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Abstract

In this thesis we investigate fully dynamic algorithms for path problems on
directed graphs. In particular, we focus on two of the most fundamental path
problems: fully dynamic transitive closure and fully dynamic single-source
shortest paths.

The first part of the thesis presents a new technique which makes it pos-
sible to reduce fully dynamic transitive closure to the problem of reevaluating
polynomials over matrices when updates of variables are performed. Based
on this technique, we devise a new deterministic algorithm which improves
the best known bounds for fully dynamic transitive closure. Our algorithm
hinges upon the well-known equivalence between transitive closure and matrix
multiplication on a closed semiring. We show how to maintain explicitly the
transitive closure of a directed graph as a Boolean matrix in O(n2) amortized
time per insertion and deletion of edges. Since an update may change as many
as Ω(n2) entries of this matrix, this seems to be the best update bound that
one could hope for this class of algorithms. We note that maintaining explic-
itly the transitive closure allows us to answer reachability queries with just one
table lookup. We also consider the case where only deletions are allowed and
we show how to handle updates faster in O(n) amortized time per operation
while maintaining unit lookup per query; in this way we generalize to directed
graphs the previous best known deletions-only result for acyclic graphs. Using
the same matrix based approach, we also address the problem of maintaining
implicitly the transitive closure of a directed graph and we devise the first algo-
rithm which supports both updates and reachability queries in subquadratic
time per operation. This result proves that it is actually possible to break
through the O(n2) barrier on the single-operation complexity of fully dynamic
transitive closure, and solves a problem that has been open for many years.
Our subquadratic algorithm is randomized Monte Carlo and supports update
in O(n1.58) and query in O(n0.58) worst-case time.

From an experimental point of view, we investigate the practical perfor-
mances of fully dynamic single-source shortest paths algorithms on directed
graphs with arbitrary edge weights. We also propose a variant of the best
known algorithms especially designed to be simple and fast in practice while
matching the same asymptotic worst-case running time. Our study provides
the first experimental evidence of practical dynamic solutions for the problem
that are better by several orders of magnitude than recomputing from scratch.



ii

Acknowledgements

I wish to thank my advisor Umberto Nanni, who first sparked my interest in
dynamic algorithms. His sense of humor has been of great help in overcoming
many of the difficulties which arose throughout my doctoral program.

I still remember when I first knocked on Pino Italiano’s office door at
the University of Rome “Tor Vergata”. He was friendly and kind, as usual.
He wrote down a quick note on a small piece of paper about a cool open
problem in dynamic transitive closure. This problem is now a main topic of
this dissertation. Since then, he constantly helped me develop as a person
and computer scientist. Actually, I regard meeting Pino as one of the most
important events in my life.

I’m even more grateful to Giorgio Ausiello, who introduced me to Pino,
and who was a tremendous source of support and encouragement throughout
these years.

A special thank goes also to Alberto Marchetti-Spaccamela, for his con-
stant friendly support and for always keeping his door open.

I thank all the people at the Department of Computer and Systems Sci-
ence of the University of Rome “La Sapienza”. In particular, I am grateful
to Roberto Baldoni, Marco Cadoli and Marco Temperini for many useful dis-
cussions and to everyone in the Algorithm Engineering Group for providing a
warm and friendly working environment.

I wish to thank my roommate Francesco Quaglia for being a true friend and
an extraordinary source of advice, and for helping me realise the importance
of a sound working method in doing research.

Everybody who knows Daniele Frigioni can figure out how funny and pleas-
ant it has been to have him as a coauthor and friend. The results presented
in this dissertation arose from joint works with Alberto, Daniele, Pino and
Umberto [19, 20].

I feel fortunate to have had the opportunity for fruitful cooperation with
the graph drawing people at the University of Roma Tre. In particular, I thank
Giuseppe Di Battista, Walter Didimo, Giuseppe Liotta, Maurizio “Titto” Pa-
trignani and Maurizio Pizzonia. I also owe a lot to Pierluigi Crescenzi and
Rossella Petreschi for their valuable support and for encouraging me so many
times. The results achieved with them appeared in [13, 14, 18, 22] and are not
reported in this thesis.

I thank Giorgio for being Coordinator of the PhD program and for serving
with Rossella and Umberto on my dissertation committee. A special mention
goes to Valerie King and Christos Zaroliagis, my external reviewers, for their
extremely thorough examination of my thesis and for their many constructive
suggestions. In particular, I thank Valerie for her previous great work in
dynamic transitive closure: without her results, I would have never come up



iii

with most of the original contributions in my thesis. I am also grateful to
Mikkel Thorup for many enlightening discussions.

I am glad to mention the European IST Programme ALCOM-FT and the
project “Algorithms for Large Data Sets: Science and Engineering” of the
Italian Ministry for Scientific Research which allowed me to travel and to
attend conferences.

I thank Radu Aldulescu and Albert Guttman for their invaluable perfor-
mance of Cello Sonatas op. 5 nr. 1 in F major and op. 5 nr. 2 in G minor by
Ludwig van Beethoven: their music has been a magical source of inspiration
during the preparation of this dissertation.

It would be a long list to mention all the other friends I am indebted to. I
gratefully thank all of them.

My parents Mihaela and Paul and my brother Emanuel deserve a warm
and special acknowledgement for their love and care.

Irene is certainly the main contributor of all the best in my life, including
this thesis. I thank God for the extraordinary chance of having her as wife,
friend, companion, and even coauthor [15, 16, 17, 23].



iv



Contents

1 Introduction 1

1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Dynamic Transitive Closure . . . . . . . . . . . . . . . . 3

1.1.2 Dynamic Shortest Paths . . . . . . . . . . . . . . . . . . 5

1.2 Original Contributions of the Thesis . . . . . . . . . . . . . . . 7

2 Preliminaries 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Basic Algebraic Concepts . . . . . . . . . . . . . . . . . . . . . 11

2.3 Transitive Closure and Matrix Multiplication . . . . . . . . . . 15

2.3.1 Computing Sums and Products of Boolean Matrices . . 17

2.3.2 Computing the Kleene Closure of a Boolean Matrix . . 18

2.4 Shortest Paths and Reweighting Techniques . . . . . . . . . . . 22

2.4.1 Computing Shortest Paths Trees . . . . . . . . . . . . . 26

3 Fully Dynamic Transitive Closure 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . 30

3.3 Overview of Our Approach . . . . . . . . . . . . . . . . . . . . 33

3.4 Dynamic Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Dynamic Polynomials over Boolean Matrices . . . . . . 34

3.4.2 Dynamic Matrices over Integers . . . . . . . . . . . . . . 49

3.5 Transitive Closure Updates in O(n2 log n) Time . . . . . . . . . 52

3.5.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.2 Implementation of Operations . . . . . . . . . . . . . . . 54

3.5.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Transitive Closure Updates in O(n2) Time . . . . . . . . . . . . 58

3.6.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.2 Implementation of Operations . . . . . . . . . . . . . . . 62

3.6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Breaking Through the O(n2) Barrier . . . . . . . . . . . . . . . 73

v



vi CONTENTS

3.7.1 Counting Paths in Acyclic Directed Graphs . . . . . . . 74
3.7.2 A Deterministic Algorithm . . . . . . . . . . . . . . . . 77

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Fully Dynamic Shortest Paths 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . 80
4.3 Fully Dynamic Algorithms by Reweighting . . . . . . . . . . . . 81

4.3.1 Supporting Increase Operations . . . . . . . . . . . . . 82
4.3.2 Supporting Decrease Operations . . . . . . . . . . . . . 88

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.1 Algorithms Under Evaluation . . . . . . . . . . . . . . . 90
4.4.2 Graph and Sequence Generators . . . . . . . . . . . . . 91
4.4.3 Performance Indicators . . . . . . . . . . . . . . . . . . 92

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 93
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Conclusions and Further Directions 101



Chapter 1

Introduction

In this thesis we present original contributions concerning two of the most
fundamental dynamic problems on directed graphs: dynamic transitive closure
and dynamic single-source shortest paths.

A dynamic graph problem consists of maintaining, either implicitly or ex-
plicitly, a given property in a graph subject to dynamic changes over time.
Typical examples of graph properties considered in the literature include pla-
narity, connectivity, minimum spanning tree, reachability, and shortest paths
(see [40, 45, 52]). A repertoire of typical changes of the graph include inser-
tion/deletion of nodes/edges as well as modifications of their weights.

To solve a dynamic graph problem we have to consider a dynamic graph

algorithm, i.e., a data structure that maintains the graph under an inter-
mixed sequence of operations of update of the graph and of query of the given
property. This is opposed to classical static algorithms, where the graph is
supposed not to change over time and the property is computed from scratch
just once. The goal for an efficient dynamic graph algorithm is to support
both update and query operations faster than recomputing from scratch the
desired property with the best static algorithm.

We say that an algorithm is fully dynamic if it can handle both insertion
and deletion. A dynamic graph algorithm which allows only for insertions
is considered to be incremental, whereas a dynamic graph algorithm which
allows only for deletions is called decremental. Incremental and decremental
dynamic graph algorithms are said to be partially dynamic.

The design of efficient dynamic graph algorithms has attracted a lot of
interest in the last ten years, both for their theoretical and practical interest.
In particular, many important results have been obtained so far for undirected
graphs (see, for example, [27, 30, 43, 45]). On the other hand, directed graph
problems appear to be intrinsically harder, especially as far as the design of
fully dynamic algorithms is concerned. In particular, the certificate complex-

1



2 CHAPTER 1. INTRODUCTION

ity of reachability and of other directed graph problems has been proved to
be Θ(n2) [51], instead of Θ(n) as in the case of undirected graph problems
such as connectivity and minimum spanning tree. A consequence of this fact
is that a powerful technique for speeding up dynamic algorithms, sparsifica-
tion [27], which yielded significant advances in undirected graph problems,
is not applicable to problems on directed graphs. In spite of these difficul-
ties, efficient solutions are known for different fundamental problems (see, for
example, [5, 43, 51, 52, 53, 54]).

The first problem that we consider in this thesis is the fully dynamic tran-

sitive closure problem, where we wish to maintain a directed graph G = (V,E)
under an intermixed sequence of the following operations:

Insert(x, y): insert an edge (x, y) in G;

Delete(x, y): delete edge (x, y) from G;

Query(x, y): report yes if there is a path from x to y in G, and no
otherwise.

This problem is particularly relevant to the field of databases for support-
ing transitivity queries on dynamic graphs of relations [71]. The problem also
arises in many other areas such as compilers, interactive verification systems,
garbage collection, and industrial robotics. Despite its importance, no efficient
fully dynamic algorithm for maintaining the transitive closure was known be-
fore 1995.

The other problem that we address is the fully dynamic single-source short-

est paths problem, where the goal is to maintain a weighted directed graph
G = (V,E,w) under an intermixed sequence of the following operations:

Increase(x, y, ε): increase by ε the weight of edge (x, y) in G;

Decrease(x, y, ε): decrease by ε the weight of edge (x, y) in G;

Query(y): report a shortest path between a fixed source node s

and a node y in G, if any.

Various application scenarios for this well known problem include network
optimization [2], document formatting [55], routing in communication systems,
robotics, incremental compilation, traffic information systems [69], dataflow
analysis. For a comprehensive review of the real world settings for the static
and dynamic shortest paths problem we refer the reader to [2] and [64], re-
spectively.
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In the remainder of this chapter, we discuss previous work related to dy-
namic transitive closure and dynamic shortest paths problems (Section 1.1)
and then we provide an overview of new results and techniques presented this
thesis (Section 1.2).

1.1 Previous Work

1.1.1 Dynamic Transitive Closure

Research on dynamic transitive closure spans over two decades. We recognize a
starting point in 1983 with the pioneering paper due to Ibaraki and Katoh [47].
Since then, for many years researchers have been working on partially dynamic
solutions for the problem. The first fully dynamic algorithm arrived only in
1995, thanks to Henzinger and King [43].

Incremental Algorithms. All the incremental algorithms reviewed in this
section have query time O(1), as they explicitly maintain the transitive closure
of the graph.

The first incremental solution was presented in [47] and is based on a very
simple idea: when adding edge (x, y), if there exist both a path from u to x

and a path from y to v, then v becomes reachable from u, if it was not already.
The running time of the algorithm is O(n3) over any sequence of insertions.

This bound was later improved to O(n) amortized time per insertion by
Italiano [48], whose algorithm is also able to return a path between any pair
of vertices, if any, in time linear in the length of the path itself. Amortized
time O(n) per insertion and O(1) per query is also obtained by La Poutré and
van Leeuwen in [56].

At last, Yellin [72] presented an algorithm with good running time on
bounded degree graphs: the algorithm requires O(m∗D) time for m edge in-
sertions, where m∗ is the number of edges in the final transitive closure and
D is the out-degree of the final graph.

Decremental Algorithms. The first decremental solution was again given
by Ibaraki and Katoh [47]: they proposed a depth-first based algorithm with
a running time of O(n2) per deletion.

This bound was later improved to O(m) per deletion by La Poutré and
van Leeuwen [56]. Italiano [49] devised a decremental algorithm on directed
acyclic graphs which supports deletions in O(n) amortized time per operation.

Similarly to the incremental case, Yellin [72] gave also an O(m∗D) algo-
rithm for m edge deletions, where m∗ is the initial number of edges in the
transitive closure and D is the out-degree of the initial graph.
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We remark that all the aforementioned algorithms have query time O(1).
Quite recently, Henzinger and King [43] gave a randomized decremental transi-
tive closure algorithm for general directed graphs with a query time of O( n

log n)

and an amortized update time of O(n log2 n).

Fully Dynamic Algorithms. Most of the algorithms discussed so far ex-
ploit monotonic properties which typically arise in partially dynamic prob-
lems. Such properties make it possible to amortize the cost of operations over
sequences of bounded length. In addition, when only a kind of operations is
permitted, it turns out that high-cost operations are followed by corresponding
low-cost ones. For instance, as the number of edges in the transitive closure of
a graph cannot be larger than n2, only a constant number of insertions can let
a quadratic number of new edges appear in the transitive closure; successive
insertions will therefore have an intrinsically lower cost. Similar arguments
cannot be exploited in a fully dynamic setting: bad intermixed sequences of
insertions and deletions could force the algorithm to work hard at each step.
This gives just an intuition about the reasons which make fully dynamic prob-
lems so difficult to be solved.

Before describing the results known for fully-dynamic transitive closure,
we list the bounds obtainable with simple-minded methods:

• If we do nothing during each update, then we have to explore the whole
graph in order to answer reachability queries: this gives O(n2) time per
query and O(1) time per update in the worst case.

• On the other extreme, we could recompute the transitive closure from
scratch after each update; as this task can be accomplished via matrix
multiplication [1, 62], this approach yields O(1) time per query and
O(nω) time per update in the worst case, where ω is the best known
exponent for matrix multiplication (currently ω < 2.38 [11]).

As already stated, the first fully dynamic transitive closure algorithm was
devised in 1995 by Henzinger and King [43]: they gave a randomized Monte
Carlo algorithm with one-side error supporting a query time of O( n

log n) and

an amortized update time of O(nm̂0.58 log2 n), where m̂ is the average number
of edges in the graph throughout the whole update sequence. Since m̂ can be
as high as O(n2), their update time is O(n2.16 log2 n).

In 1996 Khanna, Motwani and Wilson [51] designed an algorithm that
supports constant queries, but assumes some knowledge of the future update
operations at the time of each update. Namely, they proved that, when a
lookahead of Θ(n0.18) in the updates is permitted, a deterministic update
bound of O(n2.18) can be achieved.
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Very recently, King and Sagert [53] showed how to support queries in
O(1) time and updates in O(n2.28) time for general directed graphs and O(n2)
time for directed acyclic graphs. Their algorithm is randomized with one-side
error: it is correct when answering yes, but has O( 1

nc ) probability of error
when answering no, for any constant c. This result represents a breakthrough
in the area, as it is the first fully dynamic algorithm which answers reachability
queries quickly without assuming knowledge of the future updates.

Finally, the bounds of King and Sagert were further improved by King [52],
who exhibited a deterministic algorithm on general digraphs with O(1) query
time and O(n2 log n) amortized time per update operations. The algorithm
in [52] also supports generalized updates, consisting of insertions of a set of
edges incident to the same vertex and deletions of an arbitrary subset of edges.
We remark that this algorithm, differently from all the previous ones, does not
use fast matrix multiplication as a subroutine.

Experimental Studies. In spite of the numerous and relevant theoretical
results, less work has been done so far with respect to the experimental analysis
of dynamic algorithms for transitive closure. A careful implementation of
Italiano’s incremental and decremental algorithms is presented in [60], where
a comparison against several simple heuristics is carried on. Partially dynamic
algorithms are also empirically analyzed in [38], where it has been shown
that the algorithms due to Italiano [48] and to Cicerone et al. [10] (which
generalizes La Poutré and van Leeuwen’s algorithm) obtain the best results
for the incremental problem.

Implementations of many partially dynamic algorithms are available in
the LEDA Extension Package on Dynamic Graph Algorithms [3], which is an
extension of the Library of Efficient Data Types and Algorithms [59]. We are
aware of just two preliminary experimental studies on fully dynamic transitive
closure [6, 60].

1.1.2 Dynamic Shortest Paths

Theoretical Results. The dynamic maintenance of shortest paths has a
long history, and the first papers date back to 1967 [57, 63, 67]. In 1985
Even and Gazit [28] and Rohnert [68] presented algorithms for maintaining
all pairs shortest paths on directed graphs with arbitrary real weights. Their
algorithms required O(n2) per edge insertion; however, the worst-case bounds
for edge deletions were comparable to recomputing shortest paths from scratch.
Ausiello et al. [5] proposed an incremental all pairs shortest path algorithm
for directed graphs having positive integer weights less than C: the amortized
running time of their algorithm is O(Cn log n) per edge insertion. Henzinger
et al. [44] designed a fully dynamic algorithm for all pairs shortest paths on



6 CHAPTER 1. INTRODUCTION

planar graphs with integer weights, with a running time of O(n9/7 log(nC))
per operation. King [52] presented a fully dynamic algorithm for maintaining
all pairs shortest paths in directed graphs with positive integer weights less
than C: the running time of her algorithm is O(n2.5

√
C log n ) per update.

Other results appeared in [7, 25, 32, 35].

In the case of fully dynamic single-source shortest paths, we are aware of
only two dynamic solutions for general directed graphs with arbitrary (i.e.,
even negative) arc weights. Both these algorithms are analyzed in the output
complexity model [36, 64, 65], where the cost of an incremental computation
is not expressed as a function of the size of the current input, but is rather
measured in terms of the sum of the sizes of the input changes and the output
changes. We remark that in the worst case the running time of output-bounded
dynamic algorithms may be comparable to recomputing from scratch with the
best static algorithm.

The algorithm proposed by Ramalingam and Reps [65] requires that all the
cycles in the digraph before and after any input update have positive length.
It runs in O(δ̂ + δ log δ) per update, where δ is the number of nodes affected
by the input change, and δ̂ is the number of affected nodes plus the number
of edges having at least one affected endpoint. This gives O(m+n log n) time
in the worst case. In [66] the same authors also propose an output bounded
solution for a generalization of the shortest path problem.

The algorithm proposed by Frigioni et al. [37] explicitly deals with zero-
length cycles; the cost of update operations depends on the output complexity
of the operation and on a structural parameter of the directed graph called
k-ownership. If the graph has a k-bounded accounting function (as in the case
of graphs with genus, arboricity, degree, treewidth or pagenumber limited by
k) weight-decrease operations require O(min{m, kna} log n) worst case time,
while weight-increase operations require O(min{m log n, k(na +nb) log n+n})
worst case time. Here na is the number of affected nodes, and nb is the number
of nodes considered by the algorithm.

Experimental Studies. Many papers have been proposed in the algorithm
engineering field concerning the practical performances of static algorithms
for computing shortest paths trees (see, e.g., [8, 9, 42]), but very little is
known for the experimental evaluation of dynamic shortest paths algorithms.
In particular, to the best of our knowledge, there is no experimental study
concerning fully dynamic single-source shortest paths in digraphs with arbi-
trary edge weights. In Chapter 4 of this thesis we make a step towards this
direction discussing a preliminary experimental investigation which tries to fill
this gap.

The case of digraphs with only positive edge weights is considered in [34],
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where two algorithms proposed by Ramalingam and Reps [65] and by Frigioni
et al. [35] are compared with a static counterpart, i.e., Dijkstra’s algorithm
implemented with Fibonacci heaps [24, 33]. The outcome of this study shows
that both on random and on real-world graphs dynamic algorithms allow to
spend in updates less than 5% of the time required by the static one.

1.2 Original Contributions of the Thesis

The original contributions of this thesis are presented in Chapter 3 (fully dy-
namic transitive closure) and in Chapter 4 (fully dynamic single-source short-
est paths). Chapter 2 introduces preliminary definitions and algebraic con-
cepts which are the backbone for modeling path problems on directed graphs,
and Chapter 5 addresses concluding remarks and open problems.

Most of the results presented in Chapter 3 and in Chapter 4 have been pub-
lished in the Proceedings of the 41-st Annual IEEE Symposium on Foundations
of Computer Science (FOCS’00) [20] and in the Proceedings of the 4-th Inter-
national Workshop on Algorithm Engineering (WAE’00) [19], respectively.

Fully Dynamic Transitive Closure

Before stating our results, we observe that fully dynamic transitive closure
algorithms with O(1) query time maintain explicitly the transitive closure of
the input graph, in order to answer each query with exactly one lookup (on
its adjacency matrix). Since an update may change as many as Ω(n2) entries
of this matrix, O(n2) seems to be the best update bound that one could hope
for this class of algorithms. It is thus quite natural to ask whether the O(n2)
update bound can be actually realized for fully dynamic transitive closure
on general directed graphs while maintaining one lookup per query. Another
important question, if one is willing to spend more time for queries, is whether
the O(n2) barrier for the single-operation time complexity of fully dynamic
transitive closure can be broken. We remark that this has been an elusive goal
for many years. In this thesis we affirmatively answer both questions.

Obtained Results. We devise a novel technique which allows us to reduce
fully dynamic transitive closure to the problem of dynamically reevaluating
polynomials over matrices when updates of variables are performed.

Using this new technique, we improve the best known bounds for fully dynamic
transitive closure. In particular:

• We devise a deterministic algorithm for fully dynamic transitive closure
on general digraphs which does exactly one matrix look-up per query and
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supports updates in O(n2) amortized time, thus improving over [52]. Our
algorithm can also support within the same time bounds the generalized
updates of [52], i.e., insertion of a set of edges incident to the same vertex
and deletion of an arbitrary subset of edges. The space used is O(n2).

• In the special case of deletions only, our algorithm achieves O(n) amor-
tized time for deletions and O(1) time for queries: this generalizes to
directed graphs the bounds of [49], and improves over [43].

• We devise the first algorithm which support both updates and queries in
subquadratic time per operation, proving that it is actually possible to
break through the O(n2) barrier on the single-operation complexity of
fully dynamic transitive closure. Our subquadratic algorithm is random-
ized Monte Carlo and supports update in O(n1.58) and query in O(n0.58)
worst-case time.

Our deterministic algorithm hinges upon the equivalence between transi-
tive closure and matrix multiplication on a closed semiring; this relation has
been known for over 30 years (see e.g., the results of Munro [62], Furman [39]
and Fischer and Meyer [31]) and yields the fastest known static algorithm for
transitive closure. Surprisingly, no one before seems to have exploited this
equivalence in the dynamic setting: some recent algorithms [43, 51, 53] make
use of fast matrix multiplication, but only as a subroutine for fast updates.
Differently from other approaches, the crux of our method is to use dynamic
reevaluation of products of Boolean matrices as the kernel for solving dynamic
transitive closure.

Fully Dynamic Single-source Shortest Paths

Recently, an important research effort has been done in the field of algorithm
engineering, aiming at bridging the gap between theoretical results on algo-
rithms and their implementation and practical evaluation [4, 21, 41, 50, 58, 61].

Motivated by the lack of any previous investigation about the practical
performances of fully dynamic algorithms for maintaining shortest paths trees
in graphs with arbitrary edge weights, we performed a preliminary experi-
mental study of the best known algorithms for the problem [37, 65]. From
the experiments, we conjectured that certain preliminary steps, performed by
these algorithms during an update operation with the aim of saving time in
subsequent steps, may not be worthwhile in some practical situations.

Obtained Results. These experimental observations inspired us in consid-
ering a new simplified variant of the best known algorithms for the prob-
lem. Our variant was especially designed to be simple and fast in practice
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while matching the same asymptotic worst-case complexity of the original al-
gorithms.

We implemented in C++ with the support of the LEDA library of efficient data
types [59] the best known algorithms [37, 65], plus our new variant, and we
performed a further experimental study of these algorithms on random test
sets. Our investigation revealed that:

1. all the considered dynamic algorithms are faster by several orders of
magnitude than recomputing from scratch with the best static algo-
rithm: this yields clues to the fact that constant factors in practical
implementations can be very small for this problem;

2. due to its simplicity, our new variant stands out as a practical solution,
though the more sophisticated algorithms it is derived from may become
preferable in some cases;

3. the running time of all the considered dynamic algorithms is affected
by the width of the interval of edge weights. In particular, dynamic
algorithms are faster if weights come from a small set of possible values.
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Chapter 2

Preliminaries

2.1 Introduction

In this chapter we provide basic notation, lemmas, facts and definitions that
will be useful later on for describing the original contributions of our dis-
sertation. In particular, we provide the background for the two fundamental
algorithmic problems on graphs that we study in our thesis: the transitive clo-
sure problem and the single-source shortest paths problem. Though most of
the material presented in this chapter is well known from the literature, many
definitions, lemmas and proofs have been reformulated to help the reader in
maintaining a coherent and homogeneous view of the matter.

