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Abstract

Extreme Mass Ratio Inspirals (EMRIs) are asymmetric binary systems. They are
composed of a massive black hole and a stellar mass compact object, which inspirals
until the plunge, emitting gravitational waves (GWs) potentially observable by future
space based detectors, such as the Laser Interferometer Space Antenna (LISA). In the
final year before the plunge, EMRIs complete thousands of cycles in the strong-field
region around the massive black hole. Tracking such large number of orbits would
allow to measure the source parameters with exquisite accuracy, and to perform
precise strong-field tests of gravity. Following such quest and exploiting the scientific
potential of asymmetric binaries require accurate waveforms in modified theories of
gravity, to compare against General Relativity (GR) predictions. Such models are
currently missing, due to the complexity of calculations beyond GR.

In this thesis we provide a key step forward, and discuss the modelling of EMRIs
when the gravitational interaction is mediated by additional fundamental fields.
We develop a new theoretical framework able to describe the EMRI dynamical
evolution in a vast class of modified theories of gravity with extra massless and
massive scalar fields. Exploiting decoupling of scales we show how, at leading order
in the binary mass ratio, deviations from GR for the massive BH can be neglected
such that the background spacetime can be described by the Kerr metric. In this
approach all information about the underlying gravity theory is encoded by the
scalar charge of the inspiralling lighter body, and by the mass of the scalar field.
These two parameters fully capture the imprint of the scalar field on the emitted
gravitational waves. We perform an extensive data-analysis of mock GW signals
emitted by asymmetric binaries, forecasting LISA ability to constrain the scalar
field parameters. Our results show that EMRIs provide golden sources to probe the
existence of new fundamental fields in the Universe.
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Preface

List of publications
This doctoral thesis is the outcome of three years of studies at the Sapienza

University of Rome, from November 2020 to October 2023. During these three years,
two scientific visits were performed at the University of Nottingham, one of which
was funded by the COST Action CA16104 within the Short Term Scientific Mission
(STSM) program, to collaborate with Prof. Thomas P. Sotiriou.

As a result of my doctoral studies, different scientific papers have been published,
focused on the theoretical modelling of asymmetric binaries, and in particular of
Extreme Mass Ratio Inspirals (EMRIs), in gravity theories with additional scalar
fields:

1. A. Maselli, N. Franchini, L. Gualtieri, T. P. Sotiriou, S. Barsanti, and P. Pani,
“Detecting fundamental fields with LISA observations of gravitational waves
from extreme mass-ratio inspirals”, Nature Astron., vol. 6, no. 4, pp. 464–470,
2022. arXiv: 2106.11325 [gr-qc];

2. S. Barsanti, N. Franchini, L. Gualtieri, A. Maselli, and T. P. Sotiriou, “Ex-
treme mass-ratio inspirals as probes of scalar fields: Eccentric equatorial orbits
around Kerr black holes”, Phys. Rev. D, vol. 106, no. 4, p. 044 029, 2022.
arXiv: 2203.05003 [gr-qc];

3. S. Barsanti, A. Maselli, T. P. Sotiriou, and L. Gualtieri, “Detecting Massive
Scalar Fields with Extreme Mass-Ratio Inspirals”, Phys. Rev. Lett., vol. 131,
no. 5, p. 051 401, 2023. arXiv: 2212.03888 [gr-qc].

The results of (1) are presented in Chapters 6 and 8, those of (2) are discussed
in Chapter 7. Finally, the outcome of (3) is analysed in Chapter 9. Moreover, two
papers are currently in preparation:

4. M. Della Rocca, S. Barsanti, et al., “Extreme mass-ratio inspirals as probes of
scalar fields: Inclined circular orbits around Kerr black holes”, in preparation ;

5. L. Speri, S. Barsanti, et al., “Fast EMRI Waveform to test General Relativity”,
in preparation.

The first one improves the adiabatic EMRI model by including the orbital
inclination in the inspiral description, and focuses on circular inclined orbits around
rotating black holes. The second one performs a fully Bayesian analysis on equatorial
eccentric EMRIs around Kerr black holes and provides constraints for the detection
of scalar fields.
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Finally, a study concerning the detectability of subsolar-mass primordial black
holes in EMRIs has been accomplished during a visit of Dr. Valerio De Luca at
Sapienza University:

6. S. Barsanti, V. De Luca, A. Maselli, and P. Pani, “Detecting Subsolar-Mass
Primordial Black Holes in Extreme Mass-Ratio Inspirals with LISA and Ein-
stein Telescope”, Phys. Rev. Lett., vol. 128, no. 11, p. 111 104, 2022. arXiv:
2109.02170 [gr-qc].

Since the focus of this thesis builds around the modeling of EMRIs in beyond-GR
and beyond-SM scenarios, this work is not discussed here. However, we stress that
the analysis carried out in (6) was performed, in a pure-GR context, exploiting the
tools developed to modeling EMRIs with additional scalar fields. The results of (6)
suggest that, if the EMRI secondary is a subsolar-mass object, its mass could be
measured with a subpercent accuracy by future interferometers like LISA and the
Einstein Telescope. This would allow to detect a subsolar-mass black hole with high
statistical confidence, providing a smoking-gun signature of its primordial origin.

Conventions
In these thesis we use geometric units in which G = 1 = c, where G is the

gravitational constant and c is the speed of light.
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Introduction

Gravitational Waves (GWs) are spacetime perturbations which propagate at the
speed of light and are predicted by General Relativity (GR), which provides so far
the best description of gravitational phenomena. Gravitational waves interact weakly
with ordinary matter, and their observation is naturally enhanced in astrophysical
events evolving in the so called strong field gravity regime, as the coalescences of
black holes (BHs) and neutron stars (NSs).

The first direct detection of GWs was performed in September 2015 by the ground
based interferometer LIGO [1], and opened a new era of astronomical observations
which now allows to investigate our Universe in synergy with electromagnetic probes.
Tests of the Einstein theory in the most extreme regime of gravity stand as one of
the most exciting opportunities offered by this new window.

Currently, direct detection of GWs is performed by the ground-based inferferom-
eters LIGO-Virgo-KAGRA, which are sensitive to signals falling in the 1Hz-KHz
band [2–7]. While such instruments are reaching their designed sensitivity, a 3rd
generation of ground-detectors, such as the Einstein Telescope (ET) and Cosmic
Explorer (CE), is under investigation, promising an improvement in the sensitivity
of current instruments of more than an order of magnitude [8, 9]. To detect signals
of lower frequencies, the future space mission Laser Interferometer Space Antenna
(LISA) will be launched in the mid-2030s [10]. LISA will detect signals in the
(10−4 − 1)Hz frequency range, which will allow to explore an entire new class of
systems. Indeed, while ground-based detectors are able to detect objects from few
to hundreds of solar masses, LISA will be sensible to larger masses, including among
its targets sources as supermassive black hole binaries and asymmetric binary systems.

By analyzing the emission of GWs from BHs and NSs, such compact objects
can be turned into cosmic laboratories to probe physics under extreme conditions,
allowing for tests of the nature of gravity and of the rich phenomenology exhibited
by fundamental fields and particles, and for search of new physics beyond GR and
the Standard Model of Particle Physics (SM). Indeed, searches for new fundamental
physics feature very prominently among the objectives of current and future detectors
[11–13].

The opportunity offered by the quality of data expected from such astrophysical
observatories, together with a series of long lasting problems like the existence of
spacetime singularities, of dark matter and dark energy, and the non renomarmaliza-
tion of GR in quantum field theory, has motivated the quest for alternative theories
of gravity, which can be tested against General Relativity [14].

One of the easiest and most common ways to go beyond our current description
of gravity (and of particle physics) consists in the addition of new fundamental
scalar fields, that are ubiquitous in extensions of the Standard Model and General
Relativity [15–17].
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However, the detection of scalar fields by means of black holes carries some
issues which deal with no-hair theorems. Indeed, not only no-hair theorems hold for
stationary and asymptotically flat black holes in GR [18], dictating that the black
hole’s spacetime only depends on the three parameters given by the black hole’s
mass, spin and the (astrophysically negligible) electrical charge, but they can also
hold for theories with additional scalar fields. No-scalar-hair theorems have been
proven for most scalar-tensor theories, which means that the scalar must be trivial
and that the black hole’s spacetime is described by the Kerr metric [19–23]. Evading
the no-hair theorems to obtain black hole solutions with scalar hair, i.e. black holes
endowed with a non-trivial scalar profile so that they can be thought as carrying a
scalar charge, requires coupling the scalar to higher-order curvature reforms [24–27].
The nature of these couplings then implies that the scalar charge per unit mass of a
BH is inversely proportional to its mass to some positive power, so that the more
massive a BH is, the more weakly charged it is [24–34]. This provides a powerful
restriction for using, for example, observations of massive BHs by LISA and 3g
detectors, to probe the existence of such new fields coupled to the gravity sector.

Given this general framework, a possibility to employ black holes for the detection
of new scalar fields, circumventing the issues carried by no-hair theorems, is given
by Extreme Mass Ratio Inspirals (EMRIs).

EMRIs are asymmetric binary systems in which a stellar mass compact object
(SCO) inspirals into a massive black hole (MBH) until the plunge. In the final year
before the plunge, the little object completes thousands of orbits in the strong-field
region around the massive black hole. By moving on the background spacetime given
by the central object, the SCO perturbs it giving rise to gravitational waves falling in
the mHz frequency band, which will be explored by the future space based detector
LISA. By tracking the continuously emitted waves with LISA, it will be eventually
possible to build a precise map of the binary spacetime, recovering with exquisite
accuracy the source parameters and in particular the MBH properties, allowing to
test its Kerr nature. This renders EMRIs golden binaries to test deviations from
GR [35].

From a theoretical point of view, asymmetric binaries can be studied with the
well-known relativistic perturbation theory approach, considering expansions in
the mass ratio of the binary [36–39]. At leading order, the inspiralling object can
be treated as a point-particle moving on the background spacetime of the MBH,
described by the Kerr metric, and the inspiral is adiabatically built through a
sequence of geodesics. Next orders in the binary mass ratio take into account the
finite-structure of the SCO and its interaction with its own perturbations, which
lead to secular deviation in the inspiral from the adiabatic model. While first and
second post-adiabatic corrections are necessary to provide accurate waveform for
the LISA data analysis [40], their calculations provides a formidable task which has
required decades of theoretical and numerical development. The first GR waveform
model containing post-adiabatic corrections has been produced only recently [41–43].

The complexity of calculations beyond GR grows very fast, due to the introduction
of the new fields, and their couplings with the tensor modes. As a results, the
landscape of EMRI models in extended theories of gravity is almost virgin, with no
waveform model available so far.

A framework to describe EMRIs in gravity theories with additional scalar fields
have been proposed in [44]. In such work, it is shown how, to model systems with
large mass asymmetry in gravity theories with new scalar fields, the scaling of the
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scalar hair with the BH mass turns out to be a benefit. Indeed, in such systems, the
massive black hole’s scalar charge can be neglected with respect to that one of the
small inspiralling body. At leading order in the mass ratio q, the scalar charge of
the MBH is entirely suppressed, and the MBH spacetime can be simply described
with the Kerr metric. Moreover, all the deviations from GR are fully controlled by
the scalar charge of the SCO, which allows to model EMRIs in a theory-agnostic
manner. The presence of scalar charge of the secondary causes an extra channel of
binary’s energy loss through scalar waves, that are added to the gravitational ones
and modify the system’s dynamics with respect to the GR predictions. Analysing the
effect of the presence of the scalar charge on the EMRIs dynamics and consequently
on the emitted GW signal constitutes the key for the detection of the extra scalar
fields.

In this picture, by following the framework presented in [44], the aim of the
thesis is twofold: (i) study how the inclusion of extra scalar fields affects the EMRI
dynamics and GW emission, (ii) investigate how such changes can be detected by
LISA and the constraints that can be inferred on the scalar field features.

First, we focused on modeling the adiabatic EMRI inspiral. In real astrophysical
scenarios, EMRIs are expected to complete generic inclined, eccentric orbits around
rapidly rotating MBH. Here we present the adiabatic EMRI model with massless
scalar fields for equatorial circular and equatorial eccentric orbits around Kerr
black holes. For each type of orbit, we computed the gravitational and scalar
emission, we built the adiabatic inspirals and modeled the emitted GW signal with
the quadrupolar approximation, computing the mismatch between signals emitted
in the presence and in the absence of the scalar charge, in order to obtain a first
insight into the detectability of the new field.

Secondly, we performed parameter estimations over the binary systems. We
applied a Fisher Information Matrix (FIM) approach to equatorial circular inspirals
around rotating black holes, providing the first forecast on the LISA ability to detect
new scalar fields and measure the scalar charge carried by the secondary.

Finally, EMRIs with massive scalar fields have been investigated, performing a
FIM for equatorial circular inspirals around Kerr black holes, in order to explore the
detectability of both the scalar charge and the mass of the scalar field.

Our results suggest how Extreme Mass Ratio Inspirals represent extremely
promising sources of gravitational waves for the future Laser Interferometer Space
Antenna to probe the existence of new fundamental fields.
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The thesis is organized as follows.

Chapter 1 focuses on gravitational waves detection, with a first section dedicated
to current detections from ground-based interferometers, a second section focused to
the future space mission LISA, and the last one to one of its main target, Extreme
Mass Ratio Inspirals, presenting their astrophysical features and theoretical modeling.

In Chapter 2 we provide a brief description of the alternative theories of gravity,
focusing on gravity theories with additional scalar fields.

Chapter 3 is dedicated to the Kerr metric, which describes the background
spacetime of our EMRI model. We focus on the characterization of the geodesic
structure of such metric, dedicating the Sections 3.1.1 and 3.1.2 and to equatorial
circular and equatorial eccentric, respectively.

In Chapter 4 we present a description of the EMRI modeling in General Relativ-
ity, presenting the state-of-art achievements in such scenario, and then we present
the EMRI description in gravity theories with a new real and massless scalar field.

In Chapter 5 we discuss the linear perturbations of a point-particle on a Kerr
background. Both the scalar field and the gravitational field perturbations are
considered, for a point particle moving on the two types of orbits: equatorial circular
and equatorial eccentric.

Chapters 6 and 7 present the study of the adiabatic orbital evolution together
with the emitted gravitational waves modeling, for equatorial circular and equatorial
eccentric inspirals. In each chapter, the first section is dedicated to the gravitational
and scalar emissions, the second one to the adiabatic orbital evolution, and the last
one to the construction of the GW-templates with the computation of the mismatch
between signals with and without the scalar charge, to asses its effect on the emitted
signal.

In Chapter 8 is presented a parameter estimation with the Fisher Information
Matrix analysis applied to equatorial circular inspiral around Kerr black holes, in
order to forecast the measurability of the scalar charge carried by the secondary
object.

Finally, Chapter 9 is dedicated to EMRIs with additional massive scalar fields.
In Section 9.1, we present the theoretical framework of the model and in Section 9.2
the massive scalar linear perturbations. The results are presented in the following
sections. Section 9.3 is dedicated to the energy fluxes and Section 9.4 to the adiabatic
evolution for equatorial circular trajectories. Finally, the last two sections focus
on the gravitational waves emission, presenting the mismatch among signals in the
presence and in the absence of the new massive field, and finally performing the
fisher analysis which provides a study of the simultaneous detectability of the scalar
charge and mass.



8

Chapter 1

Gravitational wave detection:
sources, instruments and goals

This chapter is dedicated to the detection of gravitational waves (GWs). In the
first section, we present a brief overview of the current state of GW detection from
the ground-based instruments LIGO-Virgo-KAGRA. In the following section, we
focus on the future space based detector LISA. The last section is dedicated to one
of the main target of the future interferometer: Extreme Mass Ratio Inspirals.

1.1 Gravitational waves and ground-based detectors
Gravitational waves are ripples of space-time, perturbations of the gravitational

field which propagate at the speed of light. They are generated in a regime in which
gravity is extreme, as that one sampled by the coalescence of compact objects as
black holes and neutron stars, and predicted by General Relativity.

In order to directly detect gravitational waves, the first ground-based interfer-
ometers LIGO/Virgo were built. The first GW event was detected by LIGO in
September 2015 and is associated to the merger of a binary of black holes [1]. Such
detection opened the first Observing Run O1, which lasted from September 2015
to January 2016. From then to now, another three observing runs were performed:
O2 from November 2016 to August 2017, O3a from April 2019 to October 2019 and
O3b from November 2019 to March 2020, for a total of almost a hundred of GW
detections [5–7]. The fourth Observing Run O4 started on May 2023 and is still
ongoing [45]. Starting from the third observing run O3, the Japanese ground-based
interferometer KAGRA has joined the LIGO/Virgo detectors [4].

The LIGO-Virgo-KAGRA collaboration can detect signals in the frequency range
of 1Hz-KHz. While the LIGO/Virgo detectors are reaching their full sensitivity, a
3rd generation of detectors is planned, with the Einstein Telescope and the Cosmic
Explorer, which will improve of more than an order of magnitude the sensitivity of
current interferometers within the 1Hz-KHz band [8,9].

The maximum frequency of the emitted GW is related to the masses of the binary
system by fmax ∼ 1/Mtot, with Mtot being the sum of the two component masses.
Such relation is obtained by considering Kepler’s third law for the binary system,
fGW ∼

√
Mtot/r3 and the orbital radius of the merge of several M . Hence, for the

frequency range of 1Hz-KHz, the ground-based instruments can detect binaries with
masses from few to hundreds of solar masses.
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A footage of the binary systems detected so far is presented in Fig.1.1, commonly
known as the “Stellar Graveyard” [46], in which compact objects detected from both
gravitational waves and electromagnetic (EM) emission are shown. The LIGO-Virgo-
KAGRA detections are colored in blue/orange for the binary black holes/neutron
stars detection, while the electromagnetic signals are colored in pink/yellow.

Figure 1.1. Sample of gravitational wave sources, detected with the LIGO-Virgo-KAGRA
collaboration, and of electromagnetic sources. Credit: [46].

The component masses of the sources range within ∼ (1 − 100)M⊙. An ob-
servational gap however exists in the range between ∼ (2 − 5)M⊙. This gap is
somehow expected since stellar formation predicts BHs masses ≳ 5M⊙, with NSs
in the range ≲ 3M⊙. Note however that some binary events detected so far by
LIGO/Virgo/Kagra, with a low confidence level, may feature component masses
right in this window [47].

A different theoretical mass gap is expected within ∼ (50 − 100)M⊙ due to
pair-instability supernovae mechanism, which can hamper the formation of BHs in
this range. For this reason, the recent observation of a binary merger with a remnant
mas of 150M⊙ has raised considerable interest within the gravitational wave and
astrophysical community [48,49]. Such event could also provide a first hint for the
existence of Intermediate Mass Black Holes (IMBHs).

In order to detect signals arising from more massive objects, i.e. emitting at
lower frequencies, longer arms of the interferometers are needed, together with the
avoidance of the terrestrial confusion noise. These requirements are at the base of
space-born detectors.

The following section is dedicated to one of the planned future GW satellite, the
Laser Interferometer Space Antenna.
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1.2 The Laser Interferometer Space Antenna
The Laser Interferometer Space Antenna (LISA) is the ESA space mission

planned for launch in the mid-2030s [50].
It consists in a GWs detector that will be launched in space and will follow the

Earth in its orbit around the Sun. The space interferometer will have a triangular
configuration, composed by three arms of 2.5 million kilometers and three identical
spacecrafts in each vertex. In total, six active laser links will reflect between the
three spacecrafts, inside which free falling test masses will be located and will act
as mirrors reflecting the laser beam. Such configuration will allow to exploit the
change in the time travel of the light-beam or the optical pathlenght of test masses
which are induced by the passage of gravitational waves [10].

A depiction of the LISA orbit around the Earth is shown in Fig. 1.2.

.
Figure 1.2. Description of the LISA orbit [10].

Flying between 50 and 65 million km from the Earth, it will scan the cosmos
obtaining both polarisations of the GWs simultaneously. The length of the arms
of the detector will allow to detect signals with frequencies in the ∼ (10−4, 10−1)
Hz range, complementary to that one of the ground based detectors. As previously
mentioned, the maximum GW frequency is related to the total mass Mtot of the
binary system by fmax ∼ 1/Mtot, so that different frequencies mean different masses
of the sources producing the waves. LISA will be the first space mission able to
investigate such low frequency range and to explore the entire Universe through
gravitational waves [51]. It will be able to detect signals from redshifts up to z ∼ 20
and the loudest GWs originating from supermassive black hole binaries.

A classification of the sources that will be among the possible targets for LISA
is given by [12,52]:
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• Supermassive Black Hole Binaries (SMBHBs): systems in which the mass ratio
is larger than 10−1 and the total mass is in (105, 107)M⊙;

• Intermediate-Mass Black Hole Binaries (IMBHBs): same as the SMBHBs but
with total mass in

(
102, 105)M⊙;

• Extreme Mass-Ratio Inspirals (EMRIs): binary sources with mass ratios in(
10−6, 10−3) and total masses in

(
103, 107)M⊙;

• Intermediate Mass-Ratio Inspirals (IMRIs): same as the EMRIs but with mass
ratios in

(
10−3, 10−1);

• Stellar origin BH binaries: coalescences with sufficiently low total mass (e.g.
in (50, 500)M⊙) such that they could be detected both by LISA and second or
third generation ground based detectors;

• Galactic Binaries: inspirals composed by white dwarfs or neutron stars within
the Milky Way that produce nearly monochromatic signals;

• Stochastic Backgrounds: cosmological sources of GWs that produce a stochastic
background.

Each kind of binary systems will emit GWs that will be possibly detected by the
future space interferometer. A schematic representation of the characteristic strain of
the emitted GW signal expected by the potential sources, together with the expected
LISA sensitivity are reported in Fig.1.3 [10]. The grey shadowed area represents
the confusion noise of millions of binaries, which forms the galactic background, for
which the detected amplitude is modulated by the LISA motion over the year.

Figure 1.3. Representation of the characteristic strain of the potential LISA sources with
the expected LISA sensitivity as a function of the frequency [10].
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The detection of GWs coming from these sources will let us to investigate the most
extreme strong-gravity regimes and to test the foundations of General Relativity,
so that testing of new fundamental physics beyond GR and the Standard Model of
Particle Physics is a crucial objective of the future space mission. In the following
we report a classification of the different topics of the fundamental physics LISA
science case, which are [12,13]

• tests of General Relativity, probing the fundamental principles underlying GR
and testing the Einstein theory by means of compact objects;

• tests of the nature of black holes, which main focus is to test the Kerr hypothesis
through BHs in non-vacuum GR or Exotic Compact Objects (ECOs);

• Dark Matter and Primordial Black Holes (PBHs), focusing on two types of
dark matter, i.e. new particles as axions and/or macroscopic objects as PBHs
or ECOs;

• Dark energy and the ΛCDM model, focusing on cosmology test to probe the
fundamental physics underlying the standard model of the Universe ΛCDM,
with its extensions through dark energy and modified gravity theories;

• Other model independent tests, performing model-agnostic tests of GR;

• Astrophysical and waveform systematics, which focuses in the understanding
of the error systematics from the GW modeling and from astrophysical and
enivronmental effects.

In the next section, we will focus one of the main target sources of LISA, Extreme
Mass Ratio Inspirals, while alternative gravity theories scenarios are left to the next
chapter.

1.3 Asymmetric binaries: Extreme Mass-Ratio Inspirals
Extreme Mass Ratio Inspirals (EMRIs) are asymmetric binary systems in which

the secondary is given by a stellar mass compact object (SCO), which can be a
black hole, a neutron star or a white dwarf, and inspirals around the primary given
by a massive black hole (MBH). Typical extreme mass ratios are q = 10−3 − 10−6,
where q = mp/M with mp ≪ M , and typical values of the component masses are
mp = (1 − 102)M⊙ for the secondary and M = (104 − 107)M⊙ for the primary.

Here we present an overview of the EMRI astrophysical characteristics and of
the theoretical modeling commonly applied to such binaries.

1.3.1 Astrophysical features
Massive black holes are believed to exist at the center of most galaxies [53]. An

evidence in this direction was recently given by the Event Horizon Telescope (EHT),
which, in 2019 and in 2022, released the first images of two supermassive black holes,
M87 and Sagittarius A*, residing respectively at the center of the M87 galaxy and
of the Milky Way [54,55]. Massive black holes are typically surrounded by a nuclear
star cluster, so that Extreme Mass Ratio Inspirals form when a stellar compact
object is captured from such cluster by the central MBH. From the capture, the
secondary starts to inspirals around the primary in inclined, eccentric orbit and
finally plunges into the MBH.
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In the last year of inspiral before the plunge, the number of orbital cycles com-
pleted by the stellar mass compact object is ∼ 104 − 105, most of which accumulate
in the strong-field region of the central massive black hole [56]. During the evolution,
the secondary perturbs the background spacetime of the MBH, giving rise to gravi-
tational waves of typical frequencies lying in the mHz band, which will be possibly
detected by the future space-based interferometer LISA. By tracking the continuously
emitted GW signals, which encode the information of the EMRI orbit, it will be
eventually possible to build a detailed map of the binary spacetime, recovering with
exquisite accuracy the intrinsic source parameters, primarly determined by the GW
phase. The intrinsic source parameters and their expected precision are [35]:

• redshifted component masses Mz = (1 + z)M , with z being the redshift, with
precision ∼ 10−6 − 10−4;

• dimensionless spin of the primary with precision ∼ 10−6 − 10−3.

The extrinsic parameters (luminosity distance and sky localisation) are primarily
determined through the signal amplitude rather then the GW phase, and hence
the large number of cycles completed by an EMRI does not translate to very high-
precision measurements. Extrinsic source parameters and their expected precision
are:

• luminosity distance with better than ∼ 10% precision;

• sky localization with precision ≲ 10 deg2, which could significantly improve
with the detection of the electromagnetic counterpart due to the interaction of
the inspiralling body with the accretion disk of the MBH [57,58].

The EMRI inspiral can accumulate signal-to-noise (SNR) ratio over several
months or years, making extreme mass ratio inspirals detectable out to redshifts
z ∼ 3 − 4 [56]. A conservative SNR value for EMRIs detection is considered
30 [35, 59,60].

Event rates for EMRIs are very uncertain [35, 59–63]. Depending on the as-
trophysical scenarios, a range from few to thousands EMRIs per year have been
estimated by [35]. Such uncertainty is mostly due to the current uncertainties in
EMRIs astrophysics, such as the population of MBHs, the distribution of the stellar
cluster around them and the range of EMRIs orbits [61]. EMRIs event rate is
predicted to be dominated by highly-eccentric orbits. Moreover, thanks to both
evolutionary and selection effects, it is plausible that MBHs falling in the LISA band
will be rapidly spinning, with a ∼ 0.9M or possibly even larger [35,64].

1.3.2 Theoretical modeling
From a theoretical point of view, several methods have been developed for the

modeling of binary systems of compact objects. The typical theoretical models
commonly used for binary systems varies accordingly to the mass ratio of the
binary and the orbital separation of its components, as shown in the schematic
picture of Fig.1.4 [39]. For nearly comparable mass systems, as those sampled by
the ground-based detectors, the early stages of the inspiral can be modeled with
post-Newtonian (PN) and post-Minkowskian methods [65], appropriate for the low-
velocity, weak-field regime, or the parametrized post-Einsteinian (ppE) approach [66].
These methods become more and more inaccurate with the decreasing of the orbital
separation, so that i) numerical relativity methods are used for the late inspiral
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and the merger of nearly comparable mass binaries, while ii) perturbation theory
approaches and self-force methods come in hand with the increasing of the binary
mass ratio, representing the most accurate theoretical modeling for Extreme Mass
Ratio Inspirals [39,67].

