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Abstract—SWIM is a recently developed network-based tool
that fulfils the criteria of the new quickly emerging field of
Network Medicine in finding disease-associated genes, called
switch genes. The phenotype-specific applications of SWIM are
broad and include the identification of switch genes in grapevine
berry maturation as well as in complex diseases, including but
not limited to human cancers.
Here, a brief summary of the promising results obtained by
applying SWIM in different biological contexts is presented.
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I. INTRODUCTION

Recently, I developed a new promising methodology, called
SWIM (SWItch Miner), which integrates different network-
based methods to analyse the correlation network arising from
large-scale gene expression data [1]. Considering the topo-
logical properties of the nodes and assessing their functional
roles according to their ability to convey information within
and between modules in the network, SWIM identifies a
small pool of genes (called switch genes) that are associated
with intriguing patterns of molecular co-abundance and play
a crucial role in the observed phenotype.

The phenotype-specific applications of SWIM are broad
and include the identification of switch genes in grapevine
berry maturation (Vitis vinifera) as well as in human cancers,
including Glioblastoma (Fig. 1).

In viticulture, SWIM has been gainfully applied to the
global gene expression atlas of grapevine in order to identify
switch genes between immature and mature phase of the
developmental program of grapevine [2]. In cancer research,
SWIM network analysis has been gainfully applied to a
large panel of TCGA (The Cancer Genome Atlas) cancer
datasets in order to characterise disease etiologies and identify
potential therapeutic targets [1]. SWIM has also been used to
investigate glioblastoma multiforme (GBM) and to uncover
new insights into the molecular mechanism determining the
stem-like phenotype of glioblastoma cells [3], [4].

Recently, SWIM methodology has been successfully applied
to the chronic obstructive pulmonary disease (COPD), a severe
lung disease characterized by progressive and incompletely
reversible airflow obstruction [5]. The results of this study
would both support known pathways and provide evidence for
novel pathways in COPD pathogenesis. In the last two years,
SWIM has been applied within the framework of Network
Medicine to study the interplay between switch genes and

human diseases in the human interactome (i.e., the cellular
network of all physical molecular interactions) [6].

Fig. 1: Phenotype-specific applications of SWIM methodology.

In the following, a detailed description of the more recent
applications of SWIM to complex diseases is provided.

II. METHODS

SWIM is a freely downloadable network-based tool, de-
veloped both in MATLAB [1] and in R language [7], which
predicts important (switch) genes that are strongly associated
with drastic changes in cell phenotype. SWIM first computes
the differentially expressed genes (DEGs) between two con-
ditions of interest (e.g., normal state versus tumor state) and
then builds a gene correlation network (GCN) by calculating
correlations (positive and negative) between the expression
profiles of each gene pair. Specifically, SWIM implements
a hard thresholding approach to build a GCN where nodes
are DEGs, and a link occurs if their expression profiles are
highly correlated or anti-correlated (according to a defined
threshold). Then, SWIM classifies each network hub (i.e.,
nodes with degree at least equal to 5 according to [8]) as
date, party, or fight-club on the basis of the Average Pearson
Correlation Coefficient (APCC) between its expression profile
and that of its first nearest neighbours. Date hubs show a
positive and mild APCC value; party hubs show a positive and
high APCC value; fight-clubs hubs show a negative APCC
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value. To assign a role to each node in the GCN, SWIM
firstly searches for clusters (or modules) using the k-means
algorithm and evaluates the quality of clusters by minimising
the Sum of the Squared Error (SSE), depending on the distance
of each object to its closest centroid. The position of an
elbow (i.e., change of the slope) in the behaviour of the SSE
as function of the number of clusters (scree plot) indicates
the number of clusters to use. Then, SWIM draws the heat
cartography map by evaluating two coordinates related to
their intra- and inter-modular connections: the clusterphobic
coefficient, which is a measure the fear of each node to be
confined in its own cluster and measures the links of each node
to nodes outside its own cluster; the within-module degree,
which measures how “well-connected” each node is within its
own cluster. In the heat cartography map, dots (i.e., nodes of
the correlation network) are distributed across seven regions
(R1 to R7) according to their clusterphobic coefficient (x-
axis), and to their within-module degree (y-axis). Each node
is coloured according to its APCC value. Nodes having much
more external than internal links present high values of the
clusterphobic coefficient and are called connectors, whereas
high values of the within-module degree denote nodes that
are hubs within their community and are called local hubs.
Switch genes are defined as a subset of fight-club nodes with
the following features: i) they are network connectors that
mainly interact outside their own cluster (very high value of
the clusterphobic coefficient); ii) they are not local hubs (very
low value of the within-module degree); iii) they are mainly
anti-correlated with their interaction partners (negative value
of the APCC).