The chapter is organized as follows. Section 2.2 is devoted to basic yet
powerful algebraic concepts that are the backbone of path problems on directed
graphs. Section 2.3 formally defines the transitive closure problem, provides
an algebraic framework for it based on Boolean matrices and discusses the
best known algorithms, showing that transitive closure is computationally
reducible to Boolean matrix multiplication. Section 2.4 formally introduces
the single-source shortest paths problem, recalls the best known algorithms
for it, and presents properties useful for designing efficient solutions for the
dynamic versions of the problem.

2.2 Basic Algebraic Concepts

This section presents basic definitions of some algebraic concepts and related
properties that are useful in dealing with path problems on directed graphs.
In particular, we recall the definitions of closed semiring and of Kleene closure,
showing that matrices over closed semirings form a closed semiring by them-
selves. We also define the concept of ring, useful for obtaining fast algorithms
for Boolean matrix multiplication, and we introduce two algebraic structures

11
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that we will use for modeling path problems.

Definition 2.1 A closed semiring is an algebraic structure (S,+, ·, 0, 1),
where S is a set of elements, + (the summary operator) and · (the exten-

sion operator) are binary operations on S, and 0 and 1 are elements of S,
satisfying the following eight properties:

1. (S,+, 0) is a monoid:

• S is closed under +: a + b ∈ S for all a, b ∈ S.

• + is associative: a + (b + c) = (a + b) + c for all a, b, c ∈ S.

• 0 is an identity for +: a + 0 = 0 + a = a for all a ∈ S.

Likewise, (S, ·, 1) is a monoid.

2. 0 is an annihilator: a · 0 = 0 · a = 0 for all a ∈ S.

3. + is commutative: a + b = b + a for all a, b ∈ S.

4. + is idempotent: a + a = a for all a ∈ S.

5. · distributes over +: a·(b+c) = (a·b)+(a·c) and (b+c)·a = (b·a)+(c·a)
for all a, b, c ∈ S.

6. If a1, a2, a3, . . . is a countable sequence of elements of S, then

a1 + a2 + a3 + · · ·

is well defined and in S.

7. Associativity, commutativity, and idempotence apply to infinite as well
as finite sums.

8. · distributes over countably infinite sums as well as over finite ones:

a ·

∑

j

bj


 =

∑

j

(a · bj) and


∑

j

bj


 · a =

∑

j

(bj · a)

Based on Definition 2.1, we now introduce the closed semiring of Boolean
values, which is an important system for modeling path problems on directed
graphs.
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Lemma 2.1 The system of Boolean values S1 = ({0, 1},+, ·, 0, 1) where +
and · are defined as follows:

+ 0 1

0 0 1
1 1 1

· 0 1

0 0 0
1 0 1

is a closed semiring.

Proof. Verifying properties 1–5 is straightforward. As far as properties 6–8
are concerned, it suffices to observe that a countable sum is 0 if all terms are
0, and is 1 if at least one term is 1. 2

Notice that the + and · operators in S1 correspond to the usual ∨ and ∧
operators on Boolean values, respectively.

Let us now focus on the algebraic structures obtained by considering matri-
ces over closed semirings. Later we show that such systems are closed semirings
as well. Our convention for denoting matrix entries is the following: if X is a
matrix, we denote by X[i, j] the element in the i-th row and j-th column in
X.

Definition 2.2 Let (S,+, ·, 0, 1) be a closed semiring and let Mn the set of
n×n matrices over S. We denote by 0n the n×n matrix of 0’s and by In the
n× n identity matrix with 1’s on the main diagonal and 0’s elsewhere:

0n =

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

In =

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

For A,B ∈Mn, we denote by A +n B the n× n matrix C, where:

C[i, j] = A[i, j] + B[i, j],

and we denote by A ·n B the n× n matrix D, where:

D[i, j] =
n∑

k=1

A[i, k] ·B[k, j].

The fact that (S,+, ·, 0, 1) is a closed semiring immediately leads to the
following property:

Lemma 2.2 (Mn,+n, ·n, 0n, In) is a closed semiring.
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From now on we will use + and · instead of +n and ·n when there is no
possibility of confusion with the addition and multiplication operators in the
underlying closed semiring of matrix entries.

We now introduce a unary operator, the Kleene closure operator ∗, which
is central to our analysis of closed semirings and, as we will see in Section 2.3,
is the main tool for solving reachability problems on directed graphs.

Definition 2.3 Let (S,+, ·, 0, 1) be a closed semiring and a ∈ S. We define
the Kleene closure of a as

a∗ =
∞∑

i=0

ai,

where

ai =

{
1 if i = 0
a · ai−1 if i > 0

is the i-th power of a. That is, a∗ is the infinite sum 1+a+a ·a+a ·a ·a+ · · ·.

Notice that the closure operator is derived from the base + and · operators
of closed semirings by means of infinite sums. Using the laws reported in
Definition 2.1, and in particular the fact that countable infinite sums are well
defined (property 6), we can prove the important feature that closed semirings
are closed under ∗.

Lemma 2.3 Let (S,+, ·, 0, 1) be a closed semiring and a ∈ S. Then a∗ ∈ S.

Proof. The proof easily follows from the definition of Kleene closure and from
properties 6–8 of closed semirings. 2

A broader class of algebraic structures is the class of rings. As we will see
in Section 2.3.1, using rings is necessary for obtaining efficient algorithms for
matrix multiplication.

Definition 2.4 A ring is an algebraic structure (S,+, ·, 0, 1), where S is a
set of elements, + and · are binary operations on S, and 0 and 1 are elements
of S, satisfying the following six properties for each a, b, c ∈ S:

1. + and · are associative: (a+b)+c = a+(b+c) and (a ·b) ·c = a ·(b ·c).

2. + is commutative: a + b = b + a.

3. · distributes over +: a·(b+c) = (a·b)+(a·c) and (b+c)·a = (b·a)+(c·a).

4. 0 is an identity for +: a + 0 = 0 + a = a.
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5. 1 is an identity for ·: a · 1 = 1 · a = a.

6. For each a ∈ S there is an inverse −a: a + (−a) = (−a) + a = 0.

Occasionally, we will use the operator −, denoting with a−b the expression
a + (−b). The next lemma introduces the ring of integers that is another
important algebraic tool used in this thesis.

Lemma 2.4 The system S2 = ({. . . ,−3,−2,−1, 0, 1, 2, 3, . . .},+, ·, 0, 1) of in-
tegers where + and · are the usual sum and product operators is a ring.

A ring useful for obtaining efficient algorithms for Boolean matrix multi-
plication is the following.

Lemma 2.5 The system Zn+1 = ({0, 1, 2, 3, . . . , n},+, ·, 0, 1) where + and ·
are the usual sum and product operators performed modulo n + 1 is a ring.

2.3 Transitive Closure and Matrix Multiplication

In this section we recall basic graph-theoretic definitions, such as the notion of
transitive closure, and we discuss a matrix-based framework for solving reach-
ability problems on directed graphs. In particular, we show how the compu-
tation of the transitive closure of a directed graph is related to the problem of
multiplying Boolean matrices and we describe known efficient algorithms for
the problem.

Definition 2.5 The Adjacency Matrix of a graph G = (V,E) with n nodes
is a n×n Boolean matrix XG such that XG[u, v] = 1 if and only if (u, v) ∈ E.

Definition 2.6 Let G = (V,E) be a directed graph, where V is the set of
nodes and E ⊆ V × V is the set of edges. A path u ; v of length k between
any two nodes u and v in G is a sequence of nodes π = 〈w0, w1, . . . , wk〉 such
that w0 = u, wk = v and (wi−1, wi) ∈ E for any 0 < i ≤ k. If there exists a
path u ; v, we say that v is reachable from u in G. If, for any i 6= j, it
holds that wi 6= wj, we say that the path is simple.

As a matrix counterpart of the previous graph-theoretic definition, we also
introduce the notion of path between indices in a Boolean matrix.

Definition 2.7 Let X be a Boolean matrix. A path u ; v of length k between
any two indices u and v in X is a sequence of indices π = 〈w0, w2, . . . , wk〉
such that w0 = u, wk = v and X[wi−1, wi] = 1 for any 0 < i ≤ k.
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The next lemma provides a direct correspondence between paths in a graph
and paths in its adjacency matrix.

Lemma 2.6 Let G be a graph and let XG be its adjacency matrix. For any
u, v, there is a path between indices u and v in XG if and only if there is a
path between nodes u and v in G.

We also recall the concept of cycle in a directed graph.

Definition 2.8 Let G = (V,E) be a directed graph. A Cycle in G is a path
u ; v such that u = v.

We are now ready to formally introduce the notion of transitive closure of
a directed graph.

Definition 2.9 Let G = (V,E) be a directed graph, where V is the set of
nodes and E ⊆ V × V is the set of edges. The Transitive Closure of G

is a directed graph TC(G) = (V ′, E′) such that V = V ′ and (u, v) ∈ E ′ if and
only if there is a simple path u ; v in G. If for any u ∈ V , (u, u) ∈ E ′, then
we say that the transitive closure TC(G) is Reflexive.

In the following we will refer to the Transitive Closure Problem as
the problem of computing the (reflexive) transitive closure of a directed graph.

Notice that in the definition of transitive closure we limit ourselves to
consider simple paths. The reason of this choice is explained in the next
lemma.

Lemma 2.7 Let G = (V,E) be a directed graph. For any non-simple path
π : u ; v there is a corresponding simple path π ′ : u ; v.

Proof. Let π = 〈u, . . . , c, w1, . . . , wh, c, . . . , v〉 be a non-simple path between
u and v, where 〈c, w1, . . . , wh, c〉 is a cycle in G. We repeatedly collapse any
repetitions of the same node c in the sequence π, cutting off any intermediate
nodes w1, . . . , wh and thus removing cycles from the path. When no repetition
remains, we come up with a simple path of the form π ′ = 〈u, . . . , c, . . . , v〉. 2

The adjacency matrix representation of a graph, together with the alge-
braic concepts of closed semirings and of Kleene closure, are powerful tools for
expressing in a compact form path relations such as transitivity. The follow-
ing lemmas provide a direct correspondence between the transitive closure of
a graph G and the Kleene closure of the adjacency matrix of G. Such corre-
spondence allows us to provide efficient solutions to path problems on directed
graphs in the algebraic framework of matrices.
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Lemma 2.8 Let G = (V,E) be a directed graph and let X be the adjacency
matrix of G. Then Xk[u, v] = 1 if and only if there is a path u ; v of length
k in G.

Proof. The proof is by induction on k. The base step (k = 1) is trivial.
Let us now assume, by inductive hypothesis, that the claim holds for paths
of length k − 1. We show that the claim holds for paths of length k as well.
From the relation Xk = X ·Xk−1 and from the definition of matrix product
given in Definition 2.2, we have that Xk[u, v] = 1 if and only if there is a node
w such that both X[u,w] = 1 and Xk−1[w, v] = 1. Thus, using the inductive
hypothesis, Xk[u, v] = 1 if and only if there is a path u ; v of length k in
G obtained as concatenation of a single edge (u,w) and of a path w ; v of
length k − 1. 2

Lemma 2.9 Let G = (V,E) be a directed graph and let TC(G) be the (reflex-
ive) transitive closure of G. If X is the adjacency matrix of G and Y is the
adjacency matrix of TC(G), then Y = X∗.

Proof. It suffices to prove that for any u, v ∈ V , X∗[u, v] = 1 if and only if
there is a path of any length in G between u and v. The proof easily follows
from the definition of Kleene closure and from Lemma 2.8. 2

In view of Lemma 2.8 and Lemma 2.9, in the following we will consider the
problem of computing the Kleene closure of a Boolean matrix as an equivalent
method for computing the transitive closure of a directed graph.

Before describing some known efficient algorithms for computing the Kleene
closure of a Boolean matrix, we address the problem of computing quickly +
and · operations over Boolean matrices.

2.3.1 Computing Sums and Products of Boolean Matrices

This section focuses on the computational cost of performing additions and
products of matrices as introduced in Definition 2.2. In particular, we restrict
our interest on products of Boolean matrices.

As a first observation, notice that the sum C = A + B of two Boolean
matrices A and B as introduced in Definition 2.2 can be easily carried out in
O(n2) worst-case time.

Let O(nω) be the cost of computing the product D = A ·B of two Boolean
matrices A and B.

The simplest method for building D with ω = 3 consists of performing
directly the calculations specified in Definition 2.2 for any entry of D, i.e.,
computing D[i, j] =

∑n
k=1 A[i, k] ·B[k, j] for any i, j.
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If we assume to deal with matrices over a ring, more efficient methods are
known: Strassen [70] showed that it is possible to multiply two matrices over an
arbitrary ring with ω = log2 7 < 2.81, while Coppersmith and Winograd [11]
improved this bound to ω < 2.38.

Though Boolean matrices do not form a ring, adapting these algorithms
to compute products of n × n Boolean matrices is easy [12]: we can simply
assume to perform calculations in the ring Zn+1 of integers modulo n + 1
(see Lemma 2.5) by looking at 0 and 1 as integer numbers. The results of
such computations can be converted back to Boolean values by treating any
non-zero value as 1 and any zero value as 0. With this simple trick, matrix
products can be performed efficiently while maintaining the results as Boolean
matrices. Even if the ring of integers S2 introduced in Lemma 2.4 would work
either way, considering matrices over the ring Zn+1 of integers modulo n + 1
is used to prevent matrix values arising in intermediate computations from
getting too large.

2.3.2 Computing the Kleene Closure of a Boolean Matrix

In this section we put together concepts developed in the previous sections and
we show efficient algorithms for computing the Kleene closure of a Boolean
matrix through reduction to the Boolean matrix multiplication problem. In
particular, we discuss two methods: the first is based on a simple efficient
doubling technique that consists of repeatedly concatenating paths to form
longer paths via matrix multiplication, and the second is based on a Divide
and Conquer strategy that yields the fastest known algorithm for computing
the Kleene closure of a Boolean matrix. Actually, we prove the surprising fact
that computing the Kleene closure can be asymptotically as fast as multiplying
two Boolean matrices.

Method 1

We first describe a simple method for computing X ∗ in O(nω · log n) worst-
case time, where O(nω) is the time required for computing the product of two
Boolean matrices. The algorithm is based on a simple doubling argument as
stated in the following definition and lemmas.

Definition 2.10 Let X be an n× n Boolean matrix. We define the sequence
of log2 n + 1 polynomials P0, . . . , Plog2 n over Boolean matrices as:

Pk =

{
X if k = 0
Pk−1 + P 2

k−1 if k > 0
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Lemma 2.10 Let X be an n× n Boolean matrix and let Pk be formed as in
Definition 2.10. Then for any 1 ≤ u, v ≤ n, Pk[u, v] = 1 if and only if there
is a path u ; v of length at most 2k in X.

Proof. The proof is by induction on k. The base step for k = 0 is trivial.
We assume by inductive hypothesis that the claim is satisfied for Pk−1 and we
prove that it is satisfied for Pk as well.

Sufficient condition: as any path of length up to 2k between u and v in X

is either of length up to 2k−1 or can be obtained as concatenation of two paths
of length up to 2k−1 in X, and all these paths are correctly reported in Pk−1

by the inductive hypothesis, it follows that Pk−1[u, v] = 1 or P 2
k−1[u, v] = 1.

Thus Pk[u, v] = Pk−1[u, v] + P 2
k−1[u, v] = 1.

Necessary condition: if Pk[u, v] = 1 then at least one among Pk−1[u, v] and
P 2

k−1[u, v] is 1. If Pk−1[u, v] = 1, then by the inductive hypothesis there is a
path of length up to 2k−1 < 2k. If P 2

k−1[u, v] = 1, then there are two paths of
length up to 2k−1 whose concatenation yields a path no longer than 2k. 2

This method hinges upon a standard doubling argument: we combine paths
of length 2 in X to form paths of length 4, then we concatenate all paths found
so far to obtain paths of length up to 8 and so on. As the length of the longest
detected path increases exponentially and the longest simple path is no longer
than n, a logarithmic number of steps suffices to detect if any two nodes are
connected by a path in the graph as stated in the following theorem.

Theorem 2.1 Let X be an n× n Boolean matrix and let Pk be formed as in
Definition 2.10. Then X∗ = In + Plog2 n.

Proof. The proof easily follows from Lemma 2.10 and from Lemma 2.9 by
observing that the length of the longest simple path in X is no longer than
n− 1 < 2log2 n = n. The In is required to guarantee the reflexivity of X∗. 2

The next theorem discusses the time required to calculate X ∗ via compu-
tation of the polynomials over Boolean matrices that define P1, . . . , Plog2 n.

Theorem 2.2 Let X be an n× n Boolean matrix and let Pk be formed as in
Definition 2.10. Then it is possible to compute X ∗ = In+Plog2 n in O(nω ·log n)
worst-case time, where ω is the exponent of Boolean matrix multiplication.

Proof. The proof easily follows from the cost of computing each Pk for k = 1
to log2 n. 2

The best known bounds for Boolean matrix multiplication (see Section
2.3.1) imply that X∗ can be computed in o(n2.38 · log n) worst-case time with
this method.



20 CHAPTER 2. PRELIMINARIES
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Figure 2.1: Succinct graph representation of the matrix X.

Method 2

We now show that computing the Kleene closure of a Boolean matrix can be
asymptotically as fast as multiplying two Boolean matrices. The method we
present is due to Munro [62] and is based on a Divide and Conquer strategy.

Definition 2.11 Let Bn be the set of n×n Boolean matrices and let X ∈ Bn.
Without loss of generality, we assume that n is a power of 2. We define a
mapping F : Bn → Bn by means of the following equations:





E = (A + BD∗C)∗

F = EBD∗

G = D∗CE

H = D∗ + D∗CEBD∗

(2.1)

where A,B,C,D and E,F,G,H are obtained by partitioning X and Y = F(X)
into sub-matrices of dimension n

2 × n
2 as follows:

X =
A B

C D
Y =

E F

G H

Theorem 2.3 Let X be an n× n Boolean matrix. Then F(X) = X ∗.

Proof. Let V1 = {1, . . . , n
2 } and V2 = {n

2 + 1, . . . , n} a balanced partition of
the indices of X into two sets of size n

2 each.
In Figure 2.1 we show a succinct representation of the graph GX whose

adjacency matrix is X. Notice that B encodes all edges that connect a node
in V1 with a node in V2. Likewise, C connects nodes in V2 with nodes in
V1, and A and D represent internal connections between nodes in V1 and V2,
respectively.

We now prove that E = (A + BD∗C)∗ encodes explicitly all the paths
in X that have both end-points in V1. More formally, we prove that for any
i, j ∈ V1, E[i, j] = 1 if and only if there is a path between i and j in X. Let
us consider the n

2 × n
2 matrix R = A + BD∗C. For any u, v ∈ V1, we have
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that R[u, v] = 1 if and only if X[u, v] = 1 or there is a path 〈u,w1, . . . , wk, v〉
in X, where w1, . . . , wk ∈ V2. In other words, R encodes explicitly all the
paths in X that have both end-points u, v in V1 and such that v is reachable
from u without passing through any other node in V1. As any path in X with
both end-points in V1 corresponds to a path in R, and all the paths in R are
explicitly encoded by R∗, the claim is proved for E = R∗.

Regarding F , we prove that F = EBD∗ encodes all the paths in X that
have one end-point in V1 and the other end-point in V2. Notice that any
such path can be written in the form 〈z1, . . . , zh, w1, . . . , wk〉, where z1 ∈ V1,
z2, . . . , zh−1 ∈ V1 ∪ V2, zh ∈ V1, and w1, . . . , wk ∈ V2. Since E[z1, zh] = 1,
B[zh, w1− n

2 ] = 1 and D∗[w1− n
2 , wk− n

2 ] = 1, it holds that F [z1, wk− n
2 ] = 1.

This proves the claim for F . By similar reasoning, we can prove analogous
claims for G and H. 2

It is possible to think of a different definition of function F that provides
an alternative way of computing the Kleene closure. In particular, another set
of equations which are equivalent to those in 2.1 can be introduced.

Lemma 2.11 Let Bn be the set of n × n Boolean matrices, let X ∈ Bn and
let G : Bn → Bn be the mapping defined by means of the following equations:





E = A∗ + A∗BHCA∗

F = A∗BH

G = HCA∗

H = (D + CA∗B)∗

(2.2)

where X and Y = G(X) are defined as:

X =
A B

C D
Y =

E F

G H

Then, for any X ∈ Bn, G(X) = F(X) = X∗.

Proof. If we rename syntactically submatrices A, B, C, D, and E, F , G, H

in the set of equations 2.2 as follows:

A −→ D E −→ H

B −→ C F −→ G

C −→ B G −→ F

D −→ A H −→ E

we obtain the set of equations 2.1. If we rotate both X and Y by 180 degrees,
we are exactly in the same conditions of Definition 2.11. Thus, G = F . 2

In the following theorem, we discuss the time required for computing Y =
F(X) as specified in Definition 2.11.
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Theorem 2.4 Let X be an n × n Boolean matrix and let T (n) be the time
required to compute recursively F(X). Then T (n) = O(nω), where O(nω) is
the time required to multiply two Boolean matrices.

Proof. It is possible to compute E, F , G and H with two recursive calls of
F , six multiplications, and two additions of n

2 × n
2 matrices. Thus:

T (n) ≤ 2T (
n

2
) + 6M(

n

2
) + 2

(
n

2

)2

where M(n) = O(nω) is the time required to multiply two n × n Boolean
matrices. Solving the recurrence relation, we obtain that T (n) = O(nω). For
more details, we refer the interested reader to [1]. 2

The best known bounds for Boolean matrix multiplication (see Section 2.3.1)
imply that X∗ can be computed in o(n2.38) worst-case time.

As a final note, if the size n of X and Y is not a power of 2, we can embed
both X and Y in larger matrices X̂ and Ŷ , respectively, having dimension
that is a power of 2, of the form:

X̂ =
X 0

0 I
Ŷ =

Y 0

0 I

where I is an identity matrix of the smallest possible size. Since this will at
most double the size of the matrices, the asymptotic running time of computing
Ŷ = X̂∗ is not affected.

2.4 Shortest Paths and Reweighting Techniques

In the previous section we focused on the reachability problem of comput-
ing whether there is a path between any pair of nodes in a directed graph.
We were just interested in looking for the existence of paths, regardless of
their length. In this section we consider the extended version of the problem
where we look for the shortest paths between a given source node and all the
other nodes in a weighted directed graph. In the following we will refer to
this problem as the single-source shortest paths problem. We first provide
basic definitions and properties and then we briefly survey the best known
algorithms for the problem. The material presented in this section will play a
central role in Chapter 4 in the design and analysis of efficient algorithms for
dynamic versions of the single-source shortest paths problem.

We first provide some basic notation related to weighted directed graphs.

Definition 2.12 We denote by G = (V,E,w) a weighted directed graph where
V is the set of nodes, E is the set of edges, and w : E → R is a function that
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maps any edge (u, v) of the graph to a real number w(u, v) called the weight

of the edge.

According to the previous definition, we introduce the concept of weighted
length of a path as the sum of the weights of the edges in the path. This
differs from Definition 2.6, where we considered just the number of traversed
edges.

Definition 2.13 Let G = (V,E,w) be a weighted directed graph and let π =
〈x0, . . . , xk〉 be a path in G. Then the Weighted Length of π is:

`(π) =
k∑

i=1

w(xi−1, xi).

In the following, we will use the term length instead of weighted length when
there is no possibility of confusion. Now we formally introduce the concept of
shortest path.

Definition 2.14 Let G = (V,E,w) be a weighted directed graph. A Short-

est Path between u, v ∈ V is a path π∗ : u ; v that satisfies the equation:

`(π∗) = inf
π:u;v

`(π).

Notice that, if there are edges of negative weight, there may be negative-
length cycles 〈c, w1, . . . , wk, c〉 in G. We now discuss some properties due to
the presence of such cycles in the graph.

Lemma 2.12 Let G = (V,E,w) be a weighted directed graph. If there is
a path of the form π = 〈u, . . . , c, w1, . . . , wk, c, . . . , v〉 in G such that γ =
〈c, w1, . . . , wk, c〉 is a negative-length cycle, then infπ:u;v `(π) = −∞ and no
shortest path exists between u and v.

Proof. Starting from π, we obtain a shorter path π ′ by simply traversing γ

more than once: π′ = 〈u, . . . , c, w1, . . . , wk, c, w1, . . . , wk, c, . . . , v〉. Thus, since
the more we traverse the cycle γ, the shorter we get the path, it follows that
−∞ is a lower bound to the length of any path u ; v that passes through a
node lying on a negative-length cycle. As any path has finite length, no path
π satisfies `(π) = −∞ and no shortest path exists. 2

We now introduce the natural notion of distance of a node from the source.

Definition 2.15 Let G = (V,E,w) be a weighted directed graph and let s ∈ V

be a fixed Source node. We define a Distance function ds : V → R such
that for any v ∈ V ,
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ds(v) =

{
infπ:s;v `(π) if v is reachable from s in G

+∞ otherwise

Distance functions satisfy the following relevant Bellman conditions:

Lemma 2.13 Let G = (V,E,w) be a weighted directed graph and let s ∈ V

be a fixed source node. If ds is the distance function from s, then for any
(u, v) ∈ E such that −∞ < ds(u) < +∞, the following Bellman condition is
satisfied:

ds(v) ≤ ds(u) + w(u, v).