Fig. 1.5 shows an artistic representation of the two different binary systems: on
the left, nearly comparable mass binaries during the (early) inspiral, while EMRIs
are pictured on the right. The bottom panel of each image shows an artistic repre-
sentation of typical GW signals emitted from the relative source, highlighting the
modulation of the EMRI GW amplitude due to the orbital plane precession.

Figure 1.4. Schematic representation of the theoretical tools used to model different binary
systems, depending on their orbital separation and mass ratios [39].

Figure 1.5. Artistic representations of comparable mass inspirals (left) and of EMRIs
(right). The bottom panels of both images pictures the representative shape of the
corresponding emitted GW signal. Credit:NASA and [51].

Within the framework of perturbation theory, the EMRI system is modeled
considering expansions order by order in the extreme mass ratio q of the binary.
During the inspiral, the secondary moves on the background spacetime of the
primary, perturbing it and giving rise to gravitational waves. The energy and
angular momentum loss through GWs drives the binary evolution.
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At first order in the binary mass ratio, the little object is treated as a point-
particle and the inspiral is built adiabatically through a sequence of geodesics orbits of
the spacetime background. Within General Relativity, such background is described
by the Kerr metric, which represents the vacuum solution of non-static, rotating,
stationary, asymptotally flat black hole (discussed in Chapter 3). A schematic
description of the complex geodesics orbits of the Kerr spacetime is shown in the left
picture of Fig. 1.6, while the right pictures are relative to special resonant orbits [39].
Several works have been done which provide a model of adiabatic EMRI inspiral in
GR, from simpler to more complex and fully generic orbits [68–71].

Figure 1.6. Left: Typical geodesic orbit around a Kerr black hole. The orbit ergodically
fills the interior of the outlined torus-shaped region. Right: The special case of a resonant
orbit, for which the motion is no longer ergodic. For clarity, the rightmost figure expands
the central region of the resonant orbit. [39]

Improvements in the modeling consist in considering the next orders in the mass
ratio, by taking into account the structure of the secondary object and its interaction
with its own gravitational perturbations. This process, called self − force, leads to a
secular deviation from the adiabatic inspiral. Although small, the correction induced
by the self-force piles up due to the large number of orbits composing the inspiral,
leading to important corrections to the orbital evolution [39,67,72].

In order to build accurate waveforms for the future LISA data analysis, the
GW phase needs to be modeled by including all the terms (at least) up to O(q), so
that it is necessary to include the first and second post-adiabatic corrections, which
contributes to the GW phase at O(q0) and O(q), respectively, while the leading
adiabatic terms contributes to the emitted GW phase at O(q−1) [40,73]. In addition,
transient resonances of the Kerr spacetime contribute to the phase at O(q−1/2) and
need to be taken into account [74]. Significant progress has been made in this
within the confine of GR, with the first waveforms containing the first post-adiabatic
correction being a recent breakthrough [41–43].

As a toy model, self-force computations on a scalar charge inspiralling on the
Kerr background have been performed in [75–77].

All these features are further discussed in Chapter 4, which provide the EMRIs
theoretical description both in General Relativity and in alternative theories of
gravity. Such theories are presented in the next chapter.
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Chapter 2

Alternative theories of gravity

Modified gravity theories have been formulated with the aim of solving open
problems of fundamental physics and to test General Relativity in the strong-field
regime, providing new models to be compared with the predictions of the Einstein
theory. In this chapter we present a brief description of the modified gravity scenarios,
focusing on theories with extra scalar fields and how the presence of such fields affect
black hole solutions.

2.1 Gravity theories with scalar fields
General Relativity is governed by the Einstein field equations

Gµν + Λgµν = 8πTµν , (2.1)

where Gµν is the Einstein tensor, defined as Gµν = Rµν − 1
2gµνR, where gµν is the

metric tensor and Rµν and R are the Ricci tensor and the Ricci scalar, respectively.
Λgµν is the cosmological term, where Λ is the cosmological constant, and Tµν is
the stress-energy tensor describing the source-term. The Einstein equations can be
obtained from the variational principle by varying the action

S [g,Ψ] = SEH [g] + SM [g,Ψ] , (2.2)
with respect to the metric tensor g, where SEH is the Einstein-Hilbert action given
by

SEH =
∫
d4x

√
−g

16π R , (2.3)

and SM is the action of the matter fields Ψ.

Such equations arise as unique from the “uniqueness theorem” given by the
Lovelock’s theorem which states that [78,79]:

In four spacetime dimensions the only divergence-free symmetric rank-2 tensor
constructed solely from the metric gµν and its derivatives up to second differential
order, and preserving diffeomorphism invariance, is the Einstein tensor plus a cos-
mological term.

Alternative gravity theories can be formulated abandoning one or more assump-
tions on which the Lovelock’s theorem is based, and which build General Relativity,
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so that the theorem is typically used to classify alternative theories of gravity, de-
pending on which assumptions of the theorem they violate. Four different ways to
circumvent such theories as identified in [14] are: i) addition of extra (scalar, vector
and/or tensor) fields, ii) violation of the Weak Equivalent Principle (WEP), iii)
violation of diffeomorphism, which leads to Lorentz violating theories and massive
gravity theories, iv) inclusion of higher dimensions (> 4). A particular alternative
gravity theory can belong to one or more of these classes.

However, it has been shown how the majority of the modified gravity theories
can be reformulated as General Relativity with additional fundamental fields. In this
scenario, looking for deviations from GR is equivalent to looking for new fundamental
fields [13,80].

This thesis focuses on extra scalar fields, considering both massless and massive
scalars, which provide the most simple beyond-GR and beyond-SM scenarios with
additional fields. In the following we present particular modified gravity theories with
extra scalar fields, focusing on: scalar-tensor theories, f(R) theories and quadratic
gravity theories. In the next section, we discuss how the presence of new scalar fields
in the gravity theory affect black holes, stressing how they can be used to test GR.

Scalar-tensor gravity
In scalar-tensor theories, the gravitational sector is non-minimally coupled to

one or more scalar fields, so that the Ricci scalar in the Einstein-Hilbert action is
multiplied by a function of the scalar fields [80–83].

A prototype of such theories is given by the Brans-Dicke theory, described by
the action

S =
∫
d4x

√
−g

16π

[
ϕR− ωBD

ϕ
gµν∂µϕ∂νϕ+ V (ϕ)

]
+ SM (Ψ, gµν) , (2.4)

in which ωBD is the Brans-Dicke constant. The general form of scalar-tensor theories
is given by considering such constant as a function of the scalar field, i.e. ωBD → ω(ϕ).
The action is then given by

S =
∫
d4x

√
−g

16π

[
ϕR− ω(ϕ)

ϕ
gµν∂µϕ∂νϕ+ V (ϕ)

]
+ SM (Ψ, gµν) , (2.5)

which is the most general action in which one scalar field is non-minimally coupled
to gravity and which is second order in the derivatives of the scalar [84,85]. This
action is referred to as the Jordan-frame action. With a conformal transformation
g⋆

µν = ϕgµν and the scalar field redefinition 4
√
πφdφ =

√
2ω(ϕ) + 3dϕ, it is possible

to move from such frame to the Einstein-frame, in which the scalar field minimally
couples to gravity and non minimally couples to matter:

S =
∫
d4x

√
−g⋆

16π

[
R⋆ − 1

2∂µφ∂νφ+ U(φ)
]

+ SM (Ψ, ϕ−1g⋆
µν) , (2.6)

where U(φ) = V (ϕ)/ϕ2.

The most general action that can lead to second order (in time) field equations
for the metric and the scalar is Horndeski gravity [86].
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f(R) theories
This class of theories includes that ones in which the Einstein-Hilbert action

is modified replacing the Ricci scalar with a function of it, so that the action
becomes [87]

S =
∫
d4x

√
−g

16π f(R) + SM (Ψ, gµν) . (2.7)

Such theories have been explored as prototypical infrared modifications to General
Relativity, proposing infrared corrections of gravity as an explanation for the cosmic
acceleration, alternative to the standard ΛCDM model. However, f(R) theories are
dynamically equivalent to scalar-tensor theories [80]. Indeed, considering the action

S = 1
16πG

∫
d4x

√
−g [f(ϕ) + φ(R− ϕ)] + SM (Ψ, gµν) (2.8)

and varying it with respect to φ one gets ϕ = R. Replacing such equation in the
action leads to f(R) theories. Moreover, by varying the action (2.8) with respect to
ϕ one obtains φ = f ′(ϕ), which leads to the dynamically equivalent action

S = 1
16πG

∫
d4x

√
−g [φR− V (φ)] + SM (Ψ, gµν) (2.9)

with V (φ) = f(ϕ)−ϕf ′(ϕ) and it falls within the Brans–Dicke theories with ωBD = 0.

Quadratic gravity
Quadratic gravity theories includes quadratic curvature terms in the action in

order to make the theory formally renormalizable within the standard quantum
field theory approach [88], in the framework of Effective Field Theory (EFT). In the
following we show two examples of such theories.

1) Scalar Gauss Bonnet (sGB):

Scalar Gauss-Bonnet theories are described by the action

S = S0 + αsGB

4

∫
d4x

√
−g

16π f (φ) G + SM (Ψ, gµν) , (2.10)

where G is the scalar-Gauss Bonnet reform

G = R2 − 4RµνR
µν +RµναβR

µναβ , (2.11)

with Rµν being the Ricci tensor and Rµναβ the Riemann invariant, and f(φ) is a
scalar function of the scalar field. Such a function describes the coupling of the
scalar field to the Gauss Bonnet invariant. Of particular interest are two cases:

i) f(φ) = eφ of Einstein dilaton Gauss Bonnet gravity (EdGB);

ii) f(φ) = φ of shift-symmetric gravity.

2) Dynamical Chern Simons gravity (dCS):

The dynamical Chern-Simons theory, a Chern-Simons theory with the kinetic
term of the scalar field, is described by the action [89]
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S = 1
16πG

∫
d4x

√
−g [R− 2∇µφ∇µφ− V (φ) + αCSφ

⋆RR] + SM (Ψ, gµν) , (2.12)

where ⋆RR is the Pontryagin scalar defined as ⋆RR = 1
2Rµνρσϵ

νµλκRρσ
λκ.

2.2 Black holes and scalar fields
In General Relativity, stationary and asymptotically flat black holes satisfy the

no-hair theorem, dictating that a stationary black hole’s spacetime in 3 + 1 dimen-
sions is described only by three parameters: its mass M , its angular momentum
J = aM , where a is the black hole’s spin, and its electrical charge Q, which, for
astrophysical black holes, can be neglected [18]. Thus, the most general metric
describing such solutions is given by the Kerr metric.

Modifying the gravity theory by adding fundamental scalar fields can, in general,
lead to black hole solutions endowed with a scalar profile, so that they can be thought
of as carrying a scalar charge. In this sense, the black hole is said to carry scalar
hair and the theory to evade the no-hair theorem.

However, no-scalar-hair theorems for stationary black holes have been proven for
most scalar-tensor theories, which means that the scalar must be trivial (constant)
and that the black hole’s spacetime is described by the Kerr metric [19–23,90,91].
In order to evade no-hair theorem and actually obtain black holes with non-trivial
scalar profiles, the coupling between the scalar and higher order curvature invariants
is required [24–27,92,93].

In particular, no-hair theorems have been proven for shift-symmetric scalar
tensor theories [23], which are those in which the scalar enjoys symmetry under the
transformation φ → φ + constant which is expected to be respected by massless
scalars. Shift-symmetry prevents static, spherically symmetric and asymptotically
flat black holes from acquiring scalar hair, unless a linear coupling between the scalar
field and the Gauss-Bonnet invariant is considered [92,93].

The nature of these couplings then implies that the scalar charge per unit mass
of a BH is inversely proportional to its mass to some positive power, so that the
BH is said to have hair of “second type”. The power depends on the specific theory
but the general trend is that the more massive a BH is, the more weakly charged it
is [24–34].

Massive scalars, which are not covered by shift-symmetry, are essential in certain
scenarios such as superradiance-induced clouds [94] or scalarization [25,26,95–97],
which rely on the presence of a mass or of interactions that violate shift symmetry
to generate scalar charge.

In this framework, EMRIs result powerful candidates to test gravity. Indeed,
in such system the massive black hole is expected to be negligibly charged, while
the inspiralling body is expected to carry a significant scalar charge, causing an
emission in the corresponding polarisation. The extra scalar emission represents the
key ingredient to investigate deviations from GR, because it leaves an imprint on
the emitted GW signal by modifying the binary’s dynamics.
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Chapter 3

The Kerr metric

In this chapter, we present the Kerr metric with its properties, which describe
the background spacetime of our EMRI model.

The Kerr metric describes the solution of a rotating, non static, stationary,
axially symmetric and asymptotically flat black hole. In the Boyer − Lindquist
coordinates xµ = (t, r, θ, ϕ), the Kerr metric is given by [98]

ds2 = −
(

1 − 2Mr

Σ

)
dt2 − 4aMr sin2θ

Σ dtdϕ+ Σ
∆dr2

+ Σdθ2 +
(
r2 + a2 + 2Ma2r sin2 θ

Σ

)
sin2θ dϕ2, (3.1)

where ∆(r) ≡ r2 − 2Mr + a2 and Σ(r, θ) ≡ r2 + a2 cos2 θ. The metric depends on
two parameters, the mass of the black hole, M , and the spin of the black hole, a, so
that J = aM is the black hole angular momentum.

This solution describes the spacetime generated by a curvature singularity con-
cealed by a horizon. The curvature singularity is given by Σ = 0, in which the
curvature invariants are singular. The metric is also singular for ∆ = 0, but in this
case the curvature invariants are regular. ∆ = 0 is then a coordinate singularity and
its solutions are

r± = M ±
√
M2 − a2 . (3.2)

The solution with the “ − ” sign gives the radius of the inner horizon, while that one
with the “ + ” sign gives the radius of the outer horizon, hereafter considered as the
horizon of the black hole. Moreover, we will consider only −M ≤ a ≤ M , since a
solution with spin outside this range represents a naked singularity (not covered by
an event horizon) and is considered unphysical.

3.1 The geodesic structure of the Kerr metric
To model the EMRI’s dynamics we need to study geodesics of the Kerr back-

ground. The geodesics equations can be found by following the Hamilton− Jacobi
approach. The derivative of the space-time coordinates of the inspiralling particle
with respect to its proper time are given by:
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Σ2
(
dr

dτ

)2
=
[
E(r2 + a2) − aL

]2
− ∆

[
r2 + (L− aE)2 +Q

]
, (3.3)

Σ2
(
dθ

dτ

)2
= Q− cot2 θL2 − a2 cos2 θ(1 − E2) , (3.4)

Σ
(
dϕ

dτ

)
= csc2 θL+ aE

(
r2 + a2

∆ − 1
)

− a2L

∆ , (3.5)

Σ
(
dt

dτ

)
= E

[
(r2 + a2)2

∆ − a2 sin2 θ

]
+ aL

(
1 − r2 + a2

∆

)
. (3.6)

The quantities E , L and Q are the constants of motion of the particle. E and L are
respectively the energy and the angular momentum per unit mass of the particle,
measured at infinity, and they are associated to a spacetime symmetry, since in the
Boyer − Lindquist coordinate the Kerr metric is independent of t and ϕ. Q is the
Carter constant, which is zero for an equatorial orbit [99].

In the following we will focus on two types of orbits: i) equatorial circular and ii)
equatorial eccentric.

3.1.1 Equatorial circular geodesics
While for the Schwarzschild metric a geodesic which starts in the equatorial

plane (identified by θ = π/2) remains in the equatorial plane at later times, for the
Kerr metric in general dθ/dτ ̸= 0.

For equatorial and circular orbits θ = π/2, r(t) = r0, Q = 0 and the geodesic
equations become

dr

dτ
= 0 , (3.7)

dθ

dτ
= 0 , (3.8)

Σ
(
dϕ

dτ

)
= aE

(
r2 + a2

∆ − 1
)

+
(

1 − a2

∆

)
L , (3.9)

Σ
(
dt

dτ

)
= E

[
(r2 + a2)2

∆ − a2
]

+ aL

(
1 − r2 + a2

∆

)
. (3.10)

The value of E and Lz depends on whether the orbit is prograde, which means
that the particle’s rotation is in the same direction of the black hole’s spin, or
retrograde, with the rotation of the particle opposite to that one of the black hole.
The expressions of Epro and Lpro for a prograde orbit and Eret and Lret for a
retrograde orbit are:
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Epro = 1 − 2v2 + qv3√
1 − 3v2 + 2qv3 , (3.11)

Lpro = rv
1 − 2qv3 + q2v4√

1 − 3v2 + 2qv3 , (3.12)

Eret = 1 − 2v2 − qv3√
1 − 3v2 − 2qv3 , (3.13)

Lret = −rv 1 + 2qv3 + q2v4√
1 − 3v2 − 2qv3 . (3.14)

The functions v and q are defined as v ≡
√
M/r and q ≡ a/M , where 0 ≤ a ≤ M

and whether the orbit is prograde or retrograde is set by the signs in the equations.
Since we are considering equatorial circular orbits, we can define the angular

velocity of the particle as

ωp = dϕ

dt
= dϕ/dτ

dt/dτ
= ± M1/2

r3/2 ± aM1/2 (3.15)

where the + sign holds for the prograde orbits and the − sign for the retrograde ones.
A circular orbit of particular interest is the equatorial innermost stable circular orbit
(ISCO), which in the Kerr metric is given by [100]

RISCO = M

(
3 + Z2 ±

√
(3 − Z1) (3 + Z1 + 2Z2)

)
. (3.16)

The positive (negative) sign is relative to retrograde (prograde) orbits. The terms
Z1 and Z2 are given by the expressions

Z1 = 1 + 3
√

1 − x2
(

3√1 + x+ 3√1 − x
)
, (3.17)

Z2 =
√

3x2 + Z2
1 , (3.18)

with x = a/M . When x = 0 the radius of the ISCO is RISCO = 6M , as expected for
a Schwarzschild black hole. For a prograde orbit the increase of a causes a decreasing
of RISCO until its minimun value RISCO = M , obtained for a/M = 1. Thus, for a
prograde orbit in the Kerr metric, the particle can orbits closer to the central BH
compared to the non-rotating case.

In our EMRI model we restricted our analysis to prograde orbits, which are
expected to dominate [101,102].

3.1.2 Equatorial eccentric geodesics
For equatorial eccentric orbits, θ = π/2 and Q = 0. The geodesic equations are

given by [68]
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r2 dr
dτ = ±(Vr)1/2 = ±

√
T 2 − ∆ [r2 + (L− aE)2] , (3.19)

r2 dϕ
dτ = Vϕ = −(aE − L) + aT

∆ , (3.20)

r2 dt
dτ = Vt = −a(aE − L) +

(
r2 + a2)T

∆ , (3.21)

θ(τ) = π/2 , (3.22)

where T ≡ E
(
r2 + a2) − aL. E and L are the constant of motion, the energy

and the angular momentum per unit mass of the point particle, respectively. In the
following we consider bound orbits, for which 0 < E < 1.

The motion in the radial coordinate is periodic. The coordinate can be parametrised
as [70]

r(χ) = p

1 + e cosχ , (3.23)

where (p, e) are the semilatus rectum and the eccentricity of the orbit, respectively,
and χ varies monotonically from χ = 0 at the periastron rp to χ = π at the apastron
ra, given by

rp = p

1 + e
, ra = p

1 − e
. (3.24)

The apastron and the periastron of the orbits are two turning points, i.e. such
that Vr(rp) = Vr(ra) = 0. The coordinate time taken from the secondary to pass
through two consecutive periastron passages defines the radial period Tr, so that
Tr = t(χ = 2π) = 2t(χ = π). A geodesic can be uniquely determined by the set of
the two parameters (E,L) or equivalently by (p, e).

The energy E and the angular momentum L are then given by [70]

E =
[
1 −

(
M

p

)
(1 − e2)

(
1 − x2

p2 (1 − e2)
)]1/2

, (3.25)

L = x+ aE , (3.26)
where

x =
[

−N − sign(a)
√
N2 − 4FC

2F

]1/2

, (3.27)

and the functions F,N,C are given by:

F (p, e) = 1
p3
[
p3 − 2M(3 + e2)p2 +M2(3 + e2)2p− 4Ma2(1 − e2)2] , (3.28)

N(p, e) =2
p

{ [
M2(3 + e2) − a2

]
p−Mp2 −Ma2(1 + 3e2)

}
, (3.29)

C(p) =(a2 −Mp)2 . (3.30)

The functions t(r) and ϕ(r) can be obtained by integrating the geodesics equa-
tions:

t(r) =
∫ r

r1

dt
dτ

(dr
dτ

)−1
dr , (3.31)

ϕ(r) =
∫ r

r1

dϕ
dτ

(dr
dτ

)−1
dr . (3.32)
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However, these integrals are divergent at the turning points of the orbit. To avoid
this divergence, we can perform the integrals over the parameter χ:

ϕ(χ) =
∫ χ

0
dχ′ Ṽϕ(χ′, p, e)

J(χ′, p, e)Ṽr(χ′, p, e)
, (3.33)

t(χ) =
∫ χ

0
dχ′ Ṽt(χ′, p, e)

J(χ′, p, e)Ṽr(χ′, p, e)
, (3.34)

where the functions Ṽt,r,ϕ and J are defined as

Ṽr(χ, p, e) = x2 + a2 + 2axE − 2Mx2

p
(3 + e cosχ) , (3.35)

Ṽϕ(χ, p, e) = x+ aE − 2Mx

p
(1 + e cosχ) , (3.36)

Ṽt(χ, p, e) = a2E − 2aMx

p
(1 + e cosχ) + Ep2

(1 + e cosχ)2 , (3.37)

J(χ, p, e) = 1 − 2M
p

(1 + e cosχ) + a2

p2 (1 + e cosχ)2 , (3.38)

where x is given in Eq.(3.27).
From the radial period Tr and the variation of ϕ in such period, the orbital

frequencies Ωr and Ωϕ are defined as

Ωr = 2π
Tr
, Ωϕ = ∆ϕ

Tr
. (3.39)

The phase of the emitted gravitational wave signal is related to (Ωr,Ωϕ) through
the frequency ωmn:

ωmn = mΩϕ + nΩr , (3.40)
with (m,n) ∈ Z, as explained in Chapter 5.

All bound equatorial orbits have p2 > x2(1 + e)(3 − e). Given a certain value of
the spin a and of the eccentricity e, the curve

p2
s = x2(1 + e)(3 − e) (3.41)

defines the separatrix in the e − p plane. If e = 0, the separatrix reduces to the
ISCO in the Kerr spacetime.
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Chapter 4

Extreme Mass Ratio Inspirals in
General Relativity and beyond

The Kerr metric presented in the previous chapter provides the description of the
background spacetime for Extreme Mass Ratio Inspirals. The primary is modeled as
an isolated Kerr black hole, which is perturbed by the secondary’s inspiral. In this
chapter we show the EMRI description in GR, with the basis of the perturbation
theory approach and of the self-force program. The last section is dedicated to
the theoretical modeling of EMRIs in beyond-GR theories with additional real and
massless scalar fields, while the massive scenario is left to Chapter 9.

4.1 EMRIs in General Relativity
General Relativity is described by the action

S [g,Ψ] = SEH [g] + SM [g,Ψ] , (4.1)
where g is the metric tensor, SM is the action of the matter fields Ψ and SEH is the
Einstein-Hilbert action given by

SEH =
∫
d4x

√
−g

16π R , (4.2)

with R being the Ricci scalar. By varying the action with respect to the metric
tensor, the Einstein fields equation are obtained:

Gµν = 8πTµν , (4.3)
where Gµν and Tµν are the Einstein tensor and the stress-energy tensor, respectively.
The L.H.S of the equations contain the metric tensor gµν and its derivative, while
the stress-energy tensor contains information on the matter sources.

For Extreme Mass Ratio Inspirals, asymmetric binary systems with mass ratio
q ≪ 1, the Einstein fields equation can be solved perturbatively in q in the framework
of black hole perturbation theory [39, 67, 72]. With such approach, the metric is
expanded order by order considering perturbations of a background metric g(0)

µν ,

gµν = g(0)
µν + qh(1)

µν + q2h(2)
µν +O(q3) . (4.4)

Inserting this expansion in the Einstein tensor we obtain
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Gµν [g] = Gµν [g(0)] + q δGµν [h(1)] + q2
(
δGµν [h(2)] + δ2Gµν [h(1)]

)
+O(q3) , (4.5)

where δGµν [h(i)] is linear in h(i)
µν and δ2Gµν [h(i)] includes ∂h(i)

µν∂h
(i)
αβ +h

(i)
µν∂2h

(i)
αβ . For

a background metric which is given as the solution of the vacuum Einstein equations
at zeroth order in q, the stress-energy tensor is expanded as

Tµν = qT (1)
µν + q2T (2)

µν +O(q3) , (4.6)
and the zeroth order in q gives the vacuum equations

Gµν [g(0)] = 0 . (4.7)
The solution of these equations, for the case of an axially symmetric, rotating,

asymptotically flat black hole, is given by the Kerr metric. At order by order in q,
we obtain different sets of differential equations.

The equations at the first order in the binary mass ratio are the linearized
Einstein equations

δGµν [h(1)] = 8πT (1)
µν . (4.8)

Once h(1) is obtained from the first order equations, h(2) is obtained from the
second order equations, i.e.

δGµν [h(2)] = 8πT (2)
µν − δ2Gµν [h(1)] , (4.9)

and so on.
Given a general metric gµν describing a spacetime, an object freely moving in

it follows geodesics of such metric. If we consider the motion with respect to a
background metric g(0)

µν , the object motion can be modeled as a geodesics motion with
respect to the background plus additional corrections due to the metric perturbations.
With this interpretation, the object can be thought as experiencing an external
“force”, which appear in the equation of motion expanded in q as

D2zµ

dτ2 = fµ
(0) + qfµ

(1) + q2fµ
(2) +O(q3) , (4.10)

where zµ(τ) is the perturbed worldline, τ the proper time with respect to the
background metric, D2zµ/dτ2 the covariant acceleration and fµ

(n) the covariant force
driving the acceleration. The zeroth-order fµ

(0) describes the geodesic motion and
takes value zero.

The first order, linearized Einstein equations (4.8) for perturbations of a Kerr
background are treated with the Newman-Penrose formalism [103] by following
the Teukolsky approach [36–38], discussed in Chapter 5. The inspiralling object is
skeletonized to a point-particle of mass mp, so that the stress energy tensor is given
by

T (1)
µν = mp

∫
δ(4)(x− yp(λ))√

−g
dyp

µ

dλ

dyp
ν

dλ
dλ , (4.11)

where yp is the wordline of the point-particle, λ the proper time and g the determinant
of the background Kerr metric. Such a term can also be obtained by varying the
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action (4.1), where the action of the matter fields SM is given by the action of a
point particle Sp with the form

Sp = −
∫
mp ds = −

∫
mp

√
gµν

dyµ
p

dλ

dyν
p

dλ
dλ . (4.12)

The complete adiabatic EMRIs description in General Relativity has been performed
by [68–71].

