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Abstract
Forecasting players in sports has grown in popularity due to the potential for a tactical
advantage and the applicability of such research to multi-agent interaction systems. Team
sports contain a significant social component that influences interactions between teammates
and opponents. However, it still needs to be fully exploited. In this work, we hypothesize that
each participant has a specific function in each action and that role-based interaction is critical
for predicting players’ future moves. We create RolFor, a novel end-to-end model for Role-
based Forecasting. RolFor uses a newmodulewe developed calledOrderingNeuralNetworks
(OrderNN) to permute the order of the players such that each player is assigned to a latent
role. The latent role is then modeled with a RoleGCN. Thanks to its graph representation,
it provides a fully learnable adjacency matrix that captures the relationships between roles
and is subsequently used to forecast the players’ future trajectories. Extensive experiments
on a challenging NBA basketball dataset back up the importance of roles and justify our goal
of modeling them using optimizable models. When an oracle provides roles, the proposed
RolFor compares favorably to the current state-of-the-art (it ranks first in terms of ADE and
second in terms of FDE errors). However, training the end-to-end RolFor incurs the issues
of differentiability of permutation methods, which we experimentally review. Finally, this
work restates differentiable ranking as a difficult open problem and its great potential in
conjunction with graph-based interaction models.

Keywords Multi-agent trajectory forecasting · Graph neural networks · Sport prediction ·
Differentiable ranking · Interaction pattern processing

1 Introduction

Recent advances in visual recognition and sequence modeling have enabled novel objectives
in athletic performance and sport analytics [1–3]. One novel and challenging task is themulti-
agent trajectory forecasting (See Fig. 1) of the players as a result of their observed current
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Fig. 1 Example of multi-agent trajectory forecasting.We only plot one player for each team and the basketball
for readability reasons

motion [4, 5]. The difficulty is due to tactics, tight interaction of team players, the antago-
nist behavior of opponents, and the role assigned to each player in each action. Traditional
trajectory forecasting techniques [6–10] fall short in performance due to their general for-
mulations and lack of sport-specific dynamics. Furthermore, trajectory forecasting methods
must deal with the variable numbers of people in each scene (usually absent in games) and
do not consider the presence of two opposing teams, the ball, or the finality in the given sport
(e.g. scoring). Most recent literature [4, 5] has started to address some of these objectives,
but, to our knowledge, none has modeled the role of players for specific actions.

We propose RoleFor, a novel graph-based encoder-decoder model that performs a robust
prediction of the players’ future trajectory, utilizing roles to comprehend their interactions.
The players’ positions and movements on the court often follow pre-defined schemes, so we
assume that each player may be assigned a specific role. By proposing a role-based ordering
of nodes in the graph, it is possible to establish a player order and learn specific role-specific
relationships.

The current best performers in-game forecasting [4, 10] are based on graph convolutional
networks (GCN) [11], but they do not consider roles. On the contrary, wemodel latent roles as
nodes in the graph. Our RoleFor model is composed of an ordering and a relational module.
The former is anOrderingNetwork, which identifies latent roles and orders players according
to them—we use a well-known sorting approximation [12] to order the latent projections of
the players. In the latter, the game dynamics and trajectories are modeled using RoleGCN,
based on [13] where the nodes are the newly assigned roles, and the edges are their relations.
The adjacencymatrix is learned, and each entry corresponds to learning the role-based player
interaction.

We assume roles exist, and many characteristics could dictate them—e.g., marking the
opponent, possessing the ball, and identifying the attacking and defending teams. However,
we assume no prior knowledge about roles. Our goal is to learn latent roles with an end-
to-end algorithm, only considering the future trajectory of all players. To test our intuition
about roles, we pre-processed the basketball dataset by assigning roles based on different
methods (Table 2) and using those in our RoleGCN. We produce SOTA results, confirming
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that finding good roles can improvemodel performances. Nevertheless, we found that current
differentiable ordering methods face some limitations of backpropagation when inserted in
complex models. In summary, our contributions are:

• We experimentally demonstrate that leveraging roles yields SoTA in trajectory forecast-
ing.