Moreover, if 〈s, . . . , u, v〉 is a shortest path from s to v, then:

ds(v) = ds(u) + w(u, v).

Proof. Let us assume by contradiction that there is an edge (u, v) ∈ E such
that ds(v) > ds(u) + w(u, v). Now, if ν = 〈s, . . . , u〉 is a shortest path to u

with length `(ν) = ds(u), then the path µ = 〈s, . . . , u, v〉 has length `(µ) =
`(ν) + w(u, v) = ds(u) + w(u, v), which is < ds(v) by our initial assumption.
This contradicts the fact that ds(v) = infπ:s;v`(π). 2

Certificates for distances of nodes from the source are provided by shortest
paths trees, which represent buckets of shortest paths from the source to any
other reachable node, as we show next.

Definition 2.16 Let G = (V,E,w) be a weighted directed graph and let s ∈ V

be a fixed source node. We call Shortest Paths Tree rooted at s any tree
T (s) = (V ′, E′) such that:

1. V ′ ⊆ V and E′ ⊆ V ′ × V ′ ∩E;

2. for all v ∈ V ′, −∞ < ds(v) < +∞;

3. for all (u, v) ∈ E ′ the following Bellman condition is satisfied:

ds(v) = ds(u) + w(u, v). (2.3)

According to the previous definition, a shortest paths tree T (s) contains
all the nodes v that are reachable from the source s (ds(v) < +∞) without
entering negative-length cycles (ds(v) > −∞). Moreover, any (simple) path
in T (s) is a shortest path in G.

We remark that a shortest paths tree T (s) for a given source s in G may
not be unique. Actually, if (u, v), (w, v) ∈ E and both u and w lie on some
shortest path from s to v, then either (u, v) or (w, v) may be in T (s).

Using the previous definitions, we can now formally introduce the single-
source shortest paths problem.



2.4. SHORTEST PATHS AND REWEIGHTING TECHNIQUES 25

Definition 2.17 Let G = (V,E,w) be a weighted directed graph and let s ∈ V

a fixed source node. We define the Single-source Shortest Paths Prob-

lem as the problem of computing a shortest paths tree T (s) of G rooted at s

and the corresponding distance function ds.

We now discuss properties that will be useful in Chapter 4 in designing
efficient dynamic algorithms for the single-source shortest paths problem. In
particular, we show a reweighting technique that allows it to preprocess the
weighting function of a graph so as to have no negative-weight edges while
maintaining the same shortest paths in the graph, as we will see in the next
two lemmas.

Definition 2.18 Let G = (V,E,w) be a weighted directed graph and let h :
V → R be an arbitrary function defined over the node set. We will refer to h as
a Potential function. We define Reweighting function for w the function
ŵ : E →R such that for any (u, v) ∈ E, ŵ(u, v) = w(u, v) + h(u) − h(v).

We remark that in the previous definition the potential function h is com-
pletely arbitrary. An important property of such reweighting is that the short-
est paths in the graph stay the same after the preprocessing and it is possible
to apply efficient algorithms that are designed to work only on graphs with
nonnegative edge weights.

Lemma 2.14 Let G = (V,E,w) and Ĝ = (V,E, ŵ) be two weighted directed
graphs with the same sets of nodes and edges, where ŵ is any reweighting
function for w. A path π∗ is a shortest path in G if and only if π∗ is a
shortest path in Ĝ. Moreover, γ is a negative-length cycle in G if and only if
γ is a negative-length cycle in Ĝ.

Proof. See [12]. 2

Another property of the reweighting technique is that, provided that we
have already computed a distance function ds, if we look at ds as a potential
function, we come up with a nonnegative weighting function ŵ.

Lemma 2.15 Let G = (V,E,w) be a weighted directed graph, let s ∈ V be a
fixed source and let ds : V → R be a distance function from s. If we define
ŵ(u, v) = w(u, v) + ds(u)− ds(v), then ŵ(u, v) ≥ 0 for any (u, v) ∈ E.

Proof. From Lemma 2.13, we know that distance functions satisfy the Bell-
man condition: ds(v) ≤ ds(u) + w(u, v). Thus, 0 ≤ ds(u) + w(u, v) + ds(u) −
ds(v) = ŵ(u, v). 2

Notice that the reweighting technique with potentials equal to distances
is not useful for solving the single-source shortest paths tree as it requires
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distances to be already computed. However, as we already stated, it is the
main tool for designing efficient algorithms for the dynamic version of the
problem, as we shall see in Section 4.3. Moreover, it is also useful for designing
efficient algorithms for the all-pairs shortest paths problem, where we are asked
to compute the shortest paths between all pairs of nodes in the graph [12].

2.4.1 Computing Shortest Paths Trees

In this section we survey the best known algorithms for the single-source short-
est paths problem. In particular, we first consider the version of the problem
where edge weights are constrained to be real nonnegative values and we briefly
recall the well-known algorithm of Dijkstra [24]. We remark that adaptations
of this algorithm are crucial to solving efficiently dynamic shortest paths prob-
lems. Then, we consider the Bellman-Ford algorithm for the unconstrained
general version of the problem where edge weights are arbitrary real values.
This algorithm will serve in Chapter 4 as a term of comparison in our exper-
imental evaluation of dynamic algorithms for the single-source shortest paths
problem. For more details about algorithms described in this section, we refer
the interested reader to [12].

Nonnegative Edge Weights: Dijkstra’s Algorithm

In Figure 2.2 we show the algorithm of Dijkstra for solving the single-source
shortest paths problem. The algorithm takes as input a weighted directed
graph G = (V,E,w) where

w : E →R+ ∪ {0}

is a function that assigns each edge with a nonnegative real weight, and a fixed
source node s ∈ V . The output of the algorithm is the distance function ds as
introduced in Definition 2.15, and a function

ps : V → V ∪ {nil}

such that ps(v) = u if and only if (u, v) ∈ T (s). Intuitively, ps represents the
shortest paths tree T (s) by assigning each node with its parent in T (s). As
the source has no parent in T (s), we use for ps(s) the special value nil.

Notice that the algorithm is based on an initialization phase (lines 2–6),
and a main computation loop (lines 7–13). In lines 2–4 we set the initial
distances of all the nodes to +∞ and all the parents to nil. Moreover, in line
5 we assign distance 0 to the source and in line 6 we initialize a set of nodes
H. The main computation loop (line 7) progressively extracts from H all the
nodes u that have minimum distance ds(u) (lines 8–9), and for each of them



2.4. SHORTEST PATHS AND REWEIGHTING TECHNIQUES 27

it looks for outgoing edges (u, v) towards nodes that are still in H (line 10).
For each of such edges (u, v), in line 11 we check if the Bellman condition
introduced in Lemma 2.13 is violated by (u, v). If this is the case, the distance
ds(v) is improved (line 12) and the edge (u, v) is put in the shortest paths
tree (line 13). We remark that the distances ds, which are initially set to +∞,
are progressively reduced during the execution of the algorithm until, upon
termination, they agree with the formulation given in Definition 2.15.

Algorithm Dijkstra(G = (V, E, w), s) : ps, ds

1. begin

2. for each v ∈ V do

3. ds(v)← +∞
4. ps(v)← nil

5. ds(s)← 0
6. H ← V

7. while H 6= ∅ do

8. let u ∈ H: ds(u) = minw∈H ds(w)
9. H ← H − {u}
10. for each v ∈ H: (u, v) ∈ E do

11. if ds(v) > ds(u) + w(u, v) then

12. ds(v)← ds(u) + w(u, v)
13. ps(v)← u

14. end.

Figure 2.2: Dijkstra’s algorithm

Lemma 2.16 Let G = (V,E,w) be a weighted directed graph with nonnegative
weight function w and let s ∈ V be a fixed source node. If n = |V | and m = |E|,
then the algorithm of Dijkstra correctly computes ps and ds in O(m + n log n)
worst-case time.

Proof. We concentrate on the running time of the algorithm; for the proof
of correctness, we refer the interested reader to [12]. First notice that lines
2–6 require O(n) time in the worst case. The while loop in line 7 is executed
exactly n times while the for loop in line 10 is executed at most m times
since no edge is scanned more than once during the whole execution of the
algorithm. If we represent H by means of a Fibonacci Heap [12] and we assume
that priorities of nodes are given by distances ds, extractions of minima in
lines 8–9 can be performed in log n worst-case time each, while each priority
improvement in line 12 requires O(1) time. Thus, the overall running time is
O(m + n log n) in the worst-case. 2

We remark that the assumption that edge weights are nonnegative is cru-
cial for proving the correctness of the algorithm of Dijkstra. In the general
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case of arbitrary edge weights, the idea of keeping a priority queue and mono-
tonically extracting nodes with minimum priority does not work anymore.
As we will see in the next section, when negative-weight edges are present,
the worst-case temporal complexity of the best known algorithm increases to
O(m · n).

Arbitrary Edge Weights: Bellman-Ford’s Algorithm

We now briefly describe the algorithm of Bellman-Ford for computing a short-
est paths tree when arbitrary real edge weights are present in the graph. Fig-
ure 2.3 shows the pseudo-code of the algorithm.

The input and the output of the algorithm are the same of Dijkstra’s
algorithm, except for the function w : E → R which allows negative-weight
edges. The structure of the algorithm is essentially the same as the algorithm
of Dijkstra, except for the fact that instead of keeping nodes in a priority
queue H, we use a queue Q.

Algorithm Bellman-Ford(G = (V, E, w), s) : ps, ds

1. begin

2. for each v ∈ V do

3. ds(v)← +∞
4. ps(v)← nil

5. ds(s)← 0
6. Q← {s}
7. while Q 6= ∅ do

8. u← dequeue(Q)
9. for each v ∈ H: (u, v) ∈ E do

10. if ds(v) > ds(u) + w(u, v) then

11. if v 6∈ Q then enqueue(v, Q)
12. ds(v)← ds(u) + w(u, v)
13. ps(v)← u

14. end.

Figure 2.3: Bellman-Ford’s algorithm

The following lemma addresses the running time and the correctness of the
algorithm.

Lemma 2.17 Let G = (V,E,w) be a weighted directed graph with weight
function w and let s ∈ V be a fixed source node. If n = |V | and m = |E|,
then the algorithm of Bellman-Ford correctly computes ps and ds in O(m · n)
worst-case time.

Proof. See [2]. 2



Chapter 3

Fully Dynamic Transitive

Closure

3.1 Introduction

In this chapter we present original results concerning the fully dynamic tran-
sitive closure problem. As a main contribution, we devise a new technique
which allows us to reduce fully dynamic transitive closure to the problem of
dynamically reevaluating polynomials over matrices when updates of variables
are performed.

Based on this new technique, we devise a fully dynamic version of the static
algorithm for computing the transitive closure of a directed graph presented
in Section 2.3.2 and referred to as Method 1. In particular, we show how
to achieve O(n2 log n) amortized time per update and unit cost per query.
Our algorithm revisits the best known algorithm for fully dynamic transitive
closure presented in [52] in terms of completely different data structures, and
features better initialization time.

Using the same matrix-based approach, we then devise a new deterministic
algorithm which improves the best known bounds for fully dynamic transitive
closure achieved in [52]. Our algorithm hinges upon the well-known equiva-
lence between transitive closure and matrix multiplication on a closed semiring
(see Section 2.3.2, Method 2). Updates are supported in O(n2) amortized time
and reachability queries are answered with just one matrix lookup. We also
address the case where only deletions are allowed and we show how to han-
dle updates in O(n) amortized time per operation while maintaining constant
time per query; in this way we generalize to directed graphs the bounds of [49]
and we improve over [43].

At last, we present the first algorithms which support both updates and
queries in subquadratic time per operation, proving that it is actually possible

29
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Figure 3.1: (a) Insert operation; (b) Delete operation as in Definition 3.1.

to break through the O(n2) barrier on the single-operation complexity of fully
dynamic transitive closure.

In the remainder of this chapter we first formally define the fully dynamic
transitive closure problem and we give preliminary definitions (Section 3.2).
Sections 3.4 to 3.7 are devoted to our technical contributions: we introduce two
problems on dynamic matrices (Section 3.4) and we design fast algorithms for
fully dynamic transitive closure based on efficient solutions to these problems
(Sections 3.5 to 3.7). Section 3.8 summarizes the most interesting techniques
used throughout the chapter and the achieved results.

3.2 Statement of the Problem

In this section we give a formal definition of the fully dynamic transitive closure
problem. We assume the reader to be familiar with the preliminary concepts
discussed in Section 2.2 and in Section 2.3.

Definition 3.1 Let G = (V,E) be a directed graph and let TC(G) = (V,E ′) be
its transitive closure. The Fully Dynamic Transitive Closure Problem

consists of maintaining a data structure G for graph G under an intermixed
sequence σ = 〈G.Op1, . . . , G.Opk〉 of Initialization, Update, and Query op-
erations. Each operation G.Opj on data structure G can be either one of the
following:

• G.Init(A): perform the initialization operation E ← A, where A ⊆
V × V .
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• G.Insert(v, I): perform the update E ← E ∪ {(u, v) | u ∈ V ∧ (u, v) ∈
I} ∪ {(v, u) | u ∈ V ∧ (v, u) ∈ I}, where I ⊆ E and v ∈ V . We call this
kind of update a v-Centered insertion in G.

• G.Delete(D): perform the update E ← E −D, where D ⊆ E.

• G.Query(x, y): perform a query operation on TC(G) and return 1 if
(x, y) ∈ E′ and 0 otherwise.

Few remarks are in order at this point. First, the generalized Insert and
Delete updates that we consider in our operational statement of the problem
have been first introduced by King in [52]. With just one operation, they are
able to change the graph by adding or removing a whole set of edges, rather
than a single edge (see Figure 3.1). Notice that we provide an operational
(and not algorithmic) definition of operations, giving no detail about what the
actual implementation should do for supporting them. Second, we consider
explicitly operations of initialization of the graph G and, more generally than
in the traditional definitions of dynamic problems, we allow them to appear
everywhere in sequence σ.

Differently from other variants of the problem, we do not address the issue
of returning actual paths between nodes, and we just consider the problem of
answering reachability queries.

/ � .

In Lemma 2.9 we proved that, if G = (V,E) is a directed graph and XG is
its adjacency matrix, computing the Kleene closure X ∗

G of XG is equivalent to
computing the (reflexive) transitive closure TC(G) of G. For this reason, in this
chapter, instead of attacking directly the problem introduced in Definition 3.1,
we study an equivalent problem on matrices. Before defining it formally, we
provide some preliminary notation.

Definition 3.2 If X is a matrix, we denote by IX,i and JX,j the matrices
equal to X in the i-th row and j-th column, respectively, and null in any other
entries:

IX,i[x, y] =

{
X[x, y] if x = i

0 otherwise

JX,i[x, y] =

{
X[x, y] if y = i

0 otherwise

Definition 3.3 Let X and Y be n×n Boolean matrices. Then X ⊆ Y if and
only if X[x, y] = 1 ⇒ Y [x, y] = 1 for any x, y ∈ {1, . . . , n}.
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We are now ready to define a dynamic version of the problem of computing
the Kleene closure of a Boolean matrix.

Definition 3.4 Let X be an n × n Boolean matrix and let X ∗ be its Kleene
closure. We define the Fully Dynamic Boolean Matrix Closure Prob-

lem as the problem of maintaining a data structure X for matrix X under an
intermixed sequence σ = 〈X.Op1, . . . , X.Opk〉 of initialization, update, and query
operations. Each operation X.Opj on data structure X can be either one of the
following:

• X.Init∗(Y ): perform the initialization operation X ← Y , where Y is an
n× n Boolean matrix.

• X.Set∗(i,∆X): perform the update X ← X + I∆X,i + J∆X,i, where ∆X

is an n × n Boolean matrix and i ∈ {1, . . . , n}. We call this kind of
update an i-Centered set operation on X and we call ∆X Update

Matrix.

• X.Reset∗(∆X): perform the update X ← X −∆X, where ∆X ⊆ X is
an n× n Boolean update matrix.

• X.Lookup∗(x, y): return the value of X∗[x, y], where x, y ∈ {1, . . . , n}.

Algebraic operations + and − are performed by casting Boolean matrices into
the ring of n×n matrices over the ring S2 of integers introduced in Lemma 2.4.
Integer matrices are converted back to Boolean matrices by looking at any zero
value as 0 and any nonzero value as 1.

Notice that Set∗ is allowed to modify only the i-th row and the i-th column
of X, while Reset∗ and Init∗ can modify any entries of X.

It is also interesting to observe that in our dynamic setting, in order to
define Reset updates which use the − operator to flip matrix entries from 1 to
0, we require operations on Boolean matrices to be performed in the broader
algebraic structure of rings. For the static version of the problem discussed
in Section 2.3 rings instead of closed semirings were used as well, but only for
obtaining efficient algorithms and not for defining the problem itself.

We stress the strong correlation between Definition 3.4 and Definition 3.1:
if G is a graph and X is its adjacency matrix, operations X.Init∗, X.Set∗,
X.Reset∗, and X.Lookup∗ are equivalent to operations G.Init, G.Insert,
G.Delete, and G.Query, respectively.
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3.3 Overview of Our Approach

In this section we give an overview of the new ideas presented in this paper,
discussing the most significant aspects of our techniques.

The technical contributions of this chapter span over four sections: Sec-
tion 3.4 presents two problems on dynamic matrices that will be central to
designing three efficient fully dynamic algorithms for transitive closure in Sec-
tion 3.5, Section 3.6 and Section 3.7, respectively.

Our approach consists of reducing fully dynamic transitive closure to the
problem of maintaining efficiently polynomials over matrices subject to up-
dates of their variables. In particular, we focus on the equivalent problem of
fully dynamic Kleene closure and we show that efficient data structures for
it can be realized using efficient data structures for maintaining polynomials
over matrices.

Suppose that we have a polynomial over Boolean matrices, e.g., P (X,Y,

Z,W ) = X + Y Z2W , where matrices X, Y , Z and W are its variables. The
value P (X,Y,Z,W ) of the polynomial can be computed via sum and multipli-
cation of matrices X, Y , Z and W in O(n2.38) (see Section 2.3.1). Now, what
kind of modifications can we perform on a variable, e.g., variable Z, so as to
have the chance of updating the value of P (X,Y,Z,W ) in less than O(n2.38)
time?

In Section 3.4.1 we show a data structure that allows us to reevaluate
correctly P (X,Y,Z,W ) in just O(n2) amortized time after flipping to 1 any
entries of Z that were 0, provided they lie on a row or on a column (SetRow or
SetCol operation), of after flipping to 0 any entries of Z that were 1 (Reset
operation). This seems a step forward, but are this kind of updates of variables
powerful enough to be useful our original problem of fully dynamic transitive
closure? Unfortunately, the answer is no. Actually, we also require the more
general Set operation of flipping to 1 any entries of Z that were 0. Now, if we
want to have our polynomial always up to date after each variable change of
this kind, it seems that there is no way of doing any better than recomputing
everything from scratch.

So let us lower our expectations on our data structure for maintaining P ,
and tolerate errors. In exchange, our data structure must support efficiently
the general Set operation. The term “errors” here means that we maintain a
“relaxed” version of the correct value of the polynomial, where some 0’s may
be incorrect. The only important property that we require is that any 1’s
that appear in the correct value of the polynomial after performing a SetRow

or SetCol operation must also appear in the relaxed value that we maintain.
This allows us to support any Set operation efficiently in a lazy fashion (so
in the following we call it LazySet) and is powerful enough for our original
problem of fully dynamic transitive closure.
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Actually, doing things lazily while maintaining the desired properties in
our data structure for polynomials is the major technical difficulty in Sec-
tion 3.4.1. Sections 3.5 and 3.6 then show two methods to solve the fully
dynamic Boolean matrix closure problem by using polynomials of Boolean
matrices as if they were building blocks. The second method yields the fastest
known algorithm for fully dynamic transitive closure with constant query time.
If we give up maintaining polynomials of degree > 1, using a surprisingly sim-
ple lazy technique we can even support certain kinds of variable updates in
subquadratic worst-case time per operation (see Section 3.4.2). This turns out
to be once again applicable to fully dynamic transitive closure, yielding the
first subquadratic algorithms known so far for the problem (see Section 3.7).

3.4 Dynamic Matrices

In this section we consider two problems on dynamic matrices and we de-
vise fast algorithms for solving them. As we already stated, these problems
will be central to designing efficient algorithms for the fully dynamic Boolean
matrix closure problem introduced in Definition 3.4. In more detail, in Sec-
tion 3.4.1 we address the problem of reevaluating polynomials over Boolean
matrices under modifications of their variables. We propose a data structure
for maintaining efficiently the special class of polynomials of degree 2 consist-
ing of single products of Boolean matrices. We show then how to use this data
structure for solving the more general problem on arbitrary polynomials. In
Section 3.4.2 we study the problem of finding an implicit representation for
integer matrices that makes it possible to update as many as Ω(n2) entries per
operation in o(n2) worst-case time at the price of increasing the lookup time
required to read a single entry.

3.4.1 Dynamic Polynomials over Boolean Matrices

We now study the problem of maintaining the value of polynomials over
Boolean matrices under updates of their variables. We define these updates so
that they can be useful later on for our original problem of dynamic Boolean
matrix closure. We first need some preliminary definitions.

Definition 3.5 Let X be a data structure. We denote by Xi the value of X at
Time i, i.e., the value of X after the i-th operation in a sequence of operations
that modify X. By convention, we assume that at time 0 any numerical value
in X is zero. In particular, if X is a Boolean matrix, X0 = 0n.

In the following definition we formally introduce our first problem on dy-
namic matrices.
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Definition 3.6 Let Bn be the set of n× n Boolean matrices and let

P =
h∑

a=1

Ta

be a polynomial1 with h terms defined over Bn, where each

Ta =
k∏

b=1

Xa
b

has degree exactly k and variables Xa
b ∈ Bn are distinct. We consider the

problem of maintaining a data structure P for the polynomial P under an
intermixed sequence σ = 〈P.Op1, . . . , P.Opl〉 of initialization, update, and query
operations. Each operation P.Opj on the data structure P can be either one of
the following:

• P.Init(Z1
1 , . . . , Zh

k ): perform the initialization Xa
b ← Za

b of the variables
of polynomial P , where each Za

b is an n× n Boolean matrix.

• P.SetRow(i,∆X,Xa
b ): perform the row update operation Xa

b ← Xa
b +

I∆X,i, where ∆X is an n × n Boolean update matrix. The operation
sets to 1 the entries in the i-th row of variable Xa

b of polynomial P as
specified by matrix ∆X.

• P.SetCol(i,∆X,Xa
b ): perform the column update operation Xa

b ← Xa
b +

J∆X,i, where ∆X is an n×n Boolean update matrix. The operation sets
to 1 the entries in the i-th column of variable Xa

b of polynomial P as
specified by matrix ∆X.

• P.LazySet(∆X,Xa
b ): perform the update operation Xa

b ← Xa
b + ∆X,

where ∆X is an n × n Boolean update matrix. The operation sets to 1
the entries of variable Xa

b of polynomial P as specified by matrix ∆X.

• P.Reset(∆X,Xa
b ): perform the update operation Xa

b ← Xa
b −∆X, where

∆X is an n× n Boolean update matrix such that ∆X ⊆ Xa
b . The oper-

ation resets to 0 the entries of variable Xa
b of polynomial P as specified

by matrix ∆X.

1In the following, we omit specifying explicitly the dependence of a polynomial on its
variables, and we denote by P both the function P (X1, . . . , Xk) and the value of this function
for fixed values of X1, . . . , Xk, assuming that the correct interpretation is clear from the
context.
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• P.Lookup(): answer a query about the value of P by returning an n× n

Boolean matrix Yj, such that Mj ⊆ Yj ⊆ Pj, where M is an n × n

Boolean matrix whose value at time j is defined as follows:

Mj =
∑

1 ≤ i ≤ j :
Opi 6= LazySet

(Pi − Pi−1).

and Pi is the value of polynomial P at time i. According to this definition,
we allow the answer about the value of P to be affected by one-sided error.

Algebraic operations + and − are performed by casting Boolean matrices into
the ring of n×n matrices over the ring S2 of integers introduced in Lemma 2.4.
Integer matrices are converted back to Boolean matrices by looking at any zero
value as 0 and any nonzero value as 1.

SetRow and SetCol are allowed to modify only the i-th row and the i-
th column of variable Xa

b , respectively, while LazySet, Reset and Init can
modify any entries of Xa

b . It is crucial to observe that in the operational
definition of Lookup we allow one-sided errors in answering queries on the
value of P . In particular, in the answer there have to be no incorrect 1’s and
the error must be bounded: Lookup has to return a matrix Y that contains at
least the 1’s in M , and no more than the 1’s in P . As we will see later on, this
operational definition simplifies the task of designing efficient implementations
of the operations and is still powerful enough to be useful for our original
problem of dynamic Boolean matrix closure.

The following lemma shows that the presence of errors is related to the
presence of LazySet operations in sequence σ. In particular, it shows that, if
no LazySet operation is performed, then Lookup makes no errors and returns
the correct value of polynomial P .

Lemma 3.1 Let P be a polynomial and let σ = 〈P.Op1, . . . , P.Opk〉 be a se-
quence of operations on P . If Opi 6= LazySet for all 1 ≤ i ≤ j ≤ k, then
Mj = Pj.