At the next orders, the secondary object cannot be treated as a point-particle,
due to divergence at the location at the particle and non-integrability issues. From
the second order, the finite-size of the secondary, inspiralling object and its in-
teraction with its own gravitational perturbations are taken into account. The
secondary object is treated as a singularity of given mass and spin, carrying the
body’s multipole moments [104].

The self-force program refers to the two timescale expansion [40, 105], which
considers the different two timescales that characterize EMRIs. One is the time of
the orbital evolution, To, while the other one is the time of the inspiral, Ti, with
To ≪ Ti. Indeed, the time of the inspiral scales as Ti ∼ M/q = M2/mp, while
To ∼ M so that To/Ti ∼ q [106].

In the action-angle approach, we define the angle variables [107,108]

qα ≡ (qt, qr, qθ, qϕ) , (4.13)
which describe the orbital motion of the secondary in suitable coordinates, and the
integrals

Ji ≡ (E,Lz, Q) , (4.14)
which correspond to the integral constants of the geodesic motion, i.e. the energy,
angular momentum and Carter constant, without the dependence of the secondary
mass. The motion of the small body around the central black hole is then described
by the two sets of equations

dqα

dλ
= ωα(J) + q gα(qθ, qr,J) +O(q2) ,

dJi

dλ
= q Gi(qθ, qr,J) +O(q2) ,

(4.15)

with λ a time variable.
The forcing terms gα and Gi are due to the first order self-force and can be

separated in i) an averaged part over the 2-torus parametrized by qr and qθ, and ii)
in an oscillatory part, so that

Gi(qθ, qr,J) = ⟨Gi(J)⟩ + δGi(qθ, qr,J) , (4.16)
where the averaged part is defined as

⟨Gi(J)⟩ = 1
2π2

∫ 2π

0
dqr

∫ 2π

0
dqθGi(qθ, qr,J)dλ , (4.17)

and the oscillatory part is defined by Eq. (4.16). The same applies to gα. The
forcing terms lead to conservative and dissipative effects on the orbital evolution.
The phase of the emitted GW signal can be schematically written as [105]
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Φ(t1, t2) =
∫ t2

t1
ω(t)dt

= Φdiss,1(q−1) + ΦRES(q−1/2) + Φcons,1(q0) + Φdiss,2(q0) + Φcons,2(q) +O(q2)
(4.18)

where in the parenthesis of each term the dependence of the extreme mas ratio q is
shown. The leading, adiabatic, term contributes to the GW phase by O(q−1).

The resonant term, indicated with ΦRES, contributes to the phase at O(q−1/2)
and is due to transient resonances of the Kerr spacetime. Indeed, the forcing terms
can be expanded in the Fourier series

Gi(qθ, qr,J) =
∑
kn

Gi;kn(J)ei(kqθ+nqr) . (4.19)

the averaged terms ⟨Gi(J)⟩ vanishes unless kqθ + nqr = 0. This equation is verified
if k = n = 0, or in the case of a transient resonance, which is defined by qθ and qr

being commensurate [61,74,109,110].

In the following we present the EMRI model in theories in which the gravitational
interaction is modified by an additional real and massless scalar field, stopping at
the leading order in the mass ratio description.

4.2 EMRIs with scalar fields
We consider a vast class of gravity theories in which the gravitational interaction

is modified by the addition of a new scalar field, which we assume to be real and
massless, described by the action

S [g, φ,Ψ] = S0 [g, φ] + αSc [g, φ] + SM [g, φ,Ψ] , (4.20)
where g is the metric tensor, φ is the additional scalar field, and Ψ are the matter
fields. The action S0 [g, φ] includes the Einstein-Hilbert action for the gravitational
field and the kinetic term for the scalar field

S0 =
∫
d4x

√
−g

16π

(
R− 1

2∂µφ∂
µφ

)
. (4.21)

The term SM [g, φ,Ψ] is the action of the matter fields Ψ. Finally, Sc [g, φ] describes
the non minimal coupling between the scalar and gravitational fields, where α is the
fundamental coupling constant of the theory. We assume Sc to be analytic in the
scalar field φ.

Theories considered and model of the primary
We consider theories described by the action (4.20) that can belong to one of

the two cases:

i) the theory satisfies a no-hair theorem, so that stationary black holes are simply
described by the Kerr metric;
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ii) the theory evades no-hair theorems but has a dimensionful coupling constant,
[α] = massn with n ≥ 2, and the black hole solutions are continuously connected
to the corresponding GR solution as α → 0. Examples of these theories are
sGB gravity and dCS gravity. Since the black hole spacetime is continuously
connected to the Kerr spacetime as α → 0, and since the only dimensionful
scale of the Kerr metric is the mass M of the black hole, any correction to GR
must depend on a dimensionless parameter ζ defined as:

ζ ≡ α

Mn
. (4.22)

If we describe EMRIs with q = mp/M ≪ 1 in these theories, for the parameter
ζ we have

ζ = α

Mn
= qn α

mn
p

= qnζp . (4.23)

Bounds on α obtained from current astrophysical observations imply ζp < 1 [111].
Hence, we obtain ζ ≪ 1, so that any GR correction, which must depends on ζ, is
suppressed by powers of the mass ratio. The primary spacetime is then adequately
described by the Kerr metric to order O(qnζp) in the mass ratio.

We can conclude that, for both classes of theories identified, at leading order in
the mass ratio, the spacetime of the background is given by the Kerr metric, and
the EMRI can be described as the motion of a point particle in Kerr spacetime. As
shown in the following, at leading order in q, the modifications to General Relativity
affect the motion of the inspiralling particle, but do not affect the background
spacetime, given by the Kerr metric.

We remark that our approach is valid also for possible theories that do not
belong to either of the two classes, but for which in the specific EMRIs the massive
BH can be well approximated by Kerr (e.g. it just happens to carry a negligible
scalar charge). Moreover, we stress that a theory in which the primary object of an
EMRI is not described with good accuracy by the Kerr metric would exhibit larger
deviations from GR in the gravitational waveform than those found in this thesis.
Hence, our results can be considered as a conservative estimate.

Model of the secondary
In EMRIs we can identify two separate lengthscale relative to different spacetime

regions, with one given by the spacetime around the inspiralling object and the other
one of the exterior spacetime, which is the spacetime solution in the absence of the
body. The lengthscale of the inspiralling body is much smaller then the lengthscale
of the exterior spacetime. The secondary can then be modeled with the skeletonized
approach [112–115] and treated as point-particle. The action of the matter fields
SM can be replaced by the particle action Sp, which is the integral of the scalar
function m(φ) over the worldline of the particle yµ

p (λ) (in a reference frame {yµ}):

Sp = −
∫
m (φ) ds = −

∫
m (φ)

√
gµν

dyµ
p

dλ

dyν
p

dλ
dλ , (4.24)

where m(φ) is a scalar function of the scalar field, to be evaluated at the location of
the particle, and accounts for the coupling of the body to its scalar field environment.
This approximation holds at linear order in the mass ratio. We remark that we do
not make any assumptions on the nature of the secondary, which can be either a
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black hole or a neutron star.

In the following, we derive the fields equations by varying the action with respect
to the fields.

4.2.1 Gravitational field equation
By varying the action (4.20) with respect to the gravitational field, we obtain

Gµν = T scal
µν + αT c

µν + T p
µν , (4.25)

where T scal
µν is obtained (together with Gµν) by varying S0, and is given by

T scal
µν = 1

2∂µφ∂νφ− 1
4gµν (∂φ)2 . (4.26)

The term αT c
µν is the stress-energy tensor associated to the coupling between the

scalar and the gravitational field, it is given by the variation of αSc,

αT c
µν = −16πα√

−g
δSc

δgµν
. (4.27)

Finally, T p
αβ is the stress-energy tensor of the point particle, obtained from the

variation of Sp and given by

T p
αβ = 8π

∫
m (φ) δ

(4)(x− yp(λ))√
−g

dyp
α

dλ

dyp
β

dλ
dλ . (4.28)

We describe the EMRI system using perturbation theory with respect to the
mass ratio q ≪ 1. We expand the scalar field as φ = φ0 + φ1, where φ0 is the
constant background field, and φ1 is the perturbation induced by the secondary.

We can then show that both the terms T scal
µν and αT c

µν can be neglected at leading
(adiabatic) order in q, as they contribute only to higher (post-adiabatic) orders in
the small-ratio expansion. Indeed, the stress-energy tensor of the scalar field (4.26) is
quadratic in the perturbation φ1, which means that the term T scal

µν can be neglected.
Concerning the term αT c

µν , we see that [S0] = (mass)2 and [Sc] = (mass)2−n, which
in an EMRI is evaluated on the background of the central black hole, where the only
dimensionful scale is its mass M . Hence, we expect that

Sc ∼ M−nS0 . (4.29)
Looking then at αT c

µν we see that

αT c
µν = −16πα√

−g
δSc

δgµν
∼ −16παM−n

√
−g

δS0
δgµν

, (4.30)

so that, since αM−n = ζ ≪ 1,

αT c
µν ∼ ζGµν ≪ Gµν , (4.31)

and it can be neglected.
The final field equation for the gravitational field is then given by

Gµν = T p
µν = 8π

∫
m(φ)δ

(4)(x− yp(λ))√
−g

dyα
p

dλ

dyβ
p

dλ
dλ . (4.32)
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4.2.2 Scalar field equation
The scalar field equation is obtained by varying the action (4.20) with respect to

the scalar field

□φ+ 16πα√
−g

δSc

δφ
= 16π

∫
m′ (φ) δ

(4)(x− yp(λ))√
−g

dλ , (4.33)

where m′(φ) = dm(φ)/dφ. Even in this case, the variation of the coupling term of
the action with respect to the field can be neglected, since

16πα√
−g

δSc

δφ
∼ 16παM−n

√
−g

δS0
δφ

∼ ζ□φ ≪ □φ , (4.34)

so that the scalar field equation is given by

□φ = 16π
∫
m′ (φ) δ

(4)(x− yp(λ))√
−g

dλ . (4.35)

The two functions m(φ) and m′(φ) are evaluated at the value of the scalar field
in the location of the particle, which in our case is φ0, and are determined uniquely
by the properties of the secondary. Considering the scalar field equation in a region
inside the world-tube of the inspiralling body but far away enough to have a metric
which can be written as a perturbation of flat spacetime, the equation (4.35) become:

□φ = 0 . (4.36)

Thus, in a reference frame {x̃µ} centered on the body, the scalar field can be written
as:

φ = φ0 + mpd

r̃
+O

(
m2

p

r̃2

)
, (4.37)

where d is the dimensionless scalar charge of the body. Inserting the solution (4.37)
inside equation (4.35) and evaluating it at the center of the particle r̃ = 0, we obtain

m′(φ0)
mp

= −d

4 . (4.38)

Furthermore, since in the weak-field limit the (tt)-component of the particle’s stress
energy tensor, given by

T p tt = 8πm(φ0)δ(3)(xi − yi
p(λ)) +O

(
mp

r̃

)
, (4.39)

reduces to the matter density of the particle,

ρ = mp δ
(3)
(
xi − yi

p(λ)
)
, (4.40)

we obtain the relation

m(φ0) = mp . (4.41)
Hence, replacing the relations (4.38) and (4.41) for the scalar function m(φ) in
the field equations (4.32) and (4.35), we finally obtain the field equations for the
gravitational and the scalar field, given respectively by
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Gµν = T p
µν = 8πmp

∫
δ(4)(x− yp(λ))√

−g
dyα

p

dλ

dyβ
p

dλ
dλ , (4.42)

□φ = −4πdmp

∫
δ(4)(x− yp(λ))√

−g
dλ . (4.43)

These equations are the key ingredients of our approach, and lead to fundamental
results. The gravitational field equations, Eqs. (4.42), coincide with those of the
GR case (see Eqs. (4.8) and (4.11)). The scalar field equation (4.43), instead, has
a source term whose magnitude is controlled by the dimensionless scalar charge
carried by the secondary. Therefore, all changes in the EMRI evolution given by the
extra scalar field are uniquely and universally specified by the value of d. For many
gravity theories, the latter can be uniquely mapped to the theoretical parameters
which control deviations from GR. As we will show in the chapters relative to the
parameter estimation analyses, in such cases, future measurements of d with LISA
observations, can be translated to constraints on the fundamental parameters that
characterize beyond GR theories [116].

The presence of the source term in the scalar field equation causes the emission
of extra energy flux, which affects the EMRIs evolution. The gravitational and scalar
emissions are computed by solving both the fields in linear perturbation theory, as
explained in the next chapter.

We remark that our study considers the leading order in the binary mass ratio
only. A first investigation which extends our approach in the EMRI modeling with
scalar fields to higher corrections has been recently carried out by [117].
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Chapter 5

Linear perturbation theory

In the previous chapter we derived the fields equations for the gravitational and
scalar field,

Gµν = 8πmp

∫
δ(4)(x− yp(λ))√

−g
dyα

p

dλ

dyβ
p

dλ
dλ , (5.1)

and

□φ = −4πdmp

∫
δ(4)(x− yp(λ))√

−g
dλ , (5.2)

respectively. In this chapter, we solve such equations in linear perturbation theory.
We follow the Teukolsky approach based on the Newman-Penrose formalism which
considers perturbations of the curvature. Starting from the Teukolsky equation for
a general perturbation with spin s, we first focus on the scalar perturbation with
s = 0, and then to the gravitational ones with s = −2.

5.1 The Teukolsky equation
A general linear field perturbation satisfies the Teukoslsky equation [37]

[(
r2 + a2)2

∆ − a2 sin θ2
]
∂2

0ψ
(s) + 4aMr

∆ ∂0∂ϕψ
(s) +

[
a2

∆ − 1
sin θ2

]
∂2

ϕψ
(s)

− ∆−s∂r

(
∆s+1∂rψ

(s)
)

− 1
sin θ∂θ

(
sin θ∂θψ

(s)
)

− 2s
[
a (r −M)

∆ + i
cos θ
sin θ2

]
∂ϕψ

(s)

− 2s
[

2M(r2 − a2)
2∆ − r − ia cos θ

]
∂0ψ

(s) + (s2 cot θ2 − s)ψ(s) = 4πΣT (s) , (5.3)

where the field ψ(s) stands for the tensorial (s = −2) and scalar (s = 0) perturbation,
respectively,

ψ(−2) = (r − ia cos θ)4 Ψ4 , ψ(0) = φ . (5.4)
The quantity Ψ4 is known in the Newman-Penrose formalism as one of the Weyl
scalars, a contraction of the Weyl tensor (i.e. the Riemann tensor in vacuum) on
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a null tetrad [118]. Ψ4 describes the only two radiative degrees of freedom and
contains all the information regarding the gravitational radiation.

Indeed, considering a gravitational wave on a flat space-time, far from the source,
propagating along the z-axis, so that

R0i0j = −1
2 ḧ

T T
ij (5.5)

where hT T
11 = −hT T

22 = h+ and hT T
12 = hT T

21 = h×. The superscripts indicate the
transverse traceless gauge, while the “+” and “×” indicate the plus and cross
polarization, respectively. The other components of the Riemann tensor vanish. The
Weyl scalar Ψ4 then becomes

Ψ4(r → ∞) = 1
2
(
ḧ+ − iḧ×

)
. (5.6)

The source term T (s) is related to the source terms of Eqs. (5.1)-(5.2).
The Teukolsky equation is solved by separating the radial and the angular

dependence of both the field perturbation and the source term, and considering the
Fourier Transform

ψ(s)(t, r, θ, ϕ) =
∫

dω
∑
ℓm

R̃
(s)
ℓm(r, ω)S(s)

ℓm(θ, ω)eimϕe−iωt , (5.7)

4πΣT (s) =
∫

dω
∑
ℓm

J̃
(s)
ℓm(r, ω)S(s)

ℓm(θ, ω)eimϕe−iωt . (5.8)

By inserting these expressions in the Teukolsky equation (5.3), two decoupled
equations are obtained, one for the angular and one for the radial dependence of the
perturbation. The angular one is given by

[
1

sin θ
d
dθ

(
sin θ d

dθ

)
− γ2 sin2 θ − (m+ s cos θ)2

sin2 θ

− 2γs cos θ + s+ 2mγ + sλℓm

]
S

(s)
ℓm(θ, γ) = 0 , (5.9)

where γ = aω and sλℓm is the spheroidal eigenvalue. The functions S(s)
ℓm are known

as the spin-weighted spheroidal harmonics, and, for real values of γ, they satisfy the
following orthogonality relation∫

S
(s)
ℓm(θ, γ)eimϕS

(s) ⋆
ℓ′m′ (θ, γ)e−im′ϕdΩ = δℓℓ′δmm′ . (5.10)

The superscript “⋆” indicates the complex conjugate and dΩ = sin θdθdϕ. The radial
equation is given by

∆−s d
dr

[
∆s+1 dR̃(s)

ℓm

dr

]
+
[
K2 − 2is(r −M)K

∆ + 4isωr − sλℓm

]
R̃

(s)
ℓm = J̃

(s)
ℓm , (5.11)

where K = (r2 + a2)ω −ma and sλℓm is the spheroidal eigenvalue of Eq. (5.9). The
radial function is solved introducing the auxiliary function

Y (ω, r) ≡ ∆s/2
√
r2 + a2R̃(ω, r) , (5.12)



5.2 Scalar perturbations 35

that reduce the radial equation to a standard Schroedinger-like equation

d2

dr2
⋆

Y + V (ω)Y = JY , (5.13)

where the toirtoise coordinate r⋆ is defined as

dr⋆

dr = r2 + a2

∆ (5.14)

and the expression for the potential is given in Eq. (5.18) and (5.48) for the scalar
and gravitational case respectively.

The spheroidal harmonics and their eigenvalue can be obtained with the Leaver
method [119]. In our works, we computed them by making use of the Black
Hole Perturbation Toolkit, which implemented such method using the software
Mathematica [120,121].

In the following sections, we will present separately first the scalar and then the
gravitational radial perturbation.

5.2 Scalar perturbations
The radial equation (5.11) for the scalar perturbation with s = 0 becomes

d
dr

(
∆dR̃ℓm(r, ω)

dr

)
+
(
K2

∆ − λℓm

)
R̃ℓm(r, ω) = J̃ℓm , (5.15)

with K = (r2 + a2)ω −ma and λℓm the angular eigenvalue of Eq. (5.9) with s = 0.
In the following we drop the multipolar indexes (ℓ,m) for simplicity, unless specified
differently. In order to solve the radial equation we use the auxiliary function

Y (ω, r) ≡
√
r2 + a2R̃(ω, r) , (5.16)

so that Eq. (5.15) becomes

d2

dr2
⋆

Y + V (ω)Y = JY , (5.17)

where the potential V (ω) and the source term JY are given by

V (ω) = K2 − λ∆
(r2 + a2)2 −G2 − dG

dr⋆
, (5.18)

JY =J̃ ∆
(a2 + r2)3/2 , (5.19)

with G = r∆/(r2 + a2)2 and r⋆ is the tortoise coordinate defined by (5.14).
The master equation Eq. (5.17) has the form of a Schroedinger equation with a

source term. In perturbation theory, it is solved with the Green functions method,
finding the homogeneous solutions first and then integrating them over the source
term to find the general solution. The behaviour of the homogeneous master equation
at the horizon and at infinity is given by
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d2

dr2
⋆

Y + k2Y = 0 for r → r+ ,

d2

dr2
⋆

Y + ω2Y = 0 for r → ∞ ,

(5.20)

where k = ω −mΩ+ and Ω+ is the angular velocity of the horizon, i.e. Ω+ = a
2Mr+

,
with r+ = M +

√
M2 − a2 (see Eq. (3.2)). The homogeneous solutions Y−/Y+ which

satisfy the conditions of purely ingoing/outgoing wave at the horizon/infinity have
the following asymptotic behaviour:{

Y− = e−ikr⋆ for r → r+ ,

Y− = Aine
−iωr⋆ +Aoute

iωr⋆ for r → ∞ ,
(5.21)

{
Y+ = Bine

−ikr⋆ +Boute
ikr⋆ for r → r+ ,

Y+ = eiωr⋆ for r → ∞ .
(5.22)

The general solution for Y (ω, r) is then obtained by integrating the former over JY :

Y = Y+

∫ r⋆

−∞

Y−JY dr⋆

WY
+ Y−

∫ +∞

r⋆

Y+JY dr⋆

WY
, (5.23)

where WY = Y ′
+Y− − Y+Y

′
−, is the Wronskian and primes denote derivatives with

respect to r⋆. From Eq. (5.16) we also obtain the asymptotic behavior of R̃−,+:
R̃− = e−ikr⋆

2Mr+
for r → r+ ,

R̃− = Ain
r
e−iωr⋆ + Aout

r
eiωr⋆ for r → ∞ ,

(5.24)


R̃+ = Bin

2Mr+
e−ikr⋆ + Bout

2Mr+
eikr⋆ for r → r+ ,

R̃+ = eiωr⋆

r
for r → ∞ .

(5.25)

A general solution for R̃ can be constructed as in (5.23).
The function Y at infinity and at horizon is then given by

Y (r → ∞) = eiωr⋆

∫ +∞

−∞

Y−JY dr⋆

WY
,

Y (r → r+) = e−ikr⋆

∫ +∞

−∞

Y+JY dr⋆

WY
.

(5.26)

Finally, we define the amplitudes

δφ+,−
ℓmω =

∫ +∞

−∞

Y−,+JY dr⋆

WY
, (5.27)

which will be used for the computations of the energy and angular momentum
fluxes. Before providing the expresisons for such quantities, in the following we focus
on the source terms.
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5.2.1 Source term for the scalar perturbations
The source term of the scalar field equation Eq. (5.2) is related to the right hand

side of the Teukolsky equation (5.3) and can be simplified as

4πΣT (0) = −4πΣdmp

∫
δ(4)(x− yp(λ))√

−g
dλ

= −4πΣdmp

∫
δ(t− tp(λ))δ(r − rp(λ))δ(θ − θp(λ))δ(ϕ− ϕp(λ))√

−g
dλ

dt
dt

= −4πdmp
δ(r − rp(t))δ(θ − θp(t))δ(ϕ− ϕp(t))

sin θṫ
,

where ṫ = dt/dλ is given in Eq. (3.10) and the determinant of the Kerr metric is
g = −Σ2 sin2 θ.

The functions rp(t), θp(t) and ϕp(t) describe the orbit of the inspiralling particle.
We consider equatorial circular and equatorial eccentric geodesics.

Circular equatorial orbit

For equatorial circular geodesics, the radial and the polar coordinate are fixed
rp(t) = rp, θp(t) = π/2, and the azimuthal coordinate ϕ is given by ϕ(t) = ωpt,
where ωp is given in Eq. (3.15). Hence, the source term becomes

4πΣT (0) = −4πdmp
δ(r − rp)δ(θ − π/2)δ(ϕ− ωpt)

| sin θ|ṫ
.

The term J̃ℓm of Eq. (5.8) is found projecting the source term on the spheroidal
harmonics and applying the inverse Fourier transform, i.e.

J̃ℓm(ω, r) = 1
2π

∫ ∫
4πΣT (0) S⋆

ℓm(θ)e−imϕeiωtdΩ dt

= −4πdmp
S⋆

ℓm(π/2)δ(ω −mωp)δ(r − rp)
ṫ

. (5.28)

The term JY can be directly obtained by replacing (5.28) onto Eq. (5.19). Substi-
tuting it into (5.27), we find the amplitudes that can be written introducing the
terms δφ+,−

ℓm as
δφ+,−

ℓmω = δφ+,−
ℓm δ(ω −mωp) . (5.29)

The terms δφ+,−
ℓm are then used to compute the scalar emission.

Eccentric equatorial orbit

For equatorial eccentric geodesics, θp(t) is fixed to π/2, while rp(t) remains a
function of the coordinate time. As done for the circular case, we obtain the terms
J̃ℓm by projecting the source term on the spheroidal harmonics and applying the
inverse fourier transform

J̃ℓm = −2d
∫ +∞

−∞

mpδ[r − rp(t)]
ṫ

S⋆
ℓme

i[ωt−mϕp(t)]dt , (5.30)

where the spheroidal harmonics S⋆
ℓm are computed at θ = π/2. We find JY with Eq.

(5.19) and we replace it in the amplitudes (5.27) so that
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δφ−,+
ℓmω =

∫ +∞

−∞
I−,+ [rp(t)] ei[ωt−mϕp(t)]dt, (5.31)

with
I−,+ [rp(t)] =

[
Y−,+
WY

−2dmp

(a2 + r2)1/2
S⋆

ℓm

ṫ

]
r=rp(t)

. (5.32)

Finally, we define the functions

α(t)−,+ = I−,+[r(t)]e−im[ϕ(t)−Ωϕt] . (5.33)

They are periodic in r with period Tr, and thus they can be expanded as a Fourier
series as

α(t)−,+ =
+∞∑

n=−∞
α̂−,+

n e−inΩrt . (5.34)

The frequencies Ωi with i = (ϕ, r) are defined in Eq. (3.39) of Chapter 3. Replacing
the expression of I[rp(t)] in terms of the Fourier expansion of α(t) in Eq. (5.31) and
performing the time integral we finally obtain

δφ−,+
ℓmω =

+∞∑
n=−∞

δφ̂−,+
ℓmnδ(ω − ωmn) , (5.35)

where ωmn = mΩϕ + nΩr. The coefficients δφ̂−,+
ℓmn = 2παn are given by the integral

δφ̂−,+
ℓmn = 2π

Tr

∫ Tr

0
α(t)einΩrtdt . (5.36)

Substituting the expression (5.33) for α(t) and changing the integration variable
from t to χ (defined in Chapter 3) yields:

δφ̂−,+
ℓmn =Ωr

∫ 2π

0
dχṼt(χ)I−,+(χ)

J̃(χ)
√
Ṽr(χ)

ei[ωmnt(χ)−mϕ(χ)]

=Ωr

∫ π

0
dχṼt(χ)I−,+(χ)

J̃(χ)
√
Ṽr(χ)

[
ei[ωmnt(χ)−mϕ(χ)] + e−iωmnt(χ)+imϕ(χ)

]
. (5.37)

The amplitudes δφ̂−,+
ℓmn computed through Eq. (5.37) are needed to compute the

energy and angular momentum fluxes emitted by the binary.

Due to symmetries in the Teukolsky equation (5.11), the amplitudes δφ̂+,−
ℓmn

satisfy the relation
δφ̂+,−

ℓ,−m,−n = (−1)ℓ ¯δφ̂+,−
ℓ,m,n , (5.38)

where the overbar denotes the complex conjugate.
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5.2.2 Energy and angular momentum scalar fluxes
The energy flux associated to the scalar field can be derived through the effective

stress-energy tensor for φ, as previously done e.g. in [75] and which coincides with
the Isaacson tensor in GR [122,123]. The stress-energy tensor for the scalar field is
given in Eq. (4.26) and the energy flux reads:

Ė±
scal = dE±

scal
dt = ∓∆

∫
T scal

tr dΩ , (5.39)

where T scal
tr = (16π)−1φ,tφ

⋆
,r and the upper (lower) sign indicates the emission at

infinity (horizon).
The time derivative of φ =

∑
ℓ,m φℓm is simply given by (φℓm),t = −iωmnφℓm

(see Eq. (5.7)), while to compute the derivatives with respect to the radial coordinate
we note that, for equatorial eccentric orbits,{

Yℓm = δφ+
ℓmωe

iωr for r → ∞ ,

Yℓm = δφ−
ℓmωe

−ikr⋆ for r → r+ ,
(5.40)

therefore 
(φ⋆

ℓm),r = −iωmnφ
⋆
ℓm for r → ∞ ,

(φ⋆
ℓm),r = ikmn

r2 + a2

∆ φ⋆
ℓm for r → r+ .

