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Abstract: Seasonal vertical ground movement (SVGM), which refers to the periodic vertical dis-
placement of the Earth’s surface, has significant implications for infrastructure stability, agricultural
productivity, and environmental sustainability. Understanding how SVGM correlates with climatic
conditions—such as temperatures and drought—is essential in managing risks posed by land sub-
sidence or uplift, particularly in regions prone to extreme weather events and climate variability.
The correlation of periodic SVGM with climatic data from Earth observation was investigated in
this work. The European Ground Motion Service (EGMS) vertical ground movement measurements,
provided from 2018 to 2022, were compared with temperature and precipitation data from MODIS
and CHIRP datasets, respectively. Measurement points (MP) from the EGMS over Italy provided a
value for ground vertical movement approximately every 6 days. The precipitation and temperature
datasets were processed to provide drought code (DC) maps calculated ad hoc for this study at a
1 km spatial resolution and daily temporal resolution. Seasonal patterns were analyzed to assess
correlations with Spearman’s rank correlation coefficient (ρ) between this measure and the DCs from
the Copernicus Emergency Management Service (DCCEMS), from MODIS + CHIRP (DC1km) and
from the temperature. The results over the considered area (Italy) showed that 0.46% of all MPs
(32,826 MPs out of 7,193,676 MPs) had a ρ greater than 0.7; 12,142 of these had a positive correlation,
and 20,684 had a negative correlation. DC1km was the climatic factor that provided the highest num-
ber of correlated MPs, roughly giving +59% more correlated MPs than DCCEMS and +300% than the
temperature data. If a ρ greater than 0.8 was considered, the number of MPs dropped by a factor of 10:
from 12,142 to 1275 for positive correlations and from 20,684 to 2594 for negative correlations between
the DC1km values and SVGM measurements. Correlations that lagged in time resulted in most of the
correlated MPs being within a window of ±6 days (a single satellite overpass time). Because the DC
and temperature are strongly co-linear, further analysis to assess which was superior in explaining the
seasonality of the MPs was carried out, resulting in DC1km significantly explaining more variance in
the SVGM than the temperature for the inversely correlated points rather than the directly correlated
points. The spatial distribution of the correlated MPs showed that they were unevenly distributed in
clusters across the Italian territory. This work will lead to further investigation both at a local scale
and at a pan-European scale. An interactive WebGIS application that is open to the public is available
for data consultation. This article is a revised and expanded version of a paper entitled “Detection
and correlation analysis of seasonal vertical ground movement measured from SAR and drought
condition” which was accepted and presented at the ISPRS Mid-Term Symposium, Belem, Brasil,
8–12 November 2024. Data are shared in a public repository for the replication of the method.

Keywords: subsidence; drought; seasonal vertical ground movement; SAR; Sentinel-1; interferometric
synthetic aperture radar (InSAR)

Remote Sens. 2024, 16, 4123. https://doi.org/10.3390/rs16224123 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16224123
https://doi.org/10.3390/rs16224123
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4796-6406
https://orcid.org/0000-0001-8292-9996
https://orcid.org/0000-0002-9483-289X
https://doi.org/10.3390/rs16224123
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16224123?type=check_update&version=1


Remote Sens. 2024, 16, 4123 2 of 21

1. Introduction

Seasonal vertical ground movement (SVGM) refers to the vertical displacement of
the ground surface, which follows harmonic trends, recurring every year and primarily
driven by the changing seasons [1]. This displacement can manifest as either uplift (up-
ward movement) or subsidence (downward movement), resulting in changes in surface
elevation and posing significant threats to infrastructure, agriculture and environmental
sustainability [2], and even playing a role in inundation scenarios from sea level rise [3].
SVGM is also a proxy for other phenomena that cause the deformation of the Earth’s
surface, such as earthquakes and tectonic activity [4], subsidence due to the extraction of
groundwater [5] and volcanic activity [6]. Various factors drive SVGM, many of which are
related directly or indirectly to the climate, e.g., the temperature and precipitation. Natural
factors such as the compaction of sediment, geological processes and anthropogenic factors
such as groundwater withdrawal are major contributors.

The temperature plays a significant role in SVGM. Directly, temperature fluctuations
cause the thermal deformation of infrastructure—like buildings and roads—which can lead
to the deformation of the infrastructure on the Earth’s surface. Indirectly, the temperature
affects the moisture content in soils and sediments, affecting their compaction and expan-
sion. For instance, prolonged periods of high temperatures with little or no precipitation
can lead to drought conditions, causing the ground to dry out and compact and result in
subsidence. Conversely, in cooler, wetter seasons, soils absorb moisture, swell and exhibit
uplift. This process can be understood through the principle of effective stress [7]: as the
soil moisture increases, the pore water pressure rises, reducing the effective stress and
causing uplift. In contrast, during droughts, reduced soil moisture decreases the pore water
pressure, increasing the effective stress and leading to subsidence [8,9]. Thus, investigating
the relations between these variables (temperature and drought) and SVGM will be crucial
for proactive risk management and mitigation strategies.

SAR, defined as synthetic aperture radar, is one technology that offers the possibility
to measure vertical ground movement [10,11]. It is a form of radar imaging used to
create detailed images of landscapes and objects and provide detailed information on
ground deformation, allowing for the detection and geodetic measurement of SVGM with
unprecedented accuracy [12] and with a high spatial and temporal resolution. It has an
antenna system that sends electromagnetic pulses at an angle towards the Earth to create
image strips that are about 100 km wide. By using two SAR images acquired either by
two different antennas or by repeated passes, it is possible to use the phase measurements
to determine the relative distance of an object as a fraction of the radar wavelength (in
the case of repeated passes of the radar over the same area) and the difference in the
sensor locations (in the case of the antenna(s) at different positions) to determine angular
differences, which are useful for topographic mapping [13].