Proof. The proof easily follows by telescoping the sum that defines Mj:
Mj = Pj − Pj−1 + Pj−1 − Pj−2 + · · · + P2 − P1 + P1 − P0 = Pj − P0 = Pj . 2

Errors in the answers given by Lookup may appear as soon as LazySet

operations are performed in sequence σ. To explain how M is defined math-
ematically, notice that M0 = 0n by Definition 3.5 and M sums up all the
changes that the value of P has undergone up to the j-th operation, except
for the changes due to LazySet operations, which are ignored. This means
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that, if any entry P [x, y] flips from 0 to 1 or vice-versa due to an operation
Opj different from LazySet, so does M [x, y] and thus Y [x, y].

As a side note, we remark that it is straightforward to extend the results of
this section to the general class of polynomials with terms of different degrees
and multiple occurrences of the same variable.

/ � .

We now focus on the problem of implementing the operations introduced
in Definition 3.6. A simple-minded implementation of the operations on P is
the following:

• Maintain variables Xa
b , terms Ta, and a matrix Y that contains the value

of the polynomial.

• Recompute from scratch Ta and the value of Y = P = T1 + · · ·+Th after
each Init, SetRow, SetCol and Reset that change Xa

b .

• Do nothing after a LazySet operation, except for updating X a
b . This

means that Y may no longer be equal to P after the operation.

• Let Lookup return the maintained value of Y .

It is easy to verify that at any time j, i.e., after the j-th operation,
Opj 6=LazySet implies Y = P and Opj =LazySet implies Y = M . In other
words, the value Y returned by Lookup oscillates between the exact value P

of the polynomial and the value M obtained without considering LazySet

operations.
With the simple-minded implementation above, we can support Init in

O(h · k · nω + h · n2) time, SetRow and SetCol in O(k · nω) time, Reset in
O(k · nω + h · n2) time, and Lookup and LazySet in O(n2) time.

The remainder of this section provides more efficient solutions for the prob-
lem. In particular, we present a data structure that supports Lookup and
LazySet operations in O(n2) worst-case time, SetRow, SetCol and Reset op-
erations in O(k ·n2) amortized time, and Init operations in O(h ·k ·nω +h ·n2)
worst-case time. The space used is O(h·k2 ·n2). Before considering the general
case where polynomials have arbitrary degree k, we focus on the special class
of polynomials where k = 2.

Data Structure for Polynomials of Degree k = 2

We define a data structure for P that allows us to maintain explicitly the
value Yj of the matrix Y at any time j during a sequence 〈P.Op1, . . . , P.Opl〉 of
operations. This makes it possible to perform Lookup operations in optimal
quadratic time. We avoid recomputing from scratch the value of Y after each
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update as in the simple-minded method, and we propose efficient techniques
for propagating to Y the effects of changes of variables X a

b due to SetRow,
SetCol and Reset operations. In case of LazySet, we only need to update the
affected variables, leaving the other elements in the data structure unaffected.
This, of course, implies that after a LazySet at time j, the maintained value
Yj will be clearly not synchronized with the correct value Pj of the polynomial.
Most technical difficulties of this section come just from this lazy maintenance
of Yj .

Our data structure for representing a polynomial of degree 2 of the form
P = X1

1 ·X1
2 + . . . + Xh

1 ·Xh
2 is presented below.

Data Structure 3.1 We maintain the following elementary data structures
with O(h · n2) space:

1. 2h matrices Xa
1 and Xa

2 for 1 ≤ a ≤ h;

2. h integer matrices Prod1, . . . , P rodh such that Proda maintains a “lazy”
count of the number of witnesses of the product Ta = Xa

1 ·Xa
2 .

3. an integer matrix S such that S[x, y] = |{a : Proda[x, y] > 0}|. We
assume that Yj [x, y] = 1 ⇔ S[x, y] > 0.

4. 2h integer matrices LastF lipX, one for each matrix X = Xa
b . For any

entry X[x, y] = 1, LastF lipX [x, y] is the time of the most recent opera-
tion that caused X[x, y] to flip from 0 to 1. More formally:

LastF lipXj
[x, y] = max

1≤t≤j
{t | Xt[x, y]−Xt−1[x, y] = 1}

if Xj [x, y] = 1, and is undefined otherwise;

5. 2h integer vectors LastRowX , one for each matrix X = Xa
b . LastRowX [i]

is the time of the last Init or SetRow operation on the i-th row of X,
and zero if no such operation was ever performed. More formally:

LastRowXj
[i] = max

1≤t≤j
{0, t | Opt = Init(. . .) ∨ Opt = SetRow(i,∆X,X)}

We also maintain similar vectors LastColX ;

6. a counter T ime of the number of performed operations;

Before getting into the full details of our implementation of operations, we
give an overview of the main ideas. We consider how the various operations
should affect the data structure. In particular, we suppose that an operation
changes any entries of variable Xa

1 in a term Ta = Xa
1 ·Xa

2 , and we define what
our implementation should do on matrix Proda:
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SetRow/SetCol: if some entry Xa
1 [x, y] is flipping to 1, then y becomes a

witness in the product Xa
1 · Xa

2 for any pair x, z such that Xa
2 [y, z] =

1. Then we should put y in the count Proda[x, z], if it is not already
counted. Moreover, if some entry Xa

1 [x, y] was already 1, but for some
pair x, z the index y is not counted in Proda[x, z], then we should put y

in the count Proda[x, z].

LazySet: if some entry Xa
1 [x, y] is flipping to 1, then y becomes a witness for

any pair x, z such that Xa
2 [y, z] = 1. Then we should put y in the count

Proda[x, z], if it is not already counted, but we do not do this.

Reset: if some entry Xa
1 [x, y] is flipping to 0, then y is no longer a witness for

all pairs x, z such that Xa
2 [y, z] = 1. Then we should remove y from the

count Proda[x, z], if it is currently counted.

Note that after performing LazySet there may be triples (x, y, z) such that
both Xa

1 [x, y] = 1 and Xa
2 [y, z] = 1, but y is not counted in Proda[x, z]. Now

the problem is: is there any property that we can exploit to tell if a given y is
counted or not in Proda[x, z] whenever both Xa

1 [x, y] = 1 and Xa
2 [y, z] = 1?

We introduce a predicate Pa(x, y, z), 1 ≤ x, y, z ≤ n, such that Pa(x, y, z)
is true if and only if the last time any of the two entries X a

1 [x, y] and Xa
2 [y, z]

flipped from 0 to 1 is before the time of the last update operation on the x-th
row or the y-th column of Xa

1 and the time of the last update operation on
the y-th row or the z-th column of Xa

2 . In short:

Pa(x, y, z) := max{LastF lipXa
1
[x, y], LastF lipXa

2
[y, z]} ≤

max{LastRowXa
1
[x], LastColXa

1
[y], LastRowXa

2
[y], LastColXa

2
[z]}

The property Pa answers our previous question and allows it to define the
following invariant that we maintain in our data structure. We remark that
we do not need to maintain Pa explicitly in our data structure as it can be
computed on demand in constant time by accessing LastF lip and LastRow.

Invariant 3.1 For any term Ta = Xa
1 · Xa

2 in polynomial P , at any time
during a sequence of operations σ, the following invariant holds for any pair
of indices x, z:

Proda[x, z] = |{y : Xa
1 [x, y] = 1 ∧ Xa

2 [y, z] = 1 ∧ Pa(x, y, z)}|

According to Invariant 3.1, it is clear that the value of each entry Proda[x, z]
is a “lazy” count of the number of witnesses of the Boolean matrix product
Ta[x, z] = (Xa

1 ·Xa
2 )[x, z]. Notice that, since Ta[x, z] = 1 ⇔ ∃y : Xa

1 [x, y] =
1 ∧ Xa

2 [y, z] = 1, we have that Proda[x, z] > 0 ⇒ Ta[x, z] = 1. Thus, we
may think of Pa as a “relaxation” property.
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We implement the operations introduced in Definition 3.6 as described
next, assuming that the operation T ime← T ime + 1 is performed just before
each operation:

Init

procedure Init(Z1
1 , Z1

2 , . . . , Zh
1 , Zh

2 )
1. begin
2. for each a do Xa

1 ← Za
1 ; Xa

2 ← Za
2

3. { initialize members 2–5 of Data Structure 3.1 }
4. end

Init assigns the value of variables Xa
1 and Xa

2 and initializes elements 2–5
of Data Structure 3.1. In particular, LastF lipX [x, y] is set to T ime for any
X[x, y] = 1 and the same is done for LastRow[i] and LastCol[i] for any i.
Proda is initialized by computing the product Xa

1 ·Xa
2 in the ring of integers,

i.e., looking at Xa
b as integer matrices.

Lookup

function Lookup()
1. begin
2. return Y s.t. Y [x, y] = 1 ⇔ S[x, y] > 0
3. end

Lookup simply returns a binarized version Y of matrix S defined in Data
Structure 3.1.

SetRow

procedure SetRow(i, ∆X, Xa
b )

1. begin
2. Xa

b ← Xa
b + I∆X,i

3. {update LastF lipXa

b
}

4. if b = 1 then
5. for each x : Xa

1 [i, x] = 1 do
6. for each y : Xa

2 [x, y] = 1 do
7. if not Pa(i, x, y) then
8. Proda[i, y]← Proda[i, y] + 1
9. if Proda[i, y] = 1 then S[i, y]← S[i, y] + 1
10. else{b = 2: similar to P.SetCol(i, ∆X, Xa

1)}
11. LastRowXa

b
[i]← T ime

12. end

After performing an i-centered insertion in Xa
b on line 2 and after updating

LastF lipXa
b

on line 3, SetRow checks on lines 5–7 for any triple (i, x, y) such
that the property Pa(i, x, y) is still not satisfied, but will be satisfied thanks
to line 11, and increases Proda and S accordingly (lines 8–9).
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SetCol

procedure SetCol(i, ∆X, Xa
b )

1. begin
2. Xa

b ← Xa
b + J∆X,i

3. {update LastF lipXa

b
}

4. if b = 1 then
5. for each x : Xa

1 [x, i] = 1 do
6. for each y : Xa

2 [i, y] = 1 do
7. if not Pa(x, i, y) then
8. Proda[x, y]← Proda[x, y] + 1
9. if Proda[x, y] = 1 then S[x, y]← S[x, y] + 1
10. else {b = 2: similar to P.SetRow(i, ∆X, Xa

1 )}
11. LastColXa

1
[i]← T ime

12. end

Similar to SetRow.

LazySet

procedure LazySet(∆X, Xa
b )

1. begin
2. Xa

b ← Xa
b + ∆X

3. {update LastF lipXa

b
}

4. end

LazySet simply sets to 1 any entries in Xa
b and updates LastF lipXa

b
. We

remark that no other object in the data structure is changed.

Reset

procedure Reset(∆X, Xa
b )

1. begin
2. if b = 1 then
3. for each x, y : ∆X [x, y] = 1 do
4. if max{LastRowXa

1
[x], LastColXa

1
[y]} ≥ LastF lipXa

1
[x, y] then

5. for each z : Xa
1 [y, z] = 1 do

6. if Pa(x, y, z) then
7. Proda[x, z]← Proda[x, z]− 1
8. if Proda[x, z] = 0 then S[x, z]← S[x, z]− 1
9. else { here max{LastRowXa

1
[x], LastColXa

1
[y]} < LastF lipXa

1
[x, y] }

10. for each z : Xa
1 [y, z] = 1 ∧ LastColXa

2
[z] > LastF lipXa

1
[x, y] do

11. if Pa(x, y, z) then
12. Proda[x, z]← Proda[x, z]− 1
13. if Proda[x, z] = 0 then S[x, z]← S[x, z]− 1
14. else {b = 2 similar to b = 1}
15. Xa

b ← Xa
b −∆X

16. end

In lines 2-14, using LastRowXa
b
, LastColXa

b
, and LastF lipXa

b
, Reset updates

Proda and S so as to maintain Invariant 3.1. Namely, for each reset entry



42 CHAPTER 3. FULLY DYNAMIC TRANSITIVE CLOSURE

(x, y) specified by ∆X (line 3), it looks for triples (x, y, z) such that P(x, y, z)
is going to be no more satisfied due to the reset of Xa

b [x, y] to be performed
(lines 5–6 and lines 10–11); Proda and S are adjusted accordingly (lines 7–8
and lines 12-13).

The distinction between the two cases max{LastRowXa
1
[x], LastColXa

1
[y]} ≥

LastF lipXa
1
[x,y] and max{LastRowXa

1
[x], LastColXa

1
[y]} < LastF lipXa

1
[x,y] in

line 4 and in line 9, respectively, is important to achieve fast running times
as it will be discussed in the proof of Theorem 3.2. Here we only point out
that if the test in line 4 succeeds, then we can scan any z s.t. X a

1 [y, z] = 1
without affecting the running time. If this is not the case, then we need to
process only indices z such that the test LastColXa

2
[y, z] > LastF lipXa

1
[x, y]

is satisfied, and avoid scanning other indices. For this reason line 10 must
be implemented very carefully by maintaining indices z in a list and by using
a move-to-front strategy that brings index z to the front of the list as any
operation Init(. . .), SetRow(z, . . .) or SetCol(z, . . .) is performed on z. In
this way indices are sorted according to the dates of operations on them.

As last step, Reset resets the entries of Xa
b as specified by ∆X (line 15).

/ � .

The correctness of our implementation of operations Init, SetRow, SetCol,
LazySet, Reset and Lookup is discussed in the following theorem.

Theorem 3.1 At any time j, Lookup returns a matrix Yj that satisfies the
relation Mj ⊆ Yj ⊆ Pj as in Definition 3.6.

Proof. We first remind that Y is the binarized version of S as follows from
the implementation of Lookup.

To prove that Y ⊆ P , observe that SetRow increases Proda[i, y] (line 8),
and possibly S (line 9), only if both Xa

1 [i, x] = 1 and Xa
2 [x, y] = 1: this implies

that Ta[i, y] = 1 and P [i, y] = 1.

To prove that M ⊆ Y , notice that at time j after performing an operation
Opj=SetRow(i,∆X,Xa

b ) on the i-th row of Xa
1 , P(i, x, y) is satisfied for any

triple (i, x, y) such that Xa
1 [i, x] = 1 and Xa

2 [x, y] = 1 thanks to the operation
LastRowXa

b
[i]← T ime (line 11). For Xa

2 the proof is analogous. Now, all such
triples (i, x, y) are enumerated by SetRow (lines 5–6): for each of them such
that Pa(i, x, y) was false at time j − 1, Proda[i, y] is increased and possibly
S[i, y] is increased as well (lines 7-9). If P [i, y] flips from 0 to 1, then necessarily
Xa

1 [i, x] flips from 0 to 1 for some x, and then, as stated above w.r.t. Pa,
Proda[i, y] gets increased. Thus, recalling that Y is the binarized version of
S, we have for any y:

Pj [i, y] − Pj−1[i, y] = 1 ⇒ Yj [i, y]− Yj−1[i, y] = 1.
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From the definition of M in Definition 3.6 we have that:

Mj [i, y]−Mj−1[i, y] = 1 ⇔ Pj[i, y] − Pj−1[i, y] = 1.

This proves the relation M ⊆ Y . A similar argument is valid also for SetCol,
while LazySet does not affect S at all.

To complete the proof we remark that Y = P just after any Init operation
and that Reset leaves the data structure as if reset entries were never set to
1. Indeed, Reset can be viewed as a sort of “undo” procedure that cancels
the effects of previous SetRow, SetCol or Init operations. 2

We now analyze the complexity of our implementation of the operations
on polynomials.

Theorem 3.2 Any Lookup, SetRow, SetCol and LazySet operation requires
O(n2) time in the worst case. Any Init requires O(h · nω + h · n2) worst-case
time, where ω is the exponent of matrix multiplication. The cost of any Reset

operation can be charged to previous SetRow, SetCol and Init operations.
The maximum cost charged to each Init is O(h · n3). The space required is
O(h · n2).

Proof. It is straightforward to see from the pseudocode of the operations that
any SetRow, SetCol and LazySet operation requires O(n2) time in the worst
case.

Init takes O(h · nω + h ·n2) in the worst case: in more detail, each Proda

can be directly computed via matrix multiplication and any other initialization
step requires no more than O(n2) worst-case time.

To prove that the cost of any Reset operation can be charged to previous
SetRow, SetCol and Init operations, we use a potential function

Φa =
∑

x,y

Proda[x, y]

associated to each term Ta of the polynomial. From the relation:

Proda[x, z] = |{y : Xa
1 [x, y] = 1 ∧ Xa

2 [y, z] = 1 ∧ Pa(x, y, z)}|

given in Invariant 3.1, it follows that 0 ≤ Proda[x, z] ≤ n for all x, z. Thus,
0 ≤ Φa ≤ n3.

Now, observe that SetRow increases Φa by at most n2 units per operation,
while Init increases Φa by at most n3 units per operation. Note that LazySet

does not affect Φa. We can finally address the case of Reset operations.
Consider the distinction between the two cases

max{LastRowXa
1
[x], LastColXa

1
[y]} ≥ LastF lipXa

1
[x,y]
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in line 4 and

max{LastRowXa
1
[x], LastColXa

1
[y]} < LastF lipXa

1
[x,y]

in line 9. In the first case, we can charge the cost of processing any triple
(x, y, z) to some previous operation on the x-th row of Xa

1 or to some previous
operation on the y-th column of Xa

1 ; in the second case, we consider only
those (x, y, z) for which some operation on the z-th column of X a

2 [y, z] was
performed after both Xa

1 [x, y] and Xa
2 [y, z] were set to 1. In both cases, any

Reset operation decreases Φa by at most n units for each reset entry of Xa
b ,

and this can be charged to previous operations which increased Φa. 2

The complex statement of the charging mechanism encompasses the dy-
namics of our data structure. In particular, we allow Reset operations to
charge up to a O(n3) cost to a single Init operation. Thus, in an arbitrary
mixed sequence with any number of Init, Reset takes O(n3) amortized time
per update. If, however, we allow Init operations to appear in σ only every
Ω(n) Reset operations, the bound for Reset drops down to O(n2) amortized
time per operation.

As a consequence of Theorem 3.2, we have the following corollaries that
refine the analysis of the running time of Reset operations.

Corollary 3.1 If we perform just one Init operation in a sequence σ of length
Ω(n), or more generally one Init operation every Ω(n) Reset operations, then
the amortized cost of Reset is O(n2) per operation.

Corollary 3.2 If we perform just one Init operation in a sequence σ of length
Ω(n2), or more generally one Init operation every Ω(n2) Reset operations,
and no operations SetRow and SetCol, then the amortized cost of Reset is
O(n) per operation.

In the following, we show how to extend the previous techniques in order
to deal with the general case of polynomials of degree k > 2.

Data Structure for Polynomials of Degree k > 2

To support terms of degree k > 2 in P , we consider an equivalent representa-
tion P̂ of P such that the degree of each term is 2. This allows us to maintain
a data structure for P̂ with the operations defined in the previous paragraph.

Lemma 3.2 Consider a polynomial

P =
h∑

a=1

Ta =
h∑

a=1

Xa
1 · · ·Xa

k
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with h terms where each term Ta has degree exactly k and variables Xa
b are

Boolean matrices. Let P̂ be the polynomial over Boolean matrices of degree 2
defined as

P̂ =
h∑

a=1

k∑

b=0

La
b,b−1 ·Ra

b,k−b−1

where La
b,j and Ra

b,j are polynomials over Boolean matrices of degree ≤ 2 de-
fined as

La
b,j =

{
Xa

b−j · La
b,j−1 if j ∈ [0, b− 1]

In if j = −1

Ra
b,j =

{
Ra

b,j−1 ·Xa
b+1+j if j ∈ [0, k − b− 1]

In if j = −1

Then P = P̂ .

Proof. To prove the claim, it suffices to check that

Ta =
k∑

b=0

La
b,b−1 · Ra

b,k−b−1

Unrolling the recursion for La
b,b−1, we obtain:

La
b,b−1 = Xa

1 · La
b,b−2 = Xa

1 ·Xa
2 · La

b,b−3 = · · · = Xa
1 ·Xa

2 · · ·Xa
b · In

Likewise, Ra
b,k−b−1 = In · Xa

b+1 · · ·Xa
k holds. Thus, by idempotence of the

closed semiring of Boolean matrices, we finally have:

k∑

b=0

La
b,b−1 · Ra

b,k−b−1 =
k∑

b=0

Xa
1 · · ·Xa

b ·Xa
b+1 · · ·Xa

k = Xa
1 · · ·Xa

k = Ta.

2

Since P̂ , La
b,j and Ra

b,j are all polynomials of degree ≤ 2, they can be repre-
sented and maintained efficiently by means of instances of Data Structure 3.1.
Our data structure for maintaining polynomials of degree > 2 is presented
below:

Data Structure 3.2 We maintain explicitly the k2 polynomials La
b,j and Ra

b,j

with instances of Data Structure 3.1. We also maintain polynomial P̂ with an
instance Y of Data Structure 3.1.
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X1T = Xb-1 Xb Xb+1... ...

... ...

Xb+2 Xk

Lb,1 Rb,1

Lb,b-1 Rb,k-b-1

Y

Figure 3.2: Revealing new 1’s in Y while updating a term T of degree k by
means of a SetCol operation on variable Xb or by means of a SetRow operation
on variable Xb+1.

We now consider how to support SetRow, SetCol, LazySet, Reset, Init
and Lookup in the case of arbitrary degree. We denote by SetRowk=2 and
SetColk=2 the versions of SetRow and SetCol implemented for k = 2.

SetCol, SetRow

procedure SetCol(i, ∆X, Xa
b )

1. begin
2. Xa

b ← Xa
b + J∆X,i

3. for j ← 1 to b− 1 do
4. Lab,j.SetColk=2

(i, ∆La
b,j−1, L

a
b,j−1) { it holds La

b,j = Xa
b−j · La

b,j−1 }
5. for j ← 1 to k − b− 1 do
6. Rab,j.SetRowk=2

(i, ∆Ra
b,j−1, R

a
b,j−1) { it holds Ra

b,j = Ra
b,j−1 ·Xa

b+1+j }
7. Y.SetColk=2(i, ∆La

b,b−1, L
a
b,b−1)

8. Y.SetRowk=2(i, ∆Ra
b,k−b−1, R

a
b,k−b−1)

9. for j ← 1 to k − b do Lab+j,j.LazySet(∆Xa
b , Xa

b )
10. for j ← 1 to b− 2 do Rab−j−1,j.LazySet(∆Xa

b , Xa
b )

11. end

The main idea behind SetCol is to exploit associativity of Boolean matrix
multiplication in order to propagate changes of intermediate polynomials that
are always limited to a row or a column and thus can be efficiently handled
by means of operations like SetRowk=2 and SetColk=2.

In lines 3–4 SetCol propagates via SetColk=2 the changes of the i-th
column of Xa

b to La
b,1, then the changes of the i-th column of La

b,1 to La
b,2, and

so on through the recursive decomposition:
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La
b,0 = Xa

b · In = Xa
b

La
b,1 = Xa

b−1 · La
b,0 = Xa

b−1 ·Xa
b

La
b,2 = Xa

b−2 · La
b,1 = Xa

b−2 ·Xa
b−1 ·Xa

b
...

...
...

La
b,b−1 = Xa

1 · La
b,b−2 = Xa

1 · · ·Xa
b−2 ·Xa

b−1 ·Xa
b

Likewise, in lines 5–6 it propagates via SetRowk=2 a null matrix of changes
of the i-th row of Xa

b+1 to Ra
b,1, then the changes (possibly none) of the i-th

row of Ra
b,1 (due to the late effects of some previous LazySet) to Ra

b,2, and so
on through the recursive decomposition:

Ra
b,0 = In ·Xa

b = Xa
b+1

Ra
b,1 = Ra

b,0 ·Xa
b+1 = Xa

b+1 ·Xa
b+2

Ra
b,2 = Ra

b,1 ·Xa
b+2 = Xa

b+1 ·Xa
b+2 ·Xa

b+3
...

...
...

Ra
b,k−b−1 = Ra

b,k−b−2 ·Xa
k = Xa

b+1 ·Xa
b+2 ·Xa

b+3 · · ·Xa
k

We remark that both loops in lines 3–4 and in lines 5–6 reveal, gather and
propagate any 1’s that appear in the intermediate polynomials due to the late
effects of some previous LazySet. In particular, even if the presence of lines
5–6 may seem strange because ∆Xa

b+1 = 0n, these lines are executed just for
this reason.

Finally, in lines 7–8 changes of La
b,b−1 and Ra

b,k−b−1 are propagated to Y ,

which represents the maintained value of P̂ , and in lines 9–10 new 1’s are
lazily inserted in any other polynomials that feature X a

b as a variable.

We omit the pseudocode for SetRow because it is similar to SetCol.

Reset, LazySet, Init, Lookup

Reset(∆X,Xa
b ) can be supported by propagating via Resetk=2 any changes

of Xa
b to any intermediate polynomial La

u,v and Ra
u,v that contains it, then

changes of such polynomials to any polynomials which depend on them and
so on up to Y .

LazySet(∆X,Xa
b ) can be supported by performing LazySetk=2 operations on

each polynomial La
u,v and Ra

u,v that contains Xa
b .

Init(Z1
1 , . . . , Zh

k ) can be supported by invoking Initk=2 on each polynomial
Lw

u,v, Rw
u,v and by propagating the intermediate results up to Y .

Lookup() can be realized by returning the maintained value Y of P̂ .