(5.41)

Using these relations and the orthogonality condition of the spheroidal functions
(5.10) we obtain the energy fluxes for the scalar field in the frequency domain:

Ė
(+)
scal = 1

16π
∑

ℓ,m,n

ω2
mn|δφ̂+

ℓmn|2 , (5.42)

Ė
(−)
scal = 1

16π
∑

ℓ,m,n

ωmnkmn|δφ̂−
ℓmn|2 , (5.43)

with kmn ≡ ωmn −mΩ+.

L̇
(+)
scal = 1

16π
∑

ℓ,m,n

mωmn|δφ̂+
ℓmn|2 , (5.44)

L̇
(−)
scal = 1

16π
∑

ℓ,m,n

mkmn|δφ̂−
ℓmn|2 . (5.45)

Expressions for equatorial circular orbits can be straightforwardly obtained
from the previous ones, replacing ωmn with mωp, kmn with k ≡ mωp − mΩ+, the
amplitudes δφ̂−

ℓmn with δφℓm of Eq. (5.29).

5.3 Gravitational perturbations
The radial equation (5.11) for the gravitational perturbation with s = −2

becomes

∆2 d
dr

(
1
∆

dR̃ℓmω

dr

)
+
(
K2 + 4i(r −M)K

∆ − 8iωr − λ

)
R̃ℓmω(r) = Iℓmω(r) , (5.46)
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with K = (r2 + a2)ω −ma and λ is the angular eigenvalue of Eq.(5.9) with s = −2.
The source term Iℓmω corresponds to J̃ℓm of Eq. (5.11) and it is treated in Section
5.3.1.

As done for the scalar case, we define the auxiliary function

Y = ∆−1
√
r2 + a2R̃ , (5.47)

so that the homogeneous radial equation takes the form of the Schroedinger-like
equation

d2

dr2
⋆

Y + K2 + 4i(r −M)K − ∆(8iωr + λ)
(r2 + a2)2 −G2 − dG/dr⋆

Y = 0, (5.48)

where G is defined as
G ≡ −2(r −M)

r2 + a2 + r∆
(r2 + a2)2 , (5.49)

and r⋆ is defined in (5.14).
The homogeneous solutions Y−, which satisfies the condition of purely ingoing

wave at the horizon, and Y+, which satisfies the condition of purely outgoing wave
at infinity, have the following asymptotic behaviour:

Y− = B̃hole
ℓmω∆e−ikr⋆ for r → r+ ,

Y− = Bin
ℓmω

r2 e−iωr⋆ +Bout
ℓmωr

2eiωr⋆ for r → ∞ ,
(5.50)

{
Y+ = D̃in

ℓmω∆e−ikr⋆ + D̃out
ℓmω∆eikr⋆ for r → r+ ,

Y+ = D∞
ℓmωr

2eiωr⋆ for r → ∞ ,
(5.51)

where k = ω −mΩ+ and Ω+ = a/(2Mr+). From the relation (5.47) between R̃ and
Y we obtain the boundary condition for the homogeneous solutions:

R̃−
ℓmω = Bhole

ℓmω∆2e−ikr⋆ for r → r+ ,

R̃−
ℓmω = Bin

ℓmω

r
e−iωr⋆ +Bout

ℓmωr
3eiωr⋆ for r → ∞ ,

(5.52)

{
R̃+

ℓmω = Din
ℓmω∆2e−ikr⋆ +Dout

ℓmωe
ikr⋆ for r → r+ ,

R̃+
ℓmω = D∞

ℓmωr
3eiωr⋆ for r → ∞ .

(5.53)

where Bhole
ℓmω = B̃hole

ℓmω/(2Mr+), Din(out)
ℓmω = D̃

in(out)
ℓmω /(2Mr+). Finally, the general

solution for R̃ℓmω is given by R̃ℓmω(r) = Z−
ℓmω(r)R̃+

ℓmω(r) + Z+
ℓmω(r)R̃−

ℓmω(r) where,
following [68],

Z−
ℓmω(r) = 1

2iωBin
ℓmωD

∞
ℓmω

∫ r

r+
dr′ R̃

−
ℓmω(r′)Iℓmω(r′)

∆(r′)2 , (5.54)

Z+
ℓmω(r) = 1

2iωBin
ℓmωD

∞
ℓmω

∫ ∞

r
dr′ R̃

+
ℓmω(r′)Iℓmω(r′)

∆(r′)2 . (5.55)

Defining Z−
ℓmω ≡ Z−

ℓmω(r → ∞), Z+
ℓmω ≡ Z+

ℓmω(r → r+), the asymptotic radial
solutions read:

R̃ℓmω(r → ∞) = Z−
ℓmωD

∞
ℓmωr

3eiωr⋆ , (5.56)
R̃ℓmω(r → r+) = Z+

ℓmωB
hole
ℓmω∆2e−ikr⋆ . (5.57)
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It is convenient to absorb the factors D∞
ℓmω and Bhole

ℓmω into Z−
ℓmω and Z+

ℓmω, such
that:

Z−
ℓmω(r) = 1

2iωBin
ℓmω

∫ r

r+
dr′ R̃

−
ℓmω(r′)Iℓmω(r′)

∆(r′)2 , (5.58)

Z+
ℓmω(r) = Bhole

ℓmω

2iωBin
lmωD

∞
ℓmω

∫ ∞

r
dr′ R̃

+
ℓmω(r′)Ilmω(r′)

∆(r′)2 , (5.59)

and

R̃ℓmω(r → ∞) = Z−
ℓmωr

3eiωr⋆ , (5.60)
R̃ℓmω(r → r+) = Z+

ℓmω∆2e−ikr⋆ . (5.61)

The coefficients Z−,+
ℓmω are needed to calculate the energy flux at horizon and at

infinity. However, since in Eq. (5.52) the outgoing solution grows with a coefficient
r4 relative to the ingoing coefficient, the ingoing solution is completely swamped,
and obtaining Bin

ℓm is extremely challenging. The reason for this difficulty is that
the potential V (r) in Eq. (5.46) of the Teukolsky equation is long ranged. Sasaki &
Nakamura [124] found a solution to this problem by transforming the Teukolsky
equation into an equation featuring a short-ranged potential. Other possible methods
to solve the Teukolsky equation are the Mano-Suzuki-Takasugi method [125] and an
approach that makes use of a hyperboloidal foliation [126,127].

5.3.1 Source term for the gravitational perturbations
The source term for the gravitational perturbations is given by

Iℓmω(r) = 4
∫
dΩdt Σ

ρ4 (B′
2 +B′∗

2 )Sℓmω(θ)e−imϕeiωt, (5.62)

with

B′
2 = −ρ8ρ̄

2 L−1
[
ρ−4L0

(
ρ−2ρ̄−1Tnn

)]
− ∆2ρ8ρ̄

2
√

2
L−1

[
ρ−4ρ̄2J+

(
ρ−2ρ̄−2∆−1Tnm̄

)]
,

(5.63)

B′∗
2 = −∆2ρ8ρ̄

2
√

2
J+
[
ρ−4ρ̄2∆−1L−1

(
ρ−2ρ̄−2Tnm̄

)]
− ∆2ρ8ρ̄

4 J+
[
ρ−4J+

(
ρ−2ρ̄Tm̄m̄

)]
,

(5.64)

and ρ = 1/(r− ia cos θ), ρ̄ = 1/(r+ ia cos θ). The two operators J+ and Ls, together
with its hermitian conjugate L†

s, are defined as:

J+ = ∂r + iK(r)
∆ , (5.65)

Ls = ∂θ +m csc θ − aω sin θ + s cot θ, (5.66)
L†

s = ∂θ −m csc θ + aω sin θ + s cot θ. (5.67)

The functions B′
2 and B′∗

2 depend on the stress-energy tensor of the inspiralling
particle, which is given in (4.11). Integrating it in dt, it becomes
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Tαβ(r, θ, ϕ, t) = mp
uαuβ

Σ sin θṫ
δ[r − r(t)]δ[θ − θ(t)]δ[ϕ− ϕ(t)], (5.68)

where ṫ is given in (3.6). The components Tnn, Tnm̄ and Tm̄m̄ present in the eq.
(5.63) and (5.64) are obtained by projecting the stress-energy tensor Tαβ onto the
Newman-Penrose null tetrad legs n, m̄: Tnn = Tαβnαnβ, etc. The components of
the null tetrad legs are given by [118]:

nα = 1
2

(
∆
Σ , 1, 0,−a∆ sin2 θ

Σ

)
, (5.69)

m̄α = ρ

2
(
ia sin θ, 0,Σ,−i(r2 + a2) sin θ

)
. (5.70)

Hence, the components of the projected stress-energy tensor are given by:

Tab = Cab

sin θ δ[r − r(t)]δ[θ − θ(t)]δ[ϕ− ϕ(t)], (5.71)

where the coefficients Cab are

Cnn = mp

4Σ3ṫ

[
E(r2 + a2) − aLz

]2
, (5.72)

Cnm̄ = − mpρ

2
√

2Σ2ṫ

[
E(r2 + a2) − aLz

] [
i sin θ

(
aE − Lz

sin2 θ

)
+ Σdθ

dτ

]
, (5.73)

Cm̄m̄ = mpρ
2

2Σṫ

[
i sin θ

(
aE − Lz

sin2 θ

)
+ Σdθ

dτ

]
. (5.74)

As written, the sign of dθ/dτ , which square is given in Eq.(3.4), is ambiguous,
depending on whether θ is increasing or decreasing. However, in the following we
will focus on equatorial orbits only, for which dθ/dτ = 0.

In the following, we consider the three different types of orbits and we present
the analytic form of the source term in the three cases.

Circular equatorial orbit

For the equatorial circular case rp(t) = rp, θp(t) = π/2, and ϕ(t) = ωpt, where
ωp is given in Eq.(3.15). Hence, the source term becomes

Iℓmω(r) =
∫
dt∆2ei[ωt−mωp] [[Ann0 +Anm̄0 +Am̄m̄0] δ(r − rp)+

∂r ([Anm̄1 +Am̄m̄1] δ(r − rp)) + ∂2
r [Am̄m̄2 δ(r − rp)]

]
, (5.75)

with
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Ann0 = −2ρ−2ρ̄−1Cnn

∆2 L†
1

(
ρ−4L†

2(ρ3Sℓm)
)
, (5.76)

Anm̄0 = −2
√

2ρ−3Cnm̄

∆

[(
iK

∆ + ρ+ ρ̄

)
L†

2Sℓm −
(
K

∆

)
a sin θSℓm(ρ̄− ρ)

]
, (5.77)

Am̄m̄0 = −Sℓmρ
−3ρ̄Cm̄m̄

[
−
(
K

∆

)2
+ 2iρK∆ − i∂r

(
K

∆

)]
, (5.78)

Anm̄1 = 2
√

2ρ−3Cnm̄

∆
[
L†

2Sℓm + iaρ sin θ(ρ̄− ρ)Sℓm

]
, (5.79)

Am̄m̄1 = −2Sℓmρ
−3ρ̄Cm̄m̄

(
ρ+ iK

∆

)
, (5.80)

Am̄m̄2 = −Sℓmρ
−3ρ̄Cm̄m̄ , (5.81)

and the C coefficients are given in Eqs. (5.72)-(5.74) with θ = π/2 and dθ/dτ = 0.
By inserting the expression of Iℓmω in (5.59) and (5.58) and integrating in the
radial and the time coordinate, we obtain the final form of the amplitudes Z−,+

ℓm for
equatorial circular orbits:

Z−
ℓmω = πδ(ω −mωp)

iωBin
ℓmk

[
R−

ℓmω (Ann0 +Anm̄0 +Am̄m̄0)

−
dR−

ℓmω

dr
(Anm̄1 +Am̄m̄1) + d2R−

ℓmω

dr2 Am̄m̄2

]
, (5.82)

Z+
lmω = −πc0δ(ω −mωp)

4iω3dℓmB
in
ℓm

[
R+

ℓmω (Ann0 +Anm̄0 +Am̄m̄0)

−
dR+

ℓmω

dr
(Anm̄1 +Am̄m̄1) + d2R+

ℓmω

dr2 Am̄m̄2

]
. (5.83)

Here the functions R−,+
lm and their derivatives are calculated at r = rp.

Eccentric equatorial orbit

For equatorial eccentric geodesics θp(t) = π/2. Hence, the source term becomes
[70]

Z−,+
ℓmω = mp

2iωBin

∫ ∞

−∞
dteiωt−imϕ(t)I−,+

ℓmω[r(t), θ(t)] , (5.84)

where

I−,+
ℓmω =

[
Rin,up

ℓmω {Ann0 +Am̄n0 +Am̄m̄0}

−
dRin,up

ℓmω

dr
{Am̄n1 +Am̄m̄1}

+d2Rin,up
ℓmω

dr2 Am̄m̄2

]
r=r(t),θ=θ(t)

. (5.85)
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Introducing u as the inverse of the orbital radius, so that u(χ, p, e) = (1 + e cosχ)/p,
the coefficients A are given by

Am̄n0(u) = 2√
π

Cm̄n

u(1 − 2Mu+ a2u2)2

[
2a2u3 + [ia(aω −m) − 4M ]u2 + 2u+ iω

]
×
[
∂S

∂θ
(π/2) + (aω −m)Sℓm(π/2)

]
,

Am̄m̄0(u) = 1√
2π

Cm̄m̄S(π/2)
u2(1 − 2Mu+ a2u2)2

{
− 2ia3(aω −m)u5 + a(aω −m){6iM

+a(aω −m)}u4 − 4ia(aω −m)u3 + 2ω{iM + a(aω −m)}u2 − 2iωu+ ω2
}
,

Am̄n1(u) = 2√
π

Cm̄n

u(1 − 2Mu+ a2u2)

[
∂S

∂θ
(π/2) + (aω −m)S(π/2)

]
,

Am̄m̄1(u) = −
√

2
π

Cm̄m̄S(π/2)
u2(1 − 2Mu+ a2u2)

[
a2u3 + {ia(aω −m) − 2M}u2 + u+ iω

]
,

Am̄m̄2(u) = − 1√
2π

Cm̄m̄S(π/2)
u2 ,

Ann0(u) = −
√

2
π

Cnn

(1 − 2Mu+ a2u2)2

{
− 2ia

(
∂S

∂θ
(π/2) + (aω −m)S(π/2)

)
u

+ ∂2S

∂θ2 (π/2) + 2(aω −m)∂S
∂θ

(π/2) + {(aω −m)2 − 2}S(π/2)
}
,

(5.86)

where

Cnn(χ, p, e) = J(χ, p, e)
4p4Ṽt(χ, p, e)

[
p2E − ax(1 + e cosχ)2 + ep sinχ

√
Ṽr(χ, p, e)

]2
,

Cm̄n(χ, p, e) = ixJ(χ, p, e)
2
√

2p3Ṽt(χ, p, e)
(1 + e cosχ)

[
p2E − ax(1 + e cosχ)2+

ep sinχ
√
Ṽr(χ, p, e)

]
,

Cm̄m̄(χ, p, e) = − x2J(χ, p, e)
2p2Ṽt(χ, p, e)

(1 + e cosχ)2 .

The terms J(χ, p, e), Ṽt(χ, p, e) and Ṽr(χ, p, e) are given in Chapter 3, Eq. (3.38).
Finally, we note that recasting Eq. (5.84) in term of the variable χ, the integral can
be written as

Z+,−
ℓmn = mpΩr

2iωmnBin

∫ π

0
dχ Ṽt(χ)

J(χ)
√
Ṽr(χ)

[
I+,−

ℓmω(+)(r(χ))eiωmnt(χ)−imϕ(χ)+

I+,−
ℓmω(−)(r(χ))e−iωmnt(χ)+imϕ(χ)

]
, (5.87)
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where the subscripts (±) imply the substitution sinχ → ± sinχ in the functions I+,−
ℓmω.

Due to symmetries in the Teukolsky equation (5.11), the amplitudes Z+,−
ℓmn satisfy

the relation
Z+,−

ℓ,−m,−n = (−1)ℓZ̄+,−
ℓ,m,n , (5.88)

where the overbar denotes the complex conjugate.

5.3.2 Energy and angular momentum gravitational fluxes
The gravitational energy flux can be computed in terms of the Isaacson stress-

energy tensor [128], and is given by(
d2E

dAdt

)rad

r→∞
= 1

16π

〈(
∂h+
∂t

)2
+
(
∂h×
∂t

)2 〉
, (5.89)

where the brackets ⟨...⟩ denote an average over a region of spacetime large compered
with the wavelenght of the radiation, and the plus and cross polarizations h+ and
h× are obtained from the evaluation of the Weyl scalar Ψ4 at infinity, see Eq. (5.6).
The expression for Ψ4 is found combining Eqs. (5.4) and (5.7), with Rℓmω in the
limit r → ∞ is given in Eq. (5.60).

The final expressions for the energy and angular momentum fluxes at infinity
are then given by

(
dE

dt

)rad

r→∞
=
∑
ℓmn

|Z−
ℓmn|2

4πω2
mn

, (5.90)

(
dL

dt

)rad

r→∞
=
∑
ℓmn

m|Z−
ℓmn|2

4πω3
mn

. (5.91)

The frequencies ωmn are written in Eq. (3.40) and the amplitude Z− in Eq.(5.87).
The fluxes at the horizon can be calculated by measuring the rate at which the

event horizon’s area increases as radiation falls into it, following the prescription
of [129] as described in [37]. The result reads:

(
dE

dt

)rad

r→r+

=
∑
ℓmn

αℓmn
|Z+

ℓmn|2

4πω2
mn

, (5.92)

(
dL

dt

)rad

r→r+

=
∑
ℓmn

αℓmn
m|Z+

ℓmn|2

4πω3
mn

(5.93)

where the coefficients αℓmn are given by

αℓmn = 256(2Mr+)5kmn(k2
mn + 4ϵ2)(k2

mn + 16ϵ2)ω3
mn

|Cℓmn|2
, (5.94)

with kmn = ωmn −mΩ+,

ϵ =
√
M2 − a2

4Mr+
, (5.95)

and
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|Cℓmn|2 =[(λ+ 2)2 + 4aωmn − 4a2ω2
mn](λ2 + 36maωmn − 36a2ω2

mn)
+ (2λ+ 3)(96a2ω2

mn − 48maωmn) + 144ω2
mn(M2 − a2) . (5.96)

The total energy and angular momentum fluxes are given by the sum of the
gravitational and scalar terms at horizon (−) and at infinity (+):

ĊGW =
∑

i=+,−
[Ċ(i)

grav + Ċ
(i)
scal] = Ċgrav + Ċscal , (5.97)

where C ∈ [E,L], Ċgrav ≡ Ċ
(+)
grav + Ċ

(−)
grav , Ċscal ≡ Ċ

(+)
scal + Ċ

(−)
scal and the dot indicates

the time derivative.
Finally, because of the linear dependence of the source term from the scalar

charge, it is worth to remark that the total scalar flux for a given scalar charge
simply scales with d as

Ċscal = d2 ˙̄Cscal ,

where ˙̄Cscal only depends on (p, e, a).

With the approach of linear perturbation theory, we showed how to compute
the emission through gravitational and scalar waves which arise from the motion
of the inspiralling object on the Kerr background. The following two chapters are
dedicated to the numerical computation of the fluxes and their use to build the
EMRI adiabatic orbital evolution and the emitted GW signals, for equatorial circular
and eccentric inspirals.
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Chapter 6

EMRIs with massless scalar
fields: Circular equatorial orbits

Here, we present a model of EMRIs with massless scalar field in circular orbits
around Kerr black holes. We compute the energy emission through gravitational
and scalar waves, which is presented in the first section. In the second one, we
build the adiabatic EMRI’s orbital evolution, and we asses how the presence of the
scalar charge affects the binary dynamics. Finally, in the last section, we model
the gravitational wave templates and we compute the the mismatch from signals
emitted with and without the scalar charge, in order to estimate the LISA capability
to detect the new scalar field.

6.1 Energy emission
Both the gravitational and scalar energy fluxes for circular orbits have been

computed with the software Mathematica [121] by making use of the Black Hole
Perturbation Toolkit [120], which allows to rapidly generate fluxes with high accuracy.
The total energy emission is given by the sum of the gravitational and the scalar
flux at the horizon (−) and at infinity (+):

ĖGW =
∑

i=+,−
[Ė(i)

grav + Ė
(i)
scal] = Ėgrav + Ėscal , (6.1)

where, Ėgrav ≡ Ė
(+)
grav + Ė

(−)
grav and Ėscal ≡ Ė

(+)
scal + Ė

(−)
scal. We stress that both the

gravitational and the scalar fluxes of the EMRI with mass ratio q scale as q2.
Moreover, we define ˙̄Escal such that

Ėscal = d2 ˙̄Escal , (6.2)

so that ˙̄Escal only depends on (r/M, a/M).

The results are shown in Figs. 6.1 and 6.2.

The top panel of Fig. 6.1 shows the behaviour of the total scalar energy flux,
normalized with the mass ratio, as a function of the circular orbit’s radius for different
values of the scalar charge d and for a primary spin a = 0.9M . The behavior of Ėscal
is qualitatively similar to that shown in [44], where the central BH is non-spinning.
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As for the gravitational emission, the scalar flux increases monotonically with the
shrinking of the orbit.

The bottom panel of Fig. 6.1 shows the ratio between the scalar and gravitational
components of the GW flux, for the same binary configurations of the top picture.
The ratio decreases as the orbital radius shrinks, with the gravitational contribution
growing in time faster than the scalar contribution, at small separation.

Figure 6.1 also shows that for d > 0.01 the scalar flux Ėscal ranges between 0.1%
and 1% of the gravitational flux Ėgrav. Therefore, we expect the scalar charge to
induce a significant contribution on the EMRI evolution when integrated over the
all inspiral phase, which is investigated in the next section.

Fig. 6.2 shows the ratio Ėscal/Ėgrav, rescaled by d2, as a function of the primary
BH spin, and the absolute value of Ėscal. It is interesting to note that while for a
fixed radius r/M , larger a/M lead to slightly smaller values of the scalar flux (this
is also true for the gravitational component), the overall emission increases due to
the larger range of frequencies spanned by the binary. Indeed, for higher spins, the
inspiralling body can reach values of the orbital radius closer to the MBH’s horizon
before plunging. From the bottom panel of the figure we also observe that for a
fixed orbital radius, the ratio between the scalar and the gravitational flux slightly
increases with the increasing of the MBH’s spin.

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

★★★★★★★★★★★★★★★★★★★★★
★★★★★★★★★★★★★★★★★★

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽
▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●

○

○

○

○

○

○

○

○

○

○

○

○
○

○
○

○
○

○
○

○
○○○○○○○○○○○○○○○○○○○

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼
▼

▼
▼

▼
▼

▼
▼

▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

★

★

★

★

★

★

★

★

★

★

★

★
★

★
★

★
★

★
★

★
★★★★★★★★★★★★★★★★★★★

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

▽

▽

▽

▽

▽

▽

▽

▽

▽

▽

▽

▽
▽

▽
▽

▽
▽

▽
▽

▽
▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

● d=0.3 ○ d=0.2 ▼ d=0.15 ★ d=0.1 ◆ d=0.05 ▽ d=0.01

-8

-6

-4

-2

L
og

1
0
[q

-
2
E
sc

al
]

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★ ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●

○

○

○

○

○

○

○

○
○

○
○

○
○

○
○

○○○○○○○○○○○○○○○○○○○○○○○○

▼

▼

▼

▼

▼

▼

▼

▼
▼

▼
▼

▼
▼

▼
▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

★

★

★

★

★

★

★

★
★

★
★

★
★

★
★

★★★★★★★★★★★★★★★★★★★★★★★★
◆

◆

◆

◆

◆

◆

◆

◆
◆

◆
◆

◆
◆

◆
◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

▽

▽

▽

▽

▽

▽

▽

▽
▽

▽
▽

▽
▽

▽
▽

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

2 3 4 5 6 7 8
-6

-4

-2

r/M

L
og

1
0
[
E
sc

al
/E
 gr

av
]

Figure 6.1. (Top) Scalar energy flux, normalized with the mass-ratio, as a function of
the orbital radius, for different values of the scalar charge. The spin of the primary is
a/M = 0.9. (Bottom) Ratio of the scalar and gravitational energy flux as a function of
the orbital radius for different values of the scalar charge, and a/M = 0.9.
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Figure 6.2. Same as Fig. 6.1 for different values of the primary spin a/M .

6.2 Orbital evolution
At leading order in the mass ratio (adiabatic order), the inspiral is driven by the

energy emission through gravitational and scalar waves. For the integral of motion
E relative to each geodesic we can impose the balance law:

Ė = −ĖGW . (6.3)
The time and phase field equation are then given by:

dr

dt
= −Ė dr

dEorb
,

dΦ
dt

= ωp , (6.4)

where Eorb is the orbital energy of the particle, given by Eq. (3.11), and ωp is
the frequency of the particle related to the orbital radius and MBH’s spin from
Eq.(3.15). By integrating such equations, we obtain the time evolution of (r(t), ϕ(t)).
The presence of the scalar charge affects such evolution accelerating the EMRI
coalescence due to the extra scalar energy emission.

The emitted GW signal is related to the orbital phase evolution, which means
that the presence of a scalar charge will then introduce a dephasing of the GW-
template, which could be possibly detected by the space interferometers if it is above
a certain threshold. By following [130] and [131], such threshold is given by,

∆Ψthr ≃
√
D − 1
ρ

(6.5)

where D is the number of intrinsic parameter of the binary source, and ρ the signal to
noise ratio (SNR) of the signal. The intrinsic parameters for our EMRI systems are
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θ⃗ = {M,mp, a/M, dL, θS , ϕS , θL, ϕL, r0, ϕ0, d}, where (r0, ϕ0) are the initial radius
and phase, dL is the luminosity distance of the binary source, (θS , ϕS , θL, ϕL) are
angles which identify the source location and the angular momentum of the secondary,
as further explained in the next section. The number of intrinsic parameters is then
D ≃ 101. For D ≃ 10 and ρ = 30, which is a conservative SNR value for EMRIs
detection [35,59], we can reasonably and indicatively consider ∆Ψthr = 0.1 rad.

The dephasing represents a preliminary assessment of the detectability of the
scalar charge. A more quantitative analysis is provided by the faithfulness among
GW signals, a quantity indicating how much two signals differ, as discussed in
Section 6.3.2. Finally, in order to determine the actual constraints on the scalar
charge, a more sophisticated study is required, based on the Fisher matrix approach.
Such study is presented in Chapter 8.

Having fixed a certain time of observation Tobs, we define the accumulated
dephasing between inspirals with and without the scalar charge as

∆Ψϕ = 2
∫ Tobs

0
∆Ωϕdt , (6.6)

where
∆Ωϕ = ωd

p − ωd=0
p . (6.7)

Hence, for a fixed binary configuration, we compared the EMRI evolution obtained
with and without the scalar charge. A single inspiral is built by fixing

• the binary parameters (M,mp, a/M, d) ;

• the initial position of the secondary (r0, ϕ0);

• the time of observation Tobs.