• We propose an Order Neural Network module that creates a latent representation of the
player’s coordinates and orders them accordingly.

• We build a RoleGCN that learns the relations among roles.
• Weempirically demonstrate that the current differentiable ordering approaches have some

difficulties with backpropagation—enabling little to no gradients to flow through—when
dealing with complex models.

2 RelatedWork

2.1 Trajectory Forecasting

The forecasting of pedestrian movement has been studied to deal with realistic crowd sim-
ulation [14] or to improve vehicle collision avoidance [15]; it was also used to enhance the
accuracy of tracking systems [16–18] and to study the intentions of individuals or groups of
people [19, 20]. Different models have been proposed to predict such trajectories, like Long
Short-TermMemory (LSTM) networks [21] with shared hidden states [6], multi-modal Gen-
erative Adversarial Networks (GANs) [9], or inverse reinforcement learning [22]. This group
forecasting scenario resembles Game Forecasting, where it is necessary to model the move-
ments of two opposing teams.

2.2 Game Forecasting

Associations such as National Basketball League or the English Premier League have used
sophisticated tracking systems that allow teams to gain insight into each game [23]. Varia-
tional Autoencoders (VAEs) were used to model real-world basketball actions, showing that
the offensive player trajectories are less predictable than the defense [24]. LSTM [25] were
employed to predict near-optimal defensive positions for soccer and basketball, respectively,
as for predicting the player’s movements during the game [5]. Variants of VAEs have also
been used [26] to generate trajectories for NBA players. NBA player trajectory forecasting
was also studied in [27] and [28], proposing a deep generative model based on VAE, LSTM,
and RNN [5, 21, 29] and trained with weak supervision to predict trajectories for an entire
team. Nonetheless, we did not encounter work estimating specific latent roles and learning
the player interaction on those bases.

2.3 GCN-Based Forecasting

Adopting a graph structure makes it possible to encode information and quantify shared
information between nodes. SoA in pose forecasting learns specific terms for the specific
joint-to-joint relation [13, 30]. Graphs are also widely used in trajectory forecasting and
can be considered fully connected [4], sparse or weighted. These structures distinctly model
the interrelationships between nodes, and their combination can be a crucial factor. Also,
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Graph attention layers (GAT) are widely used in trajectory forecasting [8, 31] to learn the
inter-player dependencies. To model role-based interaction, we use the SoA pose forecasting
model [13]. Pose forecasting is relevant since it considers the fixed node cardinalities and the
learned interactions. However, players from various matches and teams do not have a fixed
order, which is not an issue with pose forecasting. This encourages us to learn and re-order
the players based on hidden roles.

2.4 Differentiable Ranking

Sorting and Ranking are two popular operations in information retrieval that, in our case, can
be useful in identifying the role of players. When used in composition with other functions,
sorting induces non-convexity, rendering model parameter optimization difficult. On the
other hand, the ranking operation outputs the positions, or ranks, of the input values in the
sorted vector. As a piece-wise constant function, the computation of gradients is way more
complex, preventing gradient backpropagation. Several recent works [12, 32] provide an
approximation of the above operations to be used in a learnable framework.

3 Methodology

This section formally defines the problem and explains our strategy to tackle it, focusing
on the role assignment and encoding methods. First, we briefly explain how the Role-based
Forecasting model (RoleFor) performs latent mapping, role assignment, and trajectory pre-
diction. We also focus on the main components: the Order Neural Network (OrderNN),
which handles the ordering task, and the RoleGCN, which facilitates the learning process of
relationships between roles in a game.

3.1 Problem Formalization

Wetarget to predict the future trajectory of all players, given the observedpositions at past time
frames.We denote the players by 2D vectors xp,t representing player p at time t . The position
of all players at time t are aggregated into a matrix of 2D coordinates Xt ∈ R

2×p . Motion
history of players is denoted by the tensor Xin = [X1, X2, . . . , XT ], which is constructed
out of the matrices Xt for frames t = 1, . . . , T . The goal is to predict the future K players
positions Xout = [XT+1, . . . , XT+K ].

