
Proceedings of The Artificial Life Conference 2024

Edited by 
Andrés Faíña, Sebastian Risi, Eric Medvet, Kasper Stoy, Bert Chan, 
Karine Miras, Payam Zahadat, Djordje Grbic, Giorgia Nadizar

ALIFE 2024
D

ow
nloaded from

 http://direct.m
it.edu/isal/proceedings-pdf/isal2024/36/1/2461251/isal_a_00834.pdf by U

N
IV D

EG
LI STU

D
I D

I R
O

M
A LA SAPIEN

ZA user on 11 O
ctober 2024



Preface
This volume presents the proceedings of ALIFE 2024, the 2024 Conference on Artificial Life, held in Copenhagen, Denmark,
July, 22th-26th 2024 (http://2024.alife.org).

Artificial Life, with its focus on understanding and creating lifelike systems, has always been at the forefront of interdis-
ciplinary research. It strives to uncover the fundamental principles of living systems, investigate the processes that underpin
life, and develop new forms that exhibit lifelike behaviors. This conference serves as a platform to highlight these pursuits,
showcasing the latest research and developments that bridge biology and technology.

In recent years, the AI community has made tremendous strides in machine learning, neural networks, and autonomous
systems. These advancements have not only enhanced our ability to create intelligent systems but also opened up new
avenues for integrating ALife concepts. As we look ahead, ALife’s role in the future of AI becomes increasingly significant.
The principles of evolution, self-organization, adaptation, reproduction, and emergence—core tenets of ALife—are proving
invaluable in addressing complex challenges in AI.

We are excited to present a diverse program that includes keynote speeches, technical sessions, workshops, and poster
presentations. Our speakers and presenters come from a wide range of disciplines, reflecting the interdisciplinary nature of
ALife. We encourage you to engage with the presentations, participate in discussions, and explore the potential of life-as-it-
might-be.

The ALIFE 2024 Theme
The theme of this year’s conference is ‘Exploring new frontiers’. Building on the ancient traditions of the Vikings to travel to
new and strange lands and discover new cultures and traditions, we want to dedicate ALIFE 2024 to the weird and wacky of
ALife. In particular, in a time where academic research is under pressure to be rational with direct paths to impact, we will
instead dedicate ALIFE 2024 to celebrate the fundamental science of artificial life.

Computational artificial intelligence is making victory rounds around the globe, with enormous potential to develop a
better world and increase living standards provided we can handle the ethical challenges. The success has also impacted arti-
ficial life research, as is evident in this proceeding. However, we must not forget that this success stemmed from many years
of fundamental research, initially driven by scientists’ interest in understanding these artificial systems and their potential
explanation power of biological intelligence. Similarly, artificial life is motivated by the desire to understand the fundamental
building blocks of life, primarily through a synthetic approach—developing systems with life-like properties. The aim is to
understand these systems and explore what this understanding may imply for other living systems, biological or otherwise.

While computational intelligence represents a significant step forward, it does not solve all our problems. Current technol-
ogy is taking a toll on our environment. Artificial life research may lead to technologies with unprecedented power-efficiency,
recyclability, scalability, robustness, and adaptability—key ingredients for combating climate change. This potential is un-
certain, but without the efforts of the ALIFE community, we will never know. Therefore, we dedicate this year’s ALIFE
conference to ‘Exploring new frontiers’, maintaining a strong commitment to fundamental science in artificial life, and
discovering new insights that inspire individual researchers. In the long term, these discoveries may hold the potential to
transform humanity.

The ALIFE 2024 Program
We received a total of 210 full paper and abstract submissions. Our Program Committee reviewed all submissions in a
double-blind process. Senior Program Committee members then performed a topic-wide meta-review to recommend accep-
tance/rejection decisions. As a result, 103 submissions were accepted for oral presentations and 24 for poster presentations,
all of which are included in these proceedings.

The conference also hosted two special sessions to focus on specific topics that could expand the ALife landscape. In
addition, fourteen workshops and eight tutorials were held. We also invited the authors of papers recently published in the
Artificial Life journal to present their work in a dedicated session. Moreover, ALIFE 2024 hosted the 10th edition of the
Virtual Creatures Competition and a related workshop. Finally, as part of ALIFE 2024, we introduced an art exhibition
with international and local artists and an art session. Last, we confirmed Mind-match, an event of scientific matchmaking
introduced within ALIFE 2023 to create new opportunities for scientists who have similar approaches to their work or study
similar problems to meet.
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More specifically, the conference program of this year included the following:

• Five keynote presentations by internationally renowned speakers:

– Katie Bentley (The Francis Crick Institute, UK – Kings College London, UK – Boston University, USA)

– Kate Adamala (University of Minnesota, USA)

– Juan Perez-Mercader (Harvard University, USA)

– Kohei Nakajima (University of Tokyo, Japan)

– The winner of the 2024’s International Society for Artificial Life (ISAL) award for lifetime achievement

• Two dedicated poster sessions.