The superimposition of these images, known as interferometric SAR (InSAR), produces
an interferogram that reveals the phase differences between the signals received by the
radar instrument. This phase difference serves as an indicator of what has changed on
the observed surface. Ignoring the impact of atmospheric delays during the travel of the
signal, the phase difference is obtained from the contributions of the interaction of the
signal with the ground surface, the satellite’s position in orbit and the topography. By
performing repeated passes over an area and multiple observations, these contributions
can be modeled, allowing the phase difference to be modeled and enabling us to derive the
expected surface change.

Several studies have established that the temperature, precipitation and drought
have significant impacts on ground deformation patterns [14–16]. For instance, prolonged
drought can induce subsidence due to soil compaction, while increased soil moisture
during cooler seasons can lead to ground uplift [17–19]. However, these studies often focus
on localized areas or the global scale [20–22]. Meanwhile, most studies found over Italy
consider a local scale [23,24]. Studies addressing the relations between the climate variables
(temperature, precipitation and drought) and SVGM have not been widely explored.
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By using Spearman’s rank correlation coefficient, this study aimed to quantify the
correlations between drought conditions, temperature effects and ground deformation
across Italy using the SVGM determined from InSAR data provided by the European
Ground Motion Service (EGMS) for the period of 2018 to 2022. Specifically, drought
conditions were assessed using the drought code (DC) from two sources: (i) the Copernicus
Climate Change Service (C3S) Climate Data Store (CDS), labeled as DCCEMS, and (ii) a
1-km-resolution DC map calculated ad hoc for this study, labeled as DC1km. The DC,
traditionally used to infer forest fire risks, was used here as a proxy for drought due to
the fact that the DC represents the condition of a layer that dries very slowly [25], with a
time lag of ≈52 days [26]. This means that it reflects long-term drought conditions, which
we hypothesize—together with the temperature—as having a significant correlation with
SVGM, especially in areas of intense agricultural activity [27].

The main objectives for this study were as follows:

• to investigate the correlation between the SAR-derived SVGM and climatic conditions
(drought and temperature) in Italy, examining whether drought events coincide with
changes in surface elevation and ground motion patterns;

• to identify regions within Italy where SAR-derived land subsidence and drought
conditions exhibit cluster patterns;

• to assess the implications of the identified correlation points and areas with specific causes;
• to analyze the influence of the thermal deformation effect on infrastructure due to

temperature-induced vertical ground motion.

These are meant to offer insights into large-spatial-scale SVGM patterns and their
correlations with climate variables across Italy.

2. Materials
2.1. Study Area

This study focused on Italy as the study area. The Italian territory is located in
Southern Europe and stretches between longitudes 6◦ and 19◦E and latitudes 35◦ and 47◦N.
In the north, Italy shares a border with France, Switzerland, Austria and Slovenia. The rest
of the territory is surrounded by water, with the Adriatic Sea to the east, the Tyrrhenian
Sea to the west and the Mediterranean and Ionian Seas to the south. Italy is characterized
by diverse landscapes, featuring the Alps Mountains and the Po Valley in the north. The
Po Valley, one of the most significant agricultural regions, is known for its fertile plains
and dense urban centers, presenting an ideal study area due to these different land cover
categories and its varied geology.

Italy’s climate varies significantly across its regions, ranging from a humid subtropical
climate in the north, influenced by the Alps and the Po Valley, to a Mediterranean climate
in the southern coastal areas. There is also a different climatic scenario between the
northern and southern regions, with the central part of the country, including Tuscany
and Umbria, acting as a transitional zone between these two climatic zones. The north
typically experiences colder winters and hot summers, while the south generally has milder
winters and warmer temperatures throughout the year. For example, on a winter day,
the temperature can vary greatly: it may be around −2 ◦C and snowing in Milan (north),
8 ◦C in Rome (central) and 20 ◦C in Palermo (south) [28]. This variation is often depicted
on weather maps showing the temperature gradients across the country. Consequently,
there is an associated trend in the loss of soil moisture and drought conditions across the
country. Vertical ground deformation is a prominent issue in Italy, driven by factors such
as the extraction of groundwater for agricultural and industrial activities, tidal influences
(e.g., in Venice) and active volcanoes in the south [29]. Climate-related variables also have
significant impacts across the region. For instance, in July 2022, there was an intense
drought in Italy (Figure 1), the most severe drought that the country had experienced
in 70 years, due to which the government declared a state of emergency in 5 regions in
the northern territory (Emilia–Romagna, Friuli–Venezia Giulia, Lombardy, Piedmont and
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Veneto). These climatic and environmental challenges make Italy a suitable area of interest
for this research.

Figure 1. Combined drought indicators for the first 10-day period of July 2022 in Italy (JRC, 2024).
This plot shows drought alert indicators over the northern regions, where a state of emergency was
declared for this year. This event was an exceptional incident as, in general, the south of Italy is
warmer than the north.

2.2. Data

The primary datasets utilized in this study are summarized in Table 1. These include
(i) the European Ground Motion Service (EGMS) ground movement time series; (ii) land
surface temperature (LST) data from the Moderate-Resolution Imaging Spectroradiometer
(MODIS); (iii) precipitation data from the Climate Hazards Group Infrared Precipitation
with Station Data (CHIRP) dataset; and (iv) the drought code from the Copernicus Emer-
gency Management Service (CEMS) cems-fire-historical-v1.