For each inspiral, we fixed ϕ0 = 0 and r0 such that the secondary object reaches
the plunge after Tobs, where we defined the position of the plunge as

rplunge = rISCO + δr , (6.8)
and we adopted the conservative choice of δr = 0.1M , which is more conservative
than the transition region between the inspiral and the plunge as described elsewhere
[132,133].

To model the EMRI evolution, we wrote a Mathematica notebook which inte-
grates the equations Eqs (6.4).

6.2.1 Results
The results are summarized in the four density plot of Fig. 6.3, where the white

dashed line indicates the threshold of phase resolution of 0.1 rad.
In the top two panels the dephasing is shown for different values of the scalar

charge and of the observation time before the plunge, (d, Tobs) = (0.01, 6 months)
and (d, Tobs) = (0.005, 12 months), as a function of the binary component masses.
All binaries with M ≲ 3 × 106M⊙ lead to a dephasing larger than the detectabil-
ity threshold of 0.1 radians, with the values of the dephasing ∆Ψϕ being almost

1The “≃” sign is due to the presence or the absence of the scalar charge. Moreover, by considering
equatorial eccentric inspirals the initial eccentricity is also added to the set of parameters.
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insensitive to the mass of the secondary. In both cases, with further six months
of observation time (i.e., Tobs = 6 months for d = 0.01 and Tobs = 12 months for
d = 0.005) all the binary configurations up to M ≃ 107M⊙ and mp ≃ 100M⊙ are
above the threshold.

In the left bottom panel we study how the dephasing changes as a function of the
scalar charge and of the mass of the primary, for mp = 10M⊙, Tobs = 12 months and
a/M = 0.9. The plot shows that the accumulated phase difference can be significant,
especially for binaries with a massive BH of M ≲ 106M⊙ for which ∆Ψϕ can be
larger than 103 radians.

Finally, the last (right bottom) panel of Figure 6.3 shows how ∆Ψϕ changes by
varying the spin of the primary and the scalar charge of the secondary. The masses
of the binary are (M,mp) = (106, 10)M⊙ and the time of observation is Tobs = 12
months. For a fixed scalar charge, the dephasing increases with the increasing of the
primary spin. For a/M = 0.1(0.9), ∆Ψϕ is larger then the threshold of 0.1 radians
for d ≳ 0.0033(0.0023), respectively. This result is consistent with those of Ref. [134],
where the increase of the dephasing with the spin of the primary was discussed.

Figure 6.3. Quadrupolar gravitational wave dephasing ∆Ψϕ, i.e difference in the GW
phase evolution of EMRIs with and without scalar charge. First and second panels
show ∆Ψϕ as a function of the binary component masses and refer to EMRIs with
(d, Tobs) = (0.01, 6 months) and (d, Tobs) = (0.005, 12 months), respectively, for a/M =
0.9. Third and fourth panels show the dephasing as a function of (M,d) and of (d, a/M),
respectively, for Tobs = 12 months of observation and mp = 10M⊙. The dashed white
line in each plot identifies the detectability threshold of 0.1 radian for a GW event with
SNR of 30 observed by LISA.

6.3 Gravitational wave signals
From the EMRIs evolution it is possible to build the GW signals.
In the linear perturbation theory approach, the GW model is given by the fully

relativistic Teukolsky waveforms [68–71]. However, such waveforms result to be
computationally expensive. Other several templates have been implemented for
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the EMRI modeling, which result in easier computations and can be generated
quickly, but which still capture the main features of true waveforms. Among these
models there are the Analytical Kludge (AK) [135], which refers to the quadrupolar
approximation and is built considering a Post-Newtonian (PN) inspiral, the Nu-
merical Kludge (NK), which builds the trajectory numerically and also consider
higher multipoles then the quadrupole [136], and Augmented Analytical Kludges
(AAK) [137, 138]. Recently, a collection of tools named Fast EMRI Waveforms
(FEW) [139, 140] have been implemented to build EMRI GW signals combining
the speed of the kludge models with the accuracy of self-force models [41–43].
For now, FEW is available for fully-relativistic EMRI waveforms for eccentric in-
spiral around Schwarzschild black holes and improved AAK for generic Kerr inspirals.

Here we adopt the Analytic Kludge, shown below, adapting the template to
the fully-relativistic inspirals. Finally, in Section 6.3.2 we compute the faithfulness
among GW signals with and without the scalar charge carried by the secondary and
we show the obtained results.

6.3.1 The analytic template
We refer to the analytic template presented in [135], which builds GW signals

within the quadrupolar approximation and in which the evolution between geodesics
is driven by PN formulas. Here, we improve such template by adapting it to our
fully-relativistic EMRI inspirals.

In the transverse-traceless gauge, the metric perturbation hTT
ij far from the source

is given by

hTT
ij = 2

dL

(
PilPjm − 1

2PijPlm

)
Ïlm , (6.9)

where dL is the source luminosity distance, Pij = δij −ninj is the projection operator
onto the wave unit direction nj , where δij is the Kronecker delta. The second
time derivative of the mass quadrupole moment Ïij , is given in terms of the source
stress-energy tensor

Iij =
∫
d3xT tt(t, xi)xixj = mpz

i(t)zj(t) , (6.10)

where T tt(t, xi) = mpδ
(3)(xi − zi(t)), xi are Cartesian spatial coordinates, and zi(t)

is the worldline of the secondary object in these coordinates [136]. The strain h(t)
produced by the GW and measured by the detector is obtained by combining the
plus and cross polarisation and the detector pattern functions. For LISA, a detector
of three arms composing an equilateral triangle, the strain is given by [141]

h(t) =
√

3
2 [h+(t)F+(t) + h×(t)F×(t)] , (6.11)

where the factor
√

3/2 is due to the 60◦ angle between the arms of the interferometer
and

h+ = −1
2
(
Ï11 − Ï22

) (
1 + cos2ι

)
= A cos[2Φ(t) + 2Φ0]

(
1 + cos2ι

)
, (6.12)

h× = 2Ï12 cos ι = −2A sin[2Φ(t) + 2Φ0] cos ι , (6.13)
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A = 2mp [Mω(t)]2/3 /dL and ι is the inclination angle between the binary orbital
angular momentum and the line of sight. The functions F+,× are the detector
pattern functions. The triangle configuration of LISA can be effectively described as
a network of two L-shaped detectors, with the second detector rotated by 45◦ with
respect to the first one, so that the pattern functions F+,×

I,II are given by [141]

F+
I =1 + cos2 θ

2 cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ ,

F×
I =1 + cos2 θ

2 cos 2ϕ sin 2ψ + cos θ sin 2ϕ cos 2ψ ,

F+,×
II =F+,×

II (θ, ϕ− π/4, ψ) , (6.14)
where the subscripts I and II refer to the single L-shaped detector.

The angles (θ, ϕ, ψ) are all defined in the detector reference frame, and vary in
time due to the LISA motion. The first two describe the location of the binary in
the sky, while ψ is the polarization angle. These angles can be expressed in terms of
(θS ,ΦS) and (θL,ΦL), which identify respectively the source location and the angular
momentum L̂ of the secondary, both in an ecliptic-based system. The expressions
for (θ(t), ϕ(t)) are given by [141,142]:

cos θ(t) = 1
2 cos θS −

√
3

2 sin θS cos[ϕt − ϕS ] ,

ϕ(t) = α0 + ϕt + tan−1
[√

3 cos θS + sin θS cos[ϕt − ϕS ]
2 sin θS sin[ϕt − ϕS ]

]
, (6.15)

where ϕt = ϕ̄0 + 2π(t/T ), T = 1 year and (ϕ̄0, ᾱ0) specify the orbital and rotational
phase of the detector when t = 0, and are set to zero. The polarization angle can be
expressed as

ψ(t) = tan−1 L̂ · ẑ − (L̂ · N̂)(ẑ · N̂)
N̂ · (L̂× ẑ)

, (6.16)

with ẑ · N̂ = cos θS and

L̂ · N̂ = cos θL cos θS + sin θL sin θS cos[ϕL − ϕS ] , (6.17)

L̂ · ẑ = 1
2 cos θL −

√
3

2 sin θL cos[ϕt − ϕL] , (6.18)

N̂ · (L̂× ẑ) = 1
2 sin θL sin θS sin[ϕL − ϕS] −

√
3

2 cosϕt [cos θL sin θS sinϕS − cos θS

sin θL sinϕL] −
√

3
2 sinϕt [cos θS sin θL cosϕL − cos θL sin θS cosϕS] .

(6.19)

Here we choose (θS , ϕS , θL, ϕL) = (π/2, π/2, π/4, π/4).

Finally, the gravitational wave signal also acquires a modulation due to the
LISA orbital motion [136]. We correct for this effect by modifying the phase of the
waveform as

Φ(t) → Φ(t) + Φ′(t)RAU sin(θS) cos(2πt/T − ϕs) , (6.20)
where RAU is the astronomical unit and T = 1 year.
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6.3.2 Faithfullness analysis
Given two GW signals h1 and h2, we can compute the faithfulness F [h1, h2]

among them, a quantity that can be used to estimate how much the two signals
differ [143–145]. The faithfulness is defined as the noise-weighted inner product of
the two signals, normalized with the SNR of the two signals and maximised over
time and phase offsets (tc, ϕc) between them, i.e.

F [h1, h2] = max
{tc,ϕc}

⟨h1|h2⟩√
⟨h1|h1⟩⟨h2|h2⟩

, (6.21)

with ⟨h1|h2⟩ being the noise-weighted inner product of the two signals in the frequency
domain,

⟨h1|h2⟩ = 4ℜ
∫ fmax

fmin

h̃1(f)h̃⋆
2(f)

Sn(f) df , (6.22)

where h̃(f) indicates the Fourier transform of the signal h and Sn the power spectral
density (PSD) of LISA detector. The signal to noise ratio (SNR) of a signal h is
defined as ρ =

√
⟨h|h⟩. The minimum integration frequency is set to fmin = 10−4Hz,

while fmax = fNy, with fNy being the Nyquist frequency.

Two signals result to be distinguishable by LISA if F ≲ Fthr, which means that
the two waveforms are significantly different and don’t provide a faithful description
of one another. The value of Fthr is given by [145]

Fthr = 1 − D − 1
2ρ2 , (6.23)

where D is the number of parameters. We computed the faithfulness between
templates with and without the scalar charge, so that, for a circular inspiral, D ≃ 10
and, by assuming an SNR ρ = 30, the two signals result to be distinguishable by
LISA if F ≲ 0.988.

The LISA power spectral density

The noise spectral density for LISA is obtained from Cornish & Robson [146],
who provide an accurate analytic fit for the detector noise. The PSD consists of two
parts: the instrumental and the confusion noise produced by unresolved galactic
binaries, i.e.

Sn(f) = SIns
n (f) + SWDN

n (f) . (6.24)
where

SIns
n (f) = A1

(
POMS + 2[1 + cos2(f/f⋆)] Pacc

(2πf)4

)(
1 + 6

10
f2

f2
⋆

)
,

A1 = 10
3L2 , L = 2.5Gm, f⋆ = 19.09mHz, while

POMS = (1.5 × 10−11m2
[
1 +

(2mHz
f

)4
]

Hz−1 ,

PACC = (3 × 10−15ms−2)2
[
1 +

(0.4mHz
f

)2
]

×
[
1 +

(
f

8mHz

)4]
Hz−1 .
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Figure 6.4. Noise spectral density for LISA as a function of the frequency, with and without
the confusion noise produced by unresolved galactic white dwarf binaries (WDN).

For the white dwarf contribution

SWDN
n = A2f

−7/3e−fα+βf sin(κf)[1 + tanh(γ(fk − f))] Hz−1 ,

with the amplitude A2 = 9 × 10−45, and the coefficients (α, β, κ, γ, fk) = (0.171, 292,
1020, 1680, 0.00215). The analytic fit is plotted in Fig. 6.4 as a function of frequency.

6.3.3 Results
The results of the faithfulness analysis are reported in Fig. 6.5, which shows

the faithfulness F between the plus polarization of two GW signals emitted by
binaries with and without the charge, as a function of the scalar charge. Two
different time of observation, 6 and 12 months, are considered. The horizontal
continuous line in the figure represents the threshold value beyond which the two
signals can be distinguished, Fthr = 0.988 for ρ = 30. For 12 months of observation,
the faithfulness is below the threshold set by ρ = 30 for d ≳ 0.01, while, by reducing
Tobs to 6 months, two signals with ρ = 30 result distinguishable by LISA for d ≳ 0.05.

The analysis carried out so far highlights two important aspects: (i) the scalar
charge provides a significant shift in the phase of the GW signal emitted by EMRIs,
(ii) the dephasing induces a mismatch in the template with respect to the zero-charge
case, which can potentially lead to a severe loss of events and to a bias in the
estimation of the waveform parameters [144]. This suggests that one year of LISA
observations of EMRIs may be able to reveal the presence of a scalar charge as small
as d ∼ 0.05 − 0.01.

Given these very promising results, we improved the EMRI model by considering
equatorial eccentric inspirals, making it closer to real astrophysical scenarios (next
chapter) and we performed a parameter estimation over the binary system by making
use of the Fisher Information Matrix analysis (Chapter 8).
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Figure 6.5. Faithfulness between the GW plus polarization computed with and without
the scalar charge, with d = 0 and d ̸= 0, as a function of the latter and for different
signal durations. The signal duration is measured in months (6 or 12) before the plunge.
The horizontal line identifies the threshold of distinguishability, F ≲ 0.988, set up by
SNR of 30.



57

Chapter 7

EMRIs with massless scalar
fields: Eccentric equatorial
orbits

This chapter presents the study of the EMRI evolution considering equatorial
eccentric adiabatic inspirals. The analysis is analogous to that one presented in
Chapter 6 for circular orbits. In Section 7.1 we present the energy and angular
momentum emission which drives the adiabatic orbital evolution, which is presented
in the next section. Finally, in Section 7.3 we build the EMRI template and compute
the faithfulness among the signals.

7.1 Energy and angular momentum emission
The energy and angular momentum fluxes for equatorial eccentric orbits are

computed from Eqs. (5.91) - (5.93) by building a Mathematica code for both the
gravitational and scalar emission. The expression for the total emission is given in
(5.97):

ĊGW =
∑

i=+,−
[Ċ(i)

grav + Ċ
(i)
scal] = Ċgrav + Ċscal ,

where C ∈ [E,L], Ċgrav ≡ Ċ
(+)
grav + Ċ

(−)
grav , Ċscal ≡ Ċ

(+)
scal + Ċ

(−)
scal and Ċscal = d2 ˙̄Cscal.

7.1.1 Numerical implementation
For the fluxes computation, we have exploited some of the numerical routines

implemented in the Black Hole Perturbation Toolkit (BHPT) [120], and in particular
the Teukolsky package to calculate the homogeneous solutions of the Teukolsky
equation. At the time of our study, the BHPT was implemented to obtain fluxes
for circular orbits only, so that we built an independent Mathematica code for
the integration over the source terms for the eccentricity-dependent perturbations
and the corresponding fluxes. We have checked that for e = 0 our code repro-
duces the fluxes obtained by the BHPT with great accuracy. Comparisons with
previous results for eccentric EMRIs in GR are discussed in Appendix A. We also
used the KerrGeodesics package of the BHPT for the orbital frequencies computation.

We have computed
(
Ė(±), L̇(±)

)
for different values of (e, p) and assuming

a = 0.2M and a = 0.9M for the primary spin. Note that it is plausible that MBHs
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falling in the LISA band will be rapidly spinning, with a ∼ 0.9M or possibly even
larger [35]. We have sampled the eccentricity between 0.1 ≤ e ≤ 0.5 in steps of
∆e = 0.1. These choices lead to an eccentricity at the plunge in agreement with stan-
dard expectation, a flat distribution in e ∈ [0, 0.2] [35]. To make the grid in p denser
close to the separatrix, where orbital parameters vary more rapidly, for the semi-latus
we have taken 41 points uniformly spaced in the new variable u = (p− 0.9ps)−1/2,
within [u(pmin), u(pmax)], where pmax = pmin + 10M and pmin = ps + 0.03M , with ps

being the value of p at the separatrix as a function of e (see Eq. (3.41)). Then, from
the inverse relation p(u), we have obtained a non-uniform grid for the semi-latus
rectum. In this way, if one considers the grid in (e, p − ps), the initial and the
final values of p − ps are the same for each values of the eccentricity, i.e. 0.03M
and 10.03M , respectively. This is optimal for a two dimensional interpolation with
Mathematica, which can be performed only on a structured grid.

For each point in the (e, p) plane we have computed the total flux by summing
over the three indexes (ℓ,m, n) 1:

Ċ =
∑
ℓmn

Ċℓmn =
ℓmax∑
ℓmin

m=+ℓ∑
m=−ℓ

(
Ċℓm0 + 2

nmax∑
n=1

Ċℓmn

)
, (7.1)

where C ∈ [E,L] and the ℓ = 0, 1 components are due to the scalar flux only,
while both scalar and gravitational fluxes contribute to the ℓ ≥ 2 components. The
factor 2 in Eq. (7.1) accounts for a symmetry in the fluxes, for which the flux with
(l,−m,−n) is the same as the flux with (l,m, n), see Eqs. (5.38) and (5.88).

In our code we have chosen ℓmax = (8, 10) respectively for s = (0,−2). These
values are such that, for a primary spin of a = 0.9M and eccentricity e = 0.5, the
relative difference in the flux between ℓmax and ℓmax − 1 is less than 2% for the
innermost p of the grid, while for the outermost is less than 0.01%. For e = 0.1 the
relative difference is less than 1% for the innermost p and less than 0.001% for the
outermost.

The value for nmax is chosen such that the fractional change in the sum (7.1) is
smaller than 10−4 for three consecutive values of n. This choice is motivated by the
behavior of the energy flux spectrum as a function of (e, n). Indeed, we observe that
for low eccentricities the flux has a peak at small values of n, rapidly decreasing
afterwards. On the other hand, for larger values of e the spectrum shows relative
maxima before reaching the absolute peak, located at higher n compared to the
low-eccentricity case. This behaviour is shown in Fig. 7.1 where we plot Ė(+)

ℓmn as a
function of n for different values of the eccentricity and for the ℓ = m = 2 (top raw)
and ℓ = m = 5 (bottom raw) modes. The flux at the horizon and the gravitational
fluxes show the same qualitative behaviour.

After computing the fluxes for each point of the grid, we have performed an
interpolation using a built-in Mathematica function over the grid in the two param-
eters (e, p − ps). In order to estimate the errors introduced by the interpolation,
we computed also the fluxes in points outside the grid, and estimated the relative
difference between the interpolated and the computed fluxes. The relative difference
between them turns out to be ≲ 0.2% for points fluxes closer to the separatrix and
it grows for larger values of p, up to ∼ 6 − 7% for the furthermost points. Numerical
values for the fluxes obtained for different points outside our grid are listed in Tables

1We remind that the index n is associated to the radial motion, with period Tr, see Chapter 3.
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Figure 7.1. Harmonic components of the scalar energy flux at infinity as a function of
n, for orbital configurations with p/M = 7, e = 0.2 (left column) and e = 0.7 (right
column). Top and bottom panels show the ℓ = m = 2 and ℓ = m = 5 components of the
flux, respectively. The MBH spin is a/M = 0.9.

.
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A.1 and A.2 of Appendix A.

7.1.2 Results
The results of the total energy and angular momentum fluxes are summarized in

Fig. 7.3, which shows the behaviour of the ratio between the scalar and gravitational
emission for the energy (top raw) and angular momentum (bottom raw) fluxes, as a
function of the semilatus rectum p/M . The left column shows the fluxes relative to
a primary spin a/M = 0.2, while the right column to a/M = 0.9. The inset in each
panel provides the absolute value of Ėscal and L̇scal.

As was the case for circular orbits discussed in the previous chapter, for a
given value of the eccentricity the ratio between the scalar and the gravitational
components decreases for smaller p, due to the faster growth of Ėgrav and L̇grav. This
behavior is also confirmed by the analyses of the harmonic components shown in
Fig. 7.2 for e ̸= 0. Moreover, for fixed p, while the absolute value of Ėscal grows with
the eccentricity, the relative difference with respect to the gravitational flux becomes
smaller. Note that the value of the separatrix increases for higher eccentricity.
However, the periastron of the last stable orbit decreases for higher eccentricity, so
that a more eccentric orbit can lead the particle closer to the MBH horizon.

As shown in Fig. 7.2, for large orbital separation, the dipole ℓ = m = 1 scalar
mode approaches the quadrupolar ℓ = m = 2 (scalar) component, with the latter
increasing steeply for smaller separations. The monopole component ℓ = m = 0
is excited only for eccentric orbits and shows a similar steep increase, although it
remains subdominant and starts decreasing before the plunge.
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Figure 7.2. Harmonic components of the gravitational and scalar energy flux, normalized
with the mass-ratio, with d = 0.1 as a function of the semi-latus rectum, for eccentric
(left panel) and circular (right panel) orbits. The MBH’s spin is a/M = 0.9. We only
show the dominant modes, i.e. the ℓ = (0, 1, 2) coefficients and, for the eccentric orbit,
we sum over the index n. In the gravitational sector only ℓ ≥ 2 modes are present, while
in the scalar sector the dipole contribution is excited. The monopole contribution of the
scalar sector is only excited in the eccentric case.
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Figure 7.3. Ratio between the scalar and gravitational energy (top panels) and angular
momentum (bottom panels) fluxes as a function of the semi-latus rectum p, for different
values of the eccentricity and a fixed spin of a = 0.2M (left panels) and a = 0.9M (right
panels). The inset within each plot shows the absolute value of the scalar component,
normalized with the mass ratio. We assume d = 1 for all the configurations.
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7.2 Orbital evolution
Having computed the fluxes, we proceeded by building the binary evolution. The

The adiabatic orbital evolution is built by imposing the balance law

Ċ = −ĊGW , (7.2)

with C = (E,L). The rate of change in time of the integrals of motion (E,L) is
related to the rate of change of of change of the eccentricity and of the semi-latus
rectum (e, p) by [70]

Ė = E,pṗ+ E,eė , L̇ = L,pṗ+ L,eė , (7.3)

so that

ṗ = (L,eĖ − E,eL̇)/H , ė = (E,pL̇− L,pĖ)/H , (7.4)

with H = E,pL,e − E,eL,p.

To solve the differential equations we built a Mathematica code, obtaining the
time evolution of (e, p) and that on of the orbital frequencies related to each geodesics,
Ωi(e(t), p(t)), with i = ϕ, r. We then define the phases associated to each frequencies,

Ψi =
∫ Tobs

0
Ωidt (i = ϕ, r) , (7.5)

and the quadrupolar dephasing obtained by comparing evolutions with and without
the scalar charge:

∆Ψi = 2
∫ Tobs

0
∆Ωidt i = ϕ, r , (7.6)

where
∆Ωi = Ωd

i − Ωd=0
i . (7.7)

A single inspiral is built by fixing

• the binary parameters (M,mp, a/M, d) ;

• the initial position of the secondary (p0, e0,Ψin
ϕ ,Ψin

r );

• the time of observation Tobs.

For each inspiral considered, we fixed Ψin
i = 0 with i = ϕ, r, the apastron to

ra = 11M and we considered different choices of the initial periastron rp. The initial
semi-latus rectum and eccentricity (p0, e0) are then obtained by the initial apastron
and periastron. Each inspiral is then evolved until the plunge, where we defined the
position of the plunge as

pfin = pmin(efin) , where
pmin(efin) = ps(efin) + 0.11M (7.8)

and ps is the semi-latus rectum of the separatrix.
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7.2.1 Results
The results of the accumulated dephasing are shown in Fig. 7.4. In the top panel,

the qudrupolar dephasing corrisponding to the Ψϕ phase is plotted as a function of
the time of observation for several inspirals with the same initial apastron ra = 11M
and different choices of the periastron rp, up to the plunge. The scalar charge has
been fixed to d = 0.01. The initial and final values of the periastron and eccentricity
of each inspiral with d = 0.01 are provided in Table 7.1. The bottom panel is
analogous to the upper one, but for the Ψr phase.

We observe that, by increasing the initial periastron, i.e. by reducing the initial
eccentricity, the time it takes for the secondary to reach the plunge grows, leading to
larger values of the accumulated dephasing. However, for a given time of observation,
∆Ψϕ is larger for inspirals with higher ein.

In order to assess the detectability by LISA, we plot the ∆Ψϕ = 0.1 rad threshold,
corresponding to the minimum phase potentially resolvable by the detector for a
binary observed with a SNR of 30 (note that ∆Ψr ≪ ∆Ψϕ and thus gives a negligible
contribution to the dephasing), see Eq. (6.5).

After 4-6 months of observation all the considered inspirals lead to a dephasing
larger then the threshold. Values of the scalar charge > 0.01 will also lead to
larger dephasing. We provide some reference values of the latter after 12 months of
evolution for different choices of d in Table 7.1. The steep variation in ∆Ψr at the
end of the evolution appears to be due the orbital eccentricity, whose time derivative
changes signs close to the plunge. That eccentricity grows as one approaches the
plunge has already been pointed out in the literature, see e.g. [70]. While e(t)
increases, the change of Ψr (defined in Eq. (7.5)) for d ̸= 0 becomes smaller then
the one for d = 0, ∆Ψr acquires a negative sign and ends up counterbalancing the
dephasing accumulated until the turning-point.

While after several months of observation the difference in the phase evolution
between inspirals computed both with and without the scalar field’s influence leads
to accumulated dephasings larger then the LISA threshold, the EMRI trajectories
in the (p, e) plane relative to such inspirals do not show significant differences, for
the small values of d considered in our work. A more quantitative analysis on the
scalar charge detectability is provided in the next section, in which an estimate of
the mismatch among GW templates computed with and without the scalar charge
is provided.

rin
p /M ein rfin

p /M efin
3.667 0.49997 2.18606 0.18945

4 0.47 2.19251 0.18185
5.5 0.33 2.19721 0.17846
7 0.22 2.19756 0.17812

7.5 0.19 2.19759 0.17809
7.9 0.16 2.19761 0.17807
11 0 2.789 0

Table 7.1. Values of the initial and final periastron and eccentricity for the inspirals of
Fig. 7.4
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ein d ∆Ψϕ ∆Ψr

0.22 0.01 0.88 0.5
0.05 21 12
0.1 88 48

0.33 0.01 4 1.5
0.05 105 38
0.1 423 151

Table 7.2. Values of the accumulated dephasings after 12 months of evolution for three
different values of the scalar charge d = (0.01, 0.05, 0.1), for a primary spin a/M = 0.9.
The initial apastron is fixed to ra = 11M , as for the plots in Fig. 7.4.
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Figure 7.4. Azimuthal (top) and radial (bottom) quadrupolar dephasing as a function
of the observation time, assuming spin a = 0.9M . The curves refer to inspirals with
initial apastron ra = 11M and different values of the initial periastron, which correspond
to initial eccentricities within e ≃ [0, 0.5]. We fix the scalar charge to d = 0.01. The
horizontal line in the top panel identifies the threshold for phase resolution by LISA for
a binary observed with signal to SNR of 30 [131]. Although this is not visible in the
semi-logarithmic scale, the first two curves in the bottom panel reach negative values.