• Two special sessions:

– The Distributed Viking: Cellular Automata, Distributed Dynamical Systems, and Their Applications to Intelli-
gence, organized by Stefano Nichele, Hiroki Sayama, Chrystopher Nehaniv, Eric Medvet and Mario Pavone

– ALife And Society VIII, organized by Imran Khan and Peter Lewis

• Fourteen workshops:

– 6th International Workshop on Agent-Based Modelling of Human Behaviour (ABMHuB’24), organized by Soo
Ling Lim and Peter J. Bentley

– The evolution of things, organized by A. E. Eiben and Karine Miras

– Evolution, Criticality and Creativity in Collective Intelligence (ECCCI), organized by Kazuya Horibe and Michael
Crosscombe

– SB-AI 9. From imitative to biologically plausible synthetic models of natural cognition, organized by Pasquale
Stano, Luisa Damiano and Yutetsu Kuruma

– Molecular Communication Approaches for Wetware Artificial Life, organized by Pasquale Stano, Michael Barros,
Malcom Egan, Murat Kuscu, Yutetsu Kuruma and Takashi Nakano

– Hackathon: ALife, Music & the Visual Arts, organized by Elias Najarro and Claire Glanois

– Emerging Researchers in Artificial Life, organized by Piotr Walas, Federico Pigozzi, Fernando Rodriguez Ver-
gara, Imy Khan, Ane Kristine Espeseth, Lio Hong and Gabriel J. Severino

– ALife in Organizations, organized by Alberto Montebelli, Imran Khan and Gary Linnéusson

– Making Time: Temporality in natural and artificial systems, organized by Adam Rostowski and Fernando Ro-
driguez

– ALife Encyclopedia Hackathon, organized by Emily Dolson

– Goal-Directed behavior in life and non-life, organized by Martin Biehl, Richard Löffler, Miguel Aguilera, Omer
Markovitch, Artemy Kolchinsky and Manuel Baltieri

– CHEMALIFORMS IV: The Fourth Workshop on Chemistry and Artificial Life Forms, organized by Jitka Če-
jková, Richard Löffler and Steen Rasmussen

– Nature Inspired Simulation and Visualization of Complex Networks, organized by Oskar Elek, Angus Forbes and
Tarin Ziyaee

– Virtual Creatures Competition, organized by Kam Bielawski, Piper Welch, Caitlin Grasso and Karine Miras

• Eight tutorials:

– Engineering the open-ended evolution of synthetic biology, organized by Michiel Stock, Thomas Gorochowski
and Simeon Castle

– Automatic Design of Robot Bodies and Brains with Evolutionary Algorithms, organized by Kyrre Glette, Kai
Olav Ellefsen, Emma Stensby Norstein and Ege de Bruin
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– JAX for Scaling Up Artificial Life, organized by Ettore Randazzo and Bert Chan

– SimER: Simulation in Evolutionary Robotics, organized by Anthony J. Clark and Jared M. Moore

– Neuroevolution, organized by Sebastian Risi, Risto Miikkulainen, David Ha and Yujin Tang

– Phylogenies: how and why to track them in artificial life, organized by Emily Dolson, Alexander Lalejini,
Matthew Moreno and Jack Garbus

– SwissGL/GPU: tiny libraries for tiny and beautiful programs on the web, organized by Alexander Mordvinstsev

– Bio-inspired Data and Network Science with PolyPhy, organized by Oskar Elek

• Artificial Life journal session:

– Recently published Artificial Life journal papers.

• Virtual creatures competition:

– 10th edition of the Virtual Creatures Competition and a related workshop, organized by Karine Miras, Caitlin
Grasso, Piper Welch and Kam Bielawski.

• Boundary Iconology art exhibition by international and local artists:

– Brandon Tay

– Christina König

– Cody Lukas & Jonas Jørgensen

– Karlie Zhang & Sara Zebulon Riise

– Mochu

– Philip Ullman

• Art session:

– Performance and Panel with Mochu (artist), an invited scientist, Mandus Ridefelt (curator) and Claire Glanois
(Art Chair).

• Mind matching event:

– Connecting scientists to develop new collaborations and projects based on shared interests.