Table 1. Data sources.

Source Original Data Spatial Resolution Temporal Resolution Reference

EGMS Sentinel-1 100 m 6 days [30]
MODIS product MODIS Terra/Aqua 1000 m Daily [31]
CHIRP Interpolation of precipitation stations 5566 m Daily [32]
CEMS Drought Code Copernicus Service catalog 0.25◦ × 0.25◦ Daily [33]

3. Methods

This section describes the methods used to quantify the correlations between SVGM
and the climatic variables, focusing on the use of Spearman’s rank correlation coefficient
(ρ) to assess the monotonic relationship between ground movement and the temperature
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and drought code time series. The working diagram used for the method is provided in
Figure 2.

Figure 2. Flowchart of the methodology.

3.1. Drought Indices

Drought indices are tools used to quantify and monitor drought conditions by integrat-
ing weather variables, commonly the temperature and precipitation of the area of interest.
These indices consider rainfall deficiencies over long periods that impact the moisture
content of soils. In this work, we use the index known as the drought code (DC), developed
from the original Drought Index of the Canadian Danger Rating Systems [34]. The original
Drought Index had important limitations as its upper limit of 25 drying days was reached
quickly during extended drying periods. The drought code (DC), which is used in this
study, was developed from the stored moisture index (SMI) to overcome this limitation and
is standardized with other indices. The drought code uses the temperature and precipita-
tion and takes into consideration the number of drying days, e.g., days with no rainfall or
no effective rainfall, i.e., only rainfall above 2.8 mm is considered effective [26,34,35]. This
information is integrated with an estimate of evapotranspiration, which removes moisture
from the ground. The DC index supports the estimation of various impacts of droughts
on the Earth’s surface. In this study, we use daily temperature and precipitation data to
estimate daily maps of the DC values for the study area. The time series of these values are
then used to calculate the correlations with SGVM.

3.1.1. Air Temperature Estimation

The MODIS Daytime Land Surface Temperature (LST) product (MOD11A1 V6.1) was
used to estimate the temperature at the MPs’ positions for the intended period and calculate
the DC values (see Equations (1)–(6)). It must be noted that the LST and air temperature
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are not equivalent, even if co-linear, and that there are different sets of spatiotemporal
characteristics that distinguish them [36]. The LST refers to the temperature of the Earth’s
surface measured within a few meters above the ground surface. The air temperature, on
the other hand, is measured at a height of approximately 1.5 to 2 m [37] above the ground.
Using the LST as a proxy for the air temperature is reasonable, but it is not the ideal solution
for the computation of the DC because it does not perfectly match the air temperature
values. To correct for this, we applied a modeled correction factor from the work of [36].
The model from [36] allows one to estimate the air temperature from the LST and avoid
errors when assuming that the LST and air temperature can be used interchangeably.

It should be noted that temperature rasters have a number of gaps in time and space
due to low-quality pixels, usually from clouds or other limitations due to the atmosphere
or from sensor malfunctions. To fill these gaps, spline interpolation was applied to estimate
the values in empty cells. The final product is a continuous map at a 1 km resolution of the
daily temperature for the 5-year period considered in this study. The map is available for
download [38].

3.1.2. Precipitation

The daily precipitation estimated values were obtained from the CHIRPS dataset.
The CHIRPS dataset is a global rainfall dataset provided by the United States Geological
Survey and the Climate Hazards Center. It incorporates 0.05◦-resolution satellite imagery
(which is based on infrared cold cloud duration observations) with in situ station data to
create gridded rainfall time series using interpolation approaches [32]. It is available on a
daily, monthly or seasonal basis and also useful for performing trend analysis and seasonal
drought monitoring, making it valuable for this work. From the validation performed
by the authors, we can expect a global correlation of 0.69 and a mean absolute error of
82 mm [32]. Validation was carried out also in the African continent, not too far from our
region, with results of a 0.6 correlation and 79 mm mean absolute error [32]. The dataset
was clipped to the study area, exported and used for the estimation of the drought code.

3.1.3. Drought Code (DC)

The drought code is an indicator of the moisture content in deep compact organic
layers. This code represents a fuel layer approximately 10–20 cm deep. The drought code
fuels have a very slow drying rate, with a time lag of 52 days. The drought code scale is
open-ended, although the maximum value is about 800 [39]. In this work, two versions of
the drought code maps are tested. One is the reanalysis dataset with a grid cell resolution
of 0.25◦ (≈20 km) provided by the Copernicus CEMS: cems-fire-historical-v1. This will
be referred to as DCCEMS. The other version of the drought code map was computed
ad hoc with a spatial resolution of 1 km. This was estimated using the precipitation and
temperature datasets described in Sections 3.1.2 and 3.1.1, respectively, and will be referred
to as DC1km.

DC1km was calculated based on rainfall values from CHIRP on the day (DCt) and
the DC value of the previous day (DCt−1) with the following equations [40]: Equation (1)
in case of rainfall equal to or above 2.8 mm, and Equation (5) in case of lower rainfall
values. If the rainfall is equal to or above 2.8 mm, it is considered effective rainfall, and the
following equations are then used to update the DC value with respect to the DC value of
the previous day:

DCt = 400 × ln(800/Qt) (1)

Qt = Qt−1 + 3.937 × re (2)

Qt−1 = 800 × e−DCt−1/400 (3)

re = 0.83 × rt − 1.27 (4)

where

DCt is the drought code from the rainfall data of the current day;
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DCt−1 is the drought code of the previous day;
Qt−1 is the moisture equivalent of the previous day;
Qt is the moisture equivalent of the current day;
rt is the rainfall of the day in mm from the CHIRP dataset;
re is the effective rainfall.