7.3 Gravitational waves templates 65

7.3 Gravitational waves templates
As done for the circular inspiral, we build the gravitational wave template by

adapting the analytical kludge of [135], which is based on the quadrupolar waveforms
derived by Peters and Mathews [147] and include the effects of pericenter precession,
Lense-Thirring precession, and inspiral from radiation reaction computed with Post
Newtonian formulae, to the fully-relativistic equatorial eccentric evolution. Then,
we compute the faithfulness among signals produced by EMRIs with and without
the scalar charge.

7.3.1 The analytic template
The strain amplitude for LISA can be written as a sum of harmonics

hα(t) =
∑

n

hα,n(t) , α = (I, II), (7.9)

where the index α runs on the two independent LISA detectors, as explained in the
previous chapter, an the n-th harmonic can be written as

hα,n(t) =
√

3
2
[
F+

α (t)A+
n (t) + F×

α (t)A×
n (t)

]
, (7.10)

where F+,×
α are the LISA pattern function, given in Eqs. (6.14) of Chapter 6, and

A+,×
n are the amplitudes, relative to the plus (+) and cross (×) polarization, whose

expressions are given by

A+
n = − [1 + (L̂ · N̂)2][an cos(2γ) − bn sin(2γ)] + [1 − (L̂ · N̂)2]cn , (7.11)

A×
n =2(L̂ · N̂)[bn cos(2γ) + an sin(2γ)] . (7.12)

The angle γ(t) measures the direction of pericenter with respect to x̂ = [−N̂ + L̂(L̂ ·
N̂)]/[1 − (L̂ · N̂)2]1/2. In our case, in which we consider only equatorial orbits, we
relate γ to Ψr by cos (γ) = cos (γ0) cos (Ψr), where γ0 measures the direction of the
initial position of the pericenter with respect to x̂, and Ψr is the angle in the orbital
plane defined in (7.5). We chose γ0 = π/4. Peters and Mathews [147] showed that
the coefficients (an, bn, cn) are given by

an = − nA
[
Jn−2(ne) − 2eJn−1(ne) + (2/n)Jn(ne) + 2eJn+1(ne)

− Jn+2(ne)
]
cos[nΦ(t)] , (7.13)

bn = − nA(1 − e2)1/2[Jn−2(ne) − 2Jn(ne) + Jn+2(ne)] sin[nΦ(t)] , (7.14)
cn =2AJn(ne) cos[nΦ(t)] , (7.15)

where Jn is the Bessel function of the first kind, A = (2πνM)2/3µ/dL, with
2πν = dΦ/dt and dL being the source luminosity distance. In this work we fix
Φ = Ψϕ, such that 2πν = Ωϕ.

The waveform templates have been implemented summing over the harmonics
with ℓ = 2 and different values of n:

h(t) =
n̄∑

n=1
hn(t) . (7.16)
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Each term is a sum over m = −2, . . . , 2. We consider contributions up to n̄ = 10.
We have checked that the relative difference between the faithfulness computed with
this setup, and including a further component, i.e. with n̄ = 11 is ≪ 0.1%.

The GW signals were computed for EMRIs evolution of 1 year before the plunge,
with both in the presence and in the absence of the scalar charge of the secondary.
The plunge is defined as in Eqs. (7.8) of the previous section. We then computed
the faithfulness between the two plus polarization of the two signals, for different
values of the scalar charge, and considering a circular and an equatorial eccentric
evolution.

7.3.2 Results
The results are shown in Fig. 7.5, in which the faithfulness is plotted as a function

of d. The dark green triangles are relative to eccentric inspirals with efin = 0.18,
such that the plunge is located at (pfin/M, efin) ≃ (2.59, 0.18). In particular, for
d = 0 the initial position is given by (pin/M, ein) ≃ (7.071, 0.492). The light green
dots are relative to the circular ones.

The horizontal red dashed line represent the threshold of detectability for LISA.
As explained in Chapter 6, Section 6.3.2, such threshold can be computed as
Fthr = 1 − (D − 1)/(2ρ2), with D being the numbers of intrinsic parameters of
the binary system and ρ the SNR of the emitted GW signals. For the equatorial
eccentric case, D ≃ 11, so that, for GW signals with ρ = 30, we obtain Fthr = 0.994.

For d ≳ 0.01 the faithfulness for both the circular and the eccentric inspiral is
well below the threshold, while for lower values of the scalar charge the faithfulness
increases reaching the threshold. Moreover, for eccentric inspirals the latter the
distinguishability increases, leading to a smaller mismatch between the the templates.

While more sophisticated analysis is required to determine the actual constraints
on d that can be inferred by EMRI on eccentric orbits, the dephasing and faithfulness
results provide a strong indication that LISA should be able to constrain or detect
even small values of the scalar charge. Moreover, Fig. 7.5 suggests that the inclusion
of the eccentricity in the analysis improves the distinguishability of the scalar charge,
at least for d ≳ 0.01.

Our results are consistent with [148], which also performed a Fisher analysis on
equatorial eccentric EMRIs.
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Figure 7.5. Faithfulness between the plus polarization of two GW waveforms computed
with d = 0 and d ̸= 0, as a function of the scalar charge, for a circular (dark triangles)
and an eccentric (light dots) inspiral. The MBH’s spin is a/M = 0.9, while the time of
observation is fixed to 12 months. The dashed line corresponds to the threshold below
which the two templates are distinguished by LISA for a binary observed with SNR of
30 [145].
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Chapter 8

Fisher Information Matrix
analysis for equatorial circular
EMRIs

The Fisher Information Matrix formalism (FIM) is a method of parameter
estimation for gravitational waves [149–151]. In this chapter, we present FIM
analysis over EMRI prototypes with massless scalar fields in which the secondary
performs 1 year of evolution in circular equatorial orbits around a rotating massive
black hole, before plunging into it. A parameter estimation with the FIM methods
was also performed for massive scalar fields and circular EMRIs. Such results are
presented in Chapter 9.

8.1 FIM methods
The EMRI binaries taken into consideration are described by a set of parameters

θ⃗ = {M,mp, a/M, dL, θS , ϕS , θL, ϕL, r0, ϕ0, d}, where: (M,mp) are the masses of the
primary and secondary object, respectively, (r0, ϕ0) are the initial radius and phase,
dL is the luminosity distance of the binary source, (θS , ϕS , θL, ϕL) are angles which
identify the source location and the angular momentum of the secondary, d is the
scalar charge carried by the inspiralling body.

In the limit of large signal-to-noise ratio ρ, the posterior probability distribution
of the source parameters, assuming flat or Gaussian priors on θ⃗, given a certain
observation o(t), can be approximated by a multivariate Gaussian distribution
centred around the true values with covariance given by the inverse of the Fisher
Information matrix Γij [149–151]:

log p(θ⃗|s) ∝ log p0(θ) − 1
2∆iΓij∆j , (8.1)

where p0 is the parameter’s prior distribution, ∆i = θi − θ̂i is the shift between the
measured and the true values θ̂i, and the Fisher Information Matrix Γij is defined as

Γij =
〈
∂h

∂θi

∣∣∣∣ ∂h∂θj

〉
θ=θ̂

. (8.2)

The ⟨...⟩ brackets indicate the inner product, defined in Eq. (6.22), while h is the
gravitational wave template.
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By defining the inverse of the Fisher matrix Σ = Γ−1, the diagonal and off-
diagonal components provide the statistical errors on θ⃗ and correlation coefficients
among parameters, respectively, i.e.:

σi = Σ1/2
ii , cθiθj

= Σ1/2
ij /(σθi

σθj
) . (8.3)

Given the two-interferometer configuration for the LISA detector (see Chapter 6),
we can define a total SNR ρ =

√
ρ2

I + ρ2
II, and a total covariance matrix of the binary

parameters obtained by inverting the sum of the Fisher matrices σ2
θi

= (ΓI + ΓII)−1
ii .

8.2 Numerical implementation
We performed the fisher analysis for circular inspiral with 1 year of evolution

before the plunge, defined in Eq. (6.8). We considered EMRI prototypes composed
by a central MBH with a mass M = 106M⊙ and spin a/M = 0.9, and by a secondary
object with mp = 10M⊙ and different values of the scalar charge. The source angles
were fixed to θS = ϕS = π/2 and θL = ϕL = π/4.

The sensitivity to small changes during the inspiral, along with the long and
computationally expensive waveforms, render parameter estimation of EMRIs a chal-
lenging task that requires high precision methods [152]. In the following we present
the numerical implementation of the analysis, performed with Mathematica [121].

8.2.1 Fluxes and GW templates
We make use of the Black Hole Perturbation Toolkit [120] for the computation

of the tensor and scalar energy fluxes. In both cases we have summed multipole
contributions up to ℓ = 10 (see Chapter 5). Fluxes have been sampled as a function
of the orbital radius on a grid of 100 equally spaced points within r ∈ [8, 2.4]M ,
with 300 digits of input precision. Moreover, in order to perform spin derivatives
we have computed Ė sampling 11 points of a/M in uniform steps of ∆a/M =
0.02 symmetrically around a/M = 0.9. Given that the dependence on the scalar
charge can be factored out analytically from the fluxes the overall gravitational
wave luminosity which sources the EMRI phase evolution, needs to be numerically
interpolated only along the radial coordinate and the spin, namely

Ė(r, a/M, d) = Ėgrav(r, a/M) + d2Ėscal(r, a/M) . (8.4)

The waveform h(t) has been sampled in the time domain fixing the step ∆t =
Tobs/(2N − 1) such that 1/∆t = 2fmax, where the observation time is Tobs = 1
year and fmax corresponds to the ISCO frequency of a test body in the Kerr
background. For the EMRI configurations considered, with M = 106M⊙, µ = 10M⊙
and a/M = 0.9, this yields fmax ≃ 0.01457Hz with ∆t ≃ 30 seconds, and a Nyquist
frequency of fNy = 1/(2∆t) ≃ 0.01663Hz. Before applying the Fourier transform to
h(t = n∆t) for n = 0, . . . N − 1, we have tapered the waveform with a Tukey window
w[n] to avoid boundary effects:

w[n] =


sin
[

nπ
τ(1−N)

]2
0 ≤ n ≤ τ(N−1)

2 ,

1 τ(N−1)
2 ≤ n ≤ (N − 1)(1 − τ

2 ) ,
sin
[

(1+n−N)π
τ(1−N)

]2
(N − 1)(1 − τ

2 ) ≤ n ≤ N − 1 .
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The parameter τ which controls the magnitude of the sinusoidal lobes has been
fixed to τ = 0.05. We have performed the Fisher matrix analysis without the Tukey
window as well and this has led to a mild improvement of a factor ∼ 2 for the errors
of the waveform parameters.

8.2.2 Waveform derivatives
Since waveforms are generated fully numerically in the time domain, derivatives

appearing in the Fisher matrix are also numerical. We used a centered 11- and
9-point stencil for (M,mp, a/M, d, r0) and (θS, ϕS, θL, ϕL) [153, 154], while for the
luminosity distance dL and the initial phase ϕ0 analytical expressions of ∂h/∂θi can
be computed. In our 11 × 11 parameter space, inversion of the Fisher matrices may
depend on the value of the numerical displacement chosen to compute finite difference
of h(t) for a specific parameter, due to numerical instability. Indeed, Fisher matrices
for EMRIs are known to feature large condition numbers κ = max(λi)/min(λi),
i.e. the ratio between the largest and the smallest eigenvalues [152]. We computed
Γij using high-precision numerics with fluxes with 300 digits of input precision,
which lead to Fisher matrices of ∼ 185 digits of final precision, and κ ∼ O(1014).
Calculations of Γ and its inverse are extremely stable leading to discrepancies among
Fisher matrices derived with different numerical shifts ≲ 0.1%. Differences on the
source parameters and on the correlations coefficients are also very small, ≲ 1%.
Further details regarding checks on the fisher matrices are provided in Appendix B.

The numerical derivatives for the waveform parameters θ⃗ = (lnM, lnmp, a/M, d, r0)
and θ⃗ = (θS , ϕS , θL, ϕL), computed with a centered 11-point and 9-point stencil
respectively, are given by

∂θi
h(f, θ⃗) = 1

1260δθi
P⃗ (11) · D⃗(11) + O(δθ10

i ) ,

∂θi
h(f, θ⃗) = 1

840δθi
P⃗ (9) · D⃗(9) + O(δθ8

i ) , (8.5)

where

• P⃗ (9) = (3,−32, 168,−672, 0, 672,−168, 32,−3) ,

• P⃗ (11) = (−1, 25/2,−75, 300,−1050, 1050,−300, 75,−25/2, 1) ,

• D⃗(8) = (hi−4, hi−3, . . . , hi+3, hi+4) ,

• D⃗(11) = (hi−5, hi−4, . . . , hi+4, hi+5) ,

and hi±n = h(fs, θi ±nδθi). For θi ≠ 0 (θi = 0) we set δθi = θiϵi (δθi = ϵi), with the
numerical coefficients ϵi ≪ 1. The difference in the derivative order is due to the ex-
treme stability of angular parameters which can be treated with a lower order method.

Derivatives with respect to the initial phase and the luminosity distance have an
analytic expression since ∂ln Dh(f) = −h(f) and since ∂Φ0 can be directly applied
to the time domain waveform:

∂Φ0h(t, θ⃗) = −
√

3AF+ sin[2Φ(t) + 2Φ0](1 + cos2 ι) − 2
√

3AF× cos[2Φ(t) + 2Φ0] cos ι .
(8.6)
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We have computed Eq. (8.5) varying the spacings ϵi in order to explore the behavior
of the derivatives. The choice of ϵi is also relevant for the inversion of the Fisher
matrix. Further detailes are provided in Appendix B.

Integration over the LISA noise spectral density has been performed using a
composite Boole method [155]. We have checked that choosing a lower-order method
for the derivatives, or a different method for the frequency integral, do not change
our final results.

8.3 Results
We present here the results of the fisher analysis for circular EMRIs with massless

scalar fields around rotating black holes. First, we show the errors obtained for
the EMRI parameters focusing in particular on the scalar charge carried by the
secondary. Finally, we focus on the specific case of shift-symmetric scalar Gauss
Bonnet theories, recovering constraints on the fundamental coupling constant of the
theory.

8.3.1 Errors on the EMRI parameters
The results of the parameter estimation are summarized in Fig. 8.1 and Fig. 8.2.

Figure 8.1 shows the probability distribution for the component masses, the spin
of the primary, and the scalar charge of the secondary, for EMRIs observed one year
before the plunge with d = 0.05 and SNR of 150.

This analysis shows that a single detection can provide a measurement of the
scalar charge with a relative error smaller than 10%, with a probability distribution
that does not have any support on d = 0 at more than 3 − σ. Off-diagonal panels,
yielding 68% and 98% joint probability confidence intervals between the source
parameters, also show that the charge is highly correlated with the secondary mass
and anti-correlated with the spin parameter and the mass of the primary.
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Figure 8.1. Corner plot for the probability distribution of the masses (M,µ), primary spin
χ = a/M and secondary charge d, inferred after one year of observation with LISA. The
mass of the secondary object is indicated here with µ. We considered a binary system
with d = 0.05 and SNR of 150. Diagonal (off-diagonal) boxes refer to marginalized
(joint) distributions. Vertical lines show the 1-σ interval for each waveform parameters.
Colored contours within the joint distributions correspond to 68% and 95% probability
confidence intervals. In the off-diagonal panels we also show the correlation coefficient
between the parameters.
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Figure 8.2 shows the error in the scalar charge as a function of the scalar charge
itself, for EMRIs detected by LISA with SNR ranging from 30 to 150. The errors
on d can also be accurately fitted with a simple law of the form σfit = β/d, where
β ≃ 2.09 × 10−3(4.18 × 10−4) for SNR of 30 (150). In the top panel we show the
relative error σd/d and the analytical fit; in the bottom panel we show the 3 − σd

intervals around the injected values of the scalar charge.
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Figure 8.2. Uncertainties on the scalar charge for prototype EMRIs observed with different
SNR after one year of observation by LISA. (Top panel) Relative error on the scalar
charge as a function of d for EMRIs SNR of 30 and 150. (Bottom panel) 3-σ interval
around the true values of the scalar charge inferred from LISA observations with the
two values of the SNR also considered in the top panel. Dashed curves in the top panel
refer to the analytic fit σd = β/d with β ≃ 4.18 × 10−4 and β ≃ 2.09 × 10−4 for SNR of
150 and 30, respectively.

Our analysis shows that one year of EMRI observation can pinpoint a scalar
charge smaller than ∼ 0.3 with percent accuracy. For an SNR of 30 a charge
d ∼ 0.1 could be constrained to consistently exclude the value d = 0. For the louder
signals we consider, LISA could constrain a scalar charge as small as d ∼ 0.05 to be
inconsistent with zero at 3 − σ confidence level.

8.3.2 Constraints on a specific modified gravity theory
Detecting and measuring the scalar charge of a compact object would be of

enormous importance, as first evidence of new physics, regardless of the origin of the
charge or the nature of the compact object. Indeed, so far our analysis and results
have been theory-agnostic. However, it is worth pointing out that in many cases the
scalar charge is uniquely determined by theoretical parameters that mark deviations
from GR or the Standard Model. In such cases, a measurement of the scalar charge
can be used to measure these parameters. LISA will provide impressive precision for
that.
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We demonstrate this point using a simple but characteristic example. We
assume that the secondary body is a black hole and the scalar field is massless
(shift-symmetric). No-hair theorems then dictate that there cannot be a scalar
charge unless the scalar field couples to the Gauss–Bonnet invariant, RGB =
R2 − 4RµνR

µν + RµναβR
µναβ, as follows, αφRGB, where α is the new coupling

constant [92]. In this case, the relation between α and the scalar charge d of a BH
has the simple form α ≃ 2dµ2 − 73d3µ2/240 [156].

To study the constraints on α from LISA observations, we draw N = 105 samples
of (µ, d)i=1,...N from the joint probability distribution of the secondary mass and
scalar charge obtained from the Fisher analysis. We then compute N values of α
building the corresponding probability density functions. Figure 8.3 shows P(

√
α)

for our prototype EMRIs, for d = 0.05 and d = 0.2. Vertical lines in each panel
identify the 90% confidence intervals of the coupling constant. Even for d = 0.05 the
probability distribution does not have support on α = 0. This analysis demonstrates
that, in theories where the scalar charge is determined by theoretical parameters,
EMRI observations by LISA can be used to measure these parameters with unprece-
dented accuracy.

Figure 8.3. Probability distribution of the dimensionful coupling constant of shift-symmetric
Gauss Bonnet gravity inferred from constraints made by LISA. Results refer to EMRIs
with d = (0.05, 0.2) and SNR of 150. Vertical lines identify 90% intervals around the
injected values of the scalar charge,

√
α = 4.67+0.59

−0.69 km and
√
α = 9.311+0.078

−0.079 km for
d = 0.05 and d = 0.2, respectively (our normalization for α is different from the one
used in some of the literature [157,158]). The height of the P(

√
α) distribution has been

rescaled to unity.



8.3 Results 75

Current upper bounds on √
αGB are ∼ 1 km, where αGB indicates the Gauss-

Bonnet coupling constant with the normalization used in some literature [111,157–
164], and it is related to the constant α of our analysis by α = 16π1/2αGB, so that√
α ≃ 5.33√

αGB. From the orbital decay of the black hole low-mass X-ray binary
A0620-00, Ref. [159] obtained √

αGB ≲ 1.9 km. Such constraint is more than six
orders of magnitude stronger than the solar system bound [165]. From the mass
measurement of the pulsar J0740+6620, Ref. [163] found √

αGB ≲ 1.29 km. Other
bounds were obtained from GW events, in which the GR wavefrom is modified
by taking into account the scalar dipole radiation. From binary black hole (BBH)
GW events, Refs. [111], [160], [161], [157], and [162] found √

αGB ≲ 5.6, 1.85, 4.3, 1.7
and 4.5 km, respectively. The work of [160] also considered Einstein dilaton Gauss
Bonnet theory with a massive scalar field, considering that current detectors are
sensitive to the activation of dipolar radiation from massive fields for masses of the
scalar in the range between ∼ 10−14 and 10−13 eV, and obtaining √

αGB ≲ 2.47 km
for any mass of the field less than 6 × 10−14 eV and √

αGB ≲ 1.85 km in the massless
limit. Finally, Ref. [164] found √

αGB ≲ 1.33 km from the GW event GW200115
associated to a NSBH binary, and √

αGB ≲ 1.18 km by combining NSBHs and BBHs
events. Refs. [111,157,164,166] also looked at constraining dynamical Chern-Simons
gravity, without finding meaningful bounds. An upper bound for such theory was
found by Ref. [167] from multimessanger NS observations, √

αdCS ≲ 8.5 km.
We will investigate upper bounds on the scalar charge carried by the secondary

in a fully Bayesian analysis, currently in preparation [168].

In summary, our results demonstrate that EMRI observations by LISA will be
able to detect and potentially measure scalar charges to exquisite accuracy. Our
analysis and results are independent of the origin of the charge and are hence theory-
agnostic. We have also shown that a further analysis can allow one to measure the
coupling parameters for specific theories.



76

Chapter 9

EMRIs with massive scalar fields

So far, our analysis focused on massless scalar fields. In this chapter, we model
EMRI with massive scalar fields and we show how, under certain assumptions, at
leading order in the binary mass ratio, all the changes on the emitted gravitational
waves are fully captured by two parameters: the scalar charge of the secondary
body and the mass of the scalar field. These results are presented in Section 9.1, in
which we derive the decoupled field equations for the gravitational and the scalar
field. In Section 9.2 we present the solution of the massive scalar field equation
in linear perturbation theory, and we compute the scalar energy fluxes for circular
inspirals. The energy emission drives the EMRI’s orbital evolution, discussed in
Section 9.4. Finally, the last section is dedicated to the emitted GWs. First, we
compute the faithfulness among GW signals arising in different scenarios, and in the
end we perform a parameter estimation with the Fisher Information Matrix analysis
to investigate the detectability of both the scalar charge and mass from LISA.

9.1 Theoretical framework
Massive scalars appear in cosmological models of dark energy and/or dark matter

in extension of the Standard Model or General Relativity.
Massive scalars are expected to leave an observable imprint on compact objects

only if their Compton wavelength, the inverse of their mass, is comparable to the
wavelength of the emitted GW, i.e. to the length-scale of the source [169]. In
geometrical (G = c = 1) units, if M is the length-scale of the source (e.g., for a
BH system, the BH mass) and µsℏ is the scalar field mass, the condition is roughly
µsM ≲ 1. We note that [94]

µs [eV] ≃
(
µsM

0.75

)
·
(

106M⊙
M

)
10−16 eV . (9.1)

Hence, the scalars that GW observations can currently probe would have masses
smaller than ∼ 10−16 eV (ultra-light scalar fields, see e.g. [170] and references
therein).

Nonetheless, the assumption of a strictly vanishing mass and of shift symme-
try, as for the previous studies, can be too restrictive. Certain scenarios, such a
superradiance-induced clouds [94] or scalarization [25, 26, 96, 97, 171] rely of the
presence of a mass or of interactions that violate shift symmetry to generate scalar
charge. Measuring the mass of an ultra-light scalar is in itself an exciting prospect.
Indeed, significant effort has already been put in constraining the mass of scalar
fields using pulsar or LVK observations, e.g. [160,169,170,172].
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Here we show how EMRIs result to be very promising sources to set constraints
on both the scalar charge and the scalar field mass. Before proceeding, we define
here the dimensionless mass of the scalar field as

µ̄s = µsM , (9.2)
which is used in the following for simplicity.

9.1.1 Set up
We consider theories described by the action:

S [g, φ,Ψ] = S0 [g, φ] + αSc [g, φ] + SM [g, φ,Ψ] , (9.3)
where

S0 =
∫
d4x

√
−g

16π

(
R− 1

2∂µφ∂
µφ− 1

2µ
2
sφ

2
)
, (9.4)

with R being the Ricci scalar and µs the mass of the scalar field. The term Sc
describes the coupling between the scalar and the gravitational field, and SM is
the action of the matter fields. By following the skeletonized approach [112] SM is
replaced by the action of a point-particle

Sp = −
∫
m(φ)

√
gαβ

dyα
p

dλ

dyβ
p

dλ
dλ , (9.5)

where m(φ) is a scalar function of the massive scalar field. By varying the action
(9.4) with respect to the fields g and φ, we obtain the fields equations, respectively

Gµν = −16πα√
−g

δSc

δgµν
+ 8πT scal

µν + 8πT p
µν , (9.6)

and

(□ − µ2
s)φ = − 8πα√

−g
δSc

δφ
+ 16πδSp

δφ
. (9.7)

T scal
µν is the scalar-field stress-energy tensor,

T scal
µν = 1

16π

[
∂µφ∂νφ− 1

2gµν (∂φ)2 − 1
2 gµν µ

2
sφ

2
]
, (9.8)

and T p
µν is the stress-energy tensor for Sp,

T p
µν =

∫
m (φ) δ

(4)(x− yp(λ))√
−g

dyp
µ

dλ

dyp
ν

dλ
dλ . (9.9)

We assume that α has negative mass dimensions in units where c = ℏ = 1 (i.e. it
suppresses irrelevant operators), or positive length dimensions in the G = c = ℏ = 1
geometric units that we use here. Then we can relate α to q as done for massless
fields in Chapter 4, α/Mn = (α/mn

p )qn, where n is a positive integer.
Moreover, since we focus on scalar masses that satisfy µsM ≤ 1, as heavier

scalars are not expected to leave any imprint on EMRIs, we have µsmp ≪ 1 and the
scalar is far from being confined at scales mp. The fact that it has not been already
detected by observation of black holes of a few solar masses or in weak field [111]
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implies that α/mn
p is not much larger than 1. The α = 0 case in particular is covered

by no-hair theorems [20, 22] and hence the primary would be a Kerr black hole with
φ = 0.

Combining all of the above, one can treat the deviations from the Kerr metric
and the EMRI dynamics perturbatively, with q as a single book-keeping parameter.
When µsM ≪ 1, the mass of the scalar can be neglected and one recovers the results
of the massless case, while when µsM becomes O(1) it is essential to include its
contribution, as we do below.

We will only consider quantities to leading order in the mass ratio. Hence T scal
µν

and δSc/δφ, which are quadratic in q, can be neglected, and we obtain

Gαβ = 8π
∫
m(φ)δ

(4) (x− yp(λ))√
−g

dyα
p

dλ

dyβ
p

dλ
dλ , (9.10)

(
□ − µ2

s

)
φ = 16π

∫
m′ (φ) δ

(4)(x− yp(λ))√
−g

dλ . (9.11)

The relation between m(φ), its derivative and the mass and scalar charge of the
secondary object are then obtained by proceeding as in the massless case (see
Chapter 4). In a buffer region close to the secondary, small enough to be inside its
world-tube, but far away such that the metric can be considered as a perturbation
of flat spacetime, Eq. (9.11) reduces to

(□ − µ2
s)φ1 = 0 , (9.12)

whose solution, in a reference frame {x̃µ} centered on the particle, has the form

φ1 ≃ mpd

r̃
e−µsr̃ +O

(
m2

pd
2

r̃2 e−µsr̃

)
, (9.13)

where d is the dimensionless scalar charge.
By inserting the solution (9.13) in the left hand side of (9.11) and evaluating it

in r̃ = 0 in the buffer region, we obtain

(
∇2 − µ2

s

)(mpd

r̃
e−µsr̃

)
= −4πmpdδ

(3)(x− yp) (9.14)

Matching this solution with the right hand side of the scalar field equation (9.11)
we then obtain m′(0) = −mpd/4. Finally, by considering the weak-field limit the
(tt)-component of the particle’s stress-energy tensor reduces to the matter density
of the particle ρ = mpδ

(3)(x − yp(λ)) we obtain m(0) = mp. The final matching
conditions are then given by:

m(0) = mp , (9.15)

m′(0) = −mp d

4 . (9.16)

The field equations are finally given by:
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Gαβ = 8πmp

∫
δ(4)(x− yp(λ))√

−g
dyα

p

dλ

dyβ
p

dλ
dλ , (9.17)

(
□ − µ2

s

)
φ = − 4πdmp

∫
δ(4)(x− yp(λ))√

−g
dλ . (9.18)

The field equation (9.17) for the gravitational field is the same that we have in
General Relativity, while the scalar field equation (9.18) is a scalar wave equation
with a source term controlled by the scalar charge of the secondary body.