III. RESULTS AND DISCUSSIONS

A. Glioblastoma

Glioblastoma is the most aggressive and frequent brain
tumour, with a median survival time of 12–15 months from
diagnosis [9], [10], [11]. The mortality rate is extremely
high with the 5-years survival rate achieved for only 5% of
patients. This tumour is resistant to the standard therapies
like radio and chemotherapy. Its aggressiveness is due to
the presence of cancer stem-like cells that sustain tumour
growth and are hence named “tumour fuel”. Cancer stem-
like cells are cancer cells that have characteristics typical of
normal stem cells: i) self-renewal that is the ability to maintain
their undifferentiated state; ii) potency that is the ability to
differentiate into specialised cell types. Cancer stem-like cells
are resistant to many conventional cancer therapies and cause
relapse and metastasis by giving rise to new tumours [12].
Thus, targeting cancer stem-like cells could pave the way for
new therapeutic strategies.

A recent study identified 19 neurodevelopmental transcrip-
tion factors (TFs) that are selectively expressed in glioblastoma
stem-like cells to maintain their stem-like phenotype and pre-
vent differentiation [14]. A subset of only four of them (named
4-core TFs), SOX2, OLIG2, POU3F2, and SALL2, has been
shown to be sufficient to fully reprogram differentiated cells
into glioblastoma stem-like cells [14].

Fig. 2: SWIM application to the GBM dataset of [13]. (a) Left:
probability distribution of APCC for hubs identified in the GBM
correlation network (blue solid line) and in its randomized counterpart
obtained by shuffling the edges but preserving the degree of each
node (grey dashed line). Differently from the randomized case, the
true APCC distribution shows a clear trimodal pattern where peaks
correspond to previously reported hub categories (such as party and
date hubs) but also to the new category of hubs, the fight-club hubs.
Right: heat cartography maps where dots correspond to network
nodes colored according of APCC. (b) Dendrogram and heat map
of switch genes (left) and of their negative nearest neighbors (right)
with their corresponding enriched pathways The expression profiles
of the switch genes and their negative nearest neighbors are clustered
according to genes (rows) and GBM cell lines (columns), using
Pearson correlation distance as metrics. Heat map colors represent
different expression levels increasing from blue to yellow.

In order to identify switch genes related to the stem-like
phenotype, SWIM was applied to glioblastoma dataset of [14]
and then the further dataset of [13] was used to validate the
results [3], [4]. In Fig. 2 the results obtained by applying
SWIM to the GBM dataset obtained in [13] are shown.
The APCC behaviour (blue solid line) shows a clear peak
for negative values indicating the fight-club hubs (Fig. 2a
left). The APCC randomised counterpart (grey dashed line),
obtained by shuffling the edges but preserving the degree of
each node, indicates that fight-club hubs are not a random
event. A subset of the fight-club hubs falling in the region
of connectors (R4) of the heat cartography map corresponds
to switch genes (Fig. 2a right, blue dots). The expression
profiles (z-score normalised) of the switch genes (Fig. 2b left)
and their negative nearest neighbours (Fig. 2b right) indicates
that switch genes are all up-regulated in differentiated cells,
and their activation strongly correlates with the inhibition of
their first network interactors, including the 4-core TFs. By
performing a functional enrichment analysis, switch genes
were found to be involved in cell-cell communication pathway.
Thus, while their activation could promote differentiation and
restrain tumour growth, their repression could promote tumour
invasiveness due to the loss of cell-cell adhesion.

Among the common switch genes obtained by running
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SWIM on the two GBM datasets of [13] and [14], there
is FOSL1. It is up-regulated in differentiated glioblastoma
cells and this up-regulation highly correlates with the over-
expression of genes involved in cell-cell communications (Fig.
3 top left/middle). It is down-regulated in stem-like cells and
this down-regulation highly correlates with the up-regulation
of the 4-core of TFs (Fig. 3 top right). In order to investigate
possible co-regulation of the 4-core of TFs, their promoter
regions were inspected to search for enriched motifs and they
were found to harbour a consensus binding site for FOSL1
(Fig. 3 bottom right).

Fig. 3: FOSL1 mode of action. Upper panel: from left to right,
boxplot of the expression of FOSL1, its positive and negative nearest
neighbours in the GBM correlation network, in conventional GBM
cell lines with respect to cancer stem-like cells in GBM dataset of
[13]. Lower panel: logo plot for the statistically significant enriched
motif found by using JASPAR to analyse the promotore regions of the
4-core of TFs (left). This motif corresponds to a consensus binding
site for FOSL1. A schematic representation of the FOSL1 mode of
actions: it acts as putative repressor of the 4-core of TFs and its
activation reduces the cells’ ability to generate aggregates increasing
the extracellular matrix component.