3.2 Role-Based ForecastingModel (RolFor)

RoleFor uses two main components, the first one being the OrderNN (Section 3.2.1), which
orders players according to their latent roles. We postulate the existence of latent roles that
when learned in an end-to-end architecture yield the best trajectory forecasting performance.
From the OrderNN, we will consider R, the role vector, instead of P , the position vector.
Notice that R and P have equal dimensions. The graph is now defined as G = (V, E), where
the nodes indicate the roles of each player and the edges capture the interaction among roles
during the game. The graph G has |V| = T × R nodes, which represent all R roles across
T observed time frames. Edges in E are represented by a Spatio-Temporal adjacency matrix
Ast ∈ R

RT×RT , relating the interactions of all roles at all times. Note that Ast is learned,
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Fig. 2 Architecture of RoleFor and a zoom into Order Neural Network

i.e., the model learns how players with different roles interact by learning how latent roles
interact over time.

3.2.1 Order Neural Network

The Order Neural Network (Fig. 2) takes in input the initial coordinates Xin and maps them
into a latent space. Additionally, it orders the latent vector into optimal roles Xrole_in , thanks
to the use of a differentiable ranking method [12], which has the same dimensionality of Xin .
Note that roles get the corresponding position coordinates over subsequent time frames, so
each role is now characterized by a spatio-temporal trajectory. A straightforward example
of a role assignment involves sorting players in ascending order based on their Euclidean
distance from the ball. This method is also used as a valuable proxy task, which we use for
ablation studies (see Sect. 4 Table 2). However, since RolFor is trained end-to-end, OrderNN
is free to learn the ideal ordering that yields the best forecasting performance.

3.3 The Differentiable RankingMethod

SoftRank, [12] is a recent differentiable implementation of the classic sorting and ranking
algorithm, empirically shown to achieve accurate approximation for both tasks. It is designed
by constructing differentiable operators as projections onto the permutahedron, i.e., the con-
vex hull of permutations, and using a reduction to isotonic optimization. The key takeaway
of the method is to cast sorting and ranking operations as linear programs over the permu-
tahedron. More precisely, it formulates the argsort and ranking operations as optimization
problems over the set of permutations �. SoftRank also relies on a regularization parameter
ε, which creates a trade-off between the differentiability of the algorithm and the optimum’s
accuracy. The greater the regularization factor (ε → ∞), the further the approximation will
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be from the permutation vertices, and the smoother the loss function gradient will be. And
vice versa, by picking an ε → 0, the algorithm will yield more accurate permutations with a
lower degree of differentiability. After learning the ranking, we order the players according
to it by employing a differentiable re-shuffling module. The outputs of SoftRank are noted as
{si }ni=1 where n is the number of rankings considered. At this point, we use a so-called base
matrix B with the number of rows and columns equal to the number of rankings. B will be
used to store the real rankings {pi }ni=0. We then compute a {�i }ni=1 matrix, which represents
�i = pi − si for each position {pi }ni=0. The matrix � is used as the input as a rescaling
function. The re-shuffle process is a weighted combination: it yields a real shuffling when
the approximated rankings are integer and a differentiable shuffling instead when the ranking

is fractional. Mi = e

( −�
scale

)2
can be considered an array of weights for each position, with

values closer to 1 being the predicted positions of each player. Finally, this will be used to
recall the initial coordinates in an ordered manner:

Pi =
{
x ′
i = ∑n

j=1 Mj · x j
y′
i = ∑n

j=1 Mj · y j (1)