9.2 Massive scalar perturbations
The field equations can be solved in perturbation theory. That one for the

gravitational field, Eq. (9.17), is the same of the GR one, and the perturbations were
presented in Chapter 5. In this section, we present the perturbations for the massive
scalar field. Following [36,173], we decouple the radial and the angular dependence
of the scalar field by decomposing it in the zero-spin spheroidal harmonics Sℓm(θ, ω)
as (the sum over the multipoles ℓ and m is implicit)

φ(t, r, θ, ϕ) =
∫

dωR̃ℓm(r, ω)√
r2 + a2

Sℓm(θ, ω)eimϕe−iωt . (9.19)

Substituting it in Eq. (9.18), we obtain two decoupled equations, one for the radial
and one for the angular dependence of the field, R̃ℓm and Sℓm(θ, ω), respectively.

The equation for the zero-spin spheroidal harmonic is

[
1

sin θ
d

dθ

(
sin θ d

dθ

)
− a2(ω2 − µ2

s) sin2 θ − m2

sin2 θ
+ λ̄ℓm

]
Sℓm = 0 , (9.20)

where λ̄ℓm is the eigenvalue. The equation for R̃ℓm is

d2R̃ℓm

dr2
⋆

+ VsR̃ℓm = Jℓm , (9.21)

where the tortoise coordinate r⋆ is defined in (5.14) and the effective potential Vs is
given by

Vs =
[
ω − am

ρ2

]2
− ∆
ρ8

[
λℓmρ

4 + 2Mr3 + a2(∆ − 2Mr) + µ2
s

ρ6

]
, (9.22)

with ρ2 = r2 + a2, λℓm = λ̄ℓm + 2ma
√
ω2 − µ2

s − 2maω.

The source term Jℓm, for a particle moving on a circular orbit with radius rp

and (prograde) angular frequency Ωp = M1/2/(r3/2
p + aM1/2), is

Jℓm = −d 4πmp∆√
a2 + r2

S⋆
ℓm (π/2)
ut

δ(r − rp)δ(ω −mΩp) . (9.23)
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where ut is the time component of the particle four-velocity, dt/dτ given in Eq. (3.10).

The equation for Rℓm is solved using the method of the Green functions. The ho-
mogeneous solutions R−

ℓm/R
+
ℓm which satisfy the condition of purely ingoing/outgoing

wave at the horizon/infinity have the following asymptotic behaviour:{
R−

ℓm = e−ik−r⋆ for r → r+ ,

R−
ℓm = Aine

−ik+r⋆ +Aoute
ik+r⋆ for r → ∞ ,

(9.24)

{
R+

ℓm = Bine
−ik−r⋆ +Boute

ik−r⋆ for r → r+ ,

R+
ℓm = eik+r⋆ for r → ∞ .

(9.25)

with k+ =
√
ω2 − µ2

s, k− = ω −mΩh, Ω+ = a/(2Mr+), r+ = M +
√
M2 − a2.

The general solution for Rℓm(ω, r) is then obtained by integrating the former
over Jℓm:

R̃ℓm = R̃+
ℓm

∫ r⋆

−∞

R̃−
ℓmJℓmdr⋆

W
+ R̃−

ℓm

∫ +∞

r⋆

R̃+
ℓmJℓmdr⋆

W
, (9.26)

where W = R̃
′+
ℓmR̃

−
ℓm − R̃+

ℓmR̃
′−
ℓm is the Wronskian and primes denote derivatives with

respect to r⋆. We define the amplitudes Z±
ℓm = R̃ℓm(r⋆ → ±∞) so that

Z∓
ℓm = R̃∓

ℓm(r⋆ → ∓∞)
∫ +∞

−∞

R̃±
ℓmJℓmdr⋆

W
. (9.27)

The energy flux at the horizon (−) and at infinity (+) are then given by

Ė∓
scal = 1

16π

∞∑
ℓ=1

ℓ∑
m=−ℓ

ωk∓|Z∓
ℓm|2 , (9.28)

with ω = mΩp.
Moreover, we observe that since R̃+

ℓm(r⋆ → +∞) = e−iωr⋆ Θ(mΩp − µs) with Θ
Heaviside function, we have

∣∣∣Z+
ℓm

∣∣∣2 =
∣∣∣∣∣
∫ +∞

−∞

R̃−
ℓmJℓmdr⋆

W

∣∣∣∣∣
2

Θ(mΩp − µs) . (9.29)

9.3 Energy fluxes: implementation and results
The energy fluxes for circular orbits around rotating central black holes, have

been computed by implementing a code using the software Mathematica [121].

9.3.1 Numerical implementation
The spheroidal harmonics and their eigenvalues have been computed with the

use of the Black Hole Perturbation Toolkit [120], using the package “Spheroidal
Harmonics”.

To find the general radial solution, we first obtained the homogeneous solution
satisfying the boundary conditions of purely ingoing wave at the horizon and purely
outgoing wave at infinity, i.e.
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R̃H(r) =
nh∑

n=0
e−ik−r⋆(r)an(r − rh)n , (9.30)

R̃∞(r) =
n∞∑
n=0

eik+r⋆(r)r

iµ2
sM√

ω2−µ2
s
bn

rn
. (9.31)

The coefficients (an, bn) are obtained by solving the homogeneous equation at
each order in (r − rh) and 1/r, with a0 = b0 = 1. The higher order is set to
nh = n∞ = nmax = 4, which guarantees accurate boundary conditions. Indeed, the
relative difference in the dominant ℓ = m = 1 mode of the scalar flux computed with
nmax = 3 and nmax = 4 is ≲ 10−10% within the integration domain 2.4M ≤ r ≤ 15M
and 0.01 ≤ µ̄s ≤ 1. The dimensionless scalar field mass µ̄s is defined in Eq. (9.2) as
µ̄s = µsM .

We integrate the field’s equations from r1 = rh + 2ϵ, with ϵ = 10−5, to a value at
infinity, r2, which is either fixed to (i) r2 = 1000/Abs[ω] if ω > µs or (ii) such that
R̃∞(r2) ∼ 10−50 if ω < µs. The last condition is chosen to avoid accuracy problems
due to the exponential decay of R̃∞(r2) for wavelengths smaller than the scalar field
Compton mass.

The total gravitational and scalar emissions have been computed by summing
over the modes (ℓ,m), with ℓmin ≤ ℓ ≤ ℓmax and −ℓ ≤ m ≤ ℓ. For the gravita-
tional (scalar) perturbations, ℓmin = 2 (ℓmin = 1). We chose ℓmax = 10 both for
the gravitational and the scalar computations. For the gravitational emission, the
relative difference between the fluxes with ℓmax = 9 and with ℓmax = 10 is ∼ 0.1% for
r = 2.5M and ∼ 10−4 % for r = 8M . For the scalar emission, the relative differences
for different values of the scalar field mass are reported in Table 9.1. We observe
that the relative difference is < 1% for r = 2.5M and < 10−2 % for r = 8M , with
scalar field mass in the range 0.001 ≤ µ̄s ≤ 0.1. For larger values of the scalar mass,
µ̄s ∼ 1, the relative difference for r = 2.5M is larger.

µ̄s r/M Ėℓmax=10
scal Ėℓmax=9

scal Rel. Diff.
0.001 2.5 7.56 × 10−4 7.53 × 10−4 < 1%

8 1.54 × 10−5 1.54 × 10−5 < 10−3%
0.01 2.5 7.55 × 10−4 7.52 × 10−4 < 1%

8 1.44 × 10−5 1.44 × 10−5 < 10−3%
0.1 2.5 6.40 × 10−4 6.37 × 10−4 < 1%

8 −4.04 × 10−7 −4.04 × 10−7 < 10−2%
1 2.5 −3.15 × 10−6 −3.54 × 10−6 ≃ 10%

8 −4.98 × 10−13 −4.98 × 10−13 < 10−7 %

Table 9.1. Relative difference between scalar energy flux computed up to ℓ = 10 and values
computed up to ℓ = 9. The primary spin is a/M = 0.9.

Finally, in order to derive the EMRI phase evolution, we interpolate the GW
fluxes over the radial coordinate using a built-in function of Mathematica. For a
fixed primary spin and scalar field mass, we compute the fluxes over a grid of 251
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points uniformly spaced in u = (r − 0.9 rISCO)1/2 within [u(rmin), u(rmax)], where
rmax = rmin + 13M and rmin = rISCO + 0.1M , with rISCO being the value of the
radial coordinate at the ISCO as a function of the primary spin a.

In order to have an estimate of the error brought by the interpolation, we
computed the scalar fluxes for some orbital radii which don’t lie on the grid defined
above, and compared them with those obtained through the grid interpolation. The
results are given in Table 9.2. The relative difference is ≲ 10−3 for µ̄s ≲ 0.1. For
higher values of the scalar field mass, the relative difference increases, since the flux
at infinity vanishes for the modes with lower m and the total flux experiences large
variations between close points on the grid.

µ̄s r/M Ėℓmax=10
scal Ėint

scal Rel. Diff.
0.001 2.5 7.56 × 10−4 7.56 × 10−4 < 10−8 %

8 1.54 × 10−5 1.54 × 10−5 < 10−3 %
0.01 2.5 7.55 × 10−4 7.55 × 10−4 < 10−8 %

8 1.44 × 10−5 1.44 × 10−5 < 10−3 %
0.1 2.5 6.40 × 10−4 6.399 × 10−4 < 10−8 %

8 −4.04 × 10−7 −2.81 × 10−7 ≃ 30%
1 2.5 −3.15 × 10−6 −1.20 × 10−6 ≃ 60%

8 −4.98 × 10−13 −3.62 × 10−13 ≃ 30%

Table 9.2. Relative difference between scalar energy flux computed up to ℓ = 10 and the
interpolated values, identified by the superscript “int”. The primary spin is a/M = 0.9.

In the following we present the results of our computations.

9.3.2 Results
The massive scalar energy fluxes feature particular characteristics, which regard

the emission at the infinity and the emission at the horizon.
Indeed, the flux at infinity identically vanishes for frequencies smaller than the

scalar field mass, ω < µs, see Eq. (9.29). This is a typical behaviour for massive
scalar fields (see e.g. [172,174,175]). Therefore, for every combination of (ℓ,m) a
specific radius rs exists such that for r > rs the energy flux at infinity vanishes. This
suppression may lead to non-detectable imprints in the GW emission, as we discuss
in the faithfulness analysis.

Unlike the emission at infinity, the flux at horizon is present for each value of
the orbital frequency, and contributes to the binary’s orbital evolution throughout
the entire inspiral. Moreover it shows a new important feature, the appearence of
resonances, which are not present if the scalar field is massless.

Resonances occur when the binary orbital frequencies are comparable with those
of the scalar quasi-normal modes of the BH background spacetime. In this case
the energy emission grows towards a peak which can be either positive or negative
depending on the BH spin and on the superradiance condition ω < mΩ+, where
Ω+ is the horizon angular velocity, Ω+ = a/(2Mr+), and r+ the radius of the BH
horizon, r+ = M +

√
M2 − a2 (see Eq. (3.2)). If the peak is negative the scalar

radiation can be strong enough to counterbalance the gravitational emission, giv-
ing rise to floating orbits [176–178]. Determining whether floating orbits persist
at post-adiabatic level or how quickly the secondary moves through a resonance
requires self-force calculations [178]. Hereafter, we neglect resonances, which is a



9.4 Orbital Evolution of EMRIs with massive scalar fields 83

rather conservative approach. Taking them into account is expected to make the
waveform more distinguishable from a EMRI waveform in GR and hence improve
parameter estimation and our ability to detect a new scalar.

The results of the energy fluxes computations are shown in Fig.9.1, where the
total scalar energy flux is plotted as a function of the orbital radius, for different
values of the scalar field mass. The inset shows a zoom of the same plot, to highlight
the behavior of the flux for µ̄s = 0.7 and µ̄s = 1. The continuous light-blue line is
relative to the massless case, µ̄s = 0. For a fixed rp, by increasing the value of the
scalar field mass, the energy flux decreases. Moreover, for high values of µ̄s, µ̄s =
0.7 and 0.9, the total flux becomes negative for r larger then a certain value, due to
the suppression of the flux at infinity.
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Figure 9.1. Total massive scalar flux up to ℓ = 10 as a function of the orbital radius rp,
for different values of the scalar field mass. Resonances are excluded. The inset shows
the fluxes for µ̄s = (0.7, 1). The primary spin is fixed to a/M = 0.9. The continuous
line is relative to the massless case.

9.4 Orbital Evolution of EMRIs with massive scalar
fields

The energy emission through gravitational and scalar waves drives the EMRI
evolution. The adiabatic inspiral is built considering the balance law Ė = −ĖGW and
integrating the differential equations (6.4) to obtain the radial and phase evolution,
as explained for the massless case in Chapter 6. From the orbital evolution, we
computed the accumulated dephasing of Eq. (6.6) in 1 year of observation before the
plung, for inspirals with and without the scalar charge, for several values of the scalar
field mass. The plunge is defined in Eq. (7.8) as rplunge = rISCO+δr, with δr = 0.1M .
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The results are presented in Fig. 9.2, which shows the accumulated dephasing
as a function of the observing time, for different values of the scalar field mass and
d = 0.1. The top panel considers a primary with M = 106M⊙, while the bottom
panel with M = 2.3 × 105M⊙. The primary spin is a/M = 0.9. The mass of the
secondary is mp = 10M⊙ in each inspiral. The horizontal dashed line at ∆ϕ = ±0.1
rad indicates the threshold of LISA’s phase resolution for signals with SNR = 30,
see Eq. (6.5). The markers indicates the orbital radius reached by the inspiral with
d = 0 for the corresponding time of observation.

We focused on values of the scalar field mass 0.1 ≲ µ̄s ≲ 1, as for lighter values
we expect a qualitative behaviour similar to the massless case. Such values are
considered in the next analysis concerning the GW signals.

For each µ̄s, regardless of M , ∆ϕ decreases during the evolution before increasing
in the last few months of the inspiral. This behavior is due to the presence of
the scalar flux at infinity, which shifts the total scalar emission from negative to
positive values, thus accelerating the inspirals with (d, µ̄s) ̸= 0. For M = 106M⊙
the crossing between negative and positive values of the dephasing occurs for
µ̄s ≲ 0.3 (µs ≲ 4 × 10−17eV), while for M = 2.3 × 105M⊙ it happens for µ̄s ≲ 0.1
(µs ≲ 6 × 10−17eV). This analysis shows that light fields, with µ̄s ≪ 1, lead in
general to differences in the phase evolution which in modulo are larger than the
detectability threshold, thus potentially measurable by LISA. The actual constraints
on the scalar field properties require though to fully take into account correlations
between the waveform parameters, as discussed in Section 9.6.
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Figure 9.2. (Top) Dephasing accumulated in one year before the plunge, plotted as a
function of the time of observation for a binary system with M = 106M⊙, a/M = 0.9
and mp = 10M⊙, for different values of the scalar field mass. The difference in the phase
evolution is computed between an inspiral with d = 0 and one with d = 0.1. (Bottom)
Same as top panel but for a primary mass of M = 2.3 × 106M⊙. Different values of the
scalar field mass are considered.
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9.5 Faithfulness among gravitational waves signals
The GW templates have been built by following the Analytic Kludge of [135]

presented in Chapter 6. We adapted the template to inspirals driven by the fully-
relativistic energy fluxes, computed as previously explained.

We computed the faithfulness among the GW signals emitted in different sce-
narios, in order to estimate the LISA ability to distinguish among them. With
respect to the circular massless case discussed in Chapters 6 and 8, the new pa-
rameter µ̄s is added to the set of parameters which describe EMRIs, i.e. θ⃗ =
{M,mp, a/M, dL, θS , ϕS , θL, ϕL, r0, ϕ0, d, µ̄s}. The value of the threshold under which
two signals are considered distinguishable is assumed Fthr = 0.994, for signals with
SNR ρ = 30 [145].

9.5.1 Results
The results of the faithfulness computations are summarized in Fig. 9.3.

First, we studied the distinguishability between the baseline GR model, i.e.
assuming (d, µ̄s) = (0, 0), and waveforms with non-vanishing values of the charge and
of the scalar field mass. The top panel of Fig. 9.3 shows the faithfulness between the
‘plus’ polarization h+ computed in these two scenarios, for EMRIs with secondary
mass of one and ten solar masses, as a function of d and µ̄s. As previously discussed,
large values of µ̄s tend to suppress the GW flux at infinity, and hence the overall
dissipative contribution of the scalar sector, as the energy emission at the horizon is
subdominant.

Indeed, the faithfulness deteriorates rapidly as the scalar field mass decreases. For
0.05 < d < 0.1, it lies below Fthr for µ̄s ≲ 0.3 for the binaries we considered. Larger
values of the scalar charge (d = 0.3) allow the two waveforms to be distinguishable
for more massive scalar configurations, with µ̄s ≳ 0.7. For a lighter secondary the
faithfulness appears to reach Fthr at a larger µ̄s.

However, the d = 0.3 case is an outlier in this respect and also exhibits some
additional peaks and troughs for larger values of µ̄s, which persists for larger values
of d. The corresponding fluxes do not exhibit any remarkable difference from those
corresponding to lower values of d or µ̄s, so it is not clear what causes these changes
in the faithfulness for larger values of d and µ̄s. Numerical errors were analysed
by varying the precision p of the fluxes which serve as input parameters for the
faithfullness computations. Results are listed in Table 9.3 for different values of
input precision and EMRI configurations. Our analysis shows that the results are
stable under large the increase of the flux precision, from p = 40 to p = 60.

mp/M⊙ d µ̄s Fp=40 Fp=50 Fp=55 Fp=60
10 0.1 0.1 0.356456 0.356472 0.356461 0.356462

0.3 0.4 0.420629 0.420662 0.420632 0.420632
1 0.1 0.1 0.359169 0.359168 0.359168 0.359166

0.3 0.4 0.466751 0.466753 0.466751 0.466750

Table 9.3. Values of the faithfullness computed with different input precision. The precision
p of the fluxes ranges between 40 and 60 digits.

We also note that for µ̄s ≲ 0.03 (µs ≲ 4 · 10−18eV) the GR and the scalar
waveforms are clearly distinguishable, with F ≲ 0.4, regardless of the charge. Such
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estimates are complementary to other bounds which are expected to provide informa-
tion on the existence of scalar fields in the gravity sector from future astrophysical
probes. As an example, in both panels of Fig. 9.3 we drew as shaded regions the
parameter space which can be potentially ruled out by superradiance constraints
inferred from observations of massive BH binaries [94]. Our results suggest that,
depending on d, EMRIs provide a new powerful channel to constrain both light and
heavy fields, which do not fall within the superradiance window.

As a step forward in this analysis we exploited the faithfulness to assess the
minimum µ̄s which can be distinguished from the massless case. The bottom panel of
Fig. 9.3 shows indeed the values of F computed between the gravitational waveform
with ‘plus’ polarization with either µ̄s = 0 or µ̄s ̸= 0, and fixed scalar charge. We
considered the same binaries analysed in the top panel.

Our results show that, for charges as small as d ∼ 0.05, LISA could be able to
distinguish fields with µ̄s ≳ 0.01 (µs ∼ 10−18eV) from their massless counterpart.
This bound is larger by almost an order of magnitude if d ≳ 0.3.

Figure 9.3. (Top) Faithfulness between a GW signal with ‘plus’ polarisation with d = 0
and one with d ̸= 0, µ̄s ̸= 0 for 12 months of observation before the plunge. We
fix the primary mass and spin to M = 106M⊙ and a/M = 0.9, respectively, while
considering different values mp and d. The shaded region corresponds to the range of
scalar field masses which could be excluded by superradiance bounds (courtesy of R.
Brito). (Bottom) Faithfulness between two signals with the same value of d ̸= 0, one
having µ̄s = 0 and the other with µ̄s ̸= 0. The horizontal dashed line corresponds to the
threshold value Fthr. We consider the same EMRI configurations as in the top panel.
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9.6 Parameter estimation with the Fisher Information
Matrix Analysis

Here we present the FIM analysis for massive scalar fields. First we show its
numerical implementation and then the obtained results.

9.6.1 Numerical implementation
We applied the fisher analysis to LISA observations of prototype EMRIs injecting

M = 106M⊙, a/M = 0.9, θS = ϕS = π/2, θL = ϕL = π/4, d = 0.1 and considering
four values of mp = (1.4, 4.6, 10, 15)M⊙ and two values of µ̄s = (0.018, 0.036), which
lie outside the superradiance window highlighted in Fig. 9.3, and for which the flux
at infinity is significant throughout the entire inspiral.

Unlike the faithfulness analysis, we performed the fisher computations by consid-
ering only the fundamental mode of the scalar flux, i.e. assuming ℓmax = 1 in the
sum (9.28). This choice was dictated by the computational cost needed to invert
the Fisher matrix, whose stability requires very accurate fluxes, computed on the
grid (r/M, a/M, µ̄s) with 205 digits of input precision.

Derivatives of the analytic template with respect to the binary parameters are
fully numerical, obtained by using a 11-points stencil. To compute finite differences
we have sampled the spin parameter between 0.89 ≤ a/M ≤ 0.91 in steps of
∆a/M = 0.01, and the scalar field mass in an interval of 11, equally spaced points,
in steps of ∆µ̄s = 0.002 (centered around the two injected values we considered, i.e.
µ̄s = 0.018 and µ̄s = 0.036). Finite differences require a careful choice of a step-size
which controls the shift for each of the twelve parameters of the waveform, and
which is discussed in Appendix B.2.

9.6.2 Results
The results of the FIM computations are summarized in Fig 9.1, in which the

left and right columns shows the joint and marginal posterior distributions on µ̄s

and d, respectively. The upper raw is relative to µ̄s = 0.036, while the bottom raw
to µ̄s = 0.018.

A summary of the 1-σ uncertainties inferred for µ̄s and d is reported in Table 9.4,
together with their correlation coefficients, which show how µ̄s and d are strongly
(anti-) correlated.

mp[M⊙] µ̄s σd/d σµ̄s/µ̄s cdµ̄s

1.4 0.018 345% 2364% 0.997
0.036 363% 391% 0.992

4.6 0.018 92% 243% 0.995
0.036 97% 8% −0.485

10 0.018 49% 53% 0.984
0.036 45% 24% −0.990

15 0.018 38% 22% 0.938
0.036 26% 21% −0.986

Table 9.4. 1-σ relative uncertainties and correlation coefficients on the charge and on the
scalar field mass for the configurations shown in Fig. 9.4. We assume d = 0.1 for all the
binaries.
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Errors on d decrease as the mass ratio mp/M increases, for both values of
µ̄s. Binaries with mp ≳ 10M⊙ are able to exclude the d = 0 case at more than
90% credible level. For the EMRI configuration with mp = 4.6M⊙, errors slightly
deteriorate, with the null scenario ruled out at one sigma.

Constraints on µ̄s show more variability. For the lowest injected value, µ̄s = 0.018,
errors follow the same hierarchy observed for the scalar charge, with the measure-
ment accuracy improving for heavier secondaries. In this setup however, µ̄s remains
unconstrained for the EMRI with mp = 4.6M⊙. This picture changes completely
for the µ̄s = 0.036 case, in which the strongest bound is led by the lightest sec-
ondary. Binaries with mp = 10M⊙ and mp = 15M⊙ provide larger, and almost
identical, errors. The dependence on such results on the secondary mass is mostly
dictated by two ingredients: (i) correlations among the scalar charge and the field’s
mass, (ii) the EMRI orbital configuration within the observational window we
have considered, which spans one year of evolution until the plunge. Very light
secondaries start their inspiral at smaller initial radii, where the scalar flux has a
smaller relative contribution compared to the dominant quadrupolar mode, and
the signal features a very slow evolution with little variation in the frequency content.

In comparison with the massless case, where the relative error on the scalar
charge for the binary with mp = 10M⊙ is ≃ 4%, here it is larger: σd/d ≃ 45% and
49% for µ̄s = 0.036 and µ̄s = 0.018 respectively. This is expected due to correlations
with µ̄s which enters now as an additional parameter. Nevertheless, in all cases in
which the probability distribution of µ̄s is constrained by the data, we are able to
exclude the massless scenario at more than 90% credible level.

Figure 9.4. (Left column) Credible intervals at 68% and 90% for the joint posterior
distribution of the charge d and the scalar field mass µ̄s. We consider EMRIs with
injected parameters d = 0.1, M = 106M⊙, a = 0.9M , different values of the secondary
mass, µ̄s = 0.036 (top row), and µ̄s = 0.018 (bottom row). (Right column) Marginal
distributions for d and µ̄s. The white area between shaded regions provides 90% of
the probability distribution. The vertical dashed lines identify the GR scenario with
d = µ̄s = 0.

Finally, to quantify the bias that could arise in the error analysis by neglecting
multipoles larger than ℓ = 1 for the scalar flux, we have performed a Fisher analysis
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for a configuration with µ̄s = 0.018, by also including the ℓ = 2 and the ℓ = 3 modes
within the sum (9.28). The probability distributions for the charge and for the scalar
field mass obtained by adding the ℓ = 2 component are presented in Fig. 9.5. Dashed
and solid curves correspond to assuming either ℓmax = 1, or ℓmax = 2. As expected,
constraints on both µ̄s and d improve by adding the quadrupole contribution, making
our choice rather conservative in terms of the constraints that LISA would be able
to infer from EMRI observations. Table 9.5 shows a comparison of the relative
errors obtained by also adding the ℓ = 3 mode. For the binary configurations we
considered, our results suggest that the uncertainties on both the parameters tend
to saturate already with the inclusion of the third multipole.

mp[M⊙] σ
(1)
d /d σ

(2)
d /d σ

(3)
d /d σ

(1)
µ̄s
/µ̄s σ

(2)
µ̄s
/µ̄s σ

(3)
µ̄s
/µ̄s

4.6 92% 75% 78% 243% 198% 190%
10 49% 42% 44% 53% 44% 41%
15 38% 33% 35% 22% 18% 17%

Table 9.5. Relative percentage errors on the parameters (d, µ̄s) for mp = (4.6, 10, 15)M⊙
assuming different ℓmax in the scalar energy flux sum (9.28). The value of ℓmax is
indicated in parenthesis in the superscripts, i.e. σ(1)

d = σℓmax=1
d . The injected values are

d = 0.1 and µ̄s = 0.018.