In the case of rainfall below 2.8 mm, the DC value for the day is updated based on
the temperature at midday and DCt−1, i.e., the DC code of the previous day, with the
following equations:

DCt = DCt−1 + 0.5 × V (5)

V = 0.36(T12 + 2.8)× L f (6)

where

T12 is the temperature at midday—here, it is estimated from the MODIS LST and con-
verted to the air temperature by a factor of 0.74, as documented;

L f is a day-length factor, which is constant for each month and is −1.6 for the months of
November through to March and 0.9, 3.8, 5.8, 6.4, 5.0, 2.4 and 0.4, respectively, for the
months from April to October;

V is the potential evapotranspiration.

3.2. Seasonal Vertical Ground Movement Estimation

The EGMS is one of the 6 main Copernicus Land Monitoring Services and uses InSAR
data derived from Sentinel-1 to detect and measure ground movement across Europe with
millimeter precision. It provides 3 main InSAR products: basic (LEtVEL 2a), calibrated
(level 2b) and ortho (level 3). A summary of these product categories is provided here, and
further details can be obtained from the technical report [41].

3.2.1. Basic EGMS Product

The EGMS basic product provides displacement measurements along an imaginary
line—referred to as the line of sight (LOS)—connecting the satellite to the ground target,
referred to as the measurement point (MP). The displacement along the line of sight is re-
projected to derive the vertical/horizontal displacement at the MP. These products are also
provided from SAR data acquired orthogonal to the ascending or descending trajectory of
the satellite. The basic products are spatially referenced to a virtual reference point (whose
time series is derived by a statistical analysis of the dataset) and temporally referenced to
an initial starting time (T0 = 0).

Each basic product uses a virtual reference point derived from the statistical analysis
of the dataset within its specific processed area. Thus, the reference point might vary for
different products or even for the same area. Thus, a direct comparison between different
products of this level might produce inconsistent results, as the displacement measurements
are relative to their own reference points.

3.2.2. Calibrated EGMS Product

The EGMS calibrated product is an advanced version of the basic product in which
displacements are measured with reference to an Earth-centered reference frame model
derived from GNSS time series data, thereby making the measurements absolute. Thus,
a result that is more consistent would be obtained when comparing different products of
displacement from the same or adjacent areas. However, GNSS data might not be available
for some areas, especially isolated islands. In this case, the basic products are harmonized
with each other and the mean ground velocity is adjusted to zero, making the measurement
internally consistent and comparable within the local context using the InSAR data. The
calibrated products are also provided from SAR data acquired orthogonal to the ascending
or descending trajectory of the satellite.
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3.2.3. Ortho EGMS Product

The EGMS ortho product exploits measurement of displacement from the calibrated
products, breaking it down into two components (vertical and east–west displacements),
resampled to a 100 m grid to coincide with the other Copernicus products. This simplifies
the interpretation of the data as it eliminates the need to consider the original geometry of
the satellite data acquisition. It also allows the interpretation of the displacement along a
particular direction (for instance, in the case of a landslide).

Among others, the ortho product has the limitation that the Sentinel-1 satellite uses
a side-looking radar in a near-polar orbit. Thus, the radar is less sensitive to ground
displacements along the satellite’s flight path (i.e., in the north–south direction). As a result,
MP displacements in the north–south direction will not be measured directly by InSAR but
inferred from the GNSS data introduced in the calibrated products [41]. Since GNSS data
have a lower spatial resolution compared to InSAR measurements, displacements along the
north–south direction are estimated through spatial interpolation from the available data.

For this study, the EGMS ortho product was used due to the advantages that it offers.
Each EGMS tile that covers land contains approximately 150,000 MPs; 92 tiles were used to
cover the study area. Each measurement point was a vector with a time series of ground
displacement values, measured approximately every 6 days. For the 5-year period being
considered for this study (2018–2022), about 300 observations for each MP were available.
The corresponding DC values at each point were obtained using the Copernicus CEMS
data (DCCEMS) with a 0.25◦ resolution and our own data calculated from the MODIS and
CHIRP (DC1km) datasets. The Spearman rank correlation, p-value and confidence interval
were the results used to assess the correlation at each MP between the seasonal patterns of
ground vertical movement and the drought and temperature.

3.3. Assessment of Correlations Between SVGM and Climate Indices

Climate-driven correlations with seasonal vertical ground movement (SVGM) from
InSAR were the focus of the analysis in this work. By “seasonal”, we mean that the uplift
and subsidence of the ground level follow a periodic pattern, repeating every year. To
assess the correlations with climate indices, the data of EGMS ground displacement are
detrended over the whole monitoring period using a linear regression approach. This
is necessary to remove long-term trends in the time series of the ground movement for
each measurement point (MP). The goal was to assess the SVGM in terms of recurring
patterns (harmonic patterns) and determine whether these patterns are correlated with the
climate. This analysis was carried out at the locations of all MPs recorded by the EGMS
ortho product. The proxies used for the climate were the two drought code maps (DCCEMS,
DC1km) and the temperature from MODIS.