3.3.1 RoleGCN

Once the latent roles are inferred, the graph G = (V, E) represents each node i ∈ V as
the player’s role while the edges (i, r) ∈ E connect all the roles and describe their mutual
interaction. RoleGCN (Fig. 2)will capture the underlying graph’s relationships, both between
different nodes on the court in the same time frame and between one node and itself over
different time-frames. GCN [11] is a graph-based operation that works with nodes and edges.
For nodes, it aims to learn an embedding containing information about the node itself and
its neighborhood for each node in the graph. Thus, the learned adjacency matrices yield a
quantitative description of the interplay among roles. The space-time cross-talk is realized
by factoring the space-time adjacency matrix (as in [13]) into the product of separate spatial
and temporal adjacency matrices Ast = AS At . A separable space-time graph convolutional
layer l is written as follows:

H (l+1) = σ(As−(l)At−(l)H(l)W (l)) (2)

It is similar to a classic GCN convolutional layer, where As−(l)At−(l) is the factorized
matrix Ast−(l) of a GCN [11] layer. The critical difference is better efficiency and allows full
learnability of the former.

3.3.2 Decoder

First, we de-shuffle the permuted roles according to the inverse of B to return to the original
coordinates’ position. The decoding is done with multiple temporal convolutional (TCN)
layers [33] used to predict the following frames. We adopt TCN due to its performance and
robustness.

4 Experimental Evaluation

In this section, we introduce the NBA benchmark dataset and metrics, the trajectory fore-
casting results and investigate why learning E2E roles is challenging.
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4.1 Dataset

For our experiments, we use NBA SportVU [24]. It contains players and ball trajectories
for 631 games from the 2015–2016 NBA season. Similar to previous work [26], we focus
on just two teams and consider all their games. We obtain a dataset of 95, 002, 12-second
sequences of players and ball overhead-view trajectories from 1247 games. Each sequence
is sampled at 25 Hz, has the same team on offense for the entire duration and ends in a shot,
turnover, or foul. As in [24], the data is randomly split into train, validation, and test sets
with respectively 60, 708, 15, 244, and 19, 050 sequences.

4.2 Trajectory ForecastingMetrics

We use as metrics ADE (Average Displacement Error) and FDE (Final Displacement Error),
as usual in literature [4–6, 9, 24]. They are used to measure the error of the whole trajectory
sequence and the final endpoints for each player. Respectively:

ADE =
∥∥∥T̂c − Tc

∥∥∥
2

2
(3)

FDE =
∥∥∥Ê f − E f

∥∥∥
2

2
(4)

Each observation has five frames, which correspond to 2.0 s in a basketball scenario. The
goal is to forecast the successive ten frames (4.0 s). In Eq. 3, T̂c represents the prediction for
all future trajectories over the c = 1, . . . , 10 subsequent frames, and Tc is the ground truth.
The same nomenclature is used in Eq. 4, where E is the matrix for the endpoints and c = 1
since we are only considering the last frame.

4.3 Trajectory Forecasting Results

So, do roles exist, and does learning the role interaction yield state-of-the-art performance?
Weanswer this question by considering themost straightforward ordering: Euclidean distance
of players from the ball. In Table 1, we report state-of-the-art techniques compared to the
RolFor model, with the Euclidean distance ordering of players from the ball. [4] proposes
multiple predictions via latent interaction graphs among multiple interactive agents. [9],
similarly, is also a multi-modal model incorporating the social aspects of the players as
well. [8] is based on a sequence-to-sequence architecture to predict the future trajectories of
players. Lastly, [10] substitutes the need for aggregation by modeling the interactions as a
graph. Similar to [30], it needs a pre-defined graph, allowing the leaning procedure only on
the given edges. RolFor in Table 1 yields the SoA forecasting performance in terms of ADE,
5.55ms, second best in terms of FDE, 9.99ms. It sorts players according to their Euclidean
distance from the ball, arranging them into a sequence of attackers (players detaining the ball
in the considered action), alternating with defenders (not detaining the ball). Each attacker is
followed by itsmarker, whichRolFor considers the closest to it in terms of Euclidean distance.
As for all other reported SoA algorithms, RolFor considers that the teams are known. Finally,
"Oracular Permutation” means that RolFor uses distances at the last future step, i.e., step 10
in the future. In contrast, any other reported algorithm uses only the observed five frames.
We will investigate this more thoroughly in the next section. A neural network can learn
the Euclidean distance, and softRank [12] should be able to sort the players according to
it. Replacing the hand-defined distance computation with a Neural Network should be as
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Table 1 Comparison of our
model with SoTA models

