects were then debriefed about the task they were to
perform, before the start of the experiment. To not interfere with their perception of the
experienced relaxation, however, they were not informed about the group they belonged
to, the existence of more than one test group, nor the hypothesized difference in efficacy
between the exercises of the groups. The authors of this work guided the subjects during
their interactions with the interface, manually intervening to operate the algorithm when
needed. In any case, the screen was never moved between runs of the same experiment, in
order to not alter the distance of the subject from the screen. Moreover, the subjects were
asked to move as little as possible during the whole experiment, to avoid changing their
position compared to the calibrated data, with particular attention to not moving during
the recordings of their ocular movements.

No training was required for the machine-learning algorithms employed in our ex-
periment, as the chosen neural networks (Haar-cascade classifier and MediaPipe’s mesh
extractor) were all pre-trained. The only validation present was that of the therapist, who—
thanks to his expertise—confirmed the correct execution of the dot-following of the subjects,
and helped us to design suitable control tasks to which to compare the results of the algo-
rithm. Therefore, we directly skipped to the testing phase. However, before applying the
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interface on the test subjects, we performed some trials, which are explained in more detail
in the following subsection.

3.2. Data Collection

The first trial was a simple test, where we performed two willing movements, one
in which we closely followed the dot movement and one in which we purposely injected
distraction. Both movements were performed with velocity 5 and 10 oscillations of the dot.
The expected iris-center trajectory for both eyes is shown in Figure 6. For all the graphs
shown in this manuscript, on the horizontal axis we have the expired time and on the
vertical axis the x coordinate of the iris center, where 0 corresponds to the center of the eye,
+1 to the left side (the right side in the registered mirrored frame) and −1 to the right side
(the left side in the registered mirrored frame).

Figure 6. (a) Expected iris-center trajectory for left eye. (b) Expected iris-center trajectory for right
eye. In both cases, the expected trajectory was generated by calculating, for each frame, the expected
displacement of the iris center’s x coordinate according to the current position of the dot.

As shown in Figure 7, we verified the trajectory for the first test. As we can see,
the trajectory closely followed the expected one, with no distractions signaled by our
algorithm. This was possible, despite the trajectory slightly diverging from the expected
one, as we permitted some position errors due to the dimension of the dot and the necessity
to follow a moving object. In Figure 8, on the other hand, the trajectory diverged at three
points from the expected one. We first see a fixation on the left side, followed by a fixation
towards the center-right and a final fixation towards the left. The algorithm correctly
identified three distractions, despite the very noisy measurement for the right eye caused
by shadows over the eye. We therefore concluded that the algorithm was correctly able to
identify distractions during the dot-following task and that we could safely proceed to our
experimental phase with the selected subjects.

Figure 7. Evaluated trajectories for the left-eye, right-eye and joint trajectories in a dot-following test.
The presence of some small peaks (e.g., at 4.50 s) in all the graphs was generally due to imprecise iris
segmentation, often caused by environmental lighting, especially in the right eye, which was slightly
more shadowed during the execution. The joint trajectory showed a correspondence of the peaks to
those of the expected trajectory, with the divergences falling in the allowed error window.
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Figure 8. Evaluated trajectory for the left-eye, right-eye and joint trajectories on a distraction test.
The discontinuities in the trajectories were due to skipped frames, attributable to blinking, to shifting
the gaze from one direction to another and/or to inability to recognize the eyes or irises, due to
shadows. Peaks of the x in 1, e.g., from around 1.50 s to 3.50 s, correspond to fixations to the left side
of the screen (mostly with values saturating in 1), while peaks of the x around −0.3, from around
6.25 s to 8.25 s, indicate fixations to center-right of the screen. The downward peaks in the right-eye
trajectory were due to heavy shadows over the right eye, causing the perceived iris center to shift.
The initial and final sections of the trajectory follow quite closely the expected one, with a margin of
error, indicating correct dot-following (correlated to no measurement of a distraction).

In Tables 2–4, we present the results for our study group. It is important to note that
this study was not only focused on verifying the efficacy of a virtual mindfulness protocol
compared to other approaches, but also on testing the efficacy of our eye-tracking algorithm
for tracking fast eye movements. In particular, we also wanted to verify if asking glasses-
wearing subjects to remove their glasses reduced or interfered with their involvement in the
exercise. For this reason, the participants selected for Group 1 were mainly glasses-wearing
subjects. Subject 702011934 suffered from presbyopia, subject 7436290 from astigmatism
and subject 33124157 from heavy myopia. While subject 702011934 showed no difficulty in
following fast movements, subject 7436290 had difficulties with fast movements and asked
to slow down the dot. With this small adjustment, however, she showed no difficulties
in performing the task. Subject 33124157, on the other hand, showed an incredibly high
number of distractions due to being unable to properly see the dot movement even at
low speed.

