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A B S T R A C T

How neurons coordinate their collective activity for behavioural control is an open question in neuroscience.
Several studies have progressively proven, on various scales, that the patterns of neural synchronization change
accordingly with behavioural events. However, the topological features of the neural dynamics that underlie task-
based cognitive decisions on the small scale level are not understood. We analysed the multiunit activity (MUA)
from a multielectrode (96 channels) array of the dorsal premotor cortex (PMd) in rhesus monkeys during a
countermanding reaching task. Within the framework of graph theory, we found that in the local PMd network
motor execution is preceded by the emergence of hubs of anti-correlation that are organized in a hierarchical
manner. Conversely, this organization is absent when monkeys correctly inhibit programmed movements. Thus,
we interpret the presence of hubs as reflecting the readiness of the motor plan and the irrevocable signature of the
onset of the incoming movement.
1. Introduction

Billions of interconnected neurons that propagate signals rapidly over
short and long distances form the brain. Their interactions have been
examined by two approaches: on a small scale, aiming to describe how
relatively few individual neurons cooperate in a given area, using in vitro
or in vivo models, and a large scale, characterizing how large populations
of neurons, from different macro areas, are functionally connected. The
small-scale approach has been used, for example, to examine areas of the
cortico-subcortical network, which underlies the control and generation
of skilled arm movements. However, for many years, neural activity has
been recorded from few neurons, with limited efforts to extract a popu-
lation code that can account for the interactions between neurons
(Evarts, 1968; Georgopoulos et al., 1989; Wise et al., 1997). Recently, the
diffusion of high-density multi-electrode arrays has made it possible to
adequately study local population dynamics, thanks to the ability of
simultaneously recording tens to hundreds of neurons. Using various
forms of reduction complexity, the population activity in cortical motor
areas has been described as a neural trajectory as a function of time,
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evolving in a multidimensional neuronal state space (Gallego et al., 2017;
Churchland et al., 2012; Shenoy et al., 2012). These approaches,
particularly when they are used to study cognitively advanced functions,
have provided valuable information on how small populations of neurons
cooperate during decisions, movement planning and execution. In par-
allel, other studies have found that simultaneously recorded neurons can
display functional coupling (spike synchronization), even without un-
dergoing any modulation in their firing rate (Fetz, 1992). Neuronal
synchronization patterns change, depending on behavioural events
(Vaadia et al., 1988; Hatsopoulos et al., 1998; Riehle et al., 1997; Torre,
2016), even independent of the underlying oscillatory pattern of acti-
vation (Fujisawa et al., 2008). On a larger scale, neuronal synchroniza-
tion has been analysed to examine the level of interaction between areas
of the entire brain network (Konig and Engel, 1995; Michaels et al.,
2016). Several methods that focus on human electroencephalography
(EEG) and functional-MRI (fMRI) data (Shin et al., 2013; Demuru et al.,
2013; Luca et al., 2006; Li�egeois et al., 2014; Bordier et al., 2018; Nicolini
et al., 2017) have been successfully applied. With these approaches,
analytical techniques that are derived from graph theory have shown that
November 2019

he CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:stefano.ferraina@uniroma1.it
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2019.116354&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2019.116354
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neuroimage.2019.116354


G. Bardella et al. NeuroImage 207 (2020) 116354
neuronal population interactions are organized according to a highly
efficient topology, with local and long-distance connections occasionally
organised around highly functionally coupled regions (Power et al.,
2013; Lutcke et al., 2013; Eguiluz et al., 2005; Vlasov and Bifone, 2017;
Mastrandrea et al., 2017). Conversely, graph-based approaches have
been used sparingly on data from animal models, with few exceptions
(Sporns et al., 2007; Gu et al., 2019; Yu et al., 2006; Dann et al., 2016;
Kiani et al., 2015; Gerhard et al., 2011; Ferraro et al., 2018; Gal et al.,
2013) and, to our knowledge, not at all to describe the dynamics of local
functional connectivity structures in vivo on a small scale. Thus, we
wanted to study the local functional connectivity of the dorsal premotor
cortex (PMd) in monkeys, preceding motor execution. We focused on the
spectral estimate of the multiunit activity (MUA) signal (Mattia et al.,
2013), obtained from a 96-channel array. To increase our understanding
of the topology of the network, we used a percolation-based approach
(Bordier et al., 2017, 2018; Nicolini et al., 2017; Vlasov and Bifone, 2017;
Mastrandrea et al., 2017; Ferraro et al., 2018; Callaway et al., 2000;
Gallos et al., 2012). Percolation is a powerful tool that is derived from
statistical physics that allows one to inspect the self-organization of
networks. Our study shows that the PMd exhibits signatures of
self-organization only when the motor plan is mature, not when it is
successfully cancelled. Further, the occurrence of this phenomenon cor-
relates with the emergence of functional hubs in the network.

2. Results

2.1. Behavioural evaluation of the lead time to suppress a movement

To examine the local functional connectivity before movement
execution, we recorded neuronal activity from the PMd of two monkeys
(P, C) that were performing a countermanding reaching task (Fig. 1). At
the beginning of the task, the animals were required to hold their hand
over a central target that was presented on a touch screen. Two types of
randomly intermingled trials were possible: no-stop trials (67%) and stop
trials (33%). During no-stop trials, concurrent with the disappearance of
the central target (Go signal), a peripheral target appeared on the left or
right. To obtain the reward, the monkeys were instructed to reach the
peripheral target. In stop trials, after the Go signal, the central target
reappeared (Stop signal) after a variable delay, called the SSD (Stop
signal Delay). The monkeys were then required to refrain frommoving to
earn the reward. If the movement is withheld, the trial is a stop-correct
trial; otherwise, it is a stop-wrong trial. Generally in these trials the
monkeys detached the hand from the screen and then stopped the
movement on the fly avoiding to touch the peripheral target. Immedi-
ately after the error a blank screen was displayed. Typically, in relation to
the duration of the average SSD, the stop-correct trials constituted
Fig. 1. Behavioural task and epochs of analysis. No-stop and stop trials were
randomly intermixed during each session. The gray horizontal rectangles under
the time scale of no-stop and stop trials represent the epochs of analysis (Go
epoch, Pre-Movement epoch, Stop signal epoch, respectively). RT reaction time;
SSD Stop signal delay.
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approximately 50% of stop trials.
The countermanding task permits one to inspect the neuronal corre-