To conclude this section, we discuss the correctness and the complexity of
our operations in the case of polynomials of arbitrary degree.
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Theorem 3.3 At any time j, Lookup returns a matrix Yj that satisfies the
relation Mj ⊆ Yj ⊆ Pj as in Definition 3.6.

Proof. Since P̂ = P by Lemma 3.2, we prove that:

P̂j ⊇ Yj ⊇Mj =
∑

1 ≤ i ≤ j :
Opi 6= LazySet

(P̂i − P̂i−1).

To this aim, it is sufficient to prove that any 1 that appears (or disappears)
in the correct value of P̂ due to an operation different from LazySet appears
(or disappears) in Y as well, and that any entry of Y equal to 1 is also equal
to 1 in P̂ .

• SetCol/SetRow: assume a SetCol operation is performed on the i-th
column of variable Xa

b (see Figure 3.2). By induction, we assume that
all new 1’s are correctly revealed in the i-th column of our data structure
for La

b,j after the j-th iteration of SetColk=2 in line 4. Notice that
∆La

b,j = J∆La
b,j

,i, that is changes of La
b,j are limited to the i-th column:

this implies that these changes can be correctly propagated by means of
a SetCol operation to any polynomial that features La

b,j as a variable.
As a consequence, by Theorem 3.1, the j + 1-th iteration of SetColk=2

in line 4 correctly reveals all new 1’s in our data structure for La
b,j+1,

and again these new 1’s all lie on its i-th column. Thus, at the end of
the loop in lines 3–4, all new 1’s appear correctly in the i-th column of
La

b,b−1. Similar considerations apply also for Ra
b,k−b−1. To prove that

lines 7–8 insert correctly in Y all new 1’s that appear in P̂ and that
Y ⊆ P̂ we use again Theorem 3.1 and the fact that any 1 that appears
in P̂ also appears in La

b,b−1 ·Ra
b,k−b−1. Indeed, for any entry P̂ [x, y] that

flips from 0 to 1 due to a change of the i-th column of Xa
b or the i-th

row of Xa
b+1 there is a sequence of indices x = u0, u1, . . . , ub−1, ub =

i, ub+1, . . . , uk−1, uk = y such that Xa
j [uj−1, uj ] = 1, 1 ≤ j ≤ k, and

either one of Xa
b [ub−1, i] or Xa

b+1[i, ub+1] just flipped from 0 to 1 due
to the SetRow/SetCol operation. The proof for SetRow is completely
analogous.

• Reset: assume a Reset operation is performed on variable X a
b . As

Resetk=2 can reset any subset of entries of variables, and not only those
lying on a row or a column as in the case of SetRowk=2 and SetColk=2,
the correctness of propagating any changes of Xa

b to the polynomials
that depend on it easily follows from Theorem 3.1.

• Init: each Init operation recomputes from scratch all polynomials in
Data Structure 3.2. Thus Y = P̂ after each Init operation. 2
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Theorem 3.4 Any Lookup and LazySet operation requires O(n2) time in the
worst case. Any SetRow and SetCol operation requires O(k · n2) amortized
time, and any Init operation takes O(h · k · nω + h · n2) worst-case time. The
cost of any Reset operation can be charged to previous SetRow, SetCol and
Init operations. The maximum cost charged to each Init is O(h ·k ·n3). The
space required is O(h · k2 · n2).

Proof. The proof easily follows from Theorem 3.2. 2

As in the previous paragraph, we have the following corollaries.

Corollary 3.3 If we perform just one Init operation in a sequence σ of length
Ω(n), or more generally one Init operation every Ω(n) Reset operations, then
the amortized cost of Reset is O(k · n2) per operation.

Corollary 3.4 If we perform just one Init operation in a sequence σ of length
Ω(n2), or more generally one Init operation every Ω(n2) Reset operations,
and we perform no operations SetRow and SetCol, then the amortized cost of
Reset is O(k · n) per operation.

3.4.2 Dynamic Matrices over Integers

In this section we study the problem of finding an implicit representation for
a matrix of integers that makes it possible to support simultaneous updates
of multiple entries of the matrix very efficiently at the price of increasing the
lookup time required to read a single entry. This problem on dynamic matrices
will be central to designing the first subquadratic algorithm for fully dynamic
transitive closure that will be described in Section 3.7. We formally define the
problem as follows:

Definition 3.7 Let M be an n× n integer matrix. We consider the problem
of performing an intermixed sequence σ = 〈M.Op1, . . . , M.Opl〉 of operations on
M , where each operation M.Opj can be either one of the following:

• M.Init(X): perform the initialization M ← X, where X is an n × n

integer matrix.

• M.Update(J, I): perform the update operation M ←M + J · I, where J

is an n × 1 column integer vector, and I is a 1 × n row integer vector.
The product J · I is an n× n matrix defined for any 1 ≤ x, y ≤ n as:

(J · I)[x, y] = J [x] · I[y]

• M.Lookup(x, y): return the integer value M [x, y].
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It is straightforward to observe that Lookup can be supported in unit
time and operations Init and Update in O(n2) worst-case time by explicitly
performing the algebraic operations specified in the previous definition.

In the following we show that, if one is willing to give up unit time for
Lookup operations, it is possible to support Update in O(nω(1,ε,1)−ε) worst-
case time for each update operation, for any ε, 0 ≤ ε ≤ 1, where ω(1, ε, 1) is
the exponent of the multiplication of an n × nε matrix by an nε × n matrix.
Queries on individual entries of M are answered in O(nε) worst-case time via
Lookup operations and Init still takes O(n2) worst-case time.

We now sketch the main ideas behind the algorithm. We follow a simple
lazy approach: we log at most nε update operations without explicitly com-
puting them and we perform a global reconstruction of the matrix every nε

updates. The reconstruction is done through fast rectangular matrix multipli-
cation. This yields an implicit representation for M which requires us to run
through logged updates in order to answer queries about entries of M .

Data Structure

We maintain the following elementary data structures with O(n2) space:

• an n×n integer matrix Lazy that maintains a lazy representation of M ;

• an n× nε integer matrix BufJ for buffering update column vectors J ;

• an nε × n integer matrix BufI for buffering update row vectors I;

• a counter t of the number of Update operations performed since the last
Init, modulo nε.

Before proposing our implementation of the operations introduced in Def-
inition 3.7, we discuss a simple invariant property that we maintain in our
data structure and that guarantees the correctness of the implementation of
the operations that we are going to present. We use the following notation:

Definition 3.8 We denote by BufJ〈j〉 the n × j matrix obtained by consid-
ering only the first j columns of BufJ . Similarly, we denote by BufI〈i〉 the
i× n matrix obtained by considering only the first i rows of BufI.

Invariant 3.2 At any time t in the sequence of operations σ, the following
invariant is maintained:

M = Lazy + BufJ〈t〉 ·BufI〈t〉.
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Update

procedure Update(J, I)
1. begin
2. t← t + 1
3. if t ≤ nε then
4. BufJ [·, t]← J

5. BufI [t, ·]← I

6. else
7. t← 0
8. Lazy← Lazy + BufJ · BufI

9. end

Update first increases t and, if t ≤ nε, it copies column vector J onto the t-th
column of BufJ (line 4) and row vector I onto the t-th row of BufI (line 5).
If t > nε, there is no more room in BufJ and BufI for buffering updates.
Then the counter t is reset in line 7 and the reconstruction operation in line 8
synchronizes Lazy with M via rectangular matrix multiplication of the n×nε

matrix BufJ by the nε × n matrix BufI .

Lookup

procedure Lookup(x, y)
1. begin

2. return Lazy[x, y] +
∑t

j=1 BufJ [x, j] ·BufI [j, y]

3. end

Lookup runs through the first t columns and rows of buffers BufJ and BufI ,
respectively, and returns the value of Lazy corrected with the inner product
of the x-th row of BufJ〈t〉 by the y-th column of BufI〈t〉.

Init

procedure Init(X)
1. begin
2. Lazy ← X

3. t← 0
4. end

Init simply sets the value of Lazy and empties the buffers by resetting t.

The following theorem discusses the time and space requirements of oper-
ations Update, Lookup, and Init. As already stated, the correctness easily
follows from the fact that Invariant 3.2 is maintained throughout any sequence
of operations.

Theorem 3.5 Each Update operation can be supported in O(nω(1,ε,1)−ε) worst-
case time and each Lookup in O(nε) worst-case time, where 0 ≤ ε ≤ 1 and
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ω(1, ε, 1) is the exponent for rectangular matrix multiplication. Init requires
O(n2) time in the worst case. The space required is O(n2).

Proof. An amortized update bound follows trivially from amortizing the
cost of the rectangular matrix multiplication BufJ · BufI against nε update
operations. This bound can be made worst-case by standard techniques, i.e.,
by keeping two copies of the data structures: one is used for queries and the
other is updated by performing matrix multiplication in the background.

As fas as Lookup is concerned, it answers queries on the value of M [x, y]
in Θ(t) worst-case time, where t ≤ nε. 2

Corollary 3.5 If O(nω) is the time required for multiplying two n×n matri-
ces, then we can support Update in O(n2−(3−ω)ε) worst-case time and Lookup

in O(nε) worst-case time. Choosing ε = 1, the best known bound for ma-
trix multiplication (ω < 2.38) implies an O(n1.38) Update time and an O(n)
Lookup time.

Proof. A rectangular matrix multiplication between a n × nε matrix by a
nε× n matrix can be performed by computing O((n1−ε)2) multiplications be-
tween nε × nε matrices. This is done in O

(
(n1−ε)2 · (nε)ω

)
. The amortized

time of the reconstruction operation Lazy ← Lazy + BufJ · BufI is thus

O
(

(n1−ε)2·(nε)ω+n2

nε

)
= O(n2−(3−ω)ε). The rest of the claim follows from Theo-

rem 3.5. 2

3.5 Transitive Closure Updates in O(n2 log n) Time

In this section we show a first method for casting fully dynamic transitive
closure into the problem of reevaluating polynomials over Boolean matrices
presented in Section 3.4.1.

Based on the technique developed in Section 3.4.1, we revisit the dynamic
graph algorithm given in [52] in terms of dynamic matrices and we present a
matrix-based variant of it which features better initialization time while main-
taining the same bounds on the running time of update and query operations,
i.e., O(n2 · log n) time per update and O(1) time per query. The space re-
quirement of our algorithm is M(n) · log n, where M(n) is the space used for
representing a polynomial over Boolean matrices. As stated in Theorem 3.4,
M(n) is O(n2) if h and k are constant.

In the remainder of this section we first describe our data structure and
then we show how to support efficiently operations introduced in Definition 3.4
for the equivalent problem of fully dynamic Boolean matrix closure.
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3.5.1 Data Structure

In Section 2.3.2 (Method 1) we showed that the Kleene closure of a Boolean
matrix X can be computed from scratch via matrix multiplication by com-
puting log2 n polynomials Pk = Pk−1 + P 2

k−1, 1 ≤ k ≤ log2 n, introduced in
Definition 2.10. In the static case where X∗ has to be computed only once,
intermediate results can be thrown away as only the final value X ∗ = Plog2 n

is required. In the dynamic case, instead, intermediate results provide useful
information for updating efficiently X∗ whenever X gets modified.

In this section we consider a slightly different definition of polynomials
P1, . . . , Plog2 n with the property that each of them has degree ≤ 3:

Definition 3.9 Let X be an n × n Boolean matrix. We define the sequence
of log2 n + 1 polynomials over Boolean matrices P0, . . . , Plog2 n as:

Pk =

{
X if k = 0
Pk−1 + P 2

k−1 + P 3
k−1 if k > 0

Before describing our data structure for maintaining the Kleene closure of
X, we discuss some useful properties. In particular, we give claims similar to
Lemma 2.10 and Theorem 2.1.

Lemma 3.3 Let X be an n × n Boolean matrix and let Pk be formed as in
Definition 3.9. Then for any 1 ≤ u, v ≤ n, Pk[u, v] = 1 if and only if there is
a path u ; v of length at most 3k in X.

Proof. Similar to the proof of Lemma 2.10, except for the fact that we also
consider paths of length up to 3k obtained as concatenation of 3 paths of
length 3k−1. 2

Lemma 3.4 Let X be an n × n Boolean matrix and let Pk be formed as in
Definition 3.9. Then X∗ = In + Plog2 n

2.

Proof. The proof is similar to the proof of Theorem 2.10 and follows by
observing that the length of the longest simple path in X is no longer than
n− 1 < 3log3 n ≤ 3log2 n. In is required to guarantee the reflexivity of X∗. 2

Our data structure for maintaining X∗ is the following:

Data Structure 3.3 We maintain an n×n Boolean matrix X and we main-
tain the log2 n polynomials P1 . . . Plog2 n of degree 3 given in Definition 3.9 with
instances of Data Structure 3.2 presented in Section 3.4.1.

2In general, if X is a Boolean matrix, P0 = X and Pk = Pk−1 + P 2

k−1 + · · · + P d
k−1, it is

possible to prove that X∗ = In + Pq for any q >= logd n.
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As we will see in Section 3.5.2, the reason for considering the extra term
P 3

k−1 in our data structure is that polynomials need to be maintained using
not only SetRow/SetCol, but also LazySet. As stated in Definition 3.6, using
LazySet yields a weaker representation of polynomials, and this forces us to
increase the degree if complete information about X ∗ has to be maintained.
This aspect will be discussed in more depth in the proof of Theorem 3.6.

3.5.2 Implementation of Operations

In this section we show that operations Init∗, Set∗, Reset∗ and Lookup∗

introduced in Definition 3.4 can all be implemented in terms of operations
Init, LazySet, SetRow, and SetCol (described in Section 3.4.1) on polyno-
mials P1 . . . Plog2 n.

Init∗

procedure Init∗(X)
1. begin
2. Y ← X

3. for k = 1 to log2 n do
4. Pk.Init(Y )
5. Y ←Pk.Lookup()
6. end

Init∗ performs Pk.Init operations on each Pk by propagating intermediate
results from X to P1, then from P1 to P2, and so on up to Plog2 n.

Lookup∗

procedure Lookup∗(x, y)
1. begin
2. Y ←Plog

2
n.Lookup()

3. return In + Y [x, y]
4. end

Lookup∗ returns the value of Plog2 n[x, y].

Set∗

procedure Set∗(i, ∆X)
1. begin
2. ∆Y ← ∆X

3. for k = 1 to log2 n do
4. Pk.LazySet(∆Y, Pk−1)
5. Pk.SetRow(i, ∆Y, Pk−1)
6. Pk.SetCol(i, ∆Y, Pk−1)
7. ∆Y ←Pk.Lookup()
8. end
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Set∗ propagates changes of Pk−1 to Pk for any k = 1 to log2 n. Notice that
any new 1’s that appear in Pk−1 are inserted in the object Pk via LazySet,
but only the i-th row and the i-th row column of Pk−1 are taken into account
by SetRow and SetCol in order to determine changes of Pk. As re-inserting
1’s already present in a variable is allowed by our operations on polynomials,
for the sake of simplicity in line 7 we assign the update matrix ∆Y with Pk

and not with the variation of Pk.

Reset∗

procedure Reset∗(∆X)
1. begin
2. ∆Y ← ∆X

3. for k = 1 to log2 n do
4. Y ←Pk.Lookup()
5. Pk.Reset(∆Y, Pk−1)
6. ∆Y ← Y−Pk.Lookup()
7. end

Reset∗ performs Pk.Reset operations on each Pk by propagating changes spec-
ified by ∆X to P1, then changes of P1 to P2, and so on up to Plog2 n. Notice
that we use an auxiliary matrix Y to compute the difference between the value
of Pk before and after the update and that the computation of ∆Y in line 6
always yields a Boolean matrix.

3.5.3 Analysis

In what follows we discuss the correctness and the complexity of our imple-
mentation of operations Init∗, Set∗, Reset∗, and Lookup∗ presented in Sec-
tion 3.5.2. We recall that X is an n×n Boolean matrix and Pk, 0 ≤ k ≤ log2 n,
are the polynomials introduced in Definition 3.9.

Theorem 3.6 If at any time during a sequence σ of operations there is a path
of length up to 2k between x and y in X, then Pk[x, y] = 1.

Proof. By induction. The base is trivial. We assume that the claim holds
inductively for Pk−1, and we show that, after any operation, the claim holds
also for Pk.

• Init∗: since any Init∗ operation rebuilds from scratch Pk, the claim
holds from Lemma 3.3.

• Set∗: let us assume that a Set∗ operation is performed on the i-th
row and column of X and a new path π of length up to 2k, say π =
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〈x, . . . , i, . . . , y〉, appears in X due to this operation. We prove that
Pk[x, y] = 1 after the operation.

Observe that Pk.LazySet(∆Pk−1, Pk−1) puts in place any new 1’s in any
occurrence of the variable Pk−1 in data structure Pk. We remark that,
although the maintained value of Pk in data structure Pk is not updated
by LazySet and therefore the correctness of the current operation is not
affected, this step is very important: indeed, new 1’s corresponding to
new paths of length up to 2k−1 that appear in X will be useful in future
Set∗ operations for detecting the appearance of new paths of length up
to 2k.

If both the portions x ; i and i ; y of π have length up to 2k−1,
then π gets recorded in P 2

k−1, and therefore in Pk, thanks to one of
Pk.SetRow(i,∆Pk−1, Pk−1) or Pk.SetCol(i,∆Pk−1, Pk−1). On the other
hand, if i is close to (but does not coincide with) one endpoint of π, the
appearance of π may be recorded in P 3

k−1, but not in P 2
k−1. This is the

reason why degree 2 does not suffice for Pk in this dynamic setting.

• Reset∗: by inductive hypothesis, we assume that Pk−1[x, y] flips to zero
after a Reset∗ operation only if no path of length up to 2k−1 remains in
X between x and y. Since any Pk.Reset operation on Pk leaves it as if
cleared 1’s in Pk−1 were never set to 1, Pk[x, y] flips to zero only if no
path of length up to 2k remains in X.

2

We remark that the condition stated in Theorem 3.6 is only sufficient
because Pk may keep track of paths having length strictly more than 2k, though
no longer than 3k. However, for k = log2 n the condition is also necessary as
no shortest path can be longer than n = 2k. Thus, it is straightforward to see
that a path of any length between x and y exists at any time in X if and only
if Plog2 n[x, y] = 1.

The following theorem establishes the running time and the space require-
ments of operations Init∗, Set∗ and Reset∗.

Theorem 3.7 Any Init∗ operation can be performed in O(nω · log n) worst-
case time, where ω is the exponent of matrix multiplication; any Set∗ takes
O(n2 · log n) amortized time. The cost of Reset∗ operations can be charged to
previous Init∗ and Set∗ operations. The maximum cost charged to each Init

is O(n3 · log n). The space required is O(n2 · log n).

Proof. The proof follows from Theorem 3.4 by considering the time bounds
of operations on polynomials described in Section 3.4.1. As each maintained
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polynomial has constant degree k = 3, it follows that the space used is O(n2 ·
log n). 2

Corollary 3.6 If we perform just one Init∗ operation in a sequence σ of
length Ω(n), or more generally one Init operation every Ω(n) Reset opera-
tions, then the amortized cost of Reset is O(n2 · log n) per operation.

Corollary 3.7 If we perform just one Init∗ operation in a sequence σ of
length Ω(n2), or more generally one Init operation every Ω(n2) Reset opera-
tions, and we perform no operations SetRow and SetCol, then the amortized
cost of Reset is O(n · log n) per operation.

In the traditional case where Op1 =Init∗ and Opi 6=Init∗ for any i > 1, i.e.,
Init∗ is just performed once at the beginning of the sequence of operations,
previous corollaries state that both Set∗ and Reset∗ are supported in O(n2 ·
log n) amortized time. In the decremental case where only Reset∗ operations
are performed, the amortized time is O(n · log n) per update.

/ � .

The algorithm that we presented in this section can be viewed as a variant
which features very different data structures of the fully dynamic transitive
closure algorithm presented by King in [52].

King’s algorithm is based on a data structure for a graph G = (V,E)
that maintains a logarithmic number of edge subsets E0, . . . , Elog2 n with the
property that E0 = E and (x, y) ∈ Ei if there is a path x ; y of length up to
2i in G. Moreover, if y is not reachable from x in G, then (x, y) 6∈ Ei for all
0 ≤ i ≤ log2 n.

The maintained values of our polynomials P0, . . . , Plog2n here correspond
to the sets E0, . . . , Elog2 n.

The algorithm by King also maintains log2 n forests F0, . . . , Flog2 n−1 such
that Fi uses edges in Ei and includes 2n trees Outi(v) and Ini(v), two for each
node v ∈ V , such that Outi(v) contains all nodes reachable from v using at
most 2 edges in Ei, and Ini(v) contains all nodes that reach v using at most 2
edges in Ei. For each pair of nodes, also a table Counti is maintained, where
Counti[x, y] is the number of nodes v such that x ∈ Ini(v) and y ∈ Outi(v).
Now, Ei is maintained so as to contain edges (x, y) such that Counti−1[x, y] >

0. Trees Ini(v) and Outi(v) are maintained for any node v by means of
deletions-only data structures [29] which are rebuilt from scratch after each
v-centered insertion of edges.

Our data structures for polynomials over Boolean matrices Pi play the
same role as King’s forests Fi of Ini and Outi trees and of counters Counti.

While King’s data structures require O(n3 · log n) worst-case initialization
time on dense graphs, the strong algebraic properties of Boolean matrices
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allow us to exploit fast matrix multiplication subroutines for initializing more
efficiently our data structures in O(nω · log n) time in the worst case, where
ω = 2.38.

3.6 Transitive Closure Updates in O(n2) Time

In this section we show our second and more powerful method for casting fully
dynamic transitive closure into the problem of reevaluating polynomials over
Boolean matrices presented in Section 3.4.1.

This method hinges upon the well-known equivalence between transitive
closure and matrix multiplication on a closed semiring discussed in Section 2.3.2
and yields a new deterministic algorithm that improves the best known bounds
for fully dynamic transitive closure. Our algorithm supports any update op-
eration in O(n2) amortized time and answers any reachability query with just
one matrix lookup. The space used is O(n2).

3.6.1 Data Structure

Let X be a Boolean matrix and let X∗ be its Kleene closure. Before dis-
cussing the dynamic case, we recall the main ideas of method 2 presented in
Section 2.3.2 for computing statically X∗. In Definition 2.11, in Theorem 2.3
and in Lemma 2.11 we showed that, if we decompose X and X ∗ into sub-
matrices A, B, C, D and E, F , G, H of size n

2 × n
2 as follows:

X =
A B

C D
X∗ =

E F

G H

then A, B, C, D and E, F , G, H satisfy both Equation 2.1:





E = (A + BD∗C)∗

F = EBD∗

G = D∗CE

H = D∗ + D∗CEBD∗

and Equation 2.2:




E = A∗ + A∗BHCA∗

F = A∗BH

G = HCA∗

H = (D + CA∗B)∗

We also defined two equivalent functions F and G based on the previous
sets of equations with the property that:

F(X) = G(X) = X∗
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and we addressed a method for computing either one of them in O(nω) worst-
case time (see Theorem 2.4), where ω is the exponent of Boolean matrix mul-
tiplication. This recalled the surprising result, known since the early 70’s,
that computing the Kleene closure of an n × n Boolean matrix X can be
asymptotically as fast as multiplying two n× n Boolean matrices [62].

We now define another function H such that H(X) = X ∗, based on a new
set of equations obtained by combining Equation 2.1 and Equation 2.2. Our
goal is to define H is such a way that it is well-suited for efficient reevaluation
in a fully dynamic setting.

Lemma 3.5 Let Bn be the set of n× n Boolean matrices, let X ∈ Bn and let
H : Bn → Bn be the mapping defined by means of the following equations:





P = D∗

E1 = (A + BP 2C)∗ E2 = E1BH2
2CE1 E = E1 + E2

F1 = E2
1BP F2 = E1BH2

2 F = F1 + F2

G1 = PCE2
1 G2 = H2

2CE1 G = G1 + G2

H1 = PCE2
1BP H2 = (D + CE2

1B)∗ H = H1 + H2

(3.1)

where X and Y = H(X) are defined as:

X =
A B

C D
Y =

E F

G H

Then, for any X ∈ Bn, H(X) = X∗.

Proof. We prove that E1+E2, F1+F2, G1+G2 and H1+H2 are sub-matrices
of X∗:

X∗ =
E1 + E2 F1 + F2

G1 + G2 H1 + H2

We first observe that, by definition of Kleene closure (see Definition 2.3),
X = X∗ ⇒ X = X2. Thus, since E1 = (A + BP 2C)∗, H2 = (D + CE2

1B)∗

and P = D∗ are all closures, then we can replace E2
1 with E1, H2

2 with
H2 and P 2 with P . This implies that E1 = (A + BPC)∗ = (A + BD∗C)∗

and then E1 = E by Equation 2.1. Now, since by Theorem 2.3 E is a sub-
matrix of X∗ and encodes explicitly all paths in X with both end-points in
V1 = {1, . . . , n

2 }, and since E2 = EB(D +CEB)∗CE, then E2 ⊆ E. It follows
that E1 +E2 = E +E2 = E. By similar reasoning, we can prove that F1 +F2,
G1 +G2 and H1 +H2 are sub-matrices of X∗. In particular, for H = H1 +H2

we also need to observe that D∗ ⊆ H2. 2

Observe that H provides a method for computing the Kleene closure of an
n× n Boolean matrix, provided that we are able to compute Kleene closures
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of Boolean matrices of size n
2 × n

2 . The reason of using E2
1 , H2

2 and P 2 instead
of E1, H2 and P in Equation 3.1, which is apparently useless, will be clear
in Lemma 3.7 after presenting a fully dynamic version of the algorithm which
defines H.