In regard to Group 2 and 3, the selected participants had no particular requirements,
other than being as balanced as possible in their gender and age distribution, to reflect as
much as possible a wider sample of subjects. It is of note that subject 721212524, however,
was overweight and had some breathing difficulties, which required taking small pauses
between trials, to let the subject readjust their breathing. Moreover, the subjects for Group
3 were all proficient in English (C1+ level), despite English not being their mother tongue
and, therefore, had no particular difficulties with the questionnaire.

Table 2. Group 1 Results.

Subject ID (Initial Stress
Level -> Final Stress Level),

Age, Gender
Trial Evaluation Distractions

773886486 (3 -> 1), 25, F
1 I emptied my mind. 11
2 I felt calmer. 8
3 I’m feeling more relaxed. 0
4 I feel good. 4
5 I feel calm. 0
6 I’m okay. 0
7 I’m feeling relaxed. 1
8 I notice no change. 0
9 I’m good. 0

10 I’m feeling much better. 0
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Table 2. Cont.

Subject ID (Initial Stress
Level -> Final Stress Level),

Age, Gender
Trial Evaluation Distractions

702011934 (2 -> 1), 61, M
1 I feel calm. 0
2 I feel calm. 0
3 Always calm. 1
4 Always calm. 0
5 Very relaxed. 2
6 No change. 0
7 Always the same. 2
8 Very relaxed. 9
9 Everything okay. 1

10 Very calm. 2

7436290 (3 -> 1), 57, F
1 I’m not thinking about

anything. 0

2 I gritted my teeth. 0
3 Very relaxed. 0

4 Thought about two positive
things, relaxed. 0

5 Relaxed, harder to follow the
dot. 0

6 More relaxing than before. 0
7 I thought about nothing. 0
8 I’m dissociating a bit. 0
9 I feel relaxed. 0

10 Calm and relaxed. 0

33124157 (2 -> 1), 23, F
1 Relaxed, but a bit hard to

follow. 0

2 Better to follow. 7
3 Relaxed, easy to follow now. 13
4 More relaxed than before. 12
5 Much better. 9
6 As before. 18
7 Very calm. 18
8 I feel no tension at all. 14
9 Relaxed. 11

10 I feel okay. 17

Table 3. Group 2 Results.

Subject ID (Initial Stress Level -> Final
Stress Level), Age, Gender Trial Evaluation

709896582 (4 -> 3), 25, M
1 I still feel nervous.
2 I feel slightly more relaxed.
3 I notice no change.
4 I feel a slight chest oppression.
5 I’m slightly calmer.
6 I’m okay.
7 I’m slightly unnerved.
8 I’m calm.

9 I’m thinking about the things I have
to do.

10 Same as before.
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Table 3. Cont.

Subject ID (Initial Stress Level -> Final
Stress Level), Age, Gender Trial Evaluation

721212524 (2 -> 2), 89, F
1 Everything good.
2 I feel calm.

3 It’s a bit hard to breathe at the end of
the exercise.

4 Better than before.
5 All good.
6 Nothing in particular.
7 A bit distracted.
8 Slightly harder to breathe.
9 Better after pausing, relaxed.
10 Relaxed but slightly bored.

134487392 (3 -> 1), 45, F
1 Nothing in particular.
2 Nothing to notice.
3 I feel okay.
4 I feel slightly calmer.
5 Like before.
6 I feel lighter in my chest.
7 I’m calm.
8 I’m feeling a bit lightheaded.
9 Better than before, I’m less tense.
10 I’m calm.

501047471 (3 -> 2), 56, M
1 Everything ok.
2 Everything ok.
3 More relaxed.
4 All good.
5 Relaxed.
6 Same as before.
7 Very relaxed.
8 As before.
9 Everything good.
10 Everything is fine.

Table 4. Group 3 Results.

Subject ID Inital Stress Level Final Stress Level Gender Age

3642332 3 3 O 1 25
34567683 4 4 F 53
248738499 5 5 F 24
723457394 3 3 M 24

1 Genderfluid.

4. Discussion

The results obtained for the first experimental group show that there was a significant
improvement in relaxation levels after performing the dot-following task, with the subjects
being able to mostly focus on the task, even in cases where they were glasses-wearing
people being asked to remove the glasses for the exercise. When we noticed outliers in the
distractions, they could mostly be explained:

• subject 773886486’s first high distraction numbers were due to a too-low threshold
value for the analysis of the videos and iris segmentation, generally set to 70 in
our lighting conditions, while in this case they were tested with lower thresholds
and, therefore, constituted an outlier;
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• subject 702011934’s only high distraction number at trial 8 did not correspond to actual
distraction in dot-following when compared to the video, which showed the subject
to be properly following the dot, and the extracted trajectory shown in Figure 9;

• subject 33124157’s generalized high distraction count was due to difficulties in seeing
the movement and responding to it smoothly, due to glasses removal, with the trajec-
tories showing clear signs of slowed-down eye movement, as exemplified in Figure 10,
but a decent adherence to the task.