About the Editors
Andrés Faíña (General Chair)
IT University of Copenhagen

Andrés Faíña is an Associate Professor at the IT University of Copenhagen where he is part of the Robotics, Evolution and
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ing robot for grit blasting, underwater robot for hull cleaning, and hardware solutions for lab automation) and and academia
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137 Commingling Artificial Life and Interactive Machine Learning in Diffractive Artistic Research Practice
Jack Armitage, Victor Shepardson, Miguel Crozzoli and Thor Magnusson

146 Comparative Analysis of Heteroclinic Network Construction Algorithms for Simulating C. elegans Behavioral
and Neural Data
Denizhan Pak and Randall Beer

155 Creating Network Motifs with Developmental Graph Cellular Automata
Riversdale Waldegrave, Susan Stepney and Martin Trefzer

164 Crossover Destructiveness in Cartesian versus Linear Genetic Programming
Mark Kocherovsky and Wolfgang Banzhaf

173 Curious POET: Intrinsic Motivation Improves Exploration Efficiency
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Abstract

Coordination and cooperation are crucial features of many
natural and artificial systems. Among the many mechanisms
that have been proposed to support their emergence, leader-
ship can play an important role. In human and other animal
groups, inter-individual differences can lead to the emergence
of successful leaders, who assume their role thanks to their
physical or cognitive capabilities that grant them some influ-
ence over the behavior of their peers. Hence, heterogeneity
in a population appears as a key element for successful lead-
ers. Here, we present an evolutionary game theoretic model
to study the effect of leadership and heterogeneity on coop-
erative behavior and examine the relationships between the
two. We show that the presence of a leader can promote the
evolution of cooperation. Moreover, we find that, when there
is the possibility for a leader to emerge in the group, hetero-
geneity benefits cooperation. In our model, players cooperate
when they are more likely to become leaders, and defect oth-
erwise. In other words, strong leaders do not defect, but act
as exemplar of prosocial behavior that, when followed, lead
to full cooperation.

Introduction
A wide range of organisms engage in collective actions
to survive, from bacteria to eusocial animals and humans
(Miller and Bassler, 2001; Cornforth et al., 2012; Nadell
et al., 2016; Queller, 2000; Smith, 2010). In any collec-
tive action problem, when individuals perform costly ac-
tions that are beneficial to the entire group, a dilemma is
established in which each individual has to choose between
contributing to the collective benefit or exploiting the com-
mon resource. Reciprocity (Axelrod and Hamilton, 1981),
signalling (Martinez-Vaquero et al., 2020) and leadership
(Johnstone and Manica, 2011; King et al., 2009) are some
of the mechanisms that have been proposed as potential so-
lutions to this social dilemma.

Leadership, in particular, is a recurrent aspect in social
interactions, and naturally occurs in very different settings.
Indeed, the collective behavior of animal groups arises from
the combination of individual-level processes that shape and

are shaped by their social structure, movement dynamics,
and collective performance (Jolles et al., 2020). Empirical
evidence suggests that individuals in these groups are not
all equal and that heterogeneity plays a fundamental role in
shaping the behavior of the group. Individual differences
drive the collective behavior of bird flocks (Aplin et al.,
2013; Pettit et al., 2015), fish schools (Jolles et al., 2017),
bee colonies (Paleolog et al., 2009), and cattle herds (Šárová
et al., 2010). The heterogeneous distribution of phenotypic
variations in a group can lead to the emergence of a lead-
ership trait (King and Sueur, 2011; Brent et al., 2015) that
may be modulated by physiological characteristics, cogni-
tive capabilities, or social relations. Leaders may display
highly directed movements assuming frontal positions in a
moving group (Jolles et al., 2017; Pettit et al., 2015), may
present greater likelihood of initiating motion (Montiglio
et al., 2013), or may influence the behavior of group-mates
owing to their greater experience (Sueur and Petit, 2008;
King and Sueur, 2011). In all of these cases, leadership
entails a trade-off between benefits (e.g., privileged access
to food sources, see McClure et al., 2011) and costs (e.g.,
due to increased exposure to predators, see Ioannou et al.,
2019). Humans too evolved as group-living animals that rely
on cooperation to survive. The need to coordinate and solve
conflicts of interest might have triggered the evolution of
leadership (Van Vugt et al., 2008). Leadership is a universal
feature of human societies, where leaders initiate, motivate,
plan, organise, direct, monitor and punish to achieve group
coordination. The social complexity of human groups pro-
duced the need for more powerful leaders to manage com-
plex intra- and inter-group relations (King et al., 2009).