In the next lemma we show that a Divide et Conquer algorithm which
recursively usesH to solve sub-problems of smaller size requires asymptotically
the same time of computing the product of two Boolean matrices.

Theorem 3.8 Let X be an n × n Boolean matrix and let T (n) be the time
required to compute recursively H(X). Then T (n) = O(nω), where O(nω) is
the time required to multiply two Boolean matrices.

Proof. It is possible to compute E, F , G and H with three recursive calls
of H, a constant number cm of multiplications, and a constant number cs of
additions of n

2 × n
2 matrices. Thus:

T (n) ≤ 3T

(
n

2

)
+ cmM

(
n

2

)
+ cs

(
n

2

)2

where M(n) = O(nω) is the time required to multiply two n × n Boolean
matrices. Solving the recurrence relation, since log2 3 < max{ω, 2} = ω, we
obtain that T (n) = O(nω) (see e.g., the Master Theorem in [12]). 2

The previous theorem showed that, even if H needs to compute one more
closure than F and G, asymptotically the running time does not get worse.

/ � .

In the following, we study how to reevaluate efficiently H(X) = X ∗ under
changes of X. Our data structure for maintaining the Kleene closure X ∗ is
the following:

Data Structure 3.4 We maintain two n × n Boolean matrices X and Y

decomposed in sub-matrices A, B, C, D, and E, F , G, H:

X =
A B

C D
Y =

E F

G H

We also maintain the following 12 polynomials over n × n Boolean matrices
with the data structure presented in Section 3.4.1:

Q = A + BP 2C E2 = E1BH2
2CE1 E = E1 + E2

F1 = E2
1BP F2 = E1BH2

2 F = F1 + F2

G1 = PCE2
1 G2 = H2

2CE1 G = G1 + G2

H1 = PCE2
1BP R = D + CE2

1B H = H1 + H2
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AD

C

B

RQ H2P

G1 H1 F1

E1

E2 G2F2

Figure 3.3: Data dependencies between polynomials and closures.

and we recursively maintain 3 Kleene closures P , E1 and H2:

P = D∗ E1 = Q∗ H2 = R∗

with instances of size n
2 × n

2 of Data Structure 3.4.

It is worth to note that Data Structure 3.4 is recursively defined: P , E1 and
H2 are Kleene closures of n

2 × n
2 matrices. Also observe that the polynomials

Q, F1, G1, H1, E2, F2, G2, R, E, F , G and H that we maintain have all
constant degree ≤ 6. In Figure 3.3 we show the acyclic graph of dependencies
between objects in our data structure: there is an arc from node u to node v

if the polynomial associated to u is a variable of the polynomial associated to
v. For readability, we do not report nodes for the final polynomials E, F , G,
H. A topological sort of this graph, e.g., τ = 〈P , Q, E1, R, H2, F1, G1, H1,
E2, F2, G2, E, F , G, H〉, yields a correct evaluation order for the objects in
the data structure and thus gives a method for computing H(X).

We remark that our data structure has memory of all the intermediate val-
ues produced when computing H(X) from scratch and maintains such values
upon updates of X. As it was already observed in Section 3.5, maintaining in-
termediate results of some static algorithm for computing X ∗ is a fundamental
idea for updating efficiently X∗ whenever X gets modified.

Since our data structure reflects the way H(X) is computed, it basically
represents X∗ as the sum of two Boolean matrices: the first, say X ∗

1 , is de-
fined by submatrices E1, F1, G1,H1, and the second, say X∗

2 , by submatrices
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E 1
2 = (A+BP C)*

F 1 = E 1
2 BP

G1 = PCE 1
2

H1 = PCE 1
2 BP

E 2

F 2

G2

H2

 = E1BH 2
2 CE 1

 = E1 BH 2
2

2 = H2 CE 1

 = (D+CE1
2B)*

1

2

∆X =

X =

SetRow/SetCol +
recursion

recursion

LazySet

LazySet

Reset +
recursion

from scratch ...Init*

Set*

Reset*
O(n 2 )

SetRow/SetCol +

O(n 2 )

O(n 2.38 )

∆X =

∆X =

Figure 3.4: Overview of operations Init∗, Set∗ and Reset∗.

E2, F2, G2,H2:

X∗
1 =

E1 F1

G1 H1
X∗

2 =
E2 F2

G2 H2

In the next section we show how to implement operations Init∗, Set∗,
Reset∗ and Lookup∗ introduced in Definition 3.4 in terms of operations Init,
LazySet, SetRow and SetCol (see Section 3.4.1) on the polynomials of Data
Structure 3.4.

3.6.2 Implementation of Operations

From a high-level point of view, our approach is the following. We maintain X ∗
1

and X∗
2 in tandem (see Figure 3.4): whenever a Set∗ operation is performed

on X, we update X∗ by computing how either X∗
1 or X∗

2 are affected by this
change. Such updates are lazily performed so that neither X ∗

1 nor X∗
2 encode

complete information about X∗, but their sum does. On the other side, Reset∗

operations update both X∗
1 and X∗

2 and leave the data structure as if any reset
entry were never set to 1.

We now describe in detail our implementation. To keep pseudocodes
shorter and more readable, we assume that implicit Lookup and Lookup∗ op-
erations are performed in order to retrieve the current value of objects so as
to use them in subsequent steps. Furthermore, we do not deal explicitly with
base recursion steps.
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Set∗

Before describing our implementation of Set∗, we first define a useful shortcut
for performing simultaneous SetRow and SetCol operations with the same i

on more than one variable in a polynomial P :

procedure P.Set(i, ∆X1, . . . , ∆Xq)
1. begin
2. P.SetRow(i, ∆X1, X1)
3. P.SetCol(i, ∆X1, X1)

4.
...

5. P.SetRow(i, ∆Xq, Xq)
6. P.SetCol(i, ∆Xq, Xq)
7. end

Similarly, we give a shortcut3 for performing simultaneous LazySet operations
on more than one variable in a polynomial P :

procedure P.LazySet(∆X1, . . . , ∆Xq)
1. begin
2. P.LazySet(∆X1, X1)

3.
...

4. P.LazySet(∆Xq, Xq)
5. end

We also define an auxiliary operation LazySet∗ on closures which performs
LazySet operations for variables A, B, C and D on the polynomials Q, R, F1,
G1, H1, E2, F2, and G2 and recurses on the closure P which depend directly
on them. We assume that, if M is a variable of a polynomial maintained in
our data structure, ∆M = Mcurr −Mold is the difference between the current
value Mcurr of M and the old value Mold of M .

procedure LazySet∗(∆X)
1. begin
2. X ← X + ∆X

3. Q.LazySet(∆A, ∆B, ∆C)
4. R.LazySet(∆B, ∆C, ∆D)
5. { similarly for F1, G1, H1, E2, F2, and G2 }
6. P.LazySet∗(∆D)
7. end

Using the shortcuts Set and LazySet and the new operation LazySet∗, we are
now ready to define Set∗.

3For the sake of simplicity, we use the same identifier LazySet for both the shortcut and
the native operation on polynomials, assuming to use the shortcut in defining Set

∗.
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procedure Set∗(i, ∆X)
1. begin
2. X ← X + I∆X,i + J∆X,i

3. if 1 ≤ i ≤ n
2 then

4. Q.Set(i, ∆A, ∆B, ∆C)
5. E1.Set

∗(i, ∆Q)
6. F1.Set(i, ∆E1, ∆B)
7. G1.Set(i, ∆C, ∆E1)
8. H1.Set(i, ∆C, ∆E1, ∆B)
9. R.Set(i, ∆C, ∆E1, ∆B)
10. H2.LazySet

∗(∆R)
11. G2.LazySet(∆C, ∆E1)
12. F2.LazySet(∆E1, ∆B)
13. E2.LazySet(∆E1, ∆B, ∆C)
14. else { n

2 + 1 ≤ i ≤ n }
15. i← i− n

2
16. P.Set∗(i, ∆D)
17. R.Set(i, ∆B, ∆C, ∆D)
18. H2.Set

∗(i, ∆R)
19. G2.Set(i, ∆H2, ∆C)
20. F2.Set(i, ∆B, ∆H2)
21. E2.Set(i, ∆B, ∆H2, ∆C)
22. Q.Set(i, ∆B, ∆P, ∆C)
23. E1.LazySet

∗(∆Q)
24. F1.LazySet(∆B, ∆P )
25. G1.LazySet(∆P, ∆C)
26. H1.LazySet(∆B, ∆P, ∆C)
27. E.Init(E1, E2)
28. F.Init(F1, F2)
29. G.Init(G1, G2)
30. H.Init(H1, H2)
31. end

Set∗ performs an i-centered update in X and runs through the closures and
the polynomials of Data Structure 3.4 to propagate any changes of A, B, C,
D to E, F , G, H. The propagation order is 〈Q, E1, F1, G1, H1, R, H2, G2,
F2, E2, E, F , G, H〉 if 1 ≤ i ≤ n

2 and 〈P , R, H2, G2, F2, E2, Q, E1, F1, G1,
H1〉 if n

2 +1 ≤ i ≤ n and is defined according to a topological sort of the graph
of dependencies between objects in Data Structure 3.4 shown in Figure 3.3.

Roughly speaking, Set∗ updates the objects in the data structure according
to the value of i as follows:

1. If 1 ≤ i ≤ n
2 , fully updates Q, R, E1, F1, G1, H1 (lines 4–9) and lazily

updates E2, F2, G2, H2 (lines 10–13). See Figure 3.5 (a).

2. If n
2 + 1 ≤ i ≤ n, fully updates P , Q, R, E2, F2, G2, H2 (lines 16–22)

and lazily updates E1, F1, G1, H1 (lines 23–26). See Figure 3.5 (b).
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Full update

Lazy update

(b)

Figure 3.5: Portions of Data Structure 3.4 affected during a Set∗ operation
when: (a) 1 ≤ i ≤ n

2 ; (b) n
2 + 1 ≤ i ≤ n .

We highlight that it is not always possible to perform efficiently full updates
of all the objects of Data Structure 3.4. Actually, some objects may change
everywhere, and not only in a row and column. Such unstructured changes
imply that we can only perform lazy updates on such objects, as they cannot be
efficiently manipulated by means of i-centered SetRow and SetCol operations.

We now explain in detail the operations performed by Set∗ according to
the two cases 1 ≤ i ≤ n

2 and n
2 + 1 ≤ i ≤ n.

Case 1: 1 ≤ i ≤ n
2 .

In this case an i-centered update of X may affect the i-th row and the i-th
column of A, the i-th row of B and the i-th column of C, while D is not affected
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at all by this kind of update (see Figure 3.4). The operations performed by
Set∗ when 1 ≤ i ≤ n

2 are therefore the following:

Line 2: an i-centered set operation is performed on X.

Line 4: Q = A + BP 2C is updated by performing SetRow and SetCol op-
erations for any variables A, B and C being changed. P = D∗ does
not change since, as already observed, D is not affected by the change.
Notice that new 1’s may appear in Q only in the i-th row and column
due to this operation.

Line 5: Set∗ is recursively called to propagate the changes of Q to E1. We
remark that E1 may change also outside the i-th row and column due
to this operation. Nevertheless, as we will see in Lemma 3.6, the fact
that E1 is a closure implies that new 1’s appear in a very structured
way. This will make it possible to propagate changes efficiently to any
polynomial that, in turn, depends on E1.

Lines 6–9: polynomials F1, G1, H1 and R are updated by performing SetRow

and SetCol operations for any variables E1, B and C being changed.
We recall that such operations take into account only the entries of ∆E1

lying in the i-th row and in the i-th column, albeit other entries may
be non-zero. Again, Lemma 3.6 and Lemma 3.7 will show that this is
sufficient.

Lines 10–13: H2 = R∗ is not updated, but new 1’s that appear in R are lazily
inserted in the data structure of H2 by calling LazySet∗. Then LazySet

operations are carried out on polynomials G2, F2, E2 to insert in the
data structures that maintain them any new 1’s that appear in C, E1

and B.

Lines 27–30. Recompute polynomials E, F , G and H from scratch. This
is required as F1, G1 and H2 may change everywhere and not only in
a row and a column. Differently from the case of E1, whose change is
structured as it is a closure, we cannot exploit any particular structure
of ∆F1, ∆G1 and ∆H2 for reducing ourselves to use SetRow and SetCol

and we are forced to use Init. Note that, since E, F , G and H have all
degree 1, this is not a bottleneck in terms of running time.

Case 2: n
2 + 1 ≤ i ≤ n.

In this case an i-centered update of X may affect only the i-th row and the
i-th column of D, the i-th row of C and the i-th column of B, while A is not
affected at all by this kind of update (see Figure 3.4).
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Operations performed by Set∗ are completely analogous to the case 1 ≤
i ≤ n

2 , except for the fact that we need to rescale the index i in line 15 and
we have also to perform a recursive call to update P in line 16.

Reset∗

Before describing our implementation of Reset∗, we define a useful shortcut4

for performing simultaneous Reset operations on more than one variable in a
polynomial P .

procedure P.Reset(∆X1, . . . , ∆Xq)
1. begin
2. P.Reset(∆X1, X1)

3.
...

4. P.Reset(∆Xq, Xq)
5. end

Using this shortcut, we are now ready to define Reset∗. We assume that,
if M is a variable of a polynomial maintained in our data structure, ∆M =
Mold−Mcurr is the difference between the value Mold of M just before calling
Reset∗ and the current value Mcurr of M .

procedure Reset∗(∆X)
1. begin
2. X ← X −∆X

3. P.Reset∗(∆D)
4. Q.Reset(∆A, ∆B, ∆P, ∆C)
5. E1.Reset

∗(∆Q)
6. R.Reset(∆D, ∆C, ∆E1, ∆B)
7. H2.Reset

∗(∆R)
8. F1.Reset(∆E1, ∆B, ∆P )
9. { similarly for G1, H1, E2, F2, G2, and then for E, F , G, H }
10. end

Reset∗ resets any entries of X as specified by ∆X and runs through the
closures and the polynomials in the data structure to propagate any changes of
A, B, C, D to E, F , G, H. The propagation is done according to a topological
order τ of the graph of dependencies shown in Figure 3.3 and is the same order
followed by Init∗, which has a similar structure. Actually, we could think of
Reset∗ as a function that “undoes” any previous work performed by Init∗

and Set∗ on the data structure, leaving it as if the reset entries of X were
never set to 1.

4For the sake of simplicity, we use the same identifier Reset for both the shortcut and
the native operation on polynomials, assuming to use the shortcut in defining Reset

∗.
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Init∗

procedure Init∗(Z)
1. begin
2. X ← Z

3. P.Init∗(D)
4. Q.Init(A, B, P, C)
5. E1.Init

∗(Q)
6. R.Init(D, C, E1, B)
7. H2.Init

∗(R)
8. F1.Init(E1, B, P )
9. { similarly for G1, H1, E2, F2, G2, and then for E, F , G, H }
10. end

Init∗ sets the initial value of X (line 2) and initializes the objects in Data
Structure 3.4 according to the topological order τ of the graph of dependencies
as explained in the previous subsection (lines 3–9).

Lookup∗

procedure Lookup∗(x, y)
1. begin
2. return Y [x, y]
3. end

Lookup∗ simply returns the maintained value of Y [x, y].

3.6.3 Analysis

Now we discuss the correctness and the complexity of our implementation.
Before providing the main claims, we give some preliminary definitions and
lemmas which are useful for capturing algebraic properties of the changes that
polynomials in our data structure undergo during a Set∗ operation.

The next definition recalls a property of Boolean update matrices that is
related to the operational concept of i-centered update.

Definition 3.10 We say that a Boolean update matrix ∆X is i− centered if
∆X = I∆X,i + J∆X,i, i.e., all entries lying outside the i-th row and the i-th
column are zero.

If the variation ∆X of some matrix X during an update operation is i-
centered and X is a variable of a polynomial P that has to be efficiently
reevaluated, then we can use P.SetRow and P.SetCol operations which are
especially designed for doing so. But what happens if X changes by a ∆X that
is not i-centered? Can we still update efficiently the polynomial P without
recomputing it from scratch via Init? This is the case of E1 and ∆E1 while
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performing a Set∗ update with 1 ≤ i ≤ n
2 . In the following we show that,

under certain hypotheses on X and ∆X (which are satisfied by E1 and ∆E1),
we can still solve the problem efficiently.

While the property of being i-centered is related to an update matrix by
itself, the following two definitions are concerned with properties of an update
matrix ∆X with respect to the matrix X to which it is applied:

Definition 3.11 If X is a Boolean matrix and ∆X is a Boolean update ma-
trix, we say that ∆X is i − transitive with respect to X if I∆X,i = I∆X,i ·X
and J∆X,i = X · J∆X,i.

Definition 3.12 If X is a Boolean matrix and ∆X is a Boolean update ma-
trix, we say that ∆X is i−complete with respect to X if ∆X = J∆X,i ·I∆X,i +
X · I∆X,i + J∆X,i ·X.

Using the previous definitions we can show that the variation of X ∗ due
to an i-centered update of X is i-transitive and i-complete.

Lemma 3.6 Let X be a Boolean matrix and let ∆X be an i-centered update
matrix. If we denote by ∆X∗ the matrix (X + ∆X)∗ − X∗, then ∆X∗ is
i-transitive and i-complete with respect to X ∗.

Proof. The following equalities prove the first condition of i-transitivity:

I∆X∗,i ·X∗ = I(X+∆X)∗−X∗,i ·X∗ = I(X+∆X)∗·X∗−X∗·X∗,i =

I(X+∆X)∗−X∗,i = I∆X∗,i.

The other conditions can be proved analogously. The hypothesis that ∆X

is i-centered is necessary for the i-completeness. 2

The following lemma shows under what conditions for ∆X and X it is
possible to perform operations of the kind X ← X + ∆X on a variable X of
a polynomial by reducing such operations to i-centered updates even if ∆X is
not i-centered.

Lemma 3.7 If X is a Boolean matrix such that X = X∗ and ∆X is an i-
transitive and i-complete update matrix with respect to X, then X + ∆X =
(X + I∆X,i + J∆X,i)

2.

Proof. Since X = X∗ it holds that X = X2 and X = X + I∆X,i · J∆X,i.
The proof follows from Definition 3.11 and Definition 3.12 and from the facts:
I2
∆X,i ⊆ I∆X,i, J2

∆X,i ⊆ J∆X,i and ∆X = ∆X + I∆X,i + J∆X,i. 2

It follows that, under the hypotheses of Lemma 3.7, if we replace any
occurrence of X in P with X2 and we perform both P.SetRow(i, I∆X,i, X)
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and P.SetCol(i, J∆X,i, X), then new 1’s in P correctly appear. This is the
reason why in Data Structure 3.4 we used E2

1 , H2
2 , and P 2 instead of E1, H2,

and P , respectively.
Before stating the main theorem of this section which establishes the cor-

rectness of operations on our data structure, we discuss a general property of
polynomials and closures over Boolean matrices that will be useful in proving
the theorem.

Lemma 3.8 Let P and Q be polynomials or closures over Boolean matrices
and let P̂ and Q̂ be relaxed functions such that P̂ (X) ⊆ P (X) and Q̂(Y ) ⊆
Q(Y ) for any values of variables X and Y . Then, for any X:

Q̂(P̂ (X)) ⊆ Q(P (X))

Proof. Let Ŷ = P̂ (X) and Y = P (X). By definition, we have: Ŷ ⊆ Y

and Q̂(Ŷ ) ⊆ Q(Ŷ ). By exploiting a monotonic behavior of polynomials and
closures over Boolean matrices, we have: Ŷ ⊆ Y ⇒ Q(Ŷ ) ⊆ Q(Y ). Thus:
Q̂(Ŷ ) ⊆ Q(Ŷ ) ⊆ Q(Y )⇒ Q̂(Ŷ ) ⊆ Q(Y )⇒ Q̂(P̂ (X)) ⊆ Q(P (X)). 2

Theorem 3.9 Let H be the function defined in Lemma 3.5, let X and Y be
the matrices maintained in Data Structure 3.4, and let M be a Boolean matrix
whose value at any time j is defined as:

Mj =
∑

1 ≤ i ≤ j :
Opi 6= LazySet∗

H(Xi)−H(Xi−1).

If we denote by Xj and Yj the values of X and Y after the j-th operation,
respectively, then the relation Mj ⊆ Yj ⊆ H(Xj) is satisfied.

Proof. The proof is by induction on the size n of matrices in Data Struc-
ture 3.4. The base is trivial. We assume that the claim holds for instances of
size n

2 and we prove that it holds also for instances of size n.

• Opj=Init
∗: since Init∗ performs Init operations on each object, then

Yj = H(Xj).

• Opj=Set
∗: we first prove that Yj ⊆ H(Xj). Observe that Y is obtained

as a result of a composition of functions that relax the correct interme-
diate values of polynomials and closures of Boolean matrices in our data
structure allowing them to contain less 1’s. Indeed, by the properties
of Lookup described in Section 3.4.1, we know that, if P is the correct
value of a polynomial at any time, then P.Lookup() ⊆ P . Similarly,
by inductive hypothesis, if K is a Kleene closure of an n

2 × n
2 Boolean
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matrix, then at any time K.Lookup∗(x, y) = 1⇒ K[x, y] = 1. The claim
then follows by Lemma 3.8, which states that the composition of relaxed
functions computes values containing at most the 1’s contained in the
values computed by the correct functions.

To prove that Mj ⊆ Yj, based on the definition of M , it suffices to
verify that ∆H(X) ⊆ ∆Y , where ∆H(X) = H(Xj) − H(Xj−1) and
∆Y = Yj − Yj−1. In particular, we prove that if H[x, y] flips from 0 to 1
due to operation Set∗, then either X∗

1 [x, y] flips from 0 to 1 (due to lines
4–8 when 1 ≤ i ≤ n

2 ), or X∗
2 [x, y] flips from 0 to 1 (due to lines 17–21

when n
2 + 1 ≤ i ≤ n).

Without loss of generality, assume that the Set∗ operation is performed
with 1 ≤ i ≤ n

2 (the proof is completely analogous if n
2 + 1 ≤ i ≤ n).

As shown in Figure 3.4, sub-matrices A, B and C may undergo i-centered
updates due to this operation and so their variation can be correctly
propagated through SetRow and SetCol operations to polynomial Q

(line 4) and to polynomials F1, G1 and H1 (lines 6–8). As ∆Q is also
i-centered due to line 4, any variation of Q, that is assumed to be else-
where correct from previous operations, can be propagated to closure E1

through a recursive call of Set∗ in line 5. By the inductive hypothesis,
this propagation correctly reveals any new 1’s in E1. We remark that
E1 may contain less 1’s than E due to any previous LazySet operations
done in line 23.

Observe now that E1 occurs in polynomials F1, G1 and H1 and that ∆E1

is not necessarily i-centered. This would imply that we cannot propagate
directly changes of E1 to these polynomials, as no efficient operation for
doing so was defined in Section 3.4.1. However, by Lemma 3.6, ∆E1

is i-transitive and i-complete with respect to E1. Since E1 = E∗
1 , by

Lemma 3.7 performing both SetRow(i, I∆E1,i, E1) and SetCol(i, J∆E1,i,

E1) operations on data structures F1, G1 and H1 in lines 6–8 is sufficient
to correctly reveal new 1’s in F1, G1 and H1.

Again, note that F1, G1 and H1 may contain less 1’s than F , G and H,
respectively, due to any previous LazySet operations done in lines 23–26.
We have then proved that lines 4–8 correctly propagate any i-centered
update of X to X∗

1 .

To conclude the proof, we observe that E1 also occurs in polynomials E2,
F2, G2, R and indirectly affects H2. Unfortunately, we cannot update H2

efficiently as ∆R is neither i-centered, nor i-transitive/i-complete with
respect to R. So in lines 9–13 we limit ourselves to update explicitly
R and to log any changes of E1 by performing LazySet operations on
polynomials G2, F2, and E2 and a LazySet∗ operation on H2. This is
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sufficient to guarantee the correctness of subsequent Set∗ operations for
n
2 + 1 ≤ i ≤ n.

• Opj=Reset
∗: this operation runs in judicious order through the objects

in the data structure and undoes the effects of previous Set∗ and Init∗

operations. Thus, any property satisfied by Y still holds after performing
a Reset∗ operation.

2

Corollary 3.8 Let X be an instance of Data Structure 3.4 and let σ = 〈X.Op1,

. . . , X.Opk〉 be a sequence of operations on X. If Opi 6= LazySet∗ for all 1 ≤ i ≤
j ≤ k, then Mj = H(Xj).

Proof. Since H(0n) = 0∗n = 0n, the proof easily follows by telescoping the
sum that defines Mj : Mj = H(Xj)−H(Xj−1) +H(Xj−1)−H(Xj−2) + · · ·+
H(X2)−H(X1) +H(X1)−H(X0) = H(Xj)−H(X0) = H(Xj). 2

To conclude this section, we address the running time of operations and
the space required to maintain an instance of our data structure.

Theorem 3.10 Any Init∗ operation can be performed in O(nω) worst-case
time, where ω is the exponent of matrix multiplication; any Set∗ takes O(n2)
amortized time. The cost of Reset∗ operations can be charged to previous
Init∗ and Set∗ operations. The maximum cost charged to each Init∗ is
O(n3). The space required is O(n2).