Figure 9. Evaluated trajectories for the left-eye, right-eye and joint trajectories for subject 702011934’s
trial 8. We can see that the trajectories mostly followed the profile of the expected one, coinciding
with an extended version of the one shown in Figure 4. The measured distractions were probably a
result of incorrect lighting or abnormal shadows, as the subject had slightly sunken eyes. Several
saturations were present (both positive, e.g., from 0.75 s to 1.50 s in the right eye, and negative,
e.g., 0.25 s to 0.75 s in the left eye), which may have constituted a measured distraction. We also had
some skipped frames from half of the trajectory up to the end, which may also have contributed to
the outlier. Neither problem was present in the other measurements of the same subject.

Figure 10. Evaluated trajectories for the left-eye, right-eye and joint trajectories for subject 33124157’s
trial 3. The trajectories were often discontinuous, due to jumps in the eye gaze (e.g., at around 33 s),
as confirmed by the recorded video, and presented a high number of peaks, due to improper lighting
(e.g., from 9.00 s to 9.50 s). However, when analyzing the joint trajectory, we can see that the profile
was mostly faithful to the expected one, with the main source of errors derived from the middle–end
part of the exercise, when the subject’s eyes were more strained.

In most cases, however, the subjects were able to stay focused on the dot movement,
despite it being performed on a screen instead of manually. The analyzed videos confirm
the results obtained with the algorithm, and are also useful for validating the efficacy of the
exercise. In fact, even in cases in which some small distractions were noticed, we can verify
that the subjects were focusing on the movement, with subject 7436290 even entering a
slightly dissociative state which amplified her focus on the dot. In her case, the visual BLS
was nearly perfect, as exemplified in Figure 11. This confirms that their positive responses
were attributable to the visual BLS performed on screen and not to conditioning due to
knowing the aim of the experiment, a fact also enforced by the diminished efficacy of the
other tested methods. We can, therefore, confirm our hypothesis that a virtual interface
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shows the same results as a physical stimulation performed by the therapist by hand. With
regard to the algorithm, faster movements were harder to track than slower ones, and were
often those where we noticed the most errors in the estimation of position. This was partly
due to the patients having slightly delayed responses to the movement, due to its speed,
and also partly due to being asked to remove their glasses and, thus, having slightly more
difficulty in following the dot.

Figure 11. Evaluated trajectories for the left-eye, right-eye and joint trajectories for subject 7436290’s
trial 4. The trajectory for the left eye in particular and for the joint trajectory were nearly coincident
with the expected one, considering an allowed window of error. The trajectory for the right eye was
much noisier and presented several isolated peaks (which were filtered out by the algorithm), due to
shadows in the image caused by the subject’s hair darkening her right eye.

By comparison, diaphragmatic breathing did show some, albeit smaller and mostly
physical, improvement in the relaxation of the subjects. However, sequences that were
too long caused, instead, boredom, distraction from the task and, often, slight breathing
fatigue. It is, therefore, advised to not have sessions which require a long sequence of
diaphragmatic breathing for future studies, as they frequently induce hyperventilation.
As confirmed by subject 721212524, sequences that are too long could result in breathing
problems for people with breathing difficulties, asthma or suffering from panic attacks.
Moreover, a virtual BLS performs better and is, therefore, preferable. Finally, for the control
group all the subjects showed no improvement in stress levels and sometimes even noticed
slight temporary worsening of stress, due to the questions being engaging and requiring
thinking. This shows that simple distraction tasks, at least in the form of questionnaires,
have no positive effect on the stress levels of the subjects.

A statistical analysis was conducted on the obtained data, due to the low number of
subjects, in order to verify the statistical significance of the results. First of all, we evaluated
the average and standard deviation of the final stress level and the difference between
the final and initial stress levels for each group, as shown in Table 5. The table confirms
the trend of Group 1 presenting on average the lower final stress level, with no measured
deviation, while its average variation was the highest, with the lowest part of the deviation
being, however, on a par with and even slightly lower than that of Group 2. In Table 6, on
the other hand, we studied the Pearson correlation between the significant values of the
study (method used, gender, age, initial stress level, final stress level and variation of the
stress level). The correlation values analyzed confirmed that the strongest correlation was
between the used method and the effect on the stress levels of the subjects, particularly
concerning the final stress level (with strong positive correlation) and the variation of the
stress level (with strong negative correlation). On the other hand, we did not verify any
correlation between the method used, the results and the anagraphic data of the subjects;
therefore, their results were not dependent on one another.
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Table 5. Average and standard deviation (STD) for each group on the final stress level and variation
of the stress level.