Altogether these findings suggest FOSL1 as possible ther-
apeutic biomarker of glioblastoma, which could promote the
differentiation of cancer stem-like cells by repressing the 4-
core TFs. This hypothesis has been partially experimentally
validated in [15], where the NTERA-2 and HEK293T cells
where selected for an in-vitro study to investigate the role
of FOSL1 in the reprogramming mechanisms (Fig. 3 bottom
right). The two cell lines where transfected with a constitutive
FOSL1 cDNA plasmid. This study showed that FOSL1 i)
directly regulates the 4-core of TFs binding their promoter
regions and reducing their expression; ii) is involved in the
deregulation of several stemness markers; iii) reduces the
cells’ ability to generate aggregates increasing the extracellular
matrix component FN1. Although further experiments are
necessary, these findings support the hypothesis that FOSL1
may reprograms the stemness by regulating the 4-core TFs.

This result could have a significant impact on personalized
healthcare, since promoting differentiation and thus restraining
tumor growth may support rational, personalized planning of
disease prevention or treatment.

B. COPD

COPD is a heterogeneous and complex syndrome influenced
by both genetic and environmental determinants, and is one
of the main causes of morbidity and mortality worldwide.

By applying SWIM on COPD [5], the correlation network
turned out to be formed by three well-characterised modules
(data not shown, see [5]): i) one (module 3) populated by
switch genes, all up-regulated in COPD cases and involved
in COPD-related pathways, like B cell receptor signalling
pathway; ii) one (module 1) populated by negative interactors
of switch genes, down-regulated in COPD cases, including
well-known GWAS genes like AGER and CAVIN1; iii) one
(module 2) populated by well-recognised immune signature
genes, all up-regulated in COPD cases. Switch genes appear
to form localised connected subnetworks displaying an in-
triguingly common pattern of up-regulation in COPD cases
compared with controls. A more sophisticated analysis re-
vealed that they were not only topologically related, but also
functionally relevant to the observed phenotype as witnessed
by their enrichment in the regulation of inflammatory and
immune responses.

In order to demonstrate the disease specificity of switch
genes, SWIM was applied on another COPD dataset and on the
acute respiratory distress syndrome (ARDS), another severe
lung disease with an inflammatory component. The two lists of
COPD switch genes were found to form overlapping modules
in the human interactome that are topologically separated
with the ARDS switch genes (data not shown, see [5]). This
observation demonstrates that even though different diseases
can share similar endophenotypes, the molecular network
determinants responsible for them are disease-specific.

Interestingly, ARDS switch genes were different from
COPD switch genes, but the major pathways affected in the
two diseases were similar, emphasising that different diseases
often have common underlying mechanisms and share inter-
mediate endophenotypes (convergent phenotypes) [16].

C. Network Medicine

Network Medicine is a new emerging paradigm in medicine,
where disease proteins are assumed not to be randomly scat-
tered, but agglomerate in specific regions of the molecular
interactome, suggesting the existence of specific disease net-
work modules for each disease [17], [18], [19].

To quantify the interplay between switch genes and hu-
man diseases in the human interactome, the results obtained
by the pan-cancer [1] and COPD [5] SWIM-based analysis
were complemented with the application of SWIM tool on
two cardiac disorders (i.e., ischemic and non-ischemic car-
diomyopathy) and on Alzheimer’s disease (AD) [6]. Switch
genes associated with specific disorders were found to be
not randomly scattered but they form localised connected
subnetworks (Fig. 4a). These subnetworks overlap between
similar diseases (like cancers or cardiac disorders) and are
situated in different neighbourhoods for pathologically distinct
phenotypes (like AD and COPD), showing a direct relation
between the pathobiological similarity of diseases and their
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Fig. 4: SWIM and Network Medicine. (a) Switch genes mapping
on the human interactome. (b) Hierarchical clustering where the
network-based separation measure was used as a distance metric: blue
color corresponds to overlapping modules, red color corresponds to
non-overlapping modules. (c) SHDN where nodes are the disorders
and the size of each node is proportional to the number of switch
genes involved in the corresponding disorder. Nodes are coloured
based on the disorder class to which they belong. Labeled nodes
correspond to the diseases analysed, while unlabelled nodes are
artificial.

relative distance in the human interactome (Fig. 4a). These
results were confirmed by the hierarchical clustering where
two main clusters were found: one including all tumour
datasets and one including the two cardiomyopathies along
with AD and COPD datasets as isolated branches (Fig. 4b).
Finally, the first SWIM-informed Human Disease Network
(SHDN) was built (Fig. 4c), where nodes correspond to
distinct disorders and a link occurs between two diseases if
they share a substantial number of switch genes. Clustering
of nodes of similar color (denoting the same disease class)
means that similar pathophenotypes have a higher probability
of sharing switch genes than do pathophenotypes that belong
to different disease classes.

These findings support the hypothesis that SWIM-based cor-
relation network analysis can serve as a useful tool for efficient
screening of potentially new disease gene associations. When
integrated with an interactome-based network analysis, it not
only identifies novel candidate disease genes, but also may
offer testable hypotheses by which to elucidate the molecular
underpinnings of human disease and reveal commonalities
between seemingly unrelated diseases.
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