A variety of modeling techniques have been used to study
individual differences and quantify their effect on the collec-
tive outcome (Conradt and Roper, 2009; Couzin et al., 2002;
Conradt et al., 2009; Sueur et al., 2010; Ioannou et al., 2015;
del Mar Delgado et al., 2018). It has been demonstrated, for
instance, that a fraction of informed individuals can modu-
late the behavior of a group by balancing goal-oriented and
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socially-oriented behavior (Couzin et al., 2002, 2005; Ioan-
nou et al., 2015). Despite the results obtained, much work
is still needed to understand the effect of leadership and het-
erogeneity on collective behavior. Moreover, most of these
models use many adjustable parameters that make them dif-
ficult to study and do not take in consideration the evolu-
tion of the individuals’ behavior. Evolutionary game theory,
on the other hand, provides a simple framework capable of
capturing the evolutionary dynamics of a group of interact-
ing individuals, at the cost of abstracting from specific col-
lective behaviors. To account for population heterogeneity
and individual personality, evolutionary game theory mod-
els have employed diversity in the payoffs (Guo et al., 2024;
Qin et al., 2017; Amaral et al., 2016; Amaral and Javarone,
2020), in the ability to spread their strategy (Zhu et al., 2014;
Droz et al., 2009; Szolnoki and Szabó, 2007), and in the
network structure (Santos et al., 2006, 2012). Few studies
explicitly consider leadership in evolutionary game models.
Some address the emergence of leadership in repeated co-
ordination games (Johnstone and Manica, 2011) and in dif-
ferent types of networks (Zhang et al., 2014) and provide
insights on how leaders might emerge in a population. Oth-
ers consider the effect of leadership on the cooperation rate
of a population of players. Among these, leadership by en-
forcement or by example has received the most attention. In
the former, leaders punish or reward other players if they de-
fect or cooperate and receive a share of the common benefit
in exchange (Hooper et al., 2010). In the latter, leaders are
unconditional cooperators and can therefore influence both
the game and the adoption of their strategy by other players
(Zhuang et al., 2012). Similarly, Wang et al. (2017) model
leaders as high reputation individuals so that other players
are more likely to adopt their strategy.

Similar to the leadership-by-example studies mentioned
above, this paper aims to study the effect of leadership and
heterogeneity on the evolution of cooperation. Using Evo-
lutionary Game Theory methods, we analyse the effect that
having a leader produces on the cooperative behavior of a
group of individuals that differ in their tendency to lead and
to follow the leader. A model is presented in which lead-
ers, either defectors or cooperators, shape the action choice
of the other players in their group. Motivated by the pres-
ence of the leader that, by virtue of its characteristics (phys-
ical, cognitive, social, etc.), exerts some type of influence
on them, players can imitate the available example without
any additional mechanism of punishment or reward. More-
over, individual differences are introduced to reproduce the
inherent heterogeneity in the leading and following capabil-
ities among natural individuals. This is modelled as a sort of
strength, which represents a characteristic of each individual
dictated by physiological or psychological conditions, possi-
bly driven by external factors. In the proposed model, strong
players are less receptive to the decisions of their peers and
have a higher predisposition to lead, whereas weak ones are

less prone to take the lead while being more likely to be
influenced by the decision of a leader. By varying the indi-
vidual behavior, the degree of heterogeneity, and the com-
position of the population, we quantify the cooperation level
and analyse which strategies and conditions promote it.

This work tries to fill a gap in the literature by providing
a theoretical model that explains the role of leaders and het-
erogeneity for cooperation in natural groups. It also attempts
to provide a new perspective on the problem of designing
artificial systems by looking for the optimal heterogeneity
conditions for leadership to promote effective coordination
and collaboration. The paper is organised as follows. First,
we describe the game played by the individuals and the evo-
lutionary dynamics by which their strategies evolve. Then,
we present the outcomes obtained by testing the model on
a wide range of parameters. Finally, we analyse the results
and provide an interpretation of our findings.

Model
Game definition
We consider the case of a population of Z players inter-
acting in a repeated N-person public goods game (Pacheco
et al., 2009). Individuals can either cooperate and invest an
amount c into a common pool or defect and not incur any
cost. At the end of each round, the total investment is multi-
plied by a factor r and equally divided among all the players,
therefore allN individuals in the group receive a benefit pro-
portional to the fraction of cooperators. The payoff obtained
each round by cooperators and defectors, respectively, is the
following:

ΠC = rc
NC

N
− c (1)

ΠD = rc
NC

N
(2)

where NC is the number of cooperators in the group. If
everyone cooperates, each player will obtain a payoff of
(r− 1)c but if everyone defects no one receives any benefit.
In each round, one of the players is selected as the leader
and plays according to its own strategy either cooperating or
defecting. The remaining players can play either according
to their own strategy or following the leader by copying its
action.