Group Average Final
Stress Level

STD Final Stress
Level

Average Variation
Stress Level

STD Variation
Stress Level

Group 1 1 0 1.5 0.57735
Group 2 2 0.8165 1 0.8165
Group 3 3.75 0.95743 0 0

Table 6. Pearson correlation matrix for the values considered in the study. As the matrix was
symmetrical, only the lower part of the matrix was reported. A high negative correlation implies that
the values were strongly negative correlated—for example, in the correlation between the method
and the variation of the stress level. This implies an increase in the method number (from 1 to
3, corresponding to the group number), corresponding to a lower variation of the stress level. By
contrast, a high positive correlation implies the values were strongly positively correlated, as seen in
the correlation between the method and the final stress level. A lower method number corresponded
to a lower final stress level, confirming our results, in that the used method not only impacted on the
effect on stress, but also that dot-following was the best approach.

Method Gender Age Variation
Stress Level

Initial Stress
Level

Final Stress
Level

Method 1 - - - - -
Gender 0.31623 1 - - - -

Age −0.20412 −0.2582 1 - - -
Variation Stress

Level −0.76613 −0.32303 0.20851 1 - -

Initial Stress
Level 0.592 −0.074883 −0.29002 −0.22174 1 -

Final Stress
Level 0.86424 0.14907 −0.32075 −0.76244 0.80001 1

We also performed a statistical significance test (chi-square test), to verify the obtained
results between our algorithm and the control groups. We performed the test for two
values: the final stress level (which had different values, depending on the analyzed case)
and the variation of the stress level (which varied between 0 and 2; we did not consider
negative variations and variations higher than 3, as they had never been measured on
the current population sample). The chi-square test was repeated for three different pairs
of groups, with the resulting chi-square being compared to one of the many tables for
the correspondence between the chi-square distribution and the percentage points. In all
the mentioned cases, we had 2 degrees of freedom for the variation of the stress level
(we worked with 3 × 2 tables), while for the final stress level the number of degrees of
freedom was variable. We considered a significance level of 0.05. The obtained results were
as follows:

1. Group 1 (dot-following) and Group 2 (diaphragmatic breathing): For the final stress
level, we obtained a chi-square of 4.8, with p = 0.090718 under 2 degrees of freedom
(the final stress level only varied between 1 and 3 in the analyzed population sam-
ple). In regard to the variation of the stress level, we obtained a chi-square of 1.333,
corresponding to p = 0.513417. We can conclude that we have no evidence against
the null hypothesis for the variation of the stress level, which can be justified by the
heavy dependency on the initial stress level, and weak evidence for the final stress
level, which is in line with our hypothesis that diaphragmatic breathing did show
advantages, albeit in a less effective way than dot-following.

2. Group 1 (dot-following) and Group 3 (questionnaire-filling): For the final stress
level, we obtained a chi-square value of 8, with a percentage point of 0.046012 under
3 degrees of freedom (we see variations in 1 and between 3 and 5), while for the
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variation of the stress level we obtained a chi-square value of 8 with p = 0.018316.
In both cases, we have strong evidence against the null hypothesis, especially in
regard to the lowering of the stress level, which confirms both our most important
hypotheses (questionnaire-filling had no effect on lowering stress and was much less
efficient than dot-following).

3. Group 1 (dot-following) and Group 2 (diaphragmatic breathing) + Group 3 (questionnaire-
filling): The results of the chi-square test for the final stress level showed chi-square = 8.4
and the corresponding percentage point being 0.077977. For the variation of the stress
level, the result was 4.5 for the chi-square test, with a corresponding percentage point
of 0.105399. In both cases, we have weak evidence against the null hypothesis, justified
by the lower distinction in the effects between dot-following and diaphragmatic
breathing. This shows that merging the two control groups had no significant effect
on proving evidence, an obvious conclusion, as the two approaches were vastly
different.

Finally, we also performed a verification on the full 5 × 3 table, for a more precise
evaluation of the correlation between all the data. For the final value, with 8 degrees of
freedom (the results varied between 1 and 5) we obtained a chi-square of 12.1333, with a
corresponding p-value of 0.145368. The results show extremely weak evidence against
the null hypothesis, in line with the results obtained for the last case mentioned above.
In regard to the variation of the stress level, we obtained a chi-square value of 8.1333,
which corresponded to a p-value of 0.086826. This shows weak evidence against the null
hypothesis, which once again is in line with the previously obtained results. It must be
noted that by considering a lower significance level (e.g., 0.1), however, many of the weak
significances measured would instead be verified as strong significances, therefore proving
more strongly the statistical significance of this study. Considering the very low number of
subjects included in the study, we can safely assume that a bigger population would indeed
be linked to a significant increase in the statistical significance for all the cases mentioned
in this significance study.

