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Explain the Explainer: Interpreting Model-Agnostic
Counterfactual Explanations of a Deep

Reinforcement Learning Agent
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Abstract—Counterfactual examples (CFs) are one of the most
popular methods for attaching post-hoc explanations to machine
learning (ML) models. However, existing CF generation methods
either exploit the internals of specific models or depend on each
sample’s neighborhood; thus, they are hard to generalize for
complex models and inefficient for large datasets. This work
aims to overcome these limitations and introduces RELAX,
a model-agnostic algorithm to generate optimal counterfactual
explanations. Specifically, we formulate the problem of crafting
CFs as a sequential decision-making task. We then find the
optimal CFs via deep reinforcement learning (DRL) with discrete-
continuous hybrid action space. In addition, we develop a
distillation algorithm to extract decision rules from the DRL
agent’s policy in the form of a decision tree to make the process
of generating CFs itself interpretable. Extensive experiments
conducted on six tabular datasets have shown that RELAX
outperforms existing CF generation baselines, as it produces
sparser counterfactuals, is more scalable to complex target
models to explain, and generalizes to both classification and
regression tasks. Finally, we show the ability of our method
to provide actionable recommendations and distill interpretable
policy explanations in two practical, real-world use cases.

Impact Statement—The request for explainable AI/ML models
is rapidly increasing. Indeed, attaching human-understandable
explanations to model predictions is critical, especially in domains
like healthcare, finance, and legal, just to name a few. Amongst
the explainability techniques proposed in the literature, coun-
terfactual explanations are one of the most promising. However,
two main problems affect those methods: generalizability and
efficiency. RELAX – the counterfactual explanation technique
based on a deep reinforcement learning agent we introduce in this
paper – overcomes the above limitations. Our method is model-
agnostic: it can generate valid explanations for any model that are
about 40% less complex (and thus more human-interpretable)
than competitors in 42% less time. Moreover, the explanation
process underneath RELAX can be itself human-interpretable,
thus making our method valuable in practice, as we demonstrate
in the two real-world use cases considered in this work.
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I. INTRODUCTION

RECENT years have witnessed surprising advances in
machine learning (ML), which in turn have led to the

pervasive application of ML models across several domains.
Unfortunately, though, many ML systems deployed in the wild
are treated as “black boxes”, whose complexity often hides the
inner logic behind their output predictions. In fact, knowing
why an ML model returns a certain output in response to a
given input is pivotal for many reasons like model debugging,
aiding decision-making, or fulfilling legal requirements [1].

In some cases, end users may be open to trade the lack
of transparency of ML models in exchange for their pre-
dictive accuracy, e.g., very few people are concerned with
comprehending why the smart keyboard of their mobile phones
suggests them a certain word to type next, as long as that
word is actually what they would have typed. Conversely,
the demand for more explainable ML models has become
prominent, especially in social areas like finance [2] and
healthcare [3], where human-to-human relationships still play
a significant role. For instance, a banker should be able to tell
a customer why their mortgage application has been denied
by the bank’s ML-powered decision support system, or a
physician should provide to their patients the motivations
behind any automatic ML-based diagnosis.

To properly achieve model transparency, a new initiative
named eXplainable AI (XAI) has emerged [4]. A large body
of work on XAI has flourished in recent years [5], and
approaches to XAI can be broadly categorized into two
classes [6]: (i) native and (ii) post-hoc. The former leverages
ML models that are inherently interpretable and transparent,
such as linear/logistic regression, decision trees, association
rules, etc. The latter aims at generating ex post explanations for
predictions made by opaque or black-box models like random
forests and (deep) neural networks.

In this work, we focus on specific post-hoc explanations
called counterfactual explanations, which are used to interpret
predictions of individual instances in the form: “If A had
been different, B would not have occurred” [7]. They work
by generating modified versions of input samples that result
in alternative output responses from the predictive model, i.e.,
counterfactual examples (CFs).
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Typically, the problem of generating CFs is formulated as
an optimization task, whose goal is to find the “closest” data
point to a given instance, which crosses the decision boundary
induced by a trained predictive model.1 Depending on the
level of access to the underlying predictive model, different CF
generation methods have been proposed. More specifically, we
can broadly distinguish between three categories of CF gen-
erators: (i) model-specific [8]–[12], (ii) gradient-aware [13],
[14], and (iii) model-agnostic [15]–[17]. In short, existing CF
generators either require full knowledge of the internals of
specific models, or can only explain differentiable models, or
depend on each sample’s neighborhood, making them hardly
generalize to complex models and inefficient for large datasets.

To overcome these limitations, we introduce the
Reinforcement Learning Agent eXplainer (RELAX).
Specifically, we formulate the problem of crafting CFs as a
sequential decision-making task. We then find the optimal
CFs via deep reinforcement learning (DRL).