lates of movement execution by comparing trials in which movements
are planned and then executed (no-stop trials) with those in which
movements are planned and then aborted (stop-correct trials). In this
comparison, it is ideal to identify the specific neuronal signature of the
movement execution and determine when it occurs. Moreover, it allows
one to establish when the neuronal signature that is specific for move-
ment execution must manifest. The countermanding task makes it
possible to calculate a behavioural measure that it is broadly considered
an index of efficiency in movement suppression: the stop signal reaction
time or SSRT. To estimate SSRT the race model (Logan et al., 1984) must
be applied. This model describes the behaviour in the stop trials as the
result of two stochastic processes racing toward a threshold: the GO
process triggered by the onset of the Go signal, which duration is rep-
resented by the RT, and the STOP process triggered by the onset of the
Stop signal, which duration must be calculated. When the GO process
wins the race the movement is generated (stop-wrong trial), alternatively
it is withheld (stop-correct trials). The race model allows to estimate the
SSRT by taking into account the duration of the GO process, the proba-
bility to respond, and the SSDs. However to make the race model
applicable to study response inhibition, a central assumption must be
satisfied: the GO process in the stop trials must be the same as in the
no-stop trials (independence assumption). Indeed the RTs that are
employed to estimate the SSRT are obtained from the no-stop trials. To
broadly validate this assumption, stop-wrong RTs must be shorter than
the no-stop trials (Logan et al., 1984) (see Table 1). To estimate the SSRT
we employed the integrationmethod because it has been proven to be the
most reliable (Band et al., 2003). It assumes that the finishing time of the
Stop process corresponds to the nth no-stop RT, where n results from the
multiplication of the ordered no-stop RTs distribution by the overall
probability of responding, p(respond). The SSRT is then obtained by
subtracting the average SSD from the nth no-stop RT. The SSRT can also
be considered the lead time that is required to inhibit a movement, or,
simply, the time that precedes the start of a movement when a Stop
signal, if presented, halts the generation of the same movement
approximately 50% of the time. If the Stop signal is presented after this
time, it will be less effective, because the neuronal phenomena that lead
to themovement generation will have already started. If the Stop signal is
presented well before this time, it will be more effective in halting the
movement. Consequently, the neuronal activity that is related to move-
ment generation must occur around the time that is defined by the SSRT
before the movement onset.
2.2. In the PMd, certain recording sites show anti-correlated neuronal
activity before movement generation

We focused on no-stop trials, i.e., the trials that required movement
generation—to examine the organization of the functional network in the
PMd in relation to movement execution. Consistent with previous ap-
proaches that have shown that important changes in single and multiunit
activities and local field potentials occur in the PMd in the time before
movement onset, (Mattia et al., 2013, 2010; Kaufman et al., 2016; Pani
et al., 2014; Lara et al., 2018; Chandrasekaran et al., 2014), Fig. 2 shows
Table 1
Behavioural results. For each monkey mean and standard deviation are pre-
sented for RTs in no-stop (RTns) and stop-wrong (RTsw) trials, and presented
SSDs. The estimates of SSRT were obtained after checking for the statistical
difference (Independence assumption; rank-sum test) between RTns and RTsw.

Monkeys RTns RTsw SSD SSRT Independence test P(r)

P 769
(110)

710
(82)

557
(115)

203 P ¼ 8.44 e�5; zval
�3.9; ranksum ¼ 7411

0.48

C 585
(92)

537
(71)

371
(110)

190 P ¼ 8.58 e�5; zval
�3.9; ranksum ¼ 9213

0.44



Fig. 2. Trial-averaged single channel MUA aligned to the movement onset.
Normalised MUA (no-stop trials) for every single recording channel in the two
animals. Broken electrodes have been removed from the list in Monkey C.

Fig. 3. Average network series changes during RT. Snapshots of the average
network time series at four different times from the Go (Go; top) and before the
movement (Pre-mov; bottom) epochs of no-stop trials in monkey P. The scale
bar indicates the values of correlation coefficients.
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that most of the recording sites in the arrays were modulated, demon-
strating increased or decreased MUA activity, in the 300 ms that pre-
ceded the movement onset. We have suggested (Mattia et al., 2013) that
these changes constitute a signature of the maturation of the motor plan,
achieved in cortical modules that show both positive (low-to-high) and
negative (high-to-low) transitions in the MUA.

We examined the level of mutual interactions among various
recording sites by computing a correlation matrix between MUA time
series using a sliding window approach. We modelled the evolving in-
teractions of the network as a sequence of snapshots of correlation
matrices, at the single-trial (single-trial network time series) and average
levels (average network time series; see 4 for further details). Within this
framework, each recording site can be considered a node of the func-
tional network in the PMd, and the connections (or links) represent the
amount of interaction (synchrony) between nodes. In our case, the
weight of each connection was the correlation coefficient between cor-
responding time series. Notably, certain recording channels had a
negative median value of the distribution of correlation coefficients in
the 200 ms that preceded the movement onset (Supplementary Fig. S1),
suggesting the presence of nodes with specific functions in the PMd
network of both monkeys. Fig. 3 (and Supplementary Fig. S2, for the
other animal) shows selected snapshots of the average network time
series aligned to the Go signal (top) and movement onset (bottom) in
Monkey P. We found that although nothing peculiar occurred after the
Go signal (Go epoch) as the time of movement generation approached
(Pre-Movement epoch), positive (red regions) and negative correlations
(blue regions) appeared. The marked blue lines (nodes that anti-correlate
with the rest of the network) suggest that the network is more organized
in the selected snapshots and that the anti-correlation is a determinant of
this functional change.
2.3. In the functional network of the PMd, a hierarchy of hubs of anti-
correlation emerges before movement generation

To quantitatively assess whether the emergence of negative correla-
tions is the signature of the impending movement generation and to
monitor the evolution of the network configurations, we performed dy-
namic percolation analysis. This technique allows one to inspect the
3

network organization by iteratively removing links between nodes as a
function of a control parameter. As a control parameter, which quantifies
the structural characteristics of the network, we used the number of
connected clusters of nodes in the network (Bardella et al., 2016)
(namely, the number of connected components; see 4 for further details).
The results of the percolation are encoded in a percolation curve, in
which the number of connected components is plotted as a function of a
threshold (i.e., the link weights). Thus, link weights represent the
thresholds according to which network disintegration is monitored.
Moreover, because links are removed based on the value of their weights
this process reveals the presence of a hierarchical organization within the
network. If the network is randomly arranged at the time of analysis, the
curve is characterized by a sharp transition in the number of connected
components for changes in threshold values. Thus, the network disinte-
grates very quickly on removal of the links, and there are no stable
configurations of its constituent components. Conversely, when a hier-
archical structure is present, for certain threshold values, stable clusters
of nodes (number of connected components) exist, and the network is
insensitive to the progressive removal of links. This yields a stepwise
percolation curve in which plateaus reflect the presence of stable hier-
archical configurations in the network. Fig. 4 shows the percolation
curves (step: 5 ms; see 4) for negative correlations of no-stop trials,
separately for each animal, starting from 300 ms before movement onset.

In the early phase (light blue lines), the curves are characterized by
the absence of plateaus and by steep transitions in the number of con-
nected components. Later (at different times in the two animals; darker
lines), the trends become more stepwise. This pattern suggests that,
approaching the movement onset, the functional network of anti-
correlations of the PMd evolves from a pseudo-random state toward a
more organized state that is endowed with signatures of hierarchy. We
calculated the slope of all percolation curves that were obtained and
plotted them as a function of time (Fig. 5, A) to generate a straightfor-
ward view of the evolution from pseudo-random to organized state in the
pre-Movement epoch for both animals. We found that at approximately
200 ms before the movement in both animals, a transition in the average
slope appeared (from roughly �600 to �200). To validate the results of
the percolation analysis statistically, we proposed a null model (see 4)



Fig. 4. Percolation curves before Movement onset in no-stop trials. Time
evolution of the percolation curves for 300 ms before the movement onset, for
each monkey. Times far from the movement onset are coloured in lighter shades
of blue and times close to the movement onset in darker shades of blue.
Thresholds values are correlation coefficients.
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and computed the slope of each percolation curve for the experimental
data and null model. We expected the experimental trend to be repro-
duced by the null model during the early stages of the epoch and to differ
significantly when approaching the later stages. The results show that the
steepness of the percolation curve did not differ significantly from the
null model for times that were far from the movement onset (Fig. 5B,
top), whereas it lay well outside of the 95% confidence interval in the late
stages (Fig. 5 B, bottom).

To obtain the complete picture of the network evolution, we exam-
ined its topology in greater detail, searching for a measure of available
functional connections for each node and for the presence of hubs. In
percolation, the threshold immediately prior to the beginning of network
disintegration (disintegration starts when the number of connected
components is > 1 for the first time) is critical. Indeed, recent studies
(Nicolini et al., 2017; Bordier et al., 2017) have demonstrated that at this
threshold, the optimal balance between information about network or-
ganization and statistical noise is realized (see 4 for further details). Thus,
we inspected the network topology at this threshold and found that nodes
with links (measured as Vertex Degree; VD; see 4) that greatly exceeded
the average value existed (see Supplementary Fig. S3), consistent with
the definition of hub nodes (Albert and Barabasi, 2002). Hubs are,
indeed, the most important nodes in the network and, during percolation,
preserve high VD values at high thresholds. Inspecting the entire
sequence of thresholds — that is, climbing the ladder of the percolation
curve — we unfolded the stable configurations of the network, and a
hierarchy of hubs was revealed. Supplementary Fig. S4 shows the
configuration (hubs are colour-coded) for four threshold values for
4

Monkeys P and C before the movement onset.

2.4. Network dynamics when movements are cancelled

Supplementary Fig. S5 shows the percolation curves and the evolu-
tion of the percolation slopes for stop-wrong trials in the pre-movement
epoch. The comparison with Figs. 4 and 5 suggests that the network
evolves very similarly in no-stop and stop-wrong trials. At this stage, a
natural question arises: what happens to the network functional structure
during stop-correct trials? If the emergence of the observed hubs is a
mark of the incoming movement onset, it should be absent in stop-correct
trials, when themovement execution is aborted. To this end, as we did for
no-stop trials, we performed percolation analysis on the average network
time series, relative to (from 100 ms before to 100 ms after) the Stop
signal, for stop-wrong and stop-correct trials (see Supplementary Fig. S6),
calculating the corresponding slopes (Fig. 6, top). To determine whether
a difference in the configurations of the network between conditions
existed, we computed the Euclidean distance between all slope values.
We found that the maximum distance was reached approximately 25 ms
before the Stop signal presentation— as a consequence of the decreasing
slope values in stop-correct trials — for both animals.

Then, we compared the network states of stop-wrong trials to those of
stop-correct trials and found that during stop-correct trials, hubs were
absent while emerged in stop-wrong trials (Supplementary Fig. S7),
confirming the link between the emergence of hubs and movement
generation. Moreover, the hubs channels were the same in stop-wrong
and no-stop trials. Despite the sketch suggests an intriguing specific
location for the hubs in the brain region, we avoided to link our obser-
vations to anatomical landmarks. The issue deserves future investigation.

To validate the main finding in Fig. 6 top, we tested our results against
the null model (Fig. 6, bottom), averaging the correlation matrices of the
average network time series that corresponded to the interval ½ �50;þ50�
ms with respect to the Stop-signal (it fully contains the point of maximum
distance between slopes). We then compared the experimental slope with
those that were obtained from the randomization. As reported in Fig. 6,
the slope of the observed percolation curve for stop-wrong trials was
outside of the 95% confidence interval of the null distribution for both
animals. For stop-correct trials, we found that Monkey P had a slope that
was well inside of the distribution of randomizations, thus confirming the
hypothesis that the network is maintained in a pseudo-random configu-
ration. For Monkey C, the slope was still reproduced by the null model
but was closer to the 95% confidence interval compared with Monkey P.
However, the absence of hubs led us to conclude that the state that the
network expresses during a stop-correct trial is a sort of a quiescent
configuration, in which the motor plan is not fully mature and thus
cannot become a movement, because no hubs take the lead. If, in that
window, the hubs become active, the Stop signal, even if it is presented, is
ineffective. We believe that the emergence of hubs is proof of sponta-
neous self-reorganization of the network from a pseudo-random to more
organized state in light of a forthcoming cognitive decision (moving vs
not moving).

2.5. Topology of the functional network of the PMd before executed and
cancelled movements

To complement the percolation results, we implemented an increas-
ingly used technique in neuroscience: minimum spanning tree analysis
(MST; Stam et al., 2014; see 4 for further details). For a given graph, MST
provides a unique connected graph without cycles or loops. MST corre-
sponds to a subnetwork, the links of which are the strongest within the
set of all possible ones. MST identifies the core structure of a network
and, for this study, elicits the backbone of functional connectivity of the
PMd. Two extreme configurations are possible, as quantified by Leaf
Number (LN; see 4 for further details), for the MST (Stam et al., 2014):
star-like, in which one (or more) central node is connected to all others
via one link only, and chain-like, in which all nodes (with the exception



Fig. 5. Dynamics of the percolation slopes
before movement onset and comparison
with null models in two sub-epochs. A)
Evolution of the slope of the percolation
curves during the pre-movement epoch. B)
Comparison with the null model for the early
(top) and the late (bottom) phases of the
epoch. For the early stages we averaged the
matrices of the average network time series
corresponding to the interval [-300,-200] ms
for monkey P and [-300, �220] ms for
monkey C. For the late stages we averaged
the matrices of the average network time
series corresponding to the interval [-200,
�80] ms for monkey P and [-130, �70] ms
for monkey C. Histograms: null model data.
Blue dots represent the experimental slopes
obtained for each interval. PDF, probability
density function.
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of the extremes) are connected to two others (see 4 for further details). In
the first scenario, the central nodes are the hubs of the network. In the
latter, the MST stretches out, with hubs excluded. Fig. 7 (and Supple-
mentary Fig. S 8, for Monkey C) shows the results of the MST analysis for
the average network time series for no-stop (before the Movement onset)
and stop-wrong/correct trials (at the time of the appearance of the Stop
signal). To correctly compare no-stop trials and stop-wrong trials, an
equivalent time T with respect to the movement onset in both trials must
be chosen. To this end we derived a time T — as an estimate of the Stop
signal appearance — for the no-stop trials as: T ¼ RTsw-SSDsw, where
RTsw is the mean reaction time for the stop-wrong trials and SSDsw is the
mean Stop signal delay in stop-wrong trials.

The dynamics of the MST in the Pre-mov epoch is shown in the
Supplementary Video V1 (for Monkey P) and Supplementary Video V2
(for monkey C). MST was computed every 20 ms (in the interval -300 -60
ms before movement onset). Videos show the gradual evolution in the
configurations, from chain to star, as the movement time is approaching.

Although multiple hubs (green circles) are evident in no-stop trials
and stop-wrong trials, they are absent in stop-correct trials where MST
configuration is more chain-like, as expected. To determine the statistical
significance of the findings, we used the corresponding null model
(Supplementary Fig. S9). The results show that during no-stop and stop-
wrong trials (blue and red dots), the star-like topology (average LN) of
the MST was not reproduced by the null model. During stop-correct trials
(green dots), the MST configuration of Monkey P was reproduced by the
ensemble of randomizations, whereas for Monkey C, it was close to the
95% confidence interval. In both cases, the hubs nodes that were
5

characteristic of no-stop and stop-wrong trials were absent, consistent
with what was found by percolation analysis and confirming that during
stop-correct trials, the network lies in a meta-state at the borders of
randomness and is not fully mature (i.e., not organized).

To check for the stability of the functional structure observed we
repeated the same analysis in one of the other available sessions with
similar characteristics. The session was recorded about 9 months apart in
monkey P. The results show that the described features in MUA modu-
lation are stable, i.e., a hierarchical organized pattern of anticorrelation
emerges before movement onset, together with the star like topology and
hubs (see Supplementary Fig. S10, top). Similar features have been
observed in other sessions (not shown). However, we were not able to
detect the same functional organization by analyzing single units
extracted (see 4) from the same session (see Supplementary Fig. S10,
bottom).

2.6. Characterization of network of positive correlations

We also applied percolation analysis to the network of positive cor-
relations, finding that its topology was less informative than that of
negative correlations because does not show presence of hubs organized
in a hierarchical manner. Except for the presence of the hubs that had
already been identified in the analysis of negative correlations, we failed
to observe other specific topological signatures (e.g., the VD distributions
shows no evidence of hubs; see Supplementary Fig. S11). Further, we
found that the hubs of anti-correlation shared high positive correlation
values within themselves, forming the most important cluster in the
network of positive correlations. By percolation analysis, we monitored



Fig. 6. Percolation curves dynamics in stop trials. Top panels: evolution of the experimental slope of the percolation curve during the epoch for stop-wrong trials
(red) and stop-correct trials (green). Bottom panels: comparison between the observed slope (coloured dots; red stop-wrong trials, green stop-correct trials) and the
corresponding null models (histograms). The red vertical line marks the Stop signal presentation. Other conventions and symbols as in Fig. 5.
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the decomposition of this cluster (see Supplementary Fig. S12)
concluding that the hubs of anti-correlation form a sort of ‘rich-club’
(Colizza et al., 2006), in which the links between hubs are positive (see
Supplementary Fig. S13). These results show that the dynamic of the
functional network of the PMd relies on the coordinated action of a small
subset of neuronal populations that synchronously anti-synchronize with
the rest of the network. This finding also suggests that the most notable
features regarding the topological arrangement of the network are
encoded in the negative weights.

3. Discussion

We have examined, for the first time, the premotor cortical functional
network that underlies movement generation, using graph-based algo-
rithms that were applied to simultaneously recorded MUAs (from up to
96 channels). We found that movement generation is anticipated by a
clear stereotypical increase in synchronization in the form of anti-
correlation between several channels and the rest of the network.
These channels act as network hubs and are organized in a hierarchical
manner. Notably, this phenomenon was not observed for successfully
cancelled movements but remained present in trials in which movements
where generated despite the command to stop. The latency of the in-
crease in anti-correlation occurs in a window of approximately 200 ms
before movement onset. This period is in the same range that is necessary
to render a Stop signal effective (the SSRT): if a movement is going to be
made, the Stop signal must be presented roughly 200 ms ahead of
movement generation to be successful in interrupting the movement.
6

Thus, in stop-correct trials, the effectiveness of the Stop signal is associ-
ated with the absence of hubs of anti-correlation.

Our results suggest that the emergence of hubs of anti-correlation can
be identified as the neuronal computational strategy the drives the
irrevocable maturation of the motor plan. The specific signature in the
network topology of the PMd that we detected is characteristic of the pre-
movement epoch. Previous studies have shown that before a movement
is made, single units, MUA, and LFP in the motor cortices experience
strong widespread modulations. They represent the largest change in
neuronal activity in delayed reaching tasks (Pani et al., 2014;Pani et al.,
2018 Sussillo et al., 2015; Kaufman et al., 2016; Churchland et al., 2012)
and as such are believed to correspond to the passage from stable prep-
aration to movement generation. Similar phenomena, compatible with
an attractor-like dynamic, have also been observed in the MUA during
the same task (Mattia et al., 2013; Marcos et al., 2013). In all of these
studies, the latency between the start of the population dynamic and the
movement onset is 100–150 ms in a window that is compatible with the
anti-correlation patterns that we detected.

In our study, neural activity was recorded at a roughly constant depth
(Utah array; electrode length: 1.5 mm). A recent study (Chandrasekaran
et al., 2014) found that single unit activity in the PMd is organized
following a gradient from superficial to deep layers. Neurons in more
superficial layers showed increasing activity during the RT epoch,
correlating with behavioural parameters and thus potentially related to
decision. Conversely, neurons in deeper layers showed stereotypical
modulated activity solely around 150 ms before movement onset. Among
these neurons, a subpopulation (approximately 15%) experienced



Fig. 7. Minimun spanning tree analysis. Results from Monkey P. MST
computed 150 ms before Movement onset for no-stop trials and at the time of
the Stop signal presentation for stop-correct and stop-wrong trials. Hubs are
indicated by the green circles. Gray circles in stop-correct trials show the loca-
tion in the MST of the same recording channels.
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decreased activity before movement generation. The evidence of
anti-correlation between recordings in our study suggests that, thanks to
the larger spread of MUA in the cortical layers, we have been able to
sample activity from deep layers. However, results also suggest that the
location of the tip on the electrodes array is definitively too superficial. In
fact, when the network was observed more locally by analyzing single
units, the topology was lacking of an organization based on the presence
of different populations in anti-correlation.

The MST results suggest that the hubs of anti-correlation that we
detected have a function in the computation that is necessary to send the
information to subcortical structures. This possibility is supported
quantitatively by several groups (Demuru et al., 2013; Dubbelink, 2014)
that have recently linked MST changes, based on EEG and MEG data, to
cognition and motor functions. Specifically, our results agree with the
widespread concept in which most of the traffic in a weighted network
flows through the MST. In this scenario, it is not surprising to observe a
star-like MST, because this is the optimal configuration for efficient, fast
and integrated communication within a network. The cognitive decision
of whether to perform a movement is indeed a fast computation, and the
command to move could be transferred, through the star-like MST, to
lower cortical, subcortical and spinal circuits that will promote muscle
activation. Consequently, the information stream would only flow
shortly through the hubs, thus helping prevent overloading issues in the
7

network during the ongoing computation (Stam et al., 2014). This,
however, does not imply that the PMd is the only region that participates
in this form of control. Other cortical and subcortical structures (e.g.,
basal ganglia, prefrontal cortex) are needed to finalise this process to
permit movement initiation (Battaglia-Mayer et al., 2014). Future studies
should focus on several crucial aspects: Is the computation that we
observed specific at this depth, or is it present across all layers? Do other
structures perform similar computations? Is this signature related to
specific interactions between the PMd and other brain areas?

In the neural control of movements, various computational strategies
have been proposed to define the function of the PMd and MI. In the past
several years, many studies have used a dynamical system approach with
data from simultaneously recorded neurons. Their main finding is that in
motor cortices, neuronal activity evolves smoothly across various state
spaces to facilitate movement generation. Importantly, this evolution
provides insights into how an entire population of neurons participates in
generating movement. This approach gave rise to the idea that several
subspaces of neural activity correspond to different behavioural func-
tions. These methods, however, are based on the covariance of the
simultaneously recorded neurons and, as such, are suited to account for
neuronal activity at the population level, without distinguishing between
specific contributions by single neurons (or recording sites) to the to-
pology of the interactions. Our approach differs, because we provide
evidence that our computational strategy is based on a hierarchy of hubs.
Indeed, this was obtained by considering the mutual interaction between
recording sites. By percolation analysis, we succeeded in identifying,
without any a priori assumption (in a totally data-driven fashion), the
sites that act as hubs. This corresponds to a complete characterization of
the topological arrangement of network dynamics, consequently marking
a substantial difference from other approaches (e.g., (Churchland et al.,
2012; Mattia et al., 2013; Chandrasekaran et al., 2014)). The function of
hubs in driving the computation emerges spontaneously from the col-
lective behaviour as an intrinsic property of the system.

To the best of our knowledge, this report is one of the few studies that
has performed graph analysis on specific cortical areas at the small scale
and mesoscale levels in vivo and during a behavioural task. Schroeter
et al. (2015) examined the properties of the primary mouse hippocampal
functional network via MUA in vitro, finding that hub neurons have a
crucial function in shaping the synchronous dynamics during develop-
ment. This result confirms the importance of this complex topological
structure in coordinating the dynamics at the microcircuit level.

Recently, Dann et al. (2016) — using multielectrode depth cortical
recordings — examined the functional topology of three areas of the
fronto-parietal network that are involved in grasping, measuring the
spiking activity of single units. They found that the network had a
modular topology, with hubs in all three areas. Each module was
confined primarily to a single area but could also involve neurons in the
other areas. Notably, the hubs were composed mainly of oscillatory
spiking and synchronized units, whereas the more peripheral units were
non-oscillatory. The authors proposed that the oscillator hubs allowed
the coordination of functional communication between cortical areas.
Further, the topology that they described was highly similar to the that at
the whole-brain level using other techniques (EEG, fMRI). In our study,
we evaluated the functional topology of a small portion of the cortex: the
PMd. Thus, we can not account for the functional communication be-
tween the PMd and other areas. Additional study will be necessary to test
whether the anti-correlation that we observed is a phenomenon that is
limited to the premotor cortex or whether it involves other areas that
participate in the cortical reaching network (e.g., parietal regions). In this
regard, an important difference between our study and Dann et al. (2016)
is that their analysis did not distinguish between positive and negative
functional connections.

With our approach, it was possible to determine whether there was
synchronization between neural populations and what the sign of this
synchrony was. These findings represent an advance in the field, because
nearly all previous studies on the motor cortex have merely explored, in
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various forms, the nature of positive synchrony (Vaadia et al., 1988;
Riehle et al., 1997; Hatsopoulos et al., 1998; Torre, 2016). Renart et al.
(2010) and Ecker et al. (2010) provided the first evidence that positive
correlations are not the only meaningful associations in micro-neuronal
networks. Renart et al. (2010) found that recurrent neural networks
can generate an asynchronous state due to fluctuations in the activity of
excitatory and inhibitory populations. The authors proposed that the
negative correlations that characterize this state prevent uncontrolled
network-wide synchrony and facilitate efficient processing of informa-
tion. Their results were confirmed by in vivo recordings from the so-
matosensory and auditory cortices of urethane-anesthetized rats. Ecker
et al. (2010) analysed neuronal recordings from the primary visual cortex
of awake macaques, noting very low spike count correlations between
local neurons. They also opined that the decorrelated state of the network
might be crucial for hierarchical cortical processing and information
routing, offering substantial advantages over communication that relies
solely on positive synchrony. Our results are also supported by recent
work from Gu et al. (2019), who linked the anatomical and physiological
properties of local neural networks through the development of a novel
circuit model. They found that highly interconnected hubs neurons
emerge as a key feature of the spatiotemporal activity of local cortical
circuits. As hypothesized by the authors, the presence of hub neurons in
local networks accounts for the transition between dynamic cortical
states. Moreover, it provides a solid framework in which the anatomical,
functional and dynamic features of brain networks can be integrated.
Furthermore, although the attention toward negative weighted links has
grown in the past decade, most studies on brain networks have ignored
anti-correlations or left them uninterpreted. Has topology that is char-
acterized by strong anti-correlation (as we observed) been reported in
large-scale studies by fMRI or EEG? Greicius et al. (2003) made one of the
earliest contributions, showing a negative correlation between the
default mode network (DMN) and executive function network. Subse-
quently, anti-correlations have been seen in the attentional network (Fox
et al., 2003), sensorial regions (Tian et al., 2007), parietal and medial
frontal regions (Tian et al., 2007), the infralimbic cortex (IL) and
amygdala (Liang et al., 2012) and in the DMN and executive control
network (Di and Biswal, 2013). Further, recent work on fMRI data has
focused on the network of negative correlations (Gopinath et al., 2015;
Parente et al., 2018; Parente and Colosimo, 2018). Gopinath et al. (2015)
examined the anti-correlation maps of healthy patients by resting-state
fMRI using a graph-based approach and found that hubs of
anti-correlations were involved in important regulatory interactions be-
tween various regions, including reciprocal modulations, inhibition and
during neurofeedback procedures. They hypothesized that negative links
in a brain correlation network are more suitable for describing
state-dependent signal couplings than anatomically constrained fluctua-
tions. Parente et al. (2018) reported that central nodes of negative brain
networks are affected in schizophrenic patients compared with controls:
specifically, patients were characterized by a reduction in centrality
measures. The authors speculated that central nodes have an important
function in the modulation of other regions that share information with
low-degree nodes. These conclusions suggest that, also on the large-scale
level, hubs of anti-correlations are likely to be pivotal in cognitive
functions.

4. Materials and methods

4.1. Subjects

Two male rhesus macaque monkeys (Macaca mulatta), weighing 9
and 9.5 kg, respectively, were used. Animal care, housing, surgical pro-
cedures and experiments conformed to European (Directive 86/609/ECC
and 2010/63/UE) and Italian (D.L. 116/92 and D.L. 26/2014) laws and
were approved by the Italian Ministry of Health. Monkeys were pair-
housed with cage enrichment. They were fed daily with standard pri-
mate chow that was supplemented with nuts and fresh fruits if necessary.
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During recording days, the monkeys received their daily water supply
during the experiments.

4.2. Apparatus and task

The monkeys were seated in front of a black isoluminant background
(<0.1 cd/m2) of a 17-inch touchscreen monitor (LCD, 800 � 600 reso-
lution), inside a darkened, acoustic-insulated room. A non-commercial
software package, CORTEX (http://www.nimh.gov.it), was used to
control the presentation of the stimuli and the behavioural responses.
Fig. 1 shows the scheme of the general task: a reaching countermanding
task (Mirabella et al., 2011). Each trial started with the appearance of a
central target (CT) (red circle, diameter 1.9 cm). The monkeys had to
reach and hold the CT. After a variable holding time (400–900 ms,
100-ms increments) a peripheral target (PT) (red circle, diameter 1.9 cm)
appeared randomly in one of two possible locations, and the CT dis-
appeared (Go signal). In no-stop trials, after the Go signal the subjects
had to reach and hold the PT for a variable time (400–800 ms, 100-ms
increments) to receive juice. Reaction times (RTs) were defined as the
time between the presentation of the Go signal and the onset of the hand
movement. In Stop signal trials, the sequence of events was the same until
the Go signal. Then, after a variable delay (Stop signal delay, SSD), the CT
reappeared (Stop signal), and the monkeys had to hold the CT until the
end of the trial (800–1000 ms) to receive the reward (stop-correct trial).
Conversely, removing the hand after the Stop signal constituted a wrong
response (stop-wrong trial). The same amount of juice was delivered for
stop-correct and correct no-stop trials. The intertrial interval was set to
800 ms. Stop trials represented the 25% of all trials in each session. To
establish the duration of the SSDs, a staircase tracking procedure was
employed. If the monkey succeeded in withholding the response, the SSD
increased by one step (100 ms) in the subsequent Stop signal trial.
Conversely, if the subject failed, the SSD decreased by one step.

4.3. Extraction and processing of neuronal data

A multielectrode array (Blackrock Microsystems, Salt Lake City) with
96 electrodes (pitch 0.4 mm) was surgically implanted in the left dorsal
premotor cortex (PMd; arcuate sulcus and pre-central dimple used as
references after opening of the dura; see Supplementary Fig. S 7) to ac-
quire unfiltered electric field potentials (UFP; i.e., the raw signal),
sampled at 24.4 kHz (Tucker Davis Technologies, Alachua, FL).

Neuronal activity was recorded from animals fully trained in the task.
Since animals were also trained in other motor tasks, we had different
sessions with the same task but often separated in time. For the analysis
performed in this work we selected one session for each animal were the
trial number was sufficiently high and the behaviour was in fully
adherence with the expectative of the race model (see 3).

As a measure of neuronal activity at the population level, MUA was
extracted offline from the raw signal, as in Mattia et al. (2013), by
computing the time-varying power spectra P(ω,t) from the short-time
Fourier transform of UFP in 5-ms sliding windows. Relative spectra
R(ω,t) were then obtained, normalizing P(ω,t) by their average Pref(ω)
across a fixed window (10–30 min) for the entire recording. The spec-
trally estimated MUAs are the average R(ω, t) across the ω/2π band ½0:2;
1:5� kHz. As detailed in Mattia et al. (2013), this estimate relies on two
hypotheses.

The first is that high ω components of UFPs result from the convo-
lution of firing rates ν(t) of neurons that are close to the electrode tip with
a stereotypical single-unit waveform. R(ω,t) allows one to eliminate the
Fourier transform K(ω) of such an unknownwaveform, rendering R(ω,t) a
good approximation of the ratio of firing rate spectra jvðω; tÞj2 =��vrefðωÞ

��2
In the second hypothesis, high ω power jν(ω,t)j2 is proportional to the

firing rate ν(t) itself (Mattia and Del Giudice, 2002), such that our MUA
estimate is proportional to ν(t).

As a last step, logarithmically scaled MUAs were smoothed by a
moving average (40-ms sliding window). To analyse single units

http://www.nimh.gov.it
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correlations we represent neuronal activity via a spike density function
(SDF) obtained by convolving the spike train with an exponential func-
tion mimicking a postsynaptic potential.

As a convolution function we used the following kernel KðtÞ:

KðtÞ¼ �
1� exp

��t
�
τg
�� � expð�t = τdÞ (1)

where τg ¼ 1ms corresponds to the growth phase of the synaptic poten-
tial, and τd ¼ 1ms to the decay phase (Scangos and Stuphorn, 2010).

For our analysis we selected units that showed an increase/decrease
of the average firing rate before movement onset (from �300 ms to
movement onset), compared to the 200 ms before Go signal or for at least
one movement direction (Wilcoxon rank-sum test P < 0:01).
4.4. Preliminary analyses

We first analysed the activity profiles of each recording site. To obtain
a uniform view of the changes in MUA levels, we normalised the activity
of each channel with respect to its maximum value (see Fig. 2). To
examine the local network organization in the PMd, we constructed a
functional network that represents the synchronization between the
MUAs that were recorded by the electrodes of the array. To this end, we
used the Pearson correlation coefficient C, because it is one of the best-
known methods for calculating synchrony by cross-correlation and
because we wanted to focus on the simplest type of relationship between
the signals that were recorded from the electrodes: the linear correlation.

For two time series, Xi(t) and Xj(t), at times t, in a 0 lag condition the
Cij is calculated as follows:

Cij ¼ Cov½Xi;Xj�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Xi�Var½Xj�

p (2)

�1 � Cij � 1 where high negative values indicate a high inverse
linear correlation (anti-synchronization), whereas high positive values
reflect a high linear relation between time series (synchronization). For
our purposes, Xi(t) is represented by the spectrally estimated MUA in a
chosen time window (epoch of analysis: see Fig. 1) of the task, which is
usually defined in relation to the behavioural events (e.g., Go Signal,
movement onset, etc.). The approach provides an N x N (N ¼ recording
sites) correlation matrix, the generic entry of which is the Cij between the
i-th and j-th channel time series in the time window.

We interpreted the correlation matrix as being the adjacency matrix
of an undirected weighted graph, in which the nodes are the channels
and the weighted edges are the pairwise Cij. Because the purpose of this
study was to characterize the network organization that supports the
evolution of motor decisions in relation to behavioural events, we needed
a graph that represented the time-evolving coupling between electrodes.
The simplest route to addressing this issue was to assess the dynamical
connectivity between nodes using a sliding window approach to support
the static measure of Pearson Cij. To this end, the window width w
parameter is crucial for segmenting the time series. Because the uncer-
tainty in the correlation measure is given by ε ¼ 1ffiffiffiffiffiffiffiffiffiffi

2BwW
p , where Bw is the

spectral bandwidth of the data and w is the window width (O’Neill et al.,
2018), we chose a w that effected a good compromise between accurate
time resolution and statistical significance. Because MUA lies in the ½0:2;
1:5� kHz band, we obtained εe0:06, choosing w ¼ 100 ms.

Once w and a step of 5 ms were fixed, we then defined the following
task epochs to perform our analysis: for correct no-stop trials and stop-
wrong trials, we defined the Go epoch with w from �150 ms to þ350
ms relative to the Go Signal and the pre-Movement epoch from �350 ms
relative to the Movement onset. For correct and stop-wrong trials, we
defined the Stop signal epoch, with w from �150 ms to þ150 ms relative
to the Stop signal. Our aim, while using the Stop signal epoch, was to
compare conditions in which a movement was generated (stop-wrong
trials) to those in which a movement was inhibited (stop-correct trials).
This choice is due to the objective of our analyses: inspect the state of the
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network at the time of the Stop signal presentation and before. Indeed, in
agreement with the race model (see 3), a stop trial is wrong if the Stop
signal is presented when the motor plan is already at a processing state
that it can no longer be inhibited. For this reason, by the time of the Stop
signal is presented we expected the network state of stop-wrong trial to
differ from the one of stop-correct trials (and comparable to the one of
no-stop trials). With our choice of w, each time point xt of the epochs had
boundaries of xt � 50 ms. Consequently, we managed to fully describe
the following intervals: [-100, þ300] ms for the Go epoch, [-300, 0] ms
for the Pre-Movement epoch and [-100, þ100] ms for the Stop signal
epoch (see Fig. 1).

To remove noise and outliers from our data, we excluded the trials for
which the MUA showed a peak with an amplitude that exceeded the
average of the activity of 2 standard deviations in the epochs of interest
and for over 80% of the channels from the analysis. Moreover, for
Monkey C, damaged electrodes were excluded a priori from the
computation, such that its correlation matrix had dimensions of 79 � 79.
We computed a correlation matrix for each window of every trial of our
epochs to obtain a time course of connectivity at the single-trial level
(single-trial network time series). Successively, to generate a unique
average matrix for each time window, each coefficient of the single-trial
matrices at timestep t was Fisher-transformed, averaged over trials and
then back-transformed, ensuring that the variance in Cij was dis-
associated from its mean (Thompson and Fransson, 2016). As a result, we
were able to reconstruct the evolving dynamics of the network as a
sequence of snapshots at each time step, at the single-trial and average
levels (average network time series).

4.5. Percolation and minimum spanning tree analysis

Fixing an appropriate threshold to study network properties is a
common problem when studying brain connectivity matrices (structural
or functional) with a graph-based approach. To overcome this obstacle,
we adopted a solid method, called percolation. Percolation is a tool that is
rooted in statistical physics and has been applied to study phase transi-
tions of connected subgraphs in random networks (Callaway et al.,
2000), the first application of which to brain networks was performed by
Gallos (Gallos et al., 2012). Since then, the method has been used pro-
gressively and successfully to examine the hierarchical organization of
brain networks (Nicolini et al., 2017; Vlasov and Bifone, 2017; Mas-
trandrea et al., 2017; Bordier et al., 2018; Ferraro et al., 2018). We
performed percolation analysis to examine the organization of the
network without any a priori assumptions (data-driven approach). Sim-
ply, percolation consists of the iterative removal of edges of a network
and allows one to inspect the intrinsic stability of the network and the
presence of a hierarchical organization simultaneously. The usual pro-
cedure is to monitor the disaggregation of the network as a function of a
threshold of interest (the correlation coefficient, in our case). We used
the number of connected components as a parameter to monitor disag-
gregation (see also Bardella et al., 2016). A hallmark of hierarchical or-
ganization is the presence of multiple disaggregation points (more
formally, percolation thresholds). At each of these thresholds, the
network fractures and reveals its self-organized internal structure,
comprising connected subgraphs (Gallos et al., 2012), corresponding to a
stepped percolation curve that is endowedwith plateaus. Conversely, in a
graph with random features (i.e., without organization), the number of
connected components is characterized by a sharp transition (Callaway
et al., 2000; Albert and Barabasi, 2002). Recent studies (Bordier et al.,
2017; Nicolini et al., 2017) have shown that percolationmakes it possible
to find a threshold that realizes the optimal balance between the removal
of spurious correlations that are induced by noise and the loss of infor-
mation that might be encoded in the weaker links. This threshold is just
above the fragmentation of the largest connected component of the
graph. Here, although the spurious links have been removed, the
connectedness and hence, the structural fundamental characteristics of
the network is preserved. Our analysis followed several steps (Bardella
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et al., 2016): 1) all experimentally determined correlation coefficients
are listed in decreasing/increasing order; 2) starting from the great-
est/lowest value, each entry in the list is chosen as a threshold; 3) all links
that correspond to the correlations above/below the threshold are
removed and 4) the number of connected components that characterize
the remaining part of the network is computed. Thus, it is possible to
analyse the network of negative and positive correlations. We examined
the topology of the functional network of the PMd by inspecting a
well-knownmeasure of centrality, the vertex degree. Vertex degree is the
number of links to a node i: VDi ¼P N

j¼1cij, where cij is the generic entry
of the adjacency matrix. We computed the probability distribution of
vertex degrees (i.e. the degree distribution) at the threshold just above
the fragmentation of the largest connected component for each step of
the average network time series. In the context of complex network
theory, nodes that significantly exceeds the average network degree arise
as a long tail in the degree distribution and are called hubs (Albert and
Barabasi, 2002).

We further studied the topological organization of the functional
connections of the PMd by computing theminimum spanning tree (MST).
Given an undirected weighted graph, the MST is defined as a unique
subgraph that includes all nodes of the original graph and connects them,
minimizing the sum of the weights of the edges without forming cycles
and minimizing the number of links that are involved. As reported in
Stam et al. (2014), in recent years, the use of spanning tree techniques
has attracted the interest of neuroscientists, as implemented in EEG
(Demuru et al., 2013; Lee et al., 2006, 2010), fMRI (Alexander-Bloch,
2010; Ciftci, 2011; Bardella et al., 2016; Mastrandrea et al., 2017) and
magnetoencephalography (MEG) source space data studies (Gong et al.,
2009; van Dellen et al., 2009; Dubbelink, 2014). The MST (Mieghem and
van Langen, 2005; Mieghem and Magdalena, 2005) provided us with the
backbone of the functional interactions in the PMd and allowed us to
strengthen the results that were yielded via percolation analysis. We
obtained an MST for each step of our average network time series for all
epochs. In the MST approach, a tree can have two extreme topologies:
path (or chain) and star. In the first case, all nodes are connected to two
other nodes, apart from the nodes at either end, each of which have only
one link. In the latter, there is one central node that is connected to every
other node (leaves) via a single link only. With the star topology, the
efficiency of communication and integration of information between
nodes is optimal, harbouring the maximum possible number of leaves
and the minimum average path length. However, in this topology, the
problem of overloading the central node arises easily; thus, the optimal
configuration for an efficient tree would be halfway between these two
extremes. Between the path and star, there exists a spectrum of many
possible configurations, the characteristics of which can be described
with a set of relatively simple measures, as detailed in Stam et al. (2014).
Among the various measures, we chose the leaf number (LN). The leaf
number is the number of nodes with only one link. With the LN, it is
possible to intuitively quantify the topology of an MST. A path would
have an LN of two, whereas a star of N nodes would have an LN ¼ N� 1
that is, the same number of available edges. Thus, an MST that more
closely resembles a path will have a lower LN than one that is more
similar to a star. A shift from a path-like to star-like configuration of the
MST can be interpreted as a change in the network from a less to a more
integrated state.
4.6. A statistical benchmark for PMd functional network

To properly assess the statistical significance of percolation and MST
analyses, we defined a null model. The choice of a suitable null model
remains a complicated issue in network and complex systems science. In
this context, in addition to searching for a model that accounts for the
observations, one common practice when analysing real-world networks
is trying to identify properties that deviate from the null hypothesis,
because it is likely that the deviations themselves encode unknown
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information about the network functions (for an exhaustive review on
this topic see Cimini et al., 2019). Conscious of this, the core of our null
model consists of an established numerical procedure for correlation
matrices (Higham, 2016), which has been used successfully in other
studies on brain networks (Bardella et al., 2016; Mastrandrea et al.,
2017). Our procedure comprised three steps for each of the epochs under
examination: 1) Calculate the empirical probability distributions of the
entries of the empirical correlation matrices. Means and standard de-
viations of the fitted distributions were estimated by
maximum-of-the-likelihood procedure. 2) Generate an ensemble of null
networks by drawing correlations from the corresponding fitted distri-
butions. We generated an ensemble of 300 synthetic matrices for each
matrix of the average network time series. 3) Refine the procedure to
compute the nearest correlation matrices to synthetic ones on which to
apply our algorithms and compare the results. The last step is likely to be
the most delicate, because it requires the procedure from (Higham, 2016)
to be implemented, wherein a fast algorithm computes the nearest cor-
relation matrix to a given, symmetric matrix. Indeed, the first two steps
alone do not guarantee that true correlation matrices will be obtained: in
fact, the synthetic matrices might still have negative eigenvalues. For this
reason, most standard randomization techniques are unsuitable. Gener-
ally, to be considered a correlation matrix, a matrix must satisfy several
requirements: it must be symmetric, with diagonal elements equal to 1,
with off-diagonal elements in the range [-1, 1], and it has to be positive
semidefinite. With our procedure, we kept the spectrum distribution of
the observed correlation matrix fixed, applying random orthogonal
similarity transformation — which consisted of repeatedly projecting
onto the positive semidefinite matrices and then the unit diagonal
matrices — to the diagonal matrix of eigenvalues. This matrix was
interpreted, for each epoch, as the weighted adjacency matrix that rep-
resented the functional network of the PMd. We then compared the
observed percolation trendwith those obtained running the procedure on
the synthetic matrices. The slope of the percolation curve was computed
between correlation values in correspondence of which we detected 2
and n-1 connected components respectively, where n is the number of
nodes (we excluded trivial clusters that were represented by the entire
network and the single channels/nodes). To test results from MST anal-
ysis, the test statistic employed for comparison is the ensemble of LN
obtained from the MST computed on the randomized matrices.
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