Proof. Since all the polynomials in Data Structure 3.4 are of constant degree
and involve a constant number of terms, the amortized cost of any SetRow,
SetCol, LazySet, and Reset operation on them is quadratic in n

2 (see Theo-
rem 3.4). Let T (n) be the time complexity of any Set∗, LazySet∗ and Reset∗

operation. Then:

T (n) ≤ 3T (
n

2
) +

c n2

4
for some suitably chosen constant c > 0. As log2 3 < 2, this implies that
T (n) = O(n2).

Init∗ recomputes recursively H from scratch using Init operations on
polynomials, which require O(nω) worst-case time each. We can then prove
that the running time of Init∗ is O(nω) exactly as in Theorem 3.8.

To conclude the proof, observe that if K(n) is the space used to maintain all
the objects in Data Structure 3.4, and M(n) is the space required to maintain
a polynomial with the data structure of Section 3.4.1, then:

K(n) ≤ 3K(
n

2
) + 12M(n).
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Since M(n) = O(n2) by Theorem 3.4, then K(n) = O(n2). 2

Corollary 3.9 If we perform just one Init∗ operation in a sequence σ of
length Ω(n), or more generally one Init∗ operation every Ω(n) Reset∗ oper-
ations, then the amortized cost of Reset∗ is O(n2) per operation.

Corollary 3.10 If we perform just one Init∗ operation in a sequence σ of
length Ω(n2), or more generally one Init∗ operation every Ω(n2) Reset∗ oper-
ations, and we perform no Set∗ operations, then the amortized cost of Reset∗

is O(n) per operation.

In the traditional case where Op1 =Init∗ and Opi 6=Init∗ for any i > 1, i.e.,
Init∗ is performed just once at the beginning of the sequence of operations,
previous corollaries state that both Set∗ and Reset∗ are supported in O(n2)
amortized time. In the decremental case where only Reset∗ operations are
performed, the amortized time is O(n) per update.

3.7 Breaking Through the O(n2) Barrier

In this section we present the first algorithm that supports both updates and
queries in subquadratic time per operation, showing that it is actually possible
to break through the O(n2) barrier on the single-operation complexity of fully
dynamic transitive closure. This result is obtained by means of a new tech-
nique that consists of casting fully dynamic transitive closure into the problem
of dynamically maintaining matrices over integers presented in Section 3.4.2.
As already shown in Section 3.5 and in Section 3.6, dynamic matrices, thanks
to their strong algebraic properties, play a crucial role in designing efficient
algorithms for the fully dynamic transitive closure problem.

The remainder of this section is organized as follows. In Section 3.7.1
we present a subquadratic algorithm for directed acyclic graphs based on dy-
namic matrices that answers queries in O(nε) time and performs updates in
O(nω(1,ε,1)−ε + n1+ε) time, for any 0 ≤ ε ≤ 1, where ω(1, ε, 1) is the exponent
of the multiplication of an n× nε matrix by an nε × n matrix. According to
the current best bounds on ω(1, ε, 1), we obtain an O(n0.58) query time and
an O(n1.58) update time. The algorithm we propose is randomized, and has
one-sided error. In Section 3.7.2 we also devise a second simple method for
obtaining subquadratic updates under certain hypotheses on the sequence of
operations. Like our first algorithm, this method is built on top of dynamic
matrices as well.
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3.7.1 Counting Paths in Acyclic Directed Graphs

In this section we study a variant of the fully dynamic transitive closure prob-
lem presented in Definition 3.1 and we devise the first algorithm that supports
both update and query in subquadratic time per operation. In the variant that
we consider, the graph that we maintain is constrained to be acyclic; further-
more, Insert and Delete operations work on single edges rather than on set
of edges. We shall discuss later how to extend our algorithm to deal with more
than one edge at a time.

Definition 3.13 Let G = (V,E) be a directed acyclic graph and let TC(G) =
(V,E′) be its transitive closure. We consider the problem of maintaining a data
structure G for the graph G under an intermixed sequence σ = 〈G.Op1, . . . , G.Opk〉
of update and query operations. Each operation G.Opj on the data structure G

can be either one of the following:

• G.Insert(x, y): perform the update E ← E ∪ {(x, y)}, such that the
graph obtained after the update is still acyclic.

• G.Delete(x, y): perform the update E ← E−{(x, y)}, where (x, y) ∈ E.

• G.Query(x, y): perform a query operation on TC(G) by returning 1 if
(x, y) ∈ E′ and 0 otherwise.

In this version of the problem, we do not deal explicitly with initialization
operations.

Data Structure

In [53] King and Sagert showed that keeping a count of the number of distinct
paths between any pair of vertices in a directed acyclic graph G allows it
to maintain the transitive closure of G upon both insertions and deletions
of edges. Unfortunately, these counters may be as large as 2n: to perform
O(1) time arithmetic operations on counters, an O(n) wordsize is required.
As shown in [53], the wordsize can be reduced to 2c lg n for any c ≥ 5 based on
the use of arithmetic operations performed modulo a random prime number.
This yields a fully dynamic randomized Monte Carlo algorithm for transitive
closure with the property that “yes” answers on reachability queries are always
correct, while “no” answers are wrong with probability O( 1

nc ). We recall that
this algorithm performs reachability queries in O(1) and updates in O(n2)
worst-case time on directed acyclic graphs.

We now present an algorithm that combines the path counting approach
of King and Sagert with our technique of implicit matrix representation. Both
techniques are very simple, but surprisingly their combination solves a problem
that has been open for many years.
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Data Structure 3.5 We keep a count of the number of distinct paths between
any pair of vertices in graph G by means of an instance M of the dynamic
matrix data structure described in Section 3.4.2. We assume that M [x, y] is
the number of distinct paths between node x and node y in graph G. Since G

is acyclic, this number is well-defined.

Implementation of Operations

We now show how to implement operations Insert, Delete and Query in
terms of operations Update and Lookup on our data structure as described in
Section 3.4.2. We assume all arithmetic operations are performed in constant
time.

Insert

procedure Insert(x, y)
1. begin
2. E ← E ∪ {(x, y)}
3. for z = 1 to n do
4. J [z]← M.Lookup(z, x)
5. I [z]← M.Lookup(y, z)
6. M.Update(J, I)
7. end

Insert first puts edge (x, y) in the graph and then, after querying matrix M,
computes two vectors J and I such that J [z] is the number of distinct paths
z ; x in G and I[z] is the number of distinct paths y ; z in G (lines 3–5).
Finally, it updates M in line 6. The operation performed on M is M ←M+J ·I:
this means that the number M [u, v] of distinct paths between any two nodes
(u, v) is increased by the number J [u] of distinct paths u ; x times the number
I[v] of distinct paths y ; v, i.e., M [u, v]←M [u, v] + J [u] · I[v].

Delete
procedure Delete(x, y)

1. begin
2. E ← E − {(x, y)}
3. for z = 1 to n do
4. J [z]← M.Lookup(z, x)
5. I [z]← M.Lookup(y, z)
6. M.Update(−J, I)
7. end

Delete is identical to Insert, except for the fact that it removes the edge
(x, y) from the graph and performs the update of M in line 6 with −J instead
of J . The operation performed on M is M ←M − J · I: this means that the
number M [u, v] of distinct paths between any two nodes (u, v) is decreased
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by the number J [u] of distinct paths u ; x times the number I[v] of distinct
paths y ; v, i.e., M [u, v]←M [u, v]− J [u] · I[v].

Query

procedure Query(x, y)
1. begin
2. if M.Lookup(x, y) > 0 then return 1
3. else return 0
4. end

Query simply looks up the value of M [x, y] and returns 1 if the current number
of distinct paths between x and y is positive, and zero otherwise.

/ � .

We are now ready to discuss the running time of our implementation of
operations Insert, Delete, and Query.

Theorem 3.11 Any Insert and any Delete operation can be performed in
O(nω(1,ε,1)−ε +n1+ε) worst-case time, for any 0 ≤ ε ≤ 1, where ω(1, ε, 1) is the
exponent of the multiplication of an n× nε matrix by an nε × n matrix. Any
Query takes O(nε) in the worst case. The space required is O(n2).

Proof. We recall that, by Theorem 3.5, each entry of M can be queried
in O(nε) worst-case time, and each Update operation can be performed in
O(nω(1,ε,1)−ε) worst-case time. Since I and J can be computed in O(n1+ε)
worst-case time by means of n queries on M , we can support both insertions
and deletions in O(nω(1,ε,1)−ε + n1+ε) worst-case time, while a reachability
query for any pair of vertices (x, y) can be answered in O(nε) worst-case time
by simply querying the value of M [x, y]. 2

Corollary 3.11 Any Insert and any Delete operation requires O(n1.58) worst-
case time, and any Query requires O(n0.58) worst-case time.

Proof. Balancing the two terms in the update bound O(nω(1,ε,1)−ε + n1+ε)
yields that ε must satisfy the equation ω(1, ε, 1) = 1 + 2ε. The current best
bounds on ω(1, ε, 1) [11, 46] imply that ε < 0.58 [73]. Thus, the smallest
update time is O(n1.58), which gives a query time of O(n0.58). 2

The algorithm we presented is deterministic. However, as the numbers
involved may be as large as 2n, performing arithmetic operations in constant
time requires wordsize O(n). To reduce wordsize to O(log n) while maintaining
the same subquadratic bounds (O(n1.58) per update and O(n0.58) per query)
we perform all arithmetic operations modulo some random prime number as
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explained in [53]. Again, this produces a randomized Monte Carlo algorithm,
where “yes” answers on reachability queries are always correct, while “no”
answers are wrong with probability O( 1

nc ) for any constant c ≥ 5.

It is also not difficult to extend our subquadratic algorithm to deal with
insertions/deletions of more than one edge at a time. In particular, we can
support any insertion/deletion of up to O(n1−η) edges incident to a common
vertex in O(nω(1,ε,1)−ε + n2−(η−ε)) worst-case time. We emphasize that this
is still o(n2) for any 1 > η > ε > 0. Indeed, rectangular matrix multipli-
cation can be trivially implemented via matrix multiplication: this implies
that ω(1, ε, 1) < 2 − (2 − ω)ε, where ω = ω(1, 1, 1) < 2.38 is the current best
exponent for matrix multiplication [11].

3.7.2 A Deterministic Algorithm

In this section we briefly report another idea for reducing fully dynamic tran-
sitive closure to the problem of maintaining dynamic integer matrices. We
show a simple deterministic algorithm which works on general directed graphs
and supports reachability queries in O(n0.616) time, insertion of an edge in
O(n1.616) time, and deletion of an edge among the O(nη) most recently in-
serted edges in O(n1.616+η) time. The algorithm is subquadratic if η < 0.384
and all bounds are worst-case.

We remark that constraining deletions to remove only “recent” edges rep-
resents a rather strong limitation; nevertheless, we report the method for its
technical interest. The main idea that the algorithm is based on consists of
stacking edge insertions and undoing them when a recently inserted edge has
to be deleted.

Data Structure and Implementation of Operations

We maintain a matrix M such that M [x, y] is the number of previous edge
insertions which caused at least a new simple path from x to y to appear in
the graph. Clearly, there is a path in the graph from x to y if and only if
M [x, y] > 0, and this allows us to answer reachability queries.

To insert an edge (x, y), we compute a row vector Outy such that Outy[v] =
1 if and only if there is a path from y to v in the graph and zero otherwise.
We also compute a column vector Inx that keeps track of nodes which reach
x. Then we perform the operation M ← M + Inx · Outy and we log the pair
(Inx, Outy) in a stack.

To delete an edge (x, y) which is among the k most recently inserted edges,
we pop the topmost k pairs of vectors (Inx, Outy) from the stack and perform
M ← M − Inx · Outy for each pair in backward order to “undo” the last k

edge insertions. Finally, we re-insert in any order all removed edges, but (x, y).
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Notice that a single deletion costs 2k times more than a single insertion and
leaves M as if (x, y) was never inserted.

If we maintain M with the data structure presented in Section 3.4.2, we
can support any operation of the kind M ← M ± Inx · Outy in O(n2−0.624ε)
time and any query about an entry of M in O(nε) time for any 0 ≤ ε ≤ 1
(see Corollary 3.5). Since computing Inx and Outy requires O(n1+ε) time
due to the non-constant access to M , we have that any insertion requires
O(n2−0.624ε + n1+ε) worst-case time. If we balance the two terms solving the
equation 2 − 0.624ε = 1 + ε, we obtain ε = 1

1.624 = 0.616 which gives an
O(n1.616) insertion time and O(n0.616) query time. Choosing k = nη yields
O(n1.616+η) time per deletion, which is subquadratic for any η < 0.384.

3.8 Conclusions

In this chapter we have presented new time and space efficient algorithms for
maintaining the transitive closure of a directed graph under edge insertions
and edge deletions.

As a main contribution, we have introduced a general framework for casting
fully dynamic transitive closure into the problem of dynamically reevaluating
polynomials over matrices when updates of variables are performed. Such
technique has turned out to be very flexible and powerful, leading both to
revisit the best known algorithm for fully dynamic transitive closure [52] in
terms of completely different data structures, and to design a new and faster
algorithm for the problem.

In particular, efficient data structures for maintaining polynomials over
Boolean matrices allowed us to devise the rather complex deterministic algo-
rithm described in Section 3.6, which supports updates in quadratic amortized
time and queries with just one matrix lookup. Our algorithm improves the best
bounds for fully dynamic transitive closure achieved in [52] and is the fastest
algorithm with constant query time known in literature for this problem.

In addition, a surprisingly simple technique for efficiently maintaining dy-
namic matrices of integers under simultaneous updates of multiple entries,
combined with a previous idea of counting paths in acyclic digraphs [53],
yielded the randomized algorithm presented in Section 3.7.1: this algorithm,
for the first time in the study of fully dynamic transitive closure, breaks
through the O(n2) barrier on the single-operation complexity of the problem.



Chapter 4

Fully Dynamic Shortest Paths

4.1 Introduction

This chapter features a preliminary experimental study of the best known fully
dynamic algorithms for the single-source shortest paths problem and presents
a new variant inspired by the experiments. Our variant is especially designed
to be simple and fast in practice while matching the worst-case asymptotic
complexity of the best algorithms.

The chapter is dominated by the concept of reweighting, originally de-
signed by Edmonds and Karp for network flows problems [26] and discussed
in Section 2.4 of this dissertation. We shall see that in the dynamic setting
this technique allows it to reduce the general problem of updating shortest
paths in case of arbitrary edge weights to a problem with nonnegative edge
weights. This opens the possibility of using dynamic adaptations of the clas-
sical algorithm of Dijkstra instead of recomputing from scratch by means of
Bellman-Ford’s algorithm (see Section 2.4.1), and allows it to reduce dramati-
cally the running time of performing updates from O(mn) to O(m+n log n) .
Actually, the reweighting technique is the kernel for solving efficiently the fully
dynamic single-source shortest paths problem and is the common skeleton of
all the best known algorithms for the problem, including our new variant.

Our experimental study was aimed at evaluating and comparing the ef-
fectiveness of different algorithms constructed around the skeleton provided
by the reweighting method, and our main goal was that of identifying with
experimental evidence the more convenient algorithm to use in practice in a
fully dynamic setting.

The results of our preliminary experiments on random test sets showed
that:

1. all the considered dynamic algorithms based on the reweighting tech-
nique are faster by several orders of magnitude than recomputing from

79
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scratch with the best static algorithm: this yields clues to the fact that
constant factors in practical implementations can be very small for this
problem;

2. the running time of all the considered dynamic algorithms is affected
by the width of the interval of edge weights. In particular, dynamic
algorithms are faster if weights come from a small set of possible values;

3. due to its simplicity, our new variant stands out as a practical solution,
though more complex algorithms may become preferable in some specific
cases.

The chapter is organized as follows. Section 4.2 formally defines the fully
dynamic single-source shortest paths problem and gives preliminary defini-
tions. In Section 4.3 we revisit the reweighting technique in a dynamic con-
text and we discuss different implementations of update operations based on
this technique. We briefly describe implementations known from the literature
plus a new simple and practical algorithm which we suggest. We finally focus
on our experimental framework in Section 4.4 and report the results of our
experimentation in Section 4.5.

4.2 Statement of the Problem

In this section we give a formal definition of the fully dynamic single-source
shortest paths problem that we study in this chapter. We assume that the
reader is familiar with the preliminary concepts discussed in Section 2.4.

Definition 4.1 Let G = (V,E,w) be an edge weighted directed graph, let
s ∈ V be a fixed source node, let ds : V → R be the distance function w.r.t.
s, and let T (s) be a shortest path tree rooted at s. We define the Fully

Dynamic Single-source Shortest Paths Problem as the problem of
maintaining a data structure G for the graph G under an intermixed sequence
σ = 〈G.Op1, . . . , G.Opk〉 of Initialization, Update, and Query operations.
Each operation G.Opj on data structure G can be one of the following:

• G.Init(w′): perform the initialization operation w(x, y) ← w ′(x, y) for
any (x, y) ∈ E, where w′ : E →R. The operation sets the weight of each
edge in the graph.

• G.Increase(x, y, ε): perform the update w(x, y) ← w(x, y) + ε, where
(x, y) ∈ E and ε ∈ R+. The operation increases the weight of edge (x, y)
by the amount ε.
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• G.Decrease(x, y, ε): perform the update w(x, y) ← w(x, y) − ε, where
(x, y) ∈ E and ε ∈ R+. The operation decreases the weight of edge (x, y)
by the amount ε.

• G.Query(x): perform a query operation on ds and T (s) and return a pair
〈d, π〉 such that d = ds(x) and π is the path s ; x in the shortest paths
tree T (s).

This definition is a dynamic counterpart of Definition 2.17 given in Sec-
tion 2.4. Notice that we focus on the fixed-topology case where a single update
is allowed to change the weight of an edge, but not to remove and insert nodes
and edges of the graph.

In next section we address the issue of implementing efficiently operations
Increase and Decrease introduced in Definition 4.1. In particular, we show
that the reweighting technique introduced in Section 2.4 plays a crucial role in
designing solutions which are asymptotically faster than recomputing shortest
paths from scratch after each update with the best known static algorithm.

4.3 Fully Dynamic Algorithms by Reweighting

In Section 2.4 we showed that, given a weighted directed graph G = (V,E,w)
with n nodes and m edges, if s is the source and ds is the distance function,
then we can obtain a new graph Ĝ = (V,E, ŵ) where: ŵ(x, y) = w(x, y) +
ds(x)−ds(y). We recalled the surprising property that shortest paths stay the
same in both G and Ĝ (Lemma 2.14). We also learned from Lemma 2.15 that
the weight of any edge ŵ(x, y) is nonnegative for any (x, y) ∈ E.

Previous properties let us immediately think of the possibility of using the
more efficient algorithm of Dijkstra instead of Bellman-Ford’s one for com-
puting distances and shortest paths. Unfortunately, in the static case, this
does not work for our single-source problem as using such potentials requires
distances to be already computed. Thus, the best static solution for the single-
source shortest paths problem remains Bellman-Ford’s algorithm, which runs
in O(mn) worst-case time (see Section 2.4.1).

In a dynamic setting, instead, the reweighting technique is a powerful tool.
Roughly speaking, the main idea consists of maintaining explicitly during a
sequence of operations the current distances and exploiting them for defining
a nonnegative reweighting function. To perform an update, we can then run
a Dijkstra’s computation on the reweighted graph and the distances which we
obtain can be viewed as variations of distances in the original graph since the
update.

The skeleton of a dynamic algorithm based on the reweighting technique
is shown in Figure 4.1. As the most expensive operation is the Dijkstra com-
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1. Change the weight of an edge

↓
2. Reweight the updated graph

↓
3. Run Dijkstra on the reweighted graph

↓
Use obtained distances to update

4. distances and shortest paths tree
in the original graph

Figure 4.1: Skeleton of an update operation based on the reweighting tech-
nique.

putation, the time required for performing steps 1–4 is O(m + n log n). We
remark that all the best known solutions for the fully dynamic single-source
shortest paths problem are designed around this skeleton. Before describing
algorithms for the problem, we define the following data structure:

Data Structure 4.1 We maintain a weighted directed graph G = (V,E,w),
the distances ds(v) of any node v from the source s in G, and a shortest paths
tree T (s) rooted at s represented as a vector of parents ps such that (x, y) is
in T (s) if and only if ps(y) = x.

According to this definition, explicitly maintaining both shortest paths
and distances makes it possible to perform Query operations in optimal time,
so we shall not discuss further this operation. We remark that this choice is
common to all known algorithms for the problem introduced in Definition 4.1.

In the remainder of the section we focus on the problem of supporting
efficiently operations Increase and Decrease using Data Structure 4.1. We
consider separately the case of Increase and Decrease operations and we
discuss different implementations known from the literature plus a variant
which we propose.

4.3.1 Supporting Increase Operations

Observe that an operation Increase(x, y, ε) which increases the weight of an
edge (x, y) that is not in T (s) has nothing to do: actually, no node changes its
distance due to this update. On the other hand, if (x, y) is an edge in T (s),
then only nodes in the subtree T (y) rooted at y may change their distance ds

as a consequence of the update. This suggests that a clever dynamic algorithm
should avoid working on nodes which do not belong to T (y).
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Figure 4.2: Shortest paths tree after an Increase(x, y, ε) on edge (x, y). Node
v chooses as new parent node p and increases its distance from s by ∆ < ε.
Subtree T (v) detaches from T (y).

Figure 4.2 shows a shortest paths tree T (s) after performing an Increase

operation on edge (x, y). In the figure, node v chooses as new parent in T (s)
node p, which guarantees that its distance is increased by less than ε. As a
consequence, subtree T (y) is detached from T (y), and T (y) contracts.

Sometimes, it may happen that the new path s ; p → v has the same
length as the old shortest path s ; v before the update: thus, the distance
ds(v) does not increase after the update, and the same holds for all nodes
which are in the subtree T (v) rooted at v. A subtle dynamic algorithm should
avoid performing high-cost operations on such nodes. The problem here is
that, while nodes in T (y) are easily identifiable, nodes in T (y) which are not
going to change their distance after the update are less easy to detect if we
still have not computed their distance variation.

In general, if we denote by d′s(v) the distance of node v after the update,
then the distance variation δs(v) = d′s(v) − ds(v) satisfies the inequality: 0 ≤
δs(v) ≤ ε. In the following we say that nodes v such that δs(v) > 0 are
Affected.

We now discuss five possible implementations of the Increase operation,
which we denote by BFM, REW, DF, DFMN, and RR. BFM is a simple-minded
algorithm based on the static algorithm of Bellman Ford; REW is a raw im-
plementation of the reweighting method, and DF is a heuristic variant of REW
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which we suggest; finally, DFMN [37, 19] and RR [64, 65] are the best known
fully dynamic algorithms from the literature. We remark that DFMN and RR

are more sophisticated variants of REW as well. The running time of all these
algorithms is O(m + n log n) worst-case time, except for BFM, which runs in
O(mn) worst-case time.

BFM

A simple-minded implementation of both operations Increase and Decrease

consists of recomputing ds and T (s) from scratch via Bellman-Ford’s algorithm
(see Section 2.4.1) after each update:

procedure Increase(x, y, ε)
1. begin
2. w(x, y) ← w(x, y) + ε

3. if (x, y) 6∈ T (s) then return

4. 〈ps, ds〉 ←Bellman-Ford(Ĝ, s)
5. end

The running time is dominated by the computation of Bellman-Ford’s al-
gorithm in line 4 and is clearly O(mn).

REW

We now present a raw implementation of the reweighting technique summa-
rized in Figure 4.1 which yields an algorithm for operation Increase that is
better than recomputing from scratch through the best static algorithm. The
implementation is as follows:

procedure Increase(x, y, ε)
1. begin
2. w(x, y) ← w(x, y) + ε

3. if (x, y) 6∈ T (s) then return
4. for each (u, v) ∈ E do
5. ŵ(u, v)← w(u, v) + ds(u)− ds(v)

6. 〈p̂s, d̂s〉 ←Dijkstra(Ĝ, s)
7. for each v ∈ V do

8. ds(v)← ds(v) + d̂s(v)
9. ps(v)← p̂s(v)
10. end

We first increase the weight of (x, y) so as to obtain an updated graph G

and compute the reweighting function ŵ from w (lines 4–5); then we apply
Dijkstra’s algorithm on Ĝ in order to compute distances d̂s in Ĝ (line 6). We
finally get back updated distances ds in G from distances d̂s in Ĝ (lines 7–8).

The correctness of this method is easily proved by observing that, after
increasing the weight of (x, y), the updated Ĝ is the reweighted version of the
updated G and does not contain negative-length cycles. Thus, Lemma 2.14
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also holds for Ĝ and G. This allows us to get back correctly distances in G from
distances in Ĝ (lines 7–8). The correctness of line 9 follows from Lemma 2.14.

The running time is dominated by the computation of Dijkstra’s algorithm
in line 6 and is clearly O(m + n log n) (see Section 2.4.1).

Notice that REW is very similar to BFM: also REW recomputes from scratch
shortest paths, but exploits the fact that Ĝ has nonnegative weights and runs
Dijkstra on Ĝ instead of calling Bellman-Ford on G.

In practical implementations we can avoid computing explicitly Ĝ in lines 4–
5 and retrieving back distances ds from d̂s and shortest paths tree ps from p̂s

in lines 7–9, by using the relations ŵ(x, y) = w(x, y) + ds(x) − ds(y) and
d̂s(v) = d′s(v) − ds(v) on the fly.