Spearman’s rank correlation coefficient was calculated at each MP. The Spearman
correlation is more robust, with respect to Pearson’s correlation, to relations that are
not linear throughout the range of values. Both positive and negative correlations were
considered. A positive correlation was noted when there was ground uplift with higher
values of the compared independent variables (DCCEMS, DC1km and temperature). A
negative correlation occurred when the ground subsided and the climate index values
increased. Both behaviors have been observed and documented in the past scientific
literature. For instance, a positive correlation is often found in cases where infrastructure
exhibits seasonal expansion due to thermal effects [42].

3.4. Development of WebGIS Application

As a side product of this research, a WebGIS application was developed in R using the
Shiny and Leaflet libraries to interactively visualize the spatial distribution of the MPs. This
application was developed to serve as a platform for the visual inspection of the spatial
and temporal correlations between SVGM and the climate-related variables at the MPs. It
is available for the detection of hotspots of the phenomenon of climate-driven SVGM and
for further analysis.
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3.5. Development of Intermediate Data Products

An intermediate data product was developed at a ground sampling distance of
(≈1 km) by regridding the datasets used for this study. Further details of these prod-
ucts are provided in Section 4.3. It should be noted that the EGMS data cover 1 January
2018 to 17 December 2022. The data layers calculated for this study start from 2017, one year
before the EGMS data (2018), because the DC calculation requires the precipitation and
temperature information from previous days to be reliable. Thus, the first few months of
2017 were estimated for the accurate calculation of the DC1km layer, but only the ones from
2018 to 2023 were used, to match the EGMS data’s temporal coverage.

4. Results

The Spearman rank correlation, p-value and confidence interval values are reported in
the following sections in order to assess the resulting relationships between the seasonal
patterns of ground vertical movement and the drought and temperature at each MP.

4.1. InSAR Seasonal Vertical Ground Movement Correlations

The ortho product of the EGMS provides an RMSE for each measurement; we therefore
analyzed the distribution of the RMSE for all points used and provide the distribution of
expected accuracy. The resulting distribution of the RMSE for the percentiles 1%, 10%, 25%,
50%, 75%, 90% and 99% is, respectively, 0.5 mm, 0.7 mm, 0.9 mm, 1.4 mm, 2.2 mm, 3.0 mm,
4.2 mm. The vertical ground movement detected is a degree of magnitude larger than
the accuracy values; thus, we can safely conclude that the observations are reliable. The
correlation results were tested for significance, and all p-values were <0.01.

The results of the seasonal correlation patterns using Spearman’s rank correlation
coefficient (ρ) between the ground vertical motion and DCCEMS, DC1km and temperature
show a significant number of points with strong correlations, both negative and positive.
The total number of MPs over Italy is 7,193,676. The total number of correlated points is
32,826, amounting to about 0.46% (Table 2). It is clear that only a minor proportion of the
points are correlated. Figure 3 shows the distribution of the (ρ) values for all MPs over the
study area [1].

Figure 3. Histogram of frequency distribution of Spearman correlation values (ρ) between DC1km

and SVGM at MPs [1].

Table 2. Number of MPs with strong correlation between SVGM and climate variables considered.

Climatic Factor Positive ρ Negative ρ Total

DCCEMS |ρ| > 0.7 5868 13,511 19,379
DCCEMS |ρ| > 0.8 220 1529 1749

DC1km |ρ| > 0.7 12,142 20,684 32,826
DC1km |ρ| > 0.8 1275 2594 3869

Temperature |ρ| > 0.7 6819 3538 10,357
Temperature |ρ| > 0.8 3727 548 4275
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From Table 2, it can be seen that a total of 1275 MPs have positive correlation coeffi-
cients between the DC1km map and SVGM measurements above 0.8, and 2594 have ρ below
−0.8 (negative correlation). Correlations that lagged in time were also analyzed, where
it was observed that most of the correlated MPs had stronger correlations on the day for
which they were calculated (0-day lag time, Figure 4).

Figure 4. Lag time distribution of best correlations between DC1km and SVGM [1].

The above observation does not hold true for the temperature, where the lag time
improves the correlation significantly. Figure 5 shows that a month’s negative lag time
gives the best correlation for negatively correlated MPs.

Figure 5. Lag time distribution of best correlations between temperature derived from calibrated
MODIS and SVGM [1].

4.1.1. DCCEMS vs. DC1km

The initial results over Italy show that DC1km is significantly more correlated with
SVGM than DCCEMS, with a stronger median absolute value of ρ of 0.025 and 0.042, respec-
tively, for negative and positive correlation scenarios. Figure 6a shows this difference, as the
scatter points are mostly on the right of the 1:1 diagonal line for negative correlations and
vice versa for positive correlations. This means that most points with a negative correlation
regarding ground motion patterns with respect to the DC, show that, for DC1km − DCCEMS
pairs, DC1km is usually more negative (stronger negative correlation). The opposite is
true for positive correlation scenarios. The Kruskal–Wallis pairwise difference of medians
provides a ρ-value of a significant difference <0.001.
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(a) (b)
Figure 6. (a) Pairwise DCCEMS–DC1km values of correlations with ground motion; (b) temperature
vs. DC1km correlation. Top and bottom rows are negative and positive (ρ) values from correlation
testing with SVGM [1].