The overall result of the performed tests, even on a small sample of subjects, proves
our hypothesis that, even in a fully virtual setting, visual bilateral stimulation is effectively
able to greatly reduce the patient’s stress level and induce relaxation. Moreover, it is also
more effective than techniques such as distraction, which was the worst performing one—
sometimes even injecting more stress into the already-stressed subjects—or diaphragmatic
breathing. Finally, the efficacy of the eye-tracking protocol in the correct environmental
condition clearly showed that implementing virtual applications for BLS is not only feasible
but also an excellent solution to aid the therapist when administering such stimulations in
settings such as the mindfulness protocol or EMDR therapy.

Our current results do show some high requirements, especially in regard to envi-
ronmental conditions and, in particular, lighting. In case of execution of the protocol in
a user-operated setting, i.e., inside their home, a further increase of the capabilities of
the system, to reduce environmental noise, might be necessary, so as to ensure that the
algorithm can properly perform even when the user cannot guarantee optimal conditions.
Our tests have, however, shown promising results in this direction, with good results even
when lighting conditions are sub-optimal, as exemplified by the noisier graphs shown in
this manuscript. In regard to other requirements, the presented algorithm already tackles
several of them. The distance requirement is already automatically dealt with through
distance estimation, which waits until the subject is at the correct distance from the screen
before proceeding with the exercise. The machine-learning infrastructure is also light
enough to allow for execution on most hardware, even on obsolete hardware, and works
perfectly with basic cameras, such as PC-integrated ones, which nowadays all have 30 fps.
Finally, in regard to head movements, we have no current options to ensure that the head
movements of the subjects are nullified, other than relying on their ability to stay still.
However, considering our infrastructure is only assistive for the therapist, we can rely on
their expertise to catch head movements and signal them to the subjects. Alternatively, we
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could in the future implement an analysis of head pitch, roll and yaw rotations, to ensure
the subject is not moving during the exercise. Given our results, however, we can safely
confirm that most fluctuations are not significant in the efficacy of the patient’s state of
mind in the virtual protocol we have implemented.

The future direction of the work will be focused on improving the quality of the eye-
tracking algorithm by testing an estimation of the gaze trajectory and the distraction of the
subject fully via neural-networks analysis of the frames. If possible, we also want to allow
patients to not remove their glasses, because, as proved, some patients have noticeable
difficulties in seeing without them. This could easily interfere with the efficacy of the
treatment, in cases of EMDR application, where we require an extremely precise execution
of the dot-following. We also want to verify if a natural-language-processing analysis of
the textual responses can offer us some insight into the efficacy of the treatment, possibly
allowing auto-tuning of the parameters for the visual BLS and predicting pre-emptively the
expected re-evaluation of the subjects. Finally, we plan to apply this method to a tailored
protocol, to verify the efficacy of a virtual approach not only for self-meditation but also
for reducing trauma in preparation for an application to the EMDR protocol. In this new
experiment, we will manually induce traumatic memories, to treat with desensitization in
the subjects, with the possibility of reproducing the experiment in a full EMDR therapy
session, in case of success.

5. Conclusions

This work is a first step in a new direction for the application of machine learning to
psychology and, in particular, to psychotherapy, a field in which machine learning still
has a very minimal impact, aside from common pathologies such as ASD, depression or
Alzheimer’ s disease, and which has shown interesting results even in a small sample of
12 subjects. The research unfolds several advantages in the integration of virtual interfaces
within psychotherapy. Firstly, it alleviates the potential discomfort associated with the ther-
apist having to track eye movements using physical gestures, removing any awkwardness
from the therapeutic process. Secondly, it introduces a measurable form of stimulation,
enhancing the precision of therapeutic interventions. Additionally, the virtual interface
is versatile, having applications within and outwith the EMDR protocol. In cases where
traditional forms of stimulation may be contra-indicated, such as patients with trauma
linked to physical violence, the virtual platform offers a viable alternative. This is crucial, as
it minimizes the risk of reactivating traumatic experiences and addresses potential barriers
to therapy, ultimately contributing to a more inclusive and effective therapeutic approach.
Some of the barriers addressed by a virtual psychotherapeutic approach are:

1. Therapy can become accessible to a broader population, with the possibility of reach-
ing patients with traveling difficulties, such as the elderly, individuals with mobility
challenges, agoraphobics, hikikomori or those living in remote or isolated villages;

2. The use of eye-tracking technology provides additional control support beyond eye
movement. The therapist could take advantage of our instrumental support to accu-
rately check, within a hyper-human rate, whether the patient is correctly performing
the prescribed movements;

3. The patient has the opportunity to attend the session while remaining in a familiar
and more comfortable environment, compared to the therapist’s study;

4. Virtual therapy eliminates the need for physical infrastructure, reducing the costs
associated with maintaining a therapy space, and may result in more affordable
treatment options for both patients and therapists;