Model ADE FDE

EvolveGraph [4] 5.73 8.65

Social-STGCNN [10] 6.42 10.04

STGAT [8] 7.06 12.54

SGAN [9] 5.88 10.36

RolFor + Oracular Permutation 5.55 9.99

Table 2 Results for different
types of ordering

Ball Dist. Obs. Future Mark ADE FDE

– – – – 6.34 11.5

� – – – 6.31 11.1

� � – � 6.16 11.28

� – � � 5.55 9.99

effective. We expect that a model with a sorting unit that learns sorting E2E in relation to the
final forecasting goal should be capable of doing better than this, assuming all modules were
effectively differentiable.

4.3.1 Further Experiments on Euclidean Ordering

We delve deeper into the results of RolFor in Table 1 and analyze the importance of each
hand-defined Euclidean distance term in Table 2.

No Ordering Vs. Simple Ordering The first forecasting result in the table neglects the
player ordering and learns interaction terms between players, arranged in random order. It
yields 6.34/11.5 ADE/FDE meters errors. Simple ordering stands for arranging all players
in a list, according to their distance from the ball, at the last (5th) observed frame. This
uncomplicated ordering is only negligibly better than no order. A GCNmodel may deal with
players in random order well and only benefits from ordering if it is informative.

Distance from the Ball and Marking Results in the third row of the Table 2 add marking
to the ball distance ordering. Each player in the attacker team is matched with one from the
defender team according to Euclidean distance. Performance improves in ADE, from 6.31 to
6.16ms, and slightly degrades in terms of FDE, from 11.1 to 11.28. Overall All distances are
computed at the last observed frame. Furthermore, all distances are plain Euclidean distances,
which a simple Neural Network may replicate or improve with E2E learning.

Distance from the Ball and Marking at Future Frames The last row of Table 2 considers
the furthest future frame position for all distance computations. It should be noted that the
model makes no assumptions about future locations. Future information is simply utilized
to place players in order. This motivates us to replace the hand-defined ordering with an
E2E-trained module, which we will do in the following section.

4.4 End to EndModel with Latent Roles

In this section, we leverage the full RolFor model, E2E trained. Here the first module,
OrderNN, sorts players into their roles in the action, then the RoleGCN module reasons
on their role-based interaction. Sorting into roles has benefited forecasting in Sec. 4.3.1.
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Table 3 Different training
configurations for RolFor

Model Configuration ADE FDE

RolFor E2E 12.12 15.02

RolFor E2E-finetune 12.08 14.97

RolFor EuclDistEst 7.50 12.58

RolFor Best non-or. dist. 6.16 11.28

Table 4 Analysis of simulated
errors in ordering

Model ADE FDE

Oracular ordering 5.55 9.99

Light swap 6.55 12.10

Light insert 6.55 12.10

Light swap + light insert 6.59 12.08

Heavy swap + heavy insert 6.71 12.25

Here we assume that roles are latent variables, which the OrderNN estimates, E2E, based
on the best forecasting performance. In Table 3, we compare the hand-defined baseline (ball
and marking distance on the last observed frame, scoring 6.16/11.28) against E2E model
variants. E2E is learning to order, encode the role-role interaction, and forecast based on
the encoder. This model is performing poorly at 12.12./15.02 ADE/FDE. Is this because the
OrderNN is incapable of ordering, or is it because the OrderNN is not fully differentiable?
Moreover, the EuclDistEst variant attempts to answer part of this question. Here we used
a pre-trained Neural Network module to approximate the Euclidean distance based on the
player’s performance. We then use the pre-trained module to sort players according to the
ball. If the Euclidean distance estimator model were perfect, performance would be 6.31/11.1
(ADE/FDE), cf. Table 2.EuclDistEst yields, however, 7.50/12.58.We attribute this mismatch
to the residual errors in the Euclidean distance estimation, which, as it seems, matters. More
surprisingly, E2E-finetune starts from the EuclDistEst variant, and it fine-tunes it, E2E. The
error increases to 12.08/14.97, so the model neglects the initialization and reverts to the E2E
performance. We attribute the discrepancy between EuclDistEst and E2E to the challenges
in the SoftRank differentiability, as we further analyze in the next section.