A. Intuitive Description of our Method

The intuition behind RELAX is the following. The trans-
formation of a given input instance into its optimal CF can
be seen as the sequence of actions that an agent must take in
order to get the maximum expected reward (i.e., the optimal
policy). The total expected reward considers both the desired
CF prediction goal (i.e., the CF and the original sample
must result in different responses when they are input to the
predictive model) and the distance of the generated CF from
the original instance. At each time step, the agent has either
achieved the desired CF transformation or it needs to: (i) select
a feature to modify and (ii) set the magnitude of such change.
To generate meaningful CFs, the agent must restrict itself to
operate on the set of actionable features only, as not every
input feature can always be changed (e.g., the “age” of an
individual cannot be modified). Moreover, even if actionable,
some features can only be changed toward one direction (e.g.,
a person can only increase their “educational level”). Plus, the
total number of tweaked features, as well as the magnitude of
the change, must also be limited, as this would likely result
in a more feasible CF. We show that solving the constrained
objective to find the optimal CF generator is equivalent to
learning the optimal policy of a DRL agent operating in a
discrete-continuous hybrid action space.

B. Our Main Contributions

RELAX is a model-agnostic CF generator, as it can be
applied to any black-box predictive model. Indeed, in our
framework the predictive model is just a “placeholder” resem-
bling the environment which the DRL agent interacts with.
Furthermore, we develop a distillation algorithm to extract
decision rules from the DRL agent’s policy in the form of
an interpretable decision tree, thus making the process of
generating CFs itself explainable.

We validate our method on six tabular datasets (five of them
used for classification and one for regression), and compare it

1We voluntarily left this notion of “closeness” underspecified here; a more
precise definition of it is provided in Section III.

against several baselines using four standard quality metrics.
Experimental results show that RELAX outperforms all the
competitors in every single metric. To further demonstrate the
impact of our CF generation method in practice, we consider
two separate real-world use cases. In the first use case, we
leverage CFs produced by RELAX to recommend patients
how to lower their chances of developing diabetes. In the
second scenario, we show how the CFs generated by RELAX
can be used to suggest actions that a country should take to
reduce the risk of mortality due to the COVID-19 pandemic.
Finally, the same two use cases are also used to evaluate our
policy distillation algorithm.

Overall, we summarize our main contributions as follows:
• RELAX is the first method for generating model-agnostic

CFs based on deep reinforcement learning. It is scalable
with respect to the number of features and instances. It
can explain any black-box model trained on tabular input
data, regardless of its internal complexity and prediction
task (classification or regression).

• RELAX is flexible as it can be asked to modify only
a subset of actionable features (e.g., “age” is not mod-
ifiable, whereas “salary” is), and change them toward
“plausible” directions (e.g., “education level” can only
be increased).

• We implement two variants of our method: RELAX-
GLOBAL and RELAX-LOCAL, with the latter obtained
via transfer learning from a pretrained version of the
former. Both methods generate +60% valid CFs that are
about 40% sparser than those produced by state of the
art techniques yet take 42% less CF generation time.

• We tackle the sparse reward problem due to the large state
and action space by integrating a hierarchical curiosity-
driven exploration mechanism into our DRL agent.

• We propose a distillation algorithm that extracts decision
rules from the RELAX agent’s policy in the form of
an interpretable decision tree, thereby making the CF
generation process itself explainable.

• We assess the practical impact of RELAX on two real-
world use cases, i.e., for showing the ability of our
method to provide actionable recommendations and for
distilling interpretable policy explanations.

• The source code implementation of RELAX, the exper-
iments, and the dataset used for the COVID-19 risk of
mortality task are publicly available.2

The remainder of the paper is organized as follows. In
Section II, we review related work. In Section III, we formalize
the problem of generating counterfactual explanations, while
in Section IV we present RELAX, our proposed method
to solve this problem using deep reinforcement learning.
Section V describes an explainable DRL algorithm to distill
decision rules from the RELAX’s agent policy in the form
of an interpretable decision tree. We validate our approach
and discuss the main findings of our work in Section VI.
In Section VII, we further demonstrate the practical impact
of RELAX on two real-world use case scenarios. Finally,
Section VIII concludes the paper.

2https://github.com/Mewtwo1996/ReLAX.git
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II. RELATED WORK

The set of work that are relevant to this paper cover
three main areas: (i) counterfactual explanations for ma-
chine learning predictions, (ii) deep reinforcement learning in
parametrized action space, and (iii) explainable reinforcement
learning. In the following, we review the most significant
contributions on each area above, separately.

A. Counterfactual Explanations for Machine Learning

An extensive review of the literature can be found in [6]. A
possible approach to counterfactual explanation is NEAREST-
CT [18]; instead of generating a synthetic CF for a given input
sample, this approach selects the nearest CF data point from
the training set. More sophisticated methods can be classified
into model-specific, gradient-aware, and model-agnostic.

Model-specific. This category of counterfactual explanation
methods is tailored for a particular family of ML models.
Tolomei et al. [19] proposed FEATTWEAK, one of the first