We consider an heterogeneous population composed by
two types of players: strong and weak. Each player will be-
have as strong with a probability ps and weak with a prob-
ability 1 − ps. This parameter represents external factors
that influence the tendency of individuals to act in one or the
other way. Strong and weak players have different strength
values, defined by a Fermi function as:

S =

{
1

1+e−∆l
if strong

1
1+e∆l

if weak
(3)
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where, the bigger the value of the parameter ∆l, the bigger
the difference in strength between strong and weak players.
At each round, each player i within a group of size N has a
probability of being selected as the leader, which is propor-
tional to its strength with respect to the rest of the group:

pl,i =
Si∑N
j=0 Sj

(4)

where Si is the strength of player i. Therefore, when ∆l

is large, strong players are more likely to be selected than
weak ones.

The probability of the other players to follow the leader
is determined by their type, strong or weak, and the type
of the leader, which we assume can be recognised by the
other players. Since we have only two types of players, we
distinguish four cases, one for each combination of leader
and potential follower. The probabilities of following are
expressed as Fermi functions:

pw,w =
1

1 + e−βff

pw,s =
1

1 + e−βf (f+∆f )

ps,w =
1

1 + e−βf (f−∆f )

ps,s =
1

1 + e−βff

(5)

where βf determines the slope of the Fermi function, f rep-
resents the tendency of the entire population to follow the
leader, and ∆f is a parameter regulating the difference in
the following probability of strong and weak individuals:
if ∆f = 0, the probability of following the leader is in-
dependent of the type of the leader and the type of the fol-
lower. Increasing the value of ∆f , weak players become
more likely to follow a strong leader and strong players be-
come less likely to follow a weak leader. Figure 1 illustrates
the following probabilities determined by the combination
of f and ∆f .

In this model, individuals adopt strategies that are only
conditional on their strengths. The strategy set is defined
using two bits that represent the action to take in case the
player is weak or strong: (aw, as). When aj = 1, j ∈
{w, s}, the player cooperates, otherwise when aj = 0 the
player defects. Hence, there are four possible strategies:

ALLD (0, 0): always defect

WCSD (1, 0): cooperate when weak, defect when strong

WDSC (0, 1): defect when weak, cooperate when strong

ALLC (1, 1): always cooperate

Finally, we introduce execution errors, both for actions and
for the possibility of following the leader, as a small prob-
ability ϵ that the player performs the opposite of what she
intended to.

Figure 1: Example of probabilities to follow for βf = 1,
f = 1 and ∆f = 2. The value of f determines the central
probability of following between leader and follower of the
same type. ∆f determines the probability of following be-
tween individuals of different type.

Evolutionary dynamics

Evolution is modeled using a stochastic birth-death process
in a well-mixed finite population of Z individuals (Nowak
et al., 2004). The members of the population randomly form
groups of N players and repeatedly play the game previ-
ously described. As a consequence, each individual obtains
an average payoff taking into account all possible groups
she can be part of. These payoffs are used as proxies for
fitness. During reproduction, the fittest individuals have a
higher chance of spreading their strategy to the new popula-
tion, modeled by a Fermi function regulated by an intensity
of selection β (Traulsen et al., 2006). This means that the in-
formation passed on to the offspring is how to behave in the
rounds in which they are weak and in those in which they
are strong. The probability for each player to be strong or
weak is a parameter of the population that does not change
through the evolutionary process.

In order to simplify the evolutionary dynamics analysis,
we adopt the small mutation approximation. Using this ap-
proximation, a single mutant invading a uniform population
can either fixate or disappear. In this way, only monomor-
phic states are considered and we can describe the preva-
lence of each strategy using a reduced Markov chain (Fuden-
berg and Imhof, 2006; Vasconcelos et al., 2017). This tech-
nique allows us to compute the invasion diagram among all
pairs of strategies, their stationary distributions, and an aver-
age cooperation level across the different parameters of the
model. The summary of the main parameters of the model
can be found in Table 1.

629

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal2024/36/1/2461251/isal_a_00834.pdf by U
N

IV D
EG

LI STU
D

I D
I R

O
M

A LA SAPIEN
ZA user on 11 O

ctober 2024



Table 1: Main parameters of the model
Parameter Description Value

Z Size of the population 100
N Size of the group 9
c Cost of cooperation 1
r Benefit multiplication factor [1, 10]
ps Probability of players to be

strong
[0, 1]

∆l Difference in strength between
strong and weak players

[0, 8]

f Tendency to following the
leader of the whole population

[−8, 1]

βf Following intensity 1
∆f Difference in tendency to follow

the leader between strong and
weak players

[0, 8]