4.4.1 Analysis of the Order Neural Network

Here we focus on confirming our claims on the issues of the differentiability of Softrank.
We set to order the players according to their ascending distance from the ball, at a specific
frame, given their 2D coordinates. It allows us to test the first RolFor module, OrderNN, in
isolation, cf.5. In Table 5, we compareOrderNN E2E againstOrderNN EuclDistEst. The first
E2E trains the order of players and re-shuffles them. The second supervises the network by
tasking it to learn the Euclidean distance between the players and the ball and then sort the
distances according to SoftRank. We measure the ordering accuracy pord as the percentage
of players the models place in the correct order. In other words, we reproduce the top-k
classification experiment as [32]. The authors propose a loss for top-k classification between
a ground truth class ord ∈ [n] and a vector of soft ranks ˆord ∈ R

n , which is higher if the
predicted soft ranks correctly place y in the top-k elements.
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Table 5 OrderNN E2E against
OrderNN EuclDistEst top-k
accuracy

Model top-k Accuracy (%)

OrderNN E2E 10 1.00

OrderNN EuclDistEst 10 71.00

OrderNN EuclDistEst 5 77.00

OrderNN EuclDistEst 3 82.00

OrderNN EuclDistEst 1 92.00

Observe from Table 5 that learning Euclidean distances from 2D positions is an easier task
for a deep neural network since SoftRank yields 71% at the top-10 ordering accuracy pord.
It is also interesting to notice that when changing the top-k ordering accuracy into 5, 3, 1 we
get similar results to [12]. By contrast, learning the ordering E2E from the 2D coordinates
yields surprisingly low performance. Note in the table that OrderNN E2E achieves a top-10
ordering accuracy of only 1%.

4.5 Robustness of RolFor to Ordering Errors

How much does misordering impact forecasting? We measure ADE and FDE forecasting
errors when randomly altering the order provided by our best performing oracle RolFor
(5.55/9.99 ADE/FDE, Table 2). In more detail, we consider the swap of two players Light
Swap, which can occur if the distance between them is relatively small. A more significant
error can also occur, e.g., one role is not identified correctly and a player is inserted at the
wrong position, making the whole order slip. We name this Light Insert. In Table 4, we
consider the two potential sources of errors by randomly simulating one or both. The results
are coherent withwhat we said previously Table 3, where the RolForEuclDistEst has a top-10
ordering accuracy of 71% yielding 7.50/12.58. At the same time, a Light Swap/Insert gives
6.55/12.10 in ADE/FDE and 80% top-10 ordering accuracy. This last Table 4 highlights the
importance of roles and their impact on the final trajectory accuracy.

5 Conclusions

Our goal was to show that roles and social relations in sports are quantifiable and can be
effectively used to improve the current SoA models in game forecasting. We demonstrate
that roles exist by testing different permutations over players. Then, we encode the player’s
coordinates into a latent space and use the encoding to find an optimal latent role ordering.
The model employed to perform trajectory forecasting is called RolFor (Role Forecasting)
and considers the input nodes of a graph indicating roles in a game. This single-graph frame-
work favors the relation between roles and time, allowing better learning of the fully-trainable
adjacency matrices for role-role and time-time interactions. The adoption of CNNs and the
graph structure of the input allows the requirement of parameters to be only a fraction of the
ones used in Transformers, GANs, and VAEs. Our observations emphasize the significant
opportunity for future work to develop fully differentiable ordering modules to enable learn-
ing latent role-based interactions in graph-based models, also applicable to social networks
and multi-agent systems.
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