5. Virtual therapy contributes to environmental sustainability by reducing the need for
travel, thereby lowering the carbon emissions associated with commuting to in-person
sessions. This eco-friendly approach aligns with the growing importance of promoting
practices that minimize our carbon footprint and support a greener, healthier planet;

6. Virtual therapy proves advantageous in times of pandemics, ensuring the continuity
of psychotherapeutic interventions when in-person sessions may be challenging or
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restricted. This adaptability becomes crucial for maintaining mental-health support
during global health crises;

7. The virtual platform enables the provision of psychotherapeutic interventions from a
distance, allowing therapists to offer support remotely. This is particularly valuable
in situations where face-to-face interactions are not feasible, providing a flexible and
accessible mode of intervention. Some examples of a remote intervention protocol are
natural disasters, earthquakes, terrorist attacks and war.

Regarding this last point, several studies on the efficacy of EMDR for early intervention
have been presented by Shapiro, Lehnung, Solomon and Yurtsever [32–36]. These works,
under the influence of Roger Solomon’s works on critical incidents, formalized a specific
Recent Traumatic Event (RTE) protocol by adapting the standard EMDR protocol for recent
traumatic events. The RTE protocol was first introduced during the Lebanon war, to assist
practitioners unfamiliar with it, in effectively addressing recent traumatic events. Finally,
the need to develop a broader model and protocol for the treatment of recent traumatic
events led to the development of the Recent Traumatic Episode protocol (R-TEP). This
approach stems from the observation of limitations in existing protocols and aims to address
the gaps in dealing with complex and multiple events, while proposing an expansion of
interventions from a narrow focus on intrusive sensory images to a broader perspective
encompassing a series of episodes, underscoring the need for an approach that embraces
both aspects.

Our support technology is fully compatible and ready to be used for such applications,
by providing an extraordinary asset to the psychotherapist, in order to offer support
therapies and treatments in the immediacy of traumatic events, despite the geographical
reachability of the subject and the logistic limitations that can result from disrupting or
catastrophic scenarios. Our technology can therefore support the psychotherapist, in
order to also deliver treatments in cases of disasters, pandemics and quarantine measures
(e.g., COVID-19), natural calamities or other disruptive events that could inhibit the ability
of the therapist to physically meet the patients, assuring the maximum possible level of
assistance and health-care service despite the circumstances.

As previously mentioned, there is still much work to do, to consolidate this approach
and to verify its applicability to EMDR, but the results we have obtained with this pre-
liminary study confirm the validity of the experiment and that it should greatly improve
the quality and scope of applicability of current approaches. In case of an application
for the EMDR protocol, the interface will be enhanced, to follow precisely the eight steps.
In particular: phase 1 to phase 3 will be carried out by means of a video call with the
psychotherapist, with no intervention of any artificial intelligence algorithm, using the
system as a simple telecommunication interface; phase 4, 5 and 6 will be carried out by the
psychotherapist by taking full advantage of the support system in order to track the eye
movements of the subject and assess their correctness; finally, phase 7 and 8, will only use
the system as a telecommunication interface.

This project also saw many improvements in the pre-processing of images, in re-
gard to the eye-tracking task: for example, taking into account people who wear glasses,
and sub-optimal lighting conditions, which now are instead required to be controlled
by experimenters and would introduce limitations for real-life uses. Moreover, accurate
pre-processing through operations such as rendition to normalized gray-scale image (we
pass from three channels to one channel) and downsizing to a standardized dimension [37],
with also the possibility of applying some filters to simplify the identification of the pupil
(e.g., contour extraction or gradient-magnitude map), could easily also improve the velocity
of the analysis of the neural network, rendering an already considerably simplified process,
due to the reduction of the frame rate, even faster and, therefore, closer to being real-time.
We could also make the image even smaller and easier to process by extracting a window
of the face or the eyes [38].

Moreover, the current literature offers few applications of the described methods
directly to the EMDR task, with minimal exposition of the techniques used from an engi-
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neering perspective. Therefore, it is expected that this research will provide a foundation
for future studies and a reference, whose methods could prove to be an ideal direction to
follow, to develop stable-EMDR-remote-therapy applications. Moreover, through the study
of eye tracking and object-detection techniques, it is expected that new results will also be
produced in that field, possibly setting a new baseline in the State-of-the-Art approaches
currently available.

Author Contributions: Conceptualization, S.R. and C.N.; methodology, F.F. and S.R.; software, F.F.;
validation, S.R.; formal analysis, C.N.; investigation, F.F. and S.R.; resources, S.R.; data curation,
S.R.; writing—original draft preparation, F.F. and S.R.; writing—review and editing, S.R. and C.N.;
supervision, C.N.; project administration, S.R.; funding acquisition, C.N. All authors have read and
agreed to the published version of the manuscript.