4.1.2. DC and Temperature

Because the DC and temperature are strongly collinear, further analysis to assess which
is more applicable in explaining the seasonality of ground motion was carried out. The
results shown in Figure 6b indicate that DC1km explains significantly more variance than
the temperature if we consider negative correlations. This is clear as most points fall below
and to the right of the blue line, which represents the 1:1 perfect correspondence of the ρ
values for the temperature and DC1km at each MP. This can be interpreted as indicating that
most MPs have seasonal vertical movement that is better represented by DC1km than the
temperature for negative correlations. A positive correlation with SVGM does not result in
such a prominent difference between the temperature and DC1km.

The plots in Figure 6 above provide information on the higher sensitivity of DC1km in
detecting seasonal ground movement with respect to DCCEMS, as the pairwise comparison
from the scatter plot shows consistently higher correlation values when using the DC1km
data rather than the DCCEMS data. If we compare the temperature and DC1km, as in the
second column of the plot, we see that the temperature is a better indicator (stronger
correlations) of ground movement in its positive correlation than DC1km, but this is not
true for negatively correlated measurement points.

4.2. Spatial Distribution of MPs in Italy

Figure 7 shows the overall spatial distribution of the MPs with significant positive and
negative correlations. The top row shows hexagonal cells with a 10 km diameter with the
percentage of EGMS MPs that have values of ρ above or below 0.7. The bottom row shows
the hotspots in Italy that have a very large number of MPs with positive correlations and
are thus worth further investigating.
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Figure 7. Top row shows the spatial distribution of negative and positive correlations (left and right)
in terms of the percentage of correlated MPs with respect to the total number of MPs recorded by
the European Ground Motion Service. The percentage was calculated over a regular hexagon grid
overlaid onto the study area. Bottom row pinpoints areas (red dots) with the highest percentage of
correlated MPs, negative (bottom-left) and positive (bottom-right).

4.3. Data Availability and WebGIS Data Viewer

An open dataset consisting of three raster grids and a vector of MPs was an inter-
mediate result from this study. These data are available publicly to provide a replicable
methodology and share them with other investigators [38]. The layers in the dataset are
the following:

1. grid with daily precipitation (mm);
2. grid with daily air temperature interpolated values (◦C);
3. grid with calculated drought code DC1km (no unit);
4. point vector with extracted MPs with correlation (|ρ| > 0.7).

The first three datasets have one band per day from 1 January 2017 to 1 January 2023,
for a total of 2192 bands. All data are given in geographic coordinate systems using the
WGS84 system and aligned to an extent of 6.6116◦, 18.51428◦, 35.48345◦, 47.09867◦, with
a ground sampling cell distance of 8.983153◦ × 10−3 (≈1 km). All four data layers are
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available as per the F.A.I.R. (Findable, Accessible, Interoperable and Reusable) guiding
principles for research data stewardship and are provided in open-access format—see [38].

The developed WebGIS application presents a map of the MP stations and has tools
for user interaction with the map. Upon clicking on an MP, a pop-up window is displayed,
showing the following attributes for the DCCEMS, DC1km and temperature variables, in
addition to the longitude (φ) and latitude coordinates (λ) of the MP stations (see samples
in Figure 8):

• coordinates of MP;
• Spearman’s rank correlation (ρ);
• confidence interval;
• highest ρ at lagged time;
• lag (days).

(a) (b)

(c) (d)

Figure 8. Measurement points with positive (a,b) and negative (c,d) Spearman correlation values.

Figure 9 also shows the time series plots that can be automatically extracted by the
user at selected MPs. These are useful for further exploratory analysis.

The objective of this work was to detect and analyze MPs that exhibit a significant
correlation among periodic ground movement, drought and the temperature. Spearman’s
rank correlation coefficient ρ was calculated for all MPs and a threshold was applied to
filter the MPs that had an absolute Spearman’s rank correlation coefficient ρ above 0.7.
This threshold was necessary to focus the analysis on the MPs that had higher values
of positive or negative correlations between the climate variables and SVGM. In the web
application, it is, however, possible to vary the threshold to isolate MPs using more stringent
threshold values.



Remote Sens. 2024, 16, 4123 14 of 21

(a)

(b)

(c)

(d)
Figure 9. Time series plot showing the correlations at the respective measurement points in Figure 8.

4.4. Analysis at Selected Measurement Points (MPs)

Figure 8 shows the display of the pop-up menu of the WebGIS over four MP locations
chosen over the area: the top row shows two locations that exhibit positive correlations
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and the bottom row shows two locations having a negative correlation. Figure 9 shows the
time series plot of these variables at the selected MPs.

In Figure 8, at the top left, an MP exhibiting a positive correlation is depicted from
an open field in the Brindisi region, close to Tuturano, in the southeastern part of Italy. In
this example, a positive correlation of ρ = 0.731 was observed for both DCCEMS and DC1km,
with a small increase with a lag time of 12 and 18 days, respectively. The temperature
correlation was, however, stronger than that of the DC at a value of ρ = 0.797 and there was
no improvement with the lag. The improvement from the lagged correlation found with
DC values and the best correlation with the temperature found at zero lag indicate that
the SVGM is likely driven more by the temperature than drought. Further visual analysis
shows that similar scenarios are found in areas where large electrical pylons are installed.
Another group of MPs where a strong positive correlation was observed was located near
the Besaro bridge, located in the Caltanissetta region in the south of Italy (Figure 8, top
right). These points were considered due to the potential impact of the correlation on the
analysis of road infrastructure.

As an example of a negative correlation, two areas are shown in the bottom row of
Figure 8—one in Via Bonellina in the Province of Pistoia (bottom left) and one in Orti sociali
Spallanzani (Via Arturo Toscanini) in Reggio Emilia (bottom right), all in the northern
sector of the territory—where a strong negative correlation was seen. The selected MPs
were in agricultural areas that were approximately 87.9 km apart.