ϵ Error probability of each player 0.01
β Intensity of selection 1

Results
Evolution of cooperation
We first study the effect of leadership on the evolution of co-
operation in the special case in which the population hetero-
geneity has the same effect on both the probability of acting
as a leader and the probability of following, hence setting
∆l = ∆f . Figure 2 shows the expected fraction of players
that cooperate with and without a leader and at varying lev-
els of heterogeneity. In the absence of a leader, agents face
a standard public goods game in which defection prevails
in all conditions for r < 10, as expected (Pacheco et al.,
2009). The presence of a leader (∆l = ∆f ≥ 0) fosters
the emergence of cooperation for lower values of r, that is,
when players receive lower returns for cooperating. This is
true for any value of ps, even for the extreme cases in which
players always act as weak (ps = 0) or strong (ps = 1).
In these extreme conditions, however, the population is ho-
mogeneous whatever the value of ∆f = ∆l, and low re-
turns (r ≤ 5) lead to diffuse defection. When ps is not ex-
treme, the effects of behavior heterogeneity induced by ∆l

and ∆f are visible, leading to higher cooperation rates with
any value of r > 1. What is evident from Figure 2 is that
leadership is most effective in promoting cooperation when
players do not always act as strong and there is a consider-
able difference between strong and weak players. At very
low benefits (r ∈ [2, 4]), full cooperation is achieved only
when the strong players are a minority in the group. When
the benefit is higher, groups with several strong players at-
tain full cooperation too. Overall, thanks to the presence of
(few) strong leaders, cooperation prevails in the population
even when the expected returns are small.

We then quantify the effect of the tendency to follow the
leader on cooperation, varying the parameter f ∈ [−8, 1]

Figure 2: Cooperation level obtained with and without a
leader and for different heterogeneity levels. We consider
different values of r, ∆f , ∆l and pS and assume Z = 100,
N = 9, β = 1, c = 1, f = 0, βf = 1 and ϵ = 0.01

(see Figure 3). When f assumes low values, all players—
both weak and strong—are less likely to follow the leader
and defection is more likely to prevail. In this case, coop-
eration is achieved only when heterogeneity is high (∆l =
∆f ≥ 4). When f takes higher values, the tendency to fol-
low generally increases driving a growing trend in coopera-
tion rates, even for a less heterogeneous population.

Finally, we test the model in the two cases in which het-
erogeneity only affects the probability of acting as a leader
or the probability of following (∆l ̸= ∆f ). Figure 4 shows
the expected cooperation level if the probability of following
or the probability of acting as a leader are fixed. In the first
case (∆f = 1), when players receive low returns for coop-
erating (r < 6), cooperation is fostered if ∆l assumes high
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Figure 3: Cooperation level obtained with a leader at differ-
ent levels of the following behavior. We assume Z = 100,
N = 9, β = 1, c = 1, r = 5, βf = 1 and ϵ = 0.01

values, meaning that strong players are more likely to be
leaders. However, for greater returns (r ≥ 7), the opposite
is true and homogeneous populations achieve more cooper-
ation than heterogeneous ones. Instead, if the probability of
becoming the leader is fixed (∆l = 1), higher levels of het-
erogeneity are always more beneficial to cooperation. Inter-
estingly, when cooperation returns are low (r < 6), groups
with few strong players (low ps) do not achieve high levels
of cooperation anymore. This analysis reveals the complex
interplay between the two parameters governing the popula-
tion heterogeneity. Overall, it is possible to conclude that a
mismatch between ∆l and ∆f leads to reduced cooperation
levels: when the likelihood of behaving as leader is not ac-
companied by a similar likelihood of being followed, there
is more room for exploitation by defectors.

Emergence of behavioral strategies
So far, we have focused on cooperation levels but we have
not analysed which strategies are responsible for it. To this
end, we compute the fixation probabilities for the four strate-
gies across different conditions, varying the level of hetero-
geneity (∆l = ∆f ) and the probability of the presence of
strong individuals ps (see Figure 5). Additionally, Figure 6
expands the case of r = 5 displaying the full stationary dis-
tribution for the single strategies. In the same settings, Fig-
ure 7 presents the invasion graphs for the model calculated
at particular conditions.

Figure 4: Cooperation level obtained with a leader with dif-
ferent heterogeneity values. We assume Z = 100, N = 9,
β = 1, c = 1, f = 0, βf = 1 and ϵ = 0.01

The most evident aspect of the plots is the prevalence of
the WDSC strategy across a wide range of parameters, and
conversely the absence of WCSD. When the cooperation
benefit is low (r = 5), pure defection dominates if the pop-
ulation is homogeneous (low ∆l and ∆f ) or when most of
the individuals are strong (high ps). However, if some het-
erogeneity is introduced and the population is mostly weak,
the strategy WDSC becomes dominant. This corresponds
to the range of parameters in which we notice the rise in co-
operation level in Figure 2. Here, the strategy WDSC al-
lows for strong cooperators to prevent weak defectors from
exploiting them if they are sufficiently strong. Moreover,
the more weak players (hence low values of ps), the less
heterogeneity is necessary to prevent full defection. When
WDSC prevails, an increasing population heterogeneity
leads to strong players cooperating and weak players uni-
formly following the cooperating leader, producing high lev-
els of cooperation. When this happens, WDSC becomes
equivalent to ALLC and the two strategies are equally suc-
cessful (see Figure 6). Note that for low probabilities of
having strong players, more heterogeneity is needed to reach
full cooperation. Indeed, if very few individuals are strong,
they have to be much different from the weak ones in order
to foster cooperation.