Figure 9.5. Marginal distributions for d (left plot) and µs (right plot). Dashed and
continuous curves are relative to inspirals in which the scalar flux takes into account
only the ℓmax = 1 or up to ℓmax = 2, respectively. The vertical lines identify the GR
scenario with d = µ̄s = 0.
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Chapter 10

Conclusions and future
prospects

The study carried out in this thesis show that Extreme Mass Ratio Inspirals
represent a golden class of sources to test General Relativity in the strong field regime,
and to search for new fundamental fields coupled to gravity. The peculiar orbital
configuration expected for EMRIs entering the LISA band would allow to track
their evolution by following tens of thousand cycles before the plunge. Continuous
observations of GWs emitted during this long inspiral will eventually provide a
detailed map of the binary spacetime, leading to accurate measurements of the
source parameters, able to pinpoint even small departures from General Relativity.
Historically, this has promoted EMRIs as a tool to probe Kerr deviations from the
primary BH.

In this thesis we have discussed a new theoretical approach to model EMRIs in
alternative gravity theories with additional fundamental scalar fields. This framework
builds on a decoupling of scales which allows to disentangle GR deviations between
the primary and the secondary component of the binary, with those of the massive
BH being subdominant. This pushes for a change of perspective in the understanding
of EMRIs beyond GR. Rather than working on GR deviations from the massive
component of the binary, which can be safely described (at the leading order) by
the Kerr metric, we focused on the imprint left by the extra field on the secondary,
which carries a scalar charge able to affect the EMRIs dynamics and hence its GW
emission.

We provided the first direct analysis of the capability of the space interferometer
LISA to constrain the features of massless and ultra-light fields from EMRI observa-
tions, forecasting LISA measurements for the scalar charge of the secondary and for
the scalar field mass.

We modeled EMRIs in a vast family of modified gravity theories belonging to
two classes, depending on whether: (i) BHs satisfy no-hair theorems, such that their
stationary solutions are described by the Kerr metric or, (ii) BHs are endowed with
a scalar profile, i.e. they carry a scalar charge. For class (ii) we considered theories
with dimensionful coupling constants α, such that (in geometrical units G = c = 1)
[α] = (mass)n with n positive integer. In this case, deviations from GR are fully
controlled by the dimensionless parameter ζ = α/massn, given by the ratio of the
coupling and the BH mass.

We showed that for asymmetric binaries in both classes of theories the spacetime
of the primary can be adequately described by the Kerr metric. Indeed, while case
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(i) is trivial, for case (ii) the scalar charge of the primary is suppressed with respect
to the one carried by the secondary at order O(q), with q being the binary mass
ratio. This provides large simplification for the EMRI modeling, and allows to
consider realistic astrophysical setups with (fast) rotating black holes. The secondary
component of the binary can instead be treated as a point-particle with a given
mass, carrying a non-negligible scalar charge.

Our formalism is valid for shift-symmetric theories, i.e. for massless scalars, and
for more general models with massive scalars, so long we assume µsM ≲ 1, where
µs and M are the scalar field and the primary BH mass, respectively.

In this framework we have developed a coherent formalism, valid at the leading
order in q, which leads to a decoupled set of field’s equations for the gravitational and
the scalar sector. Equations for the metric tensor are identical to GR, while those for
the scalar field reduce to a wave equation with a source term controlled by the scalar
charge carried by the secondary. For shift-symmetric models the charge encloses all
the details of the underlying theory of gravity, and universally captures deviations
from GR in the EMRI dynamics, allowing to model the system in a theory-agnostic
fashion. In the case of massive scalars, GR changes are also controlled by the field
mass, which enters the scalar wave equation.

Moving in the background spacetime of the primary MBH, the small compact
object produces gravitational and scalar perturbations, which carry energy and
angular momentum away from the binary. In our approach the scalar emission adds
linearly to the gravitational contribution, and acts as additional radiation-reaction
term in the usual GR adiabatic scheme, driving the EMRI evolution to a faster
plunge.

The extra emission leaves an imprint on the emitted gravitational waves. However,
since gravitational perturbations are identical to GR, the simplifications introduced
by our approach also allow to use the same waveform models derived for EMRIs in
Einstein gravity, but assuming that the adiabatic evolution of the orbital elements
includes the extra contribution given by the scalar fluxes. This leads to ready-to-use
agnostic templates, only dependent on the scalar charge and on the scalar field mass
(together with the usual binary parameters), which we have exploited for different
data analysis science cases.

Hereafter we discuss the main results of each model taken into consideration.

Equatorial circular EMRIs with a massless scalar field
As a first science case we have investigated circular equatorial EMRIs around

rotating black holes, assuming massless scalar fields.

Our analysis shows that the spin of the primary has a strong influence on the GW
emission of the binary. Indeed, increasing the MBH rotation rate, the radius at which
the secondary plunges shrinks, allowing the inspiral to reach larger frequencies, and
boosting the overall energy loss. In addition, we have shown that for a fixed orbital
distance the ratio between the scalar and the gravitational fluxes also increases with
the spin. Assuming a/M = 0.9, the value of Ėscal/d

2 can be as large as ∼ 11% of
Ėgrav when the secondary sits at r/M ∼ 8, decreasing to ∼ 3% for closer distances.
The spin affects all GW observables, as the accumulated phase, which also increases
with a/M .

The difference in the phase evolution between EMRIs modelled with and without
scalar charge suggests that LISA could be able to detect values of the scalar charge
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d as small as d ∼ 10−3 for a/M = 0.9, which would correspond to a difference of
103 radians in 1 year of observation before the plunge. While such numbers are
significant, the dephasing analysis only provides a preliminary figure of merit to
investigate whether the scalar emission can lead to detectable effects.

We have carried out a more quantitative investigation by taking account correla-
tions among the different parameters entering the GW signal. Analyses based on the
faithfulness between GW templates computed with and without the scalar charge
lowered previous bounds, showing that LISA can be able to detect d ∼ 0.005 − 0.01
in 1 year of evolution before the merger.

Finally, we have performed a full parameter estimation using a Fisher matrix
approach, which yield constraints on the scalar charge with a percentage accuracy.
For a prototype EMRI with (106 − 10)M⊙, a/M = 0.9 and SNR = 150 we obtained
relative errors ≲ 10% for d ≳ 0.1, and ∼ 20% for d = 0.05.

Our theory-agnostic approach allows to translate agnostic constraints on the
charge, to bounds on the coupling of a specific theory. We have considered as
an example the shift-symmetric scalar Gauss Bonnet gravity. In this case, if the
secondary object is a black hole, the relationship d(α) between the scalar charge and
the Gauss Bonnet coupling constant is given by α ≃ 2dm2

p −73d3m2
p/240 [156], where

mp is the mass of the secondary. For d = 0.05 (d = 0.2) this yields
√
α = 4.67+0.59

−0.69
km (

√
α = 9.311+0.078

−0.079 km) at 90% confidence level.

Overall such results suggest that a single LISA detection may provide measure-
ments of the scalar charge with an unprecedented level of accuracy.

Equatorial eccentric EMRIs with a massless scalar field
We have improved our model by adding astrophysical ingredients to the EMRI

evolution. We first focused on the eccentricity, which is expected to play a key role
in the dynamics of such systems.

Along with the gravitational/scalar energy and angular momentum fluxes, we
have recomputed some of the figures of merit considered for the circular case, i.e.
the difference in the accumulated phase and the faithfulness. We have explored a
variety of binary configurations, with initial apastron fixed to ra = 11M and different
values of the initial periastron, so that the initial eccentricity varies from ein = 0 to
ein ≃ 0.5. The scalar charge has been fixed to d = 0.01. Our analysis shows that
after 4 − 6 months of observation, EMRI inspirals can accumulate a dephasing larger
than the detectability threshold. For a given time of observation such dephasing
increases for larger values of the initial eccentricity.

Furthermore, we have investigated the distinguishability between GW signals
emitted by eccentric EMRIs carrying a non-vanishing scalar charge, for different
values of d. We confirmed the results found for the circular orbits, finding that the
eccentricity further reduces the overlap with GR templates. One year of observation
in the LISA band would be enough to distinguish signals with a scalar charge as
small as d ∼ 0.01.

As a take home message, eccentricity appears to enhance the effect of the scalar
emission, and its impact on the EMRI evolution.
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Equatorial circular EMRIs with a massive scalar field
As a complementary study, we have investigated a more complex theoretical

model, in which EMRIs evolve in the presence of a massive scalar field. As a first
case study we considered circular equatorial orbits with a spinning primary.

For a fixed orbital configuration our numerical calculations show that the total
scalar energy flux decreases as the mass of the field grows. Moreover, at variance
with the massless case, new features emerge during the inspiral. Indeed, the scalar
emission at infinity is suppressed for frequencies smaller then the field mass. More
interestingly, we observed the appearance of scalar resonances, which can in principle
lead to floating orbits, i.e. to configurations in which the binary stalls, dramatically
changing its inspiral phase. Given that a full treatment of this phenomenom requires
next to leading order calculations, we have neglected their effect on the EMRI
dynamics. Therefore, our results can be considered conservative.

We have carried a dephasing analysis on an extended sample of EMRI parame-
ters, which hints that one year of evolution can potentially lead to a simultaneous
measurement of both the scalar charge and of the scalar mass. The suppression
of the flux at infinity above a certain frequency leads to a rich phenomenology,
with the dephasing that changes sign, namely the binary accelerates or decelerates,
depending on the EMRI orbital radius. Studies based on the faithfulness confirms
the phase analysis, yielding GW signals distignuishbale from GR for µs ≲ 0.01,
within a range of charges d = (0.05, 0.1, 0.3). For larger values of the scalar field
mass, the suppression of the scalar emission at infinity is such to render the signal
undistinguishable from its GR counterpart.

In order to investigate the simultaneous measurability of the scalar charge and the
mass of the field, we have performed a Fisher study assuming EMRIs with various
source parameters. We considered secondaries with mp = (1.4, 4.6, 10, 15)M⊙,
carrying a scalar charge d = 0.01 and inspiralling around a primary with mass
M = 106M⊙ and spin a/M = 0.9. We focused on ultra-light scalar fields, i.e.
µ̄s = 0.018 (≃ 2.4 × 10−18eV) and µ̄s = 0.036 (≃ 4.8 × 10−18eV). This analysis
shows that LISA will be potentially able to measure the charge and the scalar mass
for binaries with mp ≳ 10M⊙ at more than 90% confidence level, with relative
errors ranging between ∼ 50% and ∼ 20% for both µs and d. Interestingly, lighter
secondaries, with mp = 1.4M⊙, lead both quantities to be unconstrained. As
discussed above this constraints could change, and possibily improve, with the
inclusion of scalar resonances.

Future prospects
The EMRI models discussed in this thesis can be improved in several directions,

with the twofold goal of having a general description of (very) asymmetric sources on
a wide range of orbital configurations, and to treat the largest class of GR extensions.

From an astrophysical point of view, EMRI secondaries are expected to complete
eccentric and inclined orbits around the primary. Therefore, the inclusion of non-
equatorial configurations is mandatory to characterise realistic binaries on generic
inspirals. In this regard we are currently working on a new project which focuses to
study circular inclined trajectories with a rotating primary, and a massless scalar
field [179] .
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Moreover, compact binaries do not evolve in vacuum, but rather in environments
polluted by any form of matter and fields. The astrophysical arena in which EMRIs
coalesce can modify the GW signal through a variety of effects, as gravitational
drag, accretion and tidal resonances. While a coherent description of such effects
in the EMRI modelling in GR is currently missing, they could provide a possible
source of degeneracy with the scalar emission, which can hamper our ability to
distinctively reconstruct the scalar field parameters [58,110,131,180–186]. For this
reason it would be desiderable to extend the model we investigated by includinge
one or multiple environmental effects.

From a theoretical point of view, our adiabatic framework could be improved
by considering fully-relativistic Teukolsky waveforms. However, in order to provide
accurate waveforms for LISA searches and parameter estimation, the GW phase
needs to be modeled by going beyond the adiabatic order, including at least all
the terms up to O(q), which then require self-force calculations. A recent work
with post-adiabatic corrections has been provided in [117], which presented the
first- and second-order perturbative fields equations and the equations of motion
for the secondary object, treated as a non-spinning point particle. The case of a
spinning particle have been studied in GR by [127,187] and in scalar tensor theories
by [188]. Orbital resonances, which contribute to the phase at O(q−1/2), should also
be investigated. Moreover, for ultra-light scalar fields, the appearance of additional
resonances due to the scalar field mass should also be taken into account.

On the data analysis side, a fully Bayesian analysis based on Markov Chain
Monte Carlo simulations, is currently under preparation [168]. Such an analysis
is expected to provide further information on the degeneracies between the source
parameters, and to clarify the LISA capablity to constrain the scalar field properties.

Finally, our formalism could be extended to multiple fields, couplings, and to
different fields such as vector fields. The straightforward case which considers a
minimal coupling with vector fields have been investigated in [189,190].

The achievement of each future line of research presented here would represent
a further step in the description of asymmetric binary system in scenarios beyond
the Einstein theory and the Standard Model of Particle Physics, allowing to use
asymmetric binary systems to unveil or constrain the existence of new fundamental
fields that may be present in our Universe.
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Appendix A

Tests on the equatorial eccentric
fluxes

In this Appendix we present different checks done for the equatorial eccentric
energy and angular momentum fluxes, showing the errors brought by the interpolation
methods and providing comparisons between our computations and known results
published in literature.

A.1 Error estimates for the interpolation method
We have tested the the method used to interpolate energy and angular momentum

fluxes, by comparing values of (Ėgrav,scal, L̇grav,scal) outside the numerical grid with
those predicted by the interpolation. The percentage relative differences δ between
these two quantities are shown in Table A.1 and A.2, for some orbital configurations.

e p/M Ėint
grav Ėgrav δ% ˙̄Eint

scal
˙̄Escal δ%

0.1 4 3.625 × 10−3 3.631 × 10−3 0.2 1.785 × 10−4 1.785 × 10−4 0.008
10 5.433 × 10−5 5.132 × 10−5 6 6.865 × 10−6 6.722 × 10−6 2

0.4 4 4.838 × 10−3 4.848 × 10−3 0.2 1.964 × 10−4 1.964 × 10−4 0.002
10 6.576 × 10−5 6.164 × 10−5 7 6.705 × 10−6 6.528 × 10−6 3

Table A.1. Relative percentage difference between interpolated fluxes and values computed
outside the grid of interpolation. The spin of the primary is fixed to a/M = 0.9. The
superscript “int” identifies the interpolated values.

e p/M L̇int
grav L̇grav δ% ˙̄Lint

scal
˙̄Lscal δ%

0.1 4 3.164 × 10−2 3.169 × 10−2 0.2 6.266 × 10−3 6.267 × 10−3 0.001
10 1.659 × 10−3 1.635 × 10−3 1 8.679 × 10−4 8.647 × 10−4 0.4

0.4 4 3.377 × 10−2 3.383 × 10−2 0.2 5.752 × 10−3 5.752 × 10−3 0.0006
10 1.576 × 10−3 1.547 × 10−3 2 7.227 × 10−4 7.189 × 10−4 0.6

Table A.2. Same as Table A.1 but for the angular momentum fluxes.
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A.2 Comparison with previous results
The numerical output of our code have been tested by comparing the energy and

angular momentum fluxes for the scalar and gravitational sector against known results
published in literature [75, 76, 191]. In Table A.3 we provide a comparison showing
the relative difference δ between the calculations of Ėscal,grav and of L̇scal,grav for
different EMRI orbital set up. Moreover, in Table A.4 we also show the comparison
of our results for the scalar emission on eccentric orbits with a/M = 0, p = 8M and
e = 0.1, with an independent computation (courtesy of N. Warburton computed
using the code of [76]). For all configurations considered, our results provide a
remarkable agreement with previous computations.

sector a p e Ė δ% L̇ δ%
scal - (tot) 0.9 10 0.2 2.686e-5 3e-5 8.359e-4 3e-5
scal - (tot) 0.9 10 0.5 2.468e-5 7e-1 6.296e-4 3e-4
scal - (tot) 0 10 0.2 3.213e-5 4e-5 9.626e-4 3e-5
scal - (tot) 0 10 0.5 3.329e-5 1e-3 7.845e-4 6e-4
scal - (tot) 0.2 6.15 0.4 3.427e-4 3e-2 3.926e-3 2e-2
grav - (+) 0.9 12.152 0.3731 2.737e-5 14
grav - (+) 0.5 6 0.1 7.106e-4 2e-3 1.055e-2 2e-3
grav - (+) 0.5 6 0.2 7.785e-4 3e-4 1.085e-2 6e-5
grav - (+) 0.5 6 0.5 1.195e-3 8e-2 1.229e-2 7e-2
grav - (−) 0.5 6 0.1 -1.274e-6 1e-1 -1.882e-5 2e-3
grav - (−) 0.5 6 0.2 -1.430e-6 5e-1 -1.973e-5 2e-3
grav - (−) 0.5 6 0.5 -1.126e-6 8 -1.657e-5 3e-2

Table A.3. Comparison between the total (tot), horizon (−) and infinity (+) scalar and
gravitational fluxes from previous works. The scalar fluxes are compared with [76], while
the gravitational ones with [70]. For each quantity and binary configuration specified
by the primary spin, the orbital eccentricity and the semi-latus rectum, we show the
numerical result obtained with our code and the relative percentage difference with the
literature value (when available). Note that fluxes from Ref. [76] have a global factor 4
of difference compared to our values, due to a different normalization of the scalar field.
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ℓ m n Ė(−) δ% Ė(+) δ%
0 0 1 1.138e-8 1e-5 2.060e-8 2e-4
0 0 5 1.527e-16 4e-7 1.926e-17 2e-6
1 1 1 1.857e-8 3e-10 3.256e-7 1e-11
1 -1 1 1.073e-10 4e-10 1.981e-9 4e-12
1 1 5 1.007e-14 2e-9 5.299e-15 3e-8
1 -1 5 4.461e-22 1e-6 1.993e-18 5e-7
2 2 2 1.285e-10 1e-10 2.440e-8 1e-12
2 -2 2 3.955e-14 9e-10 2.391e-10 4e-12
2 2 10 1.755e-23 5e-5 1.842e-23 4e-4
2 -2 10 4.697e-35 4e-1 6.366e-30 2e-1
8 8 10 5.882e-26 5e-10 6.868e-18 8e-8

Table A.4. Values of the scalar energy flux at the horizon and at infinity that we obtained
for different mode combinations, for a primary BH with spin a/M = 0, and a secondary
on eccentric orbits with p = 8M and e = 0.1. For each quantity we show the relative
errors with respect to the values obtained by an independent code (Courtesy of Niels
Warburton, and derived with the code developed in [76]).
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Appendix B

Checks on the Fisher matrices

This Appendix provides the checks we did on the Fisher matrices for both the
analysis on massless and ultra-light scalar fields. The Fisher construction require
the computations of the template derivatives with respect to the EMRI parameters.
We computed fully numerical derivatives through finite differences which require
a careful choice of a step-size ϵ, which controls the shift for each of the waveform
parameters, as explained in detail in Chapter 8.

B.1 Massless scalar field
We have performed various checks in order to assess the stability and convergence

of our numerical calculations. The correlation matrix in Figure B.1 shows the maxi-
mum relative error, |Γkn(ϵi)/Γkn(ϵj)−1|×100, between Fisher matrices computed for
different values of the spacing, where ϵi=1,...5 = (10−5, 5 × 10−6, 10−6, 5 × 10−7, 10−7)
for the scalar charge and ϵi=1,...5 = (10−7, 5×10−8, 10−8, 5×10−9, 10−9) for the other
parameters. Values refer to EMRIs with d = 0.2, although the other configurations
discussed in the paper yield similar results. The Fisher matrices computed with
various ϵi differ less than one part over 105.
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Figure B.1. Maximum relative (percentage) errors between Fisher matrices computed
assuming different values of the spacing used for the numerical derivatives. The Fisher
matrices have been computed for EMRIs with d = 0.2.
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In the case of EMRIs, it is well known that computations of the Fisher matrix may
lead to ill-conditioned problems, and be plagued by numerical instabilities [192, 193].
The intrinsic high sensitivity of EMRIs to small perturbations of the system reflects
their ability to provide exquisite constraints on the waveform parameters and hence
it is a blessing in disguise. This large amount of information is reflected on the
magnitude of the elements of the Fisher matrix, although not all of them have
the same size. For all the EMRI configurations analysed, the components of Γ
corresponding to (M,µ, a/M, r0, d) are always predominant with respect to the rest
of the waveform parameters, with differences of several orders of magnitude. These
differences lead to large condition numbers, i.e., the ratios between the largest to
the smallest of the Fisher eigenvalues λi=1,...11, which in our case are of the order
κ = max(λi)/min(λi) ∼ O(1014). Nonetheless, the high precision computation
we perform leads to stable inversion of the Fisher matrices, independent of the
numerical shift. The correlation matrix in Figure B.2 shows the maximum relative
error between the square root of the diagonal components of the covariance matrices,
i.e., the parameter errors, computed by inverting the Fisher matrix derived with
different ϵi, for the d = 0.2 case. We see from this analysis that a large fraction of
errors agree with each other to well below the 1% level, and the few remaining cases
feature differences of at most 1%. Correlation coefficients are also very stable, with
differences smaller than 1%.
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Figure B.2. Maximum relative (percentage) errors between (square root of) the diagonal
components of the covariance matrices, i.e., the parameter errors, obtained with different
values of the shifts considered for the numerical derivatives. We consider the same EMRI
configurations shown in Figure B.1.

For the sake of completeness we show in Figure B.3 the errors on masses, spins,
initial phase and radius, and on the charge, for two EMRI configurations with
d = 0.05 and d = 0.2. The various panels demonstrate again the stability of our error
calculations. The constraints inferred for (M,µ, a/M, r0,Φ0) are also consistent with
previous results on LISA parameter estimation, performed with different approaches
and GW templates [127,194,195].
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Figure B.3. Errors on the EMRI parameters as a function of the numerical shift used for
partial derivatives of the Fisher matrix. We consider binaries with d = 0.05 (left panel)
and d = 0.2 (right panel) with SNR of 150 as observed by LISA one year before the
plunge.
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We have further checked the stability of our calculations perturbing the Fisher
matrices and studied the results of the inversion. Following previous work [182],
we build a matrix R with the same dimensionality as Γ, with entries randomly
drawn from a uniform distribution U ∈ [−10−3, 10−3]. We then compute the inverse
(Γ+R)−1 and determine the maximum relative error with respect to the unperturbed
configuration, ∆ΓR = max(Γ+R)−1/Γ−1 −I). This procedure has been iterated 100
times, in order to build up statistics for the maximum error. Figure B.4 shows the
cumulative distribution of ∆ΓR for two EMRIs with different values of the charge,
as a function of the derivative spacing. The picture suggests that the calculations
are very stable, as in the majority of cases more than 90% of the population has
∆ΓR ≲ 0.1%. We find similar results for all the other binaries analysed.
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Figure B.4. Cumulative distribution for the maximum relative error between unperturbed
and perturbed Fisher matrices with elements shifted by random numbers drawn from a
uniform distribution. Colored curves refer to Γ computed with a different choice of the
numerical derivative spacing. The uniform distribution is defined within [−10−3, 10−3].

B.1.1 Singular values decomposition

Beside direct inversion of the Fisher matrix, we have derived the covariance on θ⃗
also applying a truncated singular value (SVD) decomposition approach [151,196,197]
on Γ. Any matrix A ∈ Rn×n can be written in terms of its SVD as

A = USVT , (B.1)

where U and V, with columns called singular vectors, are orthonormal matrices
UUT = UTU = VTV = VVT = I, and

S = diag(s1, s2, . . . sn) , (B.2)
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where σi ≥ 0 are the singular values. From the SVD computing the inverse of A is
also straightforward, since

A−1 = VS−1UT . (B.3)
The singular vectors define the dimensions of the variance of the data, ordered in
magnitude such that the first one is the largest, while the rank r of the initial matrix
correspond to the number of non-zero σi. Given the form of S we can also recast A
as

A = USVT =
r∑

i=1
σiuivT

i , (B.4)

which tells that the original matrix can be decomposed into a sum of rank-1 layers
with the first contributing the most. Note that before applying the SVD, we
normalize the Fisher matrices to the variance of their components, namely Γ/N,
where N = diag(Γ)⊗diag(Γ), to remove differences between the parameters given by
their physical scales. Although, as discussed above, the accuracy of our calculations
guarantee an extremely stable inversion, we have also applied the SVD to obtain the
covariance on the source parameters. In particular we have removed the singular
pieces of the Fisher by zeroing values of S−1 which are very large, i.e., corresponding
to small si. Figure B.5 shows a scree plot of the di normalised to the first one, for a
binary with d = 0.05 and d = 0.2 (other configurations feature the same behavior,
regardless of the choice of ϵi as well).
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Figure B.5. Singular values normalised to their largest component for Fisher matrices
with different values of the scalar charge and secondary mass. Calculations have been
performed assuming ϵ = 10−5 for ∂d and ϵ = 10−7 for the rest of the derivatives, although
varying the spacing does not lead to significant changes in this figure.

The trend of the singular values exhibits a clear drop around the last component
where a steep decrease in the magnitude of the si appears. Here we compute
Γ−1 zeroing the last term of S−1. This procedure improves in general the errors,
as it removes unmeasurable linear combinations of parameters from the Fisher
matrix [151]. Indeed, as shown in Figure B.6 in which we compare relative errors
on the scalar charge using direct inversion and the SVD approach, the latter yields
a significant reduction of the errors. In the results shown in the main part of the
paper we have reported the more conservative, direct inversion results, but the SVD
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analysis suggests that LISA might be able to measure scalar charge with even higher
precision.
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Figure B.6. Relative error on the scalar charge in the cases of direct inversion and singular
value decomposition. Filled and empty dots refer to errors computed to direct inversion
or truncated SVD approach. Dashed lines identify analytic fit for the errors σd = β/d,
with β ≃ 4.18 × 10−4, and β ≃ 1.74 × 10−4 for the two methods considered to invert the
Fisher matrices.

B.2 Massive scalar field
A summary of the stability analysis for the fisher matrices computed for ultra-

light scalar fields is displayed in Fig. B.7, which shows the errors on some parameters
as functions of the step-size ϵ. Moreover, to further assess the overall stability of
the Fisher matrices we have studied how the errors on the parameters change under
small perturbations. To this aim we have built a matrix R with entries randomly
drawn from a uniform distribution U ∈ [−10−3, 10−3]. We have then computed the
inverse (Γ + R)−1 and the maximum relative error with respect to the unperturbed
configuration, ∆ΓR = max[(Γ+R)−1/[Γ−1 −I]. We have iterated this procedure 100
times, to build up statistics for the maximum error. The cumulative distribution of
∆ΓR for some of the EMRI configurations we considered is shown in Fig. B.8, proving
that our calculations are extremely stable with more than 90% of the population
having ∆ΓR ≲ 0.1%. Similar results hold for all the binaries we focused on.
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Figure B.7. Errors on the binary parameter as a function of the shift. Injected parameters
are M = 106M⊙, mp = 10M⊙, a/M = 0.9, d = 0.1, and µ̄s = 0.036, 0.018 for the left
and right column, respectively.
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Figure B.8. Cumulative distribution for the maximum relative error between unperturbed
and perturbed Fisher matrices with elements shifted by random numbers drawn from a
uniform distribution. Curves with various colors refer to Fisher matrices computed with
a different choice of the numerical derivative shifts, also shown in Fig. B.7. We consider
EMRI with M = 106M⊙, mp = 10M⊙, a/M = 0.9, d = 0.1, and µ̄s = 0.036, 0.018 for
the left and right column, respectively.
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