5. Discussion

In this study, we analyzed the correlations between SVGM, the temperature and
two drought code (DC) maps—one derived from Copernicus data with a 20 km cell ground
sampling distance (referred to as DCCEMS) and the other calculated from the MODIS and
CHIRP datasets at a 1 km resolution and on a daily basis (referred to as DC1km). It is worth
noting that the EGMS data have a grid with nodes at every 100 m, whereas the DC1km grid
has nodes at every 1 km; thus, approximately 100 EGMS points fall within a single DC1km
cell. Downscaling to match the EGMS resolution could be explored, and methodologies
such as those discussed in [43] could be applied to enhance the precision.

The finer resolution of the locally generated drought codes (DC1km) provided a larger
number of correlated MPs with SVGM than the coarser DCCEMS. This is particularly true
for MPs showing positive correlations, where DC1km exhibits twice as many MPs with a
correlation >0.7 and five times the number of MPs with a stronger correlation with ground
movement of ρ > 0.8. This result suggests that the higher spatial resolution of DC1km allows
the capture of more localized variations in the drought conditions.

There is a strong connection between drought and the temperature. High temperatures
increase the evaporation rates, which increase the drought effects by reducing the available
soil moisture and drying out the soil [44]. Climate change is also another factor as it is
expected to increase the frequency and intensity of droughts in many parts of the world,
due to rising temperatures [45]. Section 4.1.2 reveals that the temperature tends to have
a more significant impact on SVGM, especially in areas showing positive correlations.
However, in regions with negative correlations, the drought code appears to better explain
the observed ground movement.

5.1. Thermal Deformation of Infrastructure

The observed positive correlations at pylons and bridges, as can be seen in the results
in Figure 9, all range within ±5 mm; thus, there is an overall 1 cm deformation range,
and this might be attributed to the thermal deformation of the considered infrastructure.
The assumed thermal deformation of steel and/or concrete infrastructure is supported
by the results of other studies. For example, the work of [46] shows that the amplitude
increases from 0.5 mm/◦C at 50 m for buildings that are about 250 m high to 1.0 mm/◦C
for buildings that reach a height of 345 m, as shown in Figure 5 in [46]. If we consider the
large electricity pylons to be approximately 50 m high, and a reasonable air temperature
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difference between seasons of 30 ◦C, we would obtain a 1.5 cm deformation. This is similar
to our 1 cm observed pylon deformation. The difference is likely due to the different
compositions of the infrastructure, as pylons are fully metallic and are also less tall than the
buildings considered in [46].

For further visualization, Figure 10 shows the specific scenario of a highway overpass,
with a central pillar of a known height (172 m). This has a seasonal deformation of +2.5 cm
in summer and −1.0 cm in winter, for a total range of approximately 3.0 cm. This is more
comparable to the measured smaller building in [46], where an approximate expansion
of 1.5 mm/◦C was observed at 175 m. Again, this would result in this deformation being
caused by an air temperature difference of 20 ◦C, which is reasonable considering the region.
Downward vertical ground movement caused by land subsidence might be combined with
upward movement from the expansion of infrastructure [47]. This is true if we consider
the long-term overall vertical movement, but it should be eliminated by detrending for the
long-term trend.

Figure 10. “Viadotto Gorsexio” with a central pillar taller than 172 m.

5.2. Spatial Analysis of the Correlations at the MPs

The spatial distribution of MPs with significant correlations, as shown in Figure 7,
shows how the correlations between the climate variables and SVGM vary with space in
the study area. Figure 7 shows the spatial distribution of the measurement points that
have strong correlations with seasonal vertical ground movement—in other words, points
where the Earth’s surface’s vertical movement is in relation to the temperature or drought
conditions. This is intended to provide insights into where this phenomenon is occurring
and thus indicate a direction for further research. By adding the points in the bottom row,
we illustrate the hotspots of strong seasonal positive and negative correlations with climatic
factors. This correlation is, however, not uniform across the study area. Moreover, the
concentration of MPs with higher absolute values of correlation (positive or negative) in
certain areas suggests that localized factors might be influencing the relationship between
the SVGM and the climate variables. These factors might be natural (e.g., soil composition,
vegetation) and/or anthropogenic (e.g., infrastructure, land use), being specific to the given
area, although more complex phenomena can arise from the complex geological system of
the area [3]. For instance, in the study of [48,49], it was found that the geological structure
of an area, such as the orientation of rock discontinuities, can drive ground deformation
in the area. Figure 7 shows that a small percentage of the total number of MPs measured
by the Copernicus EGMS have correlations and that only a limited number of areas have
clusters with many MPs having correlations, as shown in the bottom row of Figure 7. This
is expected due to the localized factors playing an active role in driving the correlation
between the SVGM and the climate variables. The figure also shows gaps in the northern
part of Italy, which is characterized by flat landscapes, and this might be due to the weaker
effects of the climate on ground deformation or to a surface that is less responsive to
climate-induced deformations.
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The selected MPs in Section 4.4 demonstrate contrasting scenarios of positive and
negative correlations, providing insights into how the climate variables, driven by site-
specific conditions, such as the presence of infrastructure or geological characteristics, drive
vertical ground movement.