Funding: This paper was partially supported by the Age-It: Ageing Well in an Ageing Society
project, task 9.4.1 work package 4 spoke 9, within topic 8 extended partnership 8, under the National
Recovery and Resilience Plan (PNRR), Mission 4 Component 2 Investment 1.3- Call for tender No.
1557 of 11/10/2022 of the Italian Ministry of University and Research funded by the European
Union—NextGenerationEU, CUP B53C22004090006.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the internal ethics committee of Sapienza University of Rome, as well
as by the International Trans-disciplinary Ethics Committee for human-related research (protocol n.
2023030302, approved on 8 May 2023).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available in order to comply with the data privacy
and protection regulation (mandatory for this experiment).

Acknowledgments: This work was developed at the is.Lab() Intelligent Systems Laboratory of the
Department of Computer, Control and Management Engineering, Sapienza University of Rome,
and carried out while Francesca Fiani was enrolled in the Italian National Doctorate in Artificial
Intelligence run by Sapienza University of Rome in collaboration with the Department of Computer,
Control, and Management Engineering.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shapiro, F. Eye Movement Desensitization and Reprocessing (EMDR) and the Anxiety Disorders: Clinical and Research

Implications of an Integrated Psychotherapy Treatment. J. Anxiety Disord 1999, 13, 35–67; Erratum in J. Anxiety Disord 1999,
13, 621. [CrossRef] [PubMed]

2. Mevissen, L.; Lievegoed, R.; De Jongh, A. EMDR treatment in people with mild ID and PTSD: 4 cases. Psychiatr. Q. 2011, 82, 43–57.
[CrossRef] [PubMed]

3. Valiente-Gómez, A.; Moreno-Alcázar, A.; Treen, D.; Cedrón, C.; Colom, F.; Perez, V.; Amann, B.L. EMDR beyond PTSD:
A systematic literature review. Front. Psychol. 2017, 8, 1668. [CrossRef] [PubMed]

4. Maxfield, L. Low-intensity interventions and EMDR therapy. J. Emdr Pract. Res. 2021. [CrossRef]
5. Hase, M. The Structure of EMDR Therapy: A Guide for the Therapist. Front. Psychol. 2021, 12, 660753. [CrossRef]
6. Diaz-Asper, C.; Chandler, C.; Turner, R.S.; Reynolds, B.; Elvevåg, B. Increasing access to cognitive screening in the elderly:

Applying natural language processing methods to speech collected over the telephone. Cortex 2022, 156, 26–38. [CrossRef]
[PubMed]

7. Dao, Q.; El-Yacoubi, M.A.; Rigaud, A.S. Detection of Alzheimer Disease on Online Handwriting Using 1D Convolutional Neural
Network. IEEE Access 2023, 11, 2148–2155. [CrossRef]

8. Haque, R.U.; Pongos, A.L.; Manzanares, C.M.; Lah, J.J.; Levey, A.I.; Clifford, G.D. Deep Convolutional Neural Networks and
Transfer Learning for Measuring Cognitive Impairment Using Eye-Tracking in a Distributed Tablet-Based Environment. IEEE
Trans. Biomed. Eng. 2021, 68, 11–18. [CrossRef]

9. König, I.; Beau, P.; David, K. A New Context: Screen to Face Distance. In Proceedings of the 8th International Symposium on
Medical Information and Communication Technology (ISMICT), Firenze, Italy, 2–4 April 2014; pp. 1–5.

10. Li, Z.; Chen, W.; Li, Z.; Bian, K. Look into My Eyes: Fine-Grained Detection of Face-Screen Distance on Smartphones. In
Proceedings of the 12th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), Hefei, China, 16–18 December
2016; pp. 258–265.

http://doi.org/10.1016/S0887-6185(98)00038-3
http://www.ncbi.nlm.nih.gov/pubmed/10225500
http://dx.doi.org/10.1007/s11126-010-9147-x
http://www.ncbi.nlm.nih.gov/pubmed/20694514
http://dx.doi.org/10.3389/fpsyg.2017.01668
http://www.ncbi.nlm.nih.gov/pubmed/29018388
http://dx.doi.org/10.1891/EMDR-D-21-00009
http://dx.doi.org/10.3389/fpsyg.2021.660753
http://dx.doi.org/10.1016/j.cortex.2022.08.005
http://www.ncbi.nlm.nih.gov/pubmed/36179481
http://dx.doi.org/10.1109/ACCESS.2022.3232396
http://dx.doi.org/10.1109/TBME.2020.2990734


Technologies 2023, 11, 172 23 of 24

11. Jain, N.; Gupta, P.; Goel, R. System to Detect the Relative Distance between User and Screen. Int. Res. J. Eng. Technol. (IRJET)
2021, 8, 687–693.

12. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
13. Vajgl, M.; Hurtik, P.; Nejezchleba, T. Dist-YOLO: Fast Object Detection with Distance Estimation. Appl. Sci. 2022, 12, 1354.

[CrossRef]
14. Usmankhujaev, S.; Baydadaev, S.; Kwon, J.W. Accurate 3D to 2D Object Distance Estimation from the Mapped Point Cloud Data.

Sensors 2023, 23, 2103. [CrossRef]
15. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934.
16. Kasprowski, P.; Harezlak, K.; Stasch, M. Guidelines for Eye Tracker Calibration Using Points of Regard. In Advances in Intelligent

Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2014; Volume 284, pp. 225–236.
17. Klaib, A.F.; Alsrehin, N.O.; Melhem, W.Y.; Bashtawi, H.O.; Magableh, A.A. Eye Tracking Algorithms, Techniques, Tools, and

Applications with an Emphasis on Machine Learning and Internet of Things Technologies. Expert Syst. Appl. 2021, 166, 114037.
[CrossRef]

18. Hassoumi, A.; Peysakhovich, V.; Hurter, C. Improving Eye-Tracking Calibration Accuracy Using Symbolic Regression. PLoS
ONE 2019, 14, e0213675. [CrossRef] [PubMed]

19. Akinyelu, A.A.; Blignaut, P. Convolutional Neural Network-Based Technique for Gaze Estimation on Mobile Devices. Front.
Artif. Intell. 2021, 4, 796825. [CrossRef]

20. Vora, S.; Rangesh, A.; Trivedi, M.M. On Generalizing Driver Gaze Zone Estimation Using Convolutional Neural Networks. In
Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 849–854.

21. Wong, E.T.; Yean, S.; Hu, Q.; Lee, B.S.; Liu, J.; Deepu, R. Gaze Estimation Using Residual Neural Network. In Proceedings of the
2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kyoto,
Japan, 11–15 March 2019; pp. 411–414.

22. Chaudhary, A.K.; Kothari, R.; Acharya, M.; Dangi, S.; Nair, N.; Bailey, R.; Kanan, C.; Diaz, G.; Pelz, J.B. RITnet: Real-time Semantic
Segmentation of the Eye for Gaze Tracking. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW), Seoul, Republic of Korea, 27–28 October 2019; pp. 3698–3702.

23. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

24. Zhang, S.; Chen, D.; Tang, Y.; Zhang, L. Children ASD Evaluation Through Joint Analysis of EEG and Eye-Tracking Recordings
with Graph Convolution Network. Front. Hum. Neurosci. 2021, 15, 651349. [CrossRef]

25. Hwang, B.J.; Chen, H.H.; Hsieh, C.H.; Huang, D.Y. Gaze Tracking Based on Concatenating Spatial-Temporal Features. Sensors
2022, 22, 545. [CrossRef]

26. Rakhmatulin, I. Cycle-GAN for Eye-Tracking. arXiv 2022, arXiv:2205.10556.
27. Majaranta, P.; Bulling, A. Eye Tracking and Eye-Based Human–Computer Interaction. In Advances in Physiological Computing;

Springer: Berlin/Heidelberg, Germany, 2014.
28. Liu, J.; Chi, J.; Yang, H.; Yin, X. In the Eye of the Beholder: A Survey of Gaze Tracking Techniques. Pattern Recognit. 2022,

132, 108944. [CrossRef]
29. Viola, P.; Jones, M. Rapid Object Detection Using a Boosted Cascade of Simple Features. In Proceedings of the 2001 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, HI, USA, 8–14 December 2001.
30. Sivakumar, V.; Murugesh, V. A brief study of image segmentation using Thresholding Technique on a Noisy Image. In

Proceedings of the International Conference on Information Communication and Embedded Systems (ICICES2014), Chennai,
India, 27–28 February 2014; pp. 1–6. [CrossRef]

31. Kim, J.; Singh, S.; Thiessen, E.D.; Fisher, A.V. A hidden Markov model for analyzing eye-tracking of moving objects. Behav. Res.
2020, 52, 1225–1243. [CrossRef] [PubMed]

32. Shapiro, E.; Laub, B. Early EMDR intervention (EEI): A summary, a theoretical model, and the recent traumatic episode protocol
(R-TEP). J. EMDR Pract. Res. 2008, 2, 79. [CrossRef]

33. Shapiro, E.; Laub, B. Early EMDR intervention following a community critical incident: A randomized clinical trial. J. EMDR
Pract. Res. 2015, 9, 17–27. [CrossRef]

34. Lehnung, M.; Shapiro, E.; Schreiber, M.; Hofmann, A. Evaluating the EMDR Group traumatic episode protocol with refugees:
A field study. J. EMDR Pract. Res. 2017, 11, 129–138. [CrossRef]
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