The switch from full defection to partial cooperation is
also evident in the invasion graphs in Figure 7. When tran-
sitioning from an homogeneous population to an heteroge-
neous one, WDSC becomes gradually more dominant and
pure defection less so. WDSC gets weakly exploited by
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Figure 5: Stationary distribution of the strategies in the parameter space defined by pS , ∆f and ∆l. Colors indicate the
types of strategies that are prevalent in certain conditions and color darkness is the intensity of the probability in the stationary
distribution. To make the visualization easier in overlapping areas, only probabilities higher than 0.5 are displayed. The yellow
markers correspond to the coordinates of the invasion graphs of Figure 7. Parameters: Z = 100, N = 9, β = 1, c = 1, f = 0,
βf = 1 and ϵ = 0.01

ALLD only in a homogeneous population. However, this
exploitation is already avoided at low heterogeneity values
(∆f = ∆l = 1). Moreover, ALLC and WCSD are never
dominant in these conditions.

When the cooperation benefit increases (r = 6 or r = 7 in
Figure 5), the advantage of adopting WDSC is reduced and
ALLC becomes progressively more dominant, especially
when the population heterogeneity is low. The higher bene-
fit promotes cooperation for all values of ps, as also shown
in Figure 2. This means that either strong leaders cooper-
ate, benefiting also from following peers (hence the strategy
WDSC prevails), or that every individual cooperates fol-
lowing the ALLC strategy (especially when heterogeneity
is low). Overall, the relevance of the strategy WDSC in
promoting cooperation is confirmed also when the condi-
tions for cooperation are less demanding.

Finally, we consider the case in which ∆l ̸= ∆f (see
Figure 8). When ∆f = 1, the WDSC strategy prevails
in conditions where previously dominance was shared with
other strategies. In particular, when ∆l is large, WDSC
completely replaces ALLC. When ∆f = 1, the proba-
bilities of following are not extremely different among all
possible pairs, meaning that weak individuals similarly fol-
low strong and weak leaders. In such conditions, ALLC
gets invaded by WDSC and ALLD, as it was happening
for ∆f = ∆l = 1 (see Figure 7b), leading to WDSC pre-
vailing. For r = 7, this implies that a lower cooperation rate
is expected when the heterogeneity is high, as shown in Fig-
ure 4, due to the prevalence of WDSC. Conversely, when
∆l = 1, weak individuals act as leaders with non-negligible
probability, especially when ps is small. The bottom-left

Figure 6: Stationary distribution of the four strategies in the
parameter space defined by pS , ∆f and ∆l. Color darkness
indicates the intensity of the probability in the stationary dis-
tribution. The yellow markers correspond to the coordinates
of the invasion graphs of Figure 7. Parameters: Z = 100,
N = 9, β = 1, c = 1, βf = 1, f = 0, r = 5 and ϵ = 0.01
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(a) ∆f = ∆l = 0 (b) ∆f = ∆l = 1 (c) ∆f = ∆l = 2

Figure 7: Graphs of invasion among the four strategies at different heterogeneous levels. The node size is proportional to the
probability in the stationary distribution. The values on the arrows and their thickness represent the logarithm of the normalised
transition probability among the two strategies. Only transition probabilities greater than neutral drift are displayed. Parameters
used: Z = 100, N = 9, β = 1, c = 1, f = 0, βf = 1, ϵ = 0.01, ps = 0.5 and r = 5

panel in Figure 8 shows that, when ∆f is high and r = 5,
weak individuals have no advantage in cooperating because
they would not be followed, hence granting an advantage to
WDSC over ALLC. In the case of r = 7, instead, the
balance between WDSC and ALLC is shifted because of
the higher expected returns from cooperating when leading.

Discussion and conclusions
This study investigates the role of leadership and hetero-
geneity in promoting cooperation in a collective action prob-
lem. Our results suggest that the presence of a leader is ben-
eficial especially when the returns from cooperating are low.
The presented model suggests that in groups where individ-
uals can become leaders and obtain more influence over oth-
ers, cooperation is favored over defection.