DF

We now describe our new variant. The observation that no node outside
T (y) can change its distance as a consequence of the weight increase led us to
consider a heuristic improvement of REW which in many practical cases yields
dramatic speedup. The main idea consists of starting Dijkstra’s computation
with a priority queue H already loaded with only the nodes in T (y). The
priority δs(v) of each node v in H is initially given as:

δs(v) = min
(p,v)∈E ∧ p6∈T (y)

{d̂s(p) + ŵ(p, v)}.

It is easy to see that, by our definition of ŵ, d̂s(p) = 0 for any p 6∈ T (y).
The implementation of Increase that we propose comes next.

procedure Increase(x, y, ε)
1. begin
2. w(x, y) ← w(x, y) + ε

3. if (x, y) 6∈ T (s) then return
4. for each v ∈ T (y) do
5. δs(v)← min(p,v)∈E ∧ p6∈T (y){ ŵ(p, v) }
6. H ← {v ∈ V : v ∈ T (y)}
7. while H 6= ∅ do
8. let u ∈ H : δs(u) = minw∈H δs(w)
9. ds(u)← ds(u) + δs(u)
10. H ← H − {u}
11. for each v ∈ H : (u, v) ∈ E do
12. if δs(v) > δs(u) + ŵ(u, v) then
13. δs(v)← δs(u) + ŵ(u, v)
14. ps(v)← u

15. end

Observe that our dynamic algorithm is an adaptation of Dijkstra’s al-
gorithm shown in Section 2.4.1. Indeed, lines 7–14 are equal to the main
while loop of Dijkstra’s algorithm, except that we use δ as distances and
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ŵ as weights, like we were using a reweighted graph. Moreover, the set H

is no more initialized with just the source s, but with all the nodes in T (y)
(line 6). Initial priorities of nodes are no more +∞, and 0 for the source, but
are computed in lines 4–5 as explained above.

To make a direct comparison with REW, the main while loop is started in
DF with a configuration of the data structures which is the same that would
have been reached by performing several previous steps in Dijkstra’s call of
REW. This may save in practice a large amount of work, especially in the case
where the size of the subtree T (y) is much smaller than the size of the whole
shortest paths tree T (s). Since in the worst case T (y) may be as large as T (s),
the asymptotic running time of DF is the same of REW, i.e., O(m + n log n).

/ � .

We now briefly recall two fully dynamic algorithms known from the liter-
ature: RR [64, 65] and DFMN [37, 19]. They feature the same structure of DF,
but instead of inserting in H all the nodes in T (y), only put in H affected
nodes, i.e., nodes which are actually going to increase their distances after the
update. This means that they avoid performing useless high-cost operations
such as extractions of zero-valued minima from H in Dijkstra’s main loop,
remembering that a distance zero in Ĝ corresponds to a null variation of dis-
tance in G. While RR requires graphs not to have zero-length cycles for doing
so, DFMN has no restrictions. The common structure of both RR and DFMN is
the following:

procedure Increase(x, y, ε)
1. begin
2. w(x, y) ← w(x, y) + ε

3. if (x, y) 6∈ T (s) then return
4. { identify affected nodes }
5. for each v ∈ T (y) do
6. δs(v)← min(p,v)∈E ∧ p is not affected{ ŵ(p, v) }
7. H ← { affected nodes }
8. while H 6= ∅ do
9. let u ∈ H : δs(u) = minw∈H δs(w)
10. H ← H − {u}
11. ds(u)← ds(u) + δs(u)
12. for each v ∈ H : (u, v) ∈ E do
13. if δs(v) > δs(u) + ŵ(u, v) then
14. δs(v)← δs(u) + ŵ(u, v)
15. ps(v)← u

16. end

Note that, differently from DF, the algorithm performs an additional phase
of identifying affected nodes in line 4. Affected nodes are then used in place
of nodes in T (y) in the rest of the pseudocode.
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We provide only an informal description of the two algorithms, referring
the interested reader to [64, 65, 37, 19] for more details.

RR

In addition to the objects in Data Structure 4.1 RR maintains a subset
SP of the edges of G, containing the edges of G that belong to at least one
shortest path from s to the other nodes of G, i.e., SP = { (u, v) ∈ E : ds(v) =
ds(u) + w(u, v) }.

If G has only positive-length cycles, then the directed graph SP (G) =
(V, SP ) with node set V and edge set SP is acyclic and is used for finding
affected nodes as follows.

We assume that the weight of edge (x, y) has been increased. RR maintains
a work set containing nodes that have been identified as affected, but have
not yet been processed. Initially, y is inserted in that set only if there are no
further edges in SP entering y after the operation. Nodes in the work set are
processed one by one, and when node u is processed, all edges (u, v) leaving
u are deleted from SP , and v is inserted in the work set. All nodes that are
identified as affected during this phase are inserted in the work set.

RR runs in O(ma + na + na log na) per update, where na is the number of
nodes affected by the update and ma is the number of edges having at least
one affected endpoint. This gives O(m + n log n) time in the worst case.

DFMN

DFMN is able to detect affected nodes even in presence of zero-length cycles
in the graph.

The procedure colors the nodes in T (y) as follows: z ∈ T (y) is white if it
changes neither the parent in T (y) nor the distance; z is pink if it changes the
parent; z is red if it changes the distance. In addition, a new parent in the
shortest paths tree is given to each pink node. This is done by inserting the
nodes in a heap, extracting them in non-decreasing order of their old distance
from the source, and searching, for each of these nodes, an alternative shortest
path from the source. To achieve this goal a quite complicated procedure is
given that deals with zero-length cycles. At the end of the procedure, we
retrieve affected nodes which are red.

DFMN has a worst-case complexity per update which depends on a struc-
tural parameter of the graph called k-ownership. If the graph has a k-bounded
accounting function (as in the case of graphs with genus, arboricity, de-
gree, treewidth or pagenumber limited by k) Decrease operations require
O(min{m, kna} log n) worst-case time, while Increase operations require
O(min{m log n, k(na + nb) log n + n}) worst-case time. Here na is the number
of nodes affected by the update and nb is the number of nodes considered by
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Figure 4.3: Shortest paths tree after a Decrease(x, y, ε) on edge (x, y). Node
h chooses as new parent node v and decreases distance from s by ∆ < ε.
Subtree T (h) is attached to T (y).

the algorithm. In terms of n and m, this gives O(m + n log n) time in the
worst case.

4.3.2 Supporting Decrease Operations

Assume that an operation Decrease(x, y, ε) reduces the weight of edge (x, y)
by a positive quantity ε. If ds(x) + wx,y − ε ≥ ds(y), then distances of nodes
do not change due to this update and Decrease has nothing else to do.

On the other hand, if ds(x) + wx,y − ε < ds(y), then the nodes in T (y)
decrease their distance by ε, and the updated subtree T ′(y) may include nodes
not contained in T (y). All these nodes are Affected by the input change. If
y is affected, then the new shortest paths from s to the affected nodes contain
(x, y). If y is not affected then no negative cycle is added to G, and no affected
nodes exist. Node x is affected if and only if the update operation introduces
a negative-length cycle, and this allows it to detect such cycles dynamically
during each Decrease operation.

Figure 4.3 shows a shortest paths tree T (s) after performing a Decrease

operation on edge (x, y). In the figure node h chooses as new parent in T (s)
node v which guarantees that its distance is decreased by less than ε. As a
consequence, subtree T (h) is attached to T (y), which gets expanded.

Differently from the case of Increase operations where refinements were
possible by exploiting the combinatorial property that affected nodes are a
subset of T (y), we only report one implementation, which is common to all
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the algorithms DF, RR, and DFMN based on the reweighting technique:

procedure Decrease(x, y, ε)
1. begin
2. w(x, y) ← w(x, y)− ε

3. if ds(x) + wx,y − ε ≥ ds(y) then return
4. δs(y)← −ε

5. H ← {y}
6. while H 6= ∅ do
7. let u ∈ H : δs(u) = minw∈H δs(w)
8. H ← H − {u}
9. ds(u)← ds(u) + δs(u)
10. for each v ∈ V : (u, v) ∈ E do
11. if δs(v) > δs(u) + ŵ(u, v) then
12. if v = x then { a negative-length cycle has been detected }
13. H ← H ∪ {v}
14. δs(v)← δs(u) + ŵ(u, v)
15. ps(v)← u

16. end

Notice that this is basically a Dijkstra computation on the reweighted graph,
except for the following differences:

1. the computation starts from node y instead of the source s;

2. the priorities of nodes in H are strictly negative;

3. the initial priority δs(y) of y is −ε;

4. if a negative-length cycle is introduced, then it includes edge (x, y), and
thus it can reported whenever node x gets negative priority.

The running time of this implementation of the Decrease operation is
clearly O(m + n log n): this is the best known update bound for the fully
dynamic single-source shortest paths problem.

/ � .

We remark that the variant DF which we proposed in this section was
inspired by the results of a first suite of experiments on random test sets
aimed at comparing previous algorithms for the single-source shortest paths
problem in a dynamic setting. In those experiments, we measured the number
of affected nodes per update and we discovered that, when edge weights are
chosen from a large set of possible values, this number is very close to the
number of nodes in T (y), where (x, y) is the updated edge. The obvious logical
explanation was the following: the probability that a node v has two incoming
edges (u1, v) and (u2, v) such that ds(u1)+w(u1, v) = ds(u2)+w(u2, v) = ds(v)
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(i.e., the probability of having two equivalent shortest paths which lead to v)
gets smaller as the range of possible values of edge weights increases.

We then had the idea of removing from algorithms RR and DFMN the step
of identifying affected nodes and we implemented our version DF which works
directly on T (y).

After implementing DF, we performed a second suite of experiments that
we present in the next two sections, aimed at confirming the considerations
that inspired the design of DF. As we will see in Section 4.5, our considerations
were fully confirmed by the experiments, which showed the clear superiority
of DF when edge weights are chosen from a large set of possible values.

4.4 Experimental Setup

In this section we describe our experimental framework, presenting the prob-
lem instance generators, the performance indicators we consider, and some
relevant implementation details. All codes being compared have been imple-
mented by the author as C++ classes using advanced data types of LEDA [59]
(version 3.6.1).

The software package, including algorithm implementations and test sets
generators used in the preparation of this chapter, is available over the Internet
at the URL:

ftp://www.dis.uniroma1.it/pub/demetres/experim/dsplib-1.1/

Our experiments were performed on a SUN Workstation Sparc Ultra 10
with a single 300 MHz processor and 128 MB of main memory running UNIX
Solaris 5.7. All C++ programs were compiled by the GNU g++ compiler version
1.1.2 with optimization level O4. Each experiment consisted of maintaining
both the distance of nodes from the source and the shortest paths tree in a
random directed graph by means of different algorithms upon a random mixed
sequence of Increase and Decrease operations.

4.4.1 Algorithms Under Evaluation

The algorithms that we consider in our experimental study are: BFM, DFMN,
RR and DF. We did not include the REW implementation of the reweighting
technique as it proved itself to be very slow if compared to DFMN, RR and DF.

We put effort to producing C++ codes for algorithms DFMN, RR and DF in
such a way that their running times can be compared as fairly as possible.
In particular, we avoided creating “out of the paper” implementations of al-
gorithms DFMN and RR. For example, in RR we do not explicitly maintain the
shortest paths dag SP with a separate data structure so as to avoid addi-
tional maintenance overhead that may penalize RR when compared against
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the other algorithms: actually, we maintain this information implicitly using
the distance labels of nodes. In general, we tried to keep in mind the high-level
algorithmic ideas while devising fast codes.

For these reasons, we used just one code for performing Decrease and we
focused on hacking and tweaking codes for Increase. We believe that the
effect of using LEDA data structures does not affect the ranking of different
algorithms. More details about our codes can be directly found in our experi-
mental package distributed over the Internet. In the remainder of this paper,
we refer to ALL-DECR as the Decrease code and to DFMN, RR and DF as the
Increase codes.

4.4.2 Graph and Sequence Generators

We used four random generators for synthesizing the graphs and the sequences
of updates:

• gen graph(n,m,s,min,max): builds a random directed graph with n

nodes, m edges and integer edge weights w s.t. min≤ w ≤ max, forming
no negative or zero length cycle and with all nodes reachable from the
source node s. Reachability from the source is obtained by first generat-
ing a connecting path through the nodes as suggested in [9]; remaining
edges are then added by uniformly and independently selecting pairs of
nodes in the graph. To avoid introducing negative and zero length cycles
we use the method of potentials described in [41]. The idea consists of
first generating a random potential function φ : V → R and a random
positive weight function ν : E → R+: the weight of an edge (u, v) is
then generated as w(u, v) ← φ(u)− φ(v) + ν(u, v). By telescoping sums
over cycles, we can easily prove that all cycles have nonnegative length.

• gen graph z(n,m,s,min,max): similar to gen graph, but all cycles in
the generated graphs have exactly length zero. This is obtained by
considering edge weights which are differences of potentials: w(u, v) ←
φ(u)− φ(v).

• gen seq(G,q,min,max): issues a mixed sequence of q Increase and
Decrease operations on edges chosen at random in graph G without in-
troducing negative and zero length cycles. Weights of edges are updated
so that they always fit in the range [min,max]. Negative and zero length
cycles are avoided by using the same potentials φ used in the generation
of weights of edges of G and generating a different positive function ν.
Optionally, the following additional constraints are supported:

– Modifying Sequence: each Increase or Decrease operation is cho-
sen among the operations that actually modify some shortest path
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from the source.

– Alternated Sequence: the sequence has the form Increase-Decrease-
Increase-Decrease. . ., where each pair of consecutive Increase-
Decrease updates is performed on the same edge.

• gen seq z(G,q,min,max): similar to gen seq, but the update opera-
tions in the generated sequences force cycles in the graph G to have
length zero. Again, this is obtained by considering edge weights as just
difference of potentials φ, without using ν.

All our generators are based on the LEDA pseudo-random source of num-
bers. We initialized the random source with a different odd seed for each graph
and sequence we generated.

4.4.3 Performance Indicators

We considered several performance indicators for evaluating and comparing
the different codes. In particular, for each experiment and for each code
we measured: (a) the average running time per update operation during the
whole sequence of updates; (b) the average number of nodes processed in
the distance-update phase of algorithms. Again, this is per update operation
during the whole sequence of updates.

Indicator (b) is very important for comparing the dynamic algorithms as it
measures the actual portion of the shortest paths tree for which they perform
high-cost operations such as extractions of minima from a priority queue. It is
interesting to observe that, if an Increase operation is performed on an edge
(x, y), the value of the indicator (b) measured for both RR and DFMN reports
the number of affected nodes that change their distance from the source since
that update, while the value of (b) measured for DF reports the number of
nodes in the shortest paths tree T (y) rooted at y before the update.

Other measured indicators were: (c) the maximum running time per up-
date operation; (d) the average number of scanned edges per update operation
during the whole sequence of updates; (e) the total time required for initializ-
ing the data structures.

The running times were measured by the UNIX system call getrusage()
and are reported in milliseconds. Indicators (b) and (d) were measured by
annotating the codes with probes. The values of all the indicators are ob-
tained by averaging over 15 trials. Each trial consists of a graph and a se-
quence randomly generated through gen graph or gen graph z and gen seq

or gen seq z, respectively, and is obtained by initializing the pseudo-random
generator with a different seed.
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4.5 Experimental Results

The purpose of this section is to identify with experimental evidence the more
convenient algorithm to use in practice in a fully dynamic environment. We
performed several preliminary experiments on random graphs and random
update sequences for different parameters defining the test sets aiming at
comparing and separating the performances of the different algorithms. In
particular, our main goals were the following:

1. Estimating the practical advantages of using fully dynamic algorithms
based on the reweighting technique instead of dynamic adaptations of
the static algorithm of Bellman-Ford.

2. Evaluating the impact of constants hidden in the asymptotic bounds.
This is particularly important as all the considered implementations of
Increase and Decrease operations feature the same O(m + n log n)
bound on the running time.

3. Identifying under which conditions it is worth to identify affected nodes
before updating the distances, as done by RR and DFMN, and when the
simpler strategy of working on the larger subtree T (y) adopted by DF is
to be preferred.

Our first experiment showed that the time required by an Increase may
significantly depend upon the width of the interval of the edge weights in the
graph:

• Increasing edge weight interval: we ran our DFMN, RR and DF codes on
mixed sequences of 2000 modifying update operations performed on
graphs with 300 nodes and m = 0.5n2 = 45000 edges and with edge
weights in the range [−2k, 2k] for values of k increasing from 3 to 10.
The results of this test for Increase operations are shown in Figure 4.4.
It is interesting to note that the smaller is the width of the edge weight
interval, the larger is the gap between the number of affected nodes con-
sidered by RR during any Increase operation on an edge (x, y), and the
number of nodes in T (y) scanned by DF. In particular, RR is faster than
DF for weight intervals up to [−32, 32], while DF improves upon RR for
larger intervals. This experimental result agrees with the fact that RR

is theoretically efficient in output bounded sense, but spends more time
than DF for identifying affected nodes. The capacity of identifying af-
fected nodes even in the presence of zero cycles penalizes DFMN that is
always slower than RR and DF on these problem instances with no zero
cycles.
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Figure 4.4: Experiments performed with n = 300 and m = 0.5n2 = 45000 for
edge weight intervals increasing from [−8, 8] to [−1024, 1024].

In our second suite of experiments, we ran BFM, DFMN, RR and DF codes on
random sequences of 2000 modifying updates performed both on dense and
sparse graphs with no negative and zero cycles and for two different ranges of
the edges weights. In particular, we performed two suites of tests:

• Increasing number of nodes: we measured the running times on dense
graphs with 100 ≤ n ≤ 500 and m = 0.5n2 for edge weights in [−10, 10]
and [−1000, 1000]. We repeated the experiment on larger sparse graphs
with 1000 ≤ n ≤ 3000 and m = 30n for the same edge weights intervals
and we found that the performance indicators follow the same trend of
those of dense graphs that are shown in Figure 4.5. This experiment
agrees with the first one and confirms that, on graphs with edge density
50%, DF beats RR for large weight intervals and RR beats DF for small
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Figure 4.5: Experiments performed with 100 ≤ n ≤ 500 and m = 0.5n2 for
edge weights in the range [−10, 10] and [−1000, 1000].

weight intervals. Notice that the dynamic codes we considered are better
by several orders of magnitude than recomputing from scratch through
the LEDA BFM code.

• Increasing number of edges: we retained both the running times and the
number of nodes processed in the distance-update phase of algorithms on
dense graphs with n = 300 and 0.05n2 ≤ m ≤ 0.9n2 for edge weights in
[−10, 10] and [−1000, 1000]. We repeated the experiment on larger sparse
graphs with n = 2000 and 10n ≤ m ≤ 50n for the same edge weights
intervals and again we found similar results. Performance indicators for
this experiment on dense graphs are shown in Figure 4.6 and Figure 4.7
and agree with the ones measured in the first test for what concerns the
edge weight interval width. However, it is interesting to note that even
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Figure 4.6: Running Time: experiments performed with n = 300, 0.05n2 ≤
m ≤ 0.9n2 for edge weights in the range [−10, 10] and [−1000, 1000].
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Figure 4.8: Experiments performed with n = 2000, 10n ≤ m ≤ 50n for edge
weights in [−10, 10]. All cycles have zero length during updates.

for small weight ranges, if the edge density is less than 10%, the running
time of DF slips beneath that of RR.

As from the previous tests our DFMN code is always slower than RR and
DF, our third experiment aims at investigating if families of problem instances
exist for which DFMN is a good choice for a practical dynamic algorithm. As
it is able to identify affected nodes even in presence of zero cycles, we were
not surprised to see that DFMN beats in practice DF in a dynamic setting where
graphs have many zero cycles. We remark that RR is not applicable in this
context.

• Increasing number of edges and zero cycles: we ran DFMN and DF codes on
random graphs with 2000 nodes, 10n ≤ m ≤ 50n, weights in [−10, 10],
all zero cycles, and subject to 2000 random alternated and modifying
updates per sequence. We used generators gen graph z and gen seq z

to build the input samples. Figure 4.8 shows the measured running times
of Increase operations for this experiment, proving the superiority of
DFMN w.r.t. DF on such instances.

Performance indicators (c), (d) and (e) provided no interesting additional
hint on the behavior of the algorithms and therefore we omit them from our
discussion: the interested reader can find in the experimental package the
detailed results tables of our tests.
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4.6 Conclusions

In this chapter we have considered a preliminary experimental study of the
fully dynamic single-source shortest paths problem. We have also suggested a
new variant DF of the best known algorithms for the problem.

Our variant was especially designed to be simple and fast in practice while
matching the worst-case asymptotic complexity of the best algorithms. It was
inspired by the results of a first suite of experiments on random test sets aimed
at comparing previous algorithms for the single-source shortest paths problem
in a dynamic setting. In those experiments, we measured the average number
of affected nodes per edge weight update and we discovered that, when edge
weights in the graph are chosen from a large set of possible values, this number
is very close to the number of nodes in the subtree rooted at the head of the
modified edge. In this case, we conjectured that algorithms RR and DFMN,
which spend time in identifying affected nodes with the hope of speeding up
the final phase of updating distances, may not be the fastest choice in practice.
This led us to consider a simplified version DF which avoids looking for affected
nodes, and we implemented it.

We performed a second suite of experiments, presented in this chapter,
which confirmed our conjecture and showed the clear superiority of DF when
edge weights are chosen from a large set of possible values.

Some results provided by our experiments were:

• all the considered dynamic algorithms based on the reweighting tech-
nique are faster by several orders of magnitude than recomputing from
scratch with the best static algorithm BFM: this yields clues to the fact
that constant factors in practical implementations can be very small for
this problem;

• the running time of all the considered dynamic algorithms is affected
by the width of the interval of edge weights. In particular, dynamic
algorithms are faster if weights come from a small set of possible values;

• RR is preferable when edge weights are small integers, DFMN is preferable
when there are many zero-length cycles in the graph, and DF is the best
choice in any other case;

We have also showed that the reweighting technique of Edmonds and Karp,
originally designed for network flows problems, is the key to solving efficiently
the fully dynamic single-source shortest paths problem. Indeed, this method
is the skeleton of all the best known algorithms for the problem, including our
variant. All these algorithms perform updates in O(m + n log n) worst-case
time per operation, instead of the O(mn) worst-case time of recomputing from
scratch.



100 CHAPTER 4. FULLY DYNAMIC SHORTEST PATHS



Chapter 5

Conclusions and Further

Directions

In this dissertation we have investigated two of the most fundamental dynamic
problems on directed graphs: the fully dynamic transitive closure (Chapter 3)
and the fully dynamic single-source shortest paths problem (Chapter 4).

In Chapter 3 we have studied the fully dynamic transitive closure problem
theoretically and we have devised new algorithms which improve the best
known bounds for the problem. These results have been obtained by means
of a novel technique which consists of casting fully dynamic transitive closure
into the problem of maintaining polynomials over matrices. In particular,
we have proposed efficient data structures for maintaining polynomials over
Boolean matrices subject to updates of their variables (Section 3.4.1) and for
maintaining implicitly matrices over integers subject to simultaneous updates
of multiple entries (Section 3.4.2).

The first data structure led us to devise a new deterministic fully dynamic
transitive closure algorithm which supports updates in O(n2) amortized time
and answers reachability queries with just one table lookup (Section 3.6). This
algorithm hinges upon the equivalence between transitive closure and matrix
multiplication on a closed semiring and is the fastest known fully dynamic
transitive closure algorithm with constant query time.

A surprisingly simple method for supporting in subquadratic time opera-
tions on dynamic matrices (Section 3.4.2), combined with a previous idea of
counting paths in acyclic digraphs [53], yielded the randomized algorithm for
acyclic digraphs presented in Section 3.7.1: this algorithm, for the first time
in the study of fully dynamic transitive closure, breaks through the O(n2)
barrier on the single-operation complexity of the problem, supporting updates
in O(n1.58) and queries in O(n0.58) worst-case time.

101
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In Chapter 4 we have addressed the fully dynamic single-source shortest
paths problem, reporting a preliminary experimental study of the best known
algorithms for it. We have also discussed how experiments helped us devise a
new variant of those algorithms, especially designed to be as fast as possible
in practice.

Experimental results showed that recomputing a shortest paths tree from
scratch with the best static algorithm may be several orders of magnitude
slower than updating it by means of an efficient fully dynamic algorithm: this
confirmed the theoretical analysis and suggested that constants hidden in the
asymptotic bounds known for this problem are rather small in practice. Exper-
iments also showed that our variant is always faster than the other considered
algorithms, except for the case where edge weights of the graph are chosen
from a small set of possible values.

/ � .

To conclude, we address some open problems and directions for future
research which we consider a natural continuation of the work of this thesis.
We mention a few of them:

• Extending the matrix-based framework presented in Chapter 3 to the
more general case of fully dynamic all-pairs shortest paths; we recall
that, similarly to transitive closure, this problem can described in terms
of algebraic operations on closed semirings as well [1].

• Devising deterministic subquadratic algorithms for fully dynamic tran-
sitive closure, as well as considering the design of subquadratic solutions
for general digraphs.

• Investigating lower bounds for fully dynamic transitive closure.

• Evaluating experimentally the performance of the deterministic algo-
rithms presented in Section 3.5 and in Section 3.6. In particular, since
our algorithms use matrix-based data structures, it would be interesting
to investigate cache effects in a dynamic setting.

• Study better trade-offs between query and update operations for fully
dynamic transitive closure.

• Considering query-update trade-offs for fully dynamic single source short-
est paths.
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