For instance, the positive correlations at Brindisi and the Besaro bridge suggest that
the thermal deformation of infrastructure at these sites plays a significant role, as the
correlations due to the temperature are generally stronger than those due to the drought
code. Moreover, the lag times of the temperature are very low compared to those of the
drought code at these stations, suggesting that the temperature has an immediate impact
on the vertical ground displacement at these sites compared to the drought code due to the
infrastructure’s presence. Conversely, negative correlations are observed at the MPs in the
agricultural fields in Pistoia and Reggio Emilian, where the drought codes have stronger
correlations and low lag times compared to the temperature, suggesting that the changes
in vertical ground displacement are driven by the drought code in these areas. This might
be attributed to the irrigation practices in these agricultural areas. This is supported by
the fact that irrigation causes the volumetric deformation of soil particles [50], which then
impacts the vertical displacement of the ground surface.

Moreover, the 0.4% of the MPs where a correlation between the climate variables and
SVGM is observed indicate that, while climate variables influence SGVM, it is not uniform
across the study area, as observed in Figure 7. This is worth considering for future studies,
as there has not been any study assessing the correlation between SVGM and the selected
climate variables to a larger extent, to the authors’ knowledge.

5.3. Lag Time Analysis

The lag time analysis (Figures 4 and 5) provides critical insights into the temporal dy-
namics of these correlations. The observation that most MPs show the strongest correlation
at zero lag time for the DC but a significant lag for the temperature suggests that different
processes are at play. For instance, the temperature might influence ground movement
with a delay [51], as thermal effects on soil or rock take time to manifest fully, whereas the
impact of drought on the ground conditions might be more immediate.

5.4. Infrastructure Monitoring

Figures 10–12 show the specific scenario of a highway overpass, “Viadotto Gorsexio”,
with a central pillar of a known height (172 m). This has a seasonal deformation of +2.5 cm
in summer and −1.0 cm in winter, for a total range of approximately 3.0 cm. This is more
comparable to the thermal deformation of smaller buildings as studied in [46], where an
approximate expansion of 1.5 mm/◦C was observed at 175 m. This would imply that the
3.0 cm deformation of the structure is caused by an air temperature difference of 20 ◦C,
which is reasonable considering the region in which the structure is located.

Figure 11. Display of information related to EGMS and climate correlation values of the area in the
WebGIS viewer.
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(a)

(b)

Figure 12. Time series plot of the corresponding correlation (a) and the same time series with
normalized values (b).

The correlation value observed at an MP on the pillar for the temperature was ρ = 0.860,
higher than the one from DC1km (ρ = 0.793). This is evident in Figure 10, as it is a very high
bridge with a central pillar taller than 172 m. This is also evident in the right-bottom panel
of Figure 6, which shows that the temperature correlations are stronger (above the black
1:1 line) than those for the DC.

5.5. Limitations of the Research

The correlations between SVGM, the temperature and the DC are affected by the
land cover, e.g., road infrastructure and agricultural areas, because the dynamics are very
different with regard to the behavior of thermal expansion, i.e., for infrastructure with tall
elements, and the mixed behavior of the ground, which can combine subsidence from water
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table depletion and ground uplift from increased moisture content in the soil. Moreover,
the latter depends on the type of soil and, of course, the ground vegetation cover. It can
also be noted that spurious correlations are possible in time series, but the probability of a
consistent seasonal correlation being only due to chance is very low. It could be argued
that the causality might be indirect and that the climatic indices used (temperature and
drought) are “precursors” of more complex phenomena.

The pylons of electrical lines were seen to be strongly positively correlated with the
temperature as they were expanded by heat due to their material and height, as in the
literature reported. It is reasonable to suggest that some pylons might be located in areas
that are subject to seasonal ground subsidence driven by drought, and these were thus not
be detected in our analysis as these two phenomena cancel one another out. This aspect is
worth considering in the future, as pylons act as important scatterers for the monitoring of
ground movement using InSAR.

6. Conclusions

This study has investigated the correlations between seasonal vertical ground move-
ment (SVGM) and temperature and drought conditions using InSAR data from the EGMS
and drought codes derived from both the Copernicus and MODIS/CHIRP [38] datasets.
The drought codes derived from the MODIS/CHIRP datasets generally show a stronger cor-
relation with SVGM compared to the ones from Copernicus due to their higher resolution.

The spatial analysis of the MPs showed significant variability in the correlations
across different regions, indicating that localized factors such as the soil composition,
vegetation and infrastructure play a crucial role in driving SVGM. Additionally, the lag
time analysis demonstrated that temperature effects often manifest with a delay at MPs
with a positive correlation, whereas drought impacts are more immediate in areas with
negative correlations. This highlights the complex interplay between the temperature and
drought in influencing ground deformation.

The analysis at the selected MPs revealed that temperature variations significantly
influence vertical ground movement in infrastructure, with the observed deformations rang-
ing between ±1 cm and ±3 cm in some cases—for example, the “Viadotto Gorsexio” bridge.
This confirms that thermal deformation [52] is a major factor that affects infrastructure.

The findings underscore the importance of considering both the temperature and
drought conditions when monitoring and assessing infrastructure health. They will also be
useful when designing policies to ensure sustainable land management practices in the face
of changing climatic conditions. For instance, the observed correlations and deformation
patterns provide valuable insights for the design and maintenance of infrastructure to
withstand seasonal variations and climate-induced stresses.

Further analysis at a European scale will be performed to extend this study to a larger
area. To better understand the area-specific factors driving SVGM, investigation at specific
monuments will be required to understand some of the drivers of SVGM. Future research
will also focus on exploring additional factors and assessing their correlations with SVGM.
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