In a homogeneous population, however, when returns for
cooperating are particularly low, the presence of a leader
fails to promote full cooperation and defectors end up dom-
inating. In this case, the results obtained here hint at a ben-
eficial effect of heterogeneity. Indeed, when the population
contains both strong and weak individuals, we find that a
high level of cooperation is achieved when few strong lead-
ers are sufficiently influential to promote cooperation in the
whole group. Stronger individuals have particular character-
istics that make them more likely to act as leaders and have
more influence over their peers. When very strong play-
ers are only a minority in a population composed of much
weaker ones, the former can establish their dominance by
usually adopting the leading role and having the rest of the
players follow them. Our analysis shows that such groups

can achieve full cooperation, even in adverse conditions.
The analysis of the probability of following (see Fig-

ure 3) reveals that, in a generally individualistic population
(f = −8), only very strong heterogeneity can promote co-
operation. If the members of the population, instead, have
a higher probability of following the leader (f = 1), less
heterogeneous populations achieve cooperation too. Our re-
sults also suggest that homogeneous populations cooperate
more than heterogeneous ones only when returns for coop-
eration are high and strong players have more chances of
being leaders but not of being followed. To promote cooper-
ation in such conditions, strong individuals need to have the
ability to become leaders but should also be able to inspire
others to follow them.

Our analysis reveals that the strategy responsible for the
increase in cooperation is WDSC. Individuals adopting
this strategy cooperate only when they are strong and there-
fore have more chances of becoming leaders. In this sit-
uation, strong individuals avoid exploitation by defectors
since, unless the population is homogeneous, they have a
cohort of individuals that, by following them, cooperate too.
When WDSC individuals are weak, however, we can dis-
tinguish between the two cases in which the leader is a de-
fector or a cooperator. When the leader defects, WDSC
players always defect, avoiding being exploited by the de-
fecting leader and their acolytes. When the leader is a coop-
erator, instead, they either follow her and cooperate or de-
fect, becoming exploiters. Adopting these behaviors allows
WDSC individuals to resist the invasion of pure defectors
and, at the same time, grants them an advantage over pure
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Figure 8: Stationary distribution of the four strategies when
either ∆f = 1 (top panels) or ∆l = 1 (bottom panels).
See also Figure 4 for the corresponding cooperation level.
Parameters: Z = 100, N = 9, β = 1, c = 1, βf = 1,
f = 0, r = 5 and ϵ = 0.01

cooperators. A similar effect has been reported in the con-
text of cooperative agreements, where individuals willing to
participate and cooperate in commitments but not collabo-
rating to their establishment are a necessary evil to sustain
cooperation (Martinez-Vaquero et al., 2017). Such strategy
turns out to be prevailing also when there is a misalignment
between the tendency to become a leader and the following
behavior (∆l ̸= ∆f ): in these conditions, weak individuals
have more chances to exploit strong individuals, either be-
cause they do not follow more often strong than weak lead-
ers (i.e., when ∆f is small) or because they lead and defect
(i.e., when ∆l is small). Overall, we show that cooperation
can be hampered when individuals that are often selected as
leaders are not followed sufficiently often.

The model tries to capture the fundamental features of
leadership and heterogeneity in an interacting group. Fur-
ther work will be done to verify the assumptions made here
and expand the study of the evolution of leadership. First
of all, this model assumes the presence of only one leader,
which is not always the case in natural groups. We will con-
sider the possibility of having multiple leaders, addressing
possible conflicts in the proposed group actions. On the
other hand, a future in-depth study will add the possibility
that leaders obtain benefits and/or incur costs derived from
their leading role, conditions that are widely reported in ex-

perimental studies. Finally, the spatial distribution and the
social configuration of the population will be also taken into
account.

The present study highlights the key role of leadership
and heterogeneity on the evolution of cooperation and the
collective behavior. This is also relevant for the design of
artificial systems in which multiple entities coexist and pos-
sibly cooperate. For instance, collective behavior is increas-
ingly implemented in robot swarms, where members coor-
dinate in a decentralized way to solve a shared task (Dorigo
et al., 2021). While traditional studies often assume robots
to be identical (e.g., to contain manufacturing costs), in-
creasing evidence points to the importance of heterogeneity
(Prorok et al., 2017) and demonstrates how individual differ-
ences can be leveraged to boost the collective performance
(Sion et al., 2022; Feola et al., 2023; Raoufi et al., 2023).
The present study provides useful insights on the level of
heterogeneity that should be introduced in a population to
promote cooperative interactions among robots, e.g., when
the cooperative behavior should be balanced with individ-
ual needs such as the necessity to reduce energy expenditure
(Notomista et al., 2022; Cai et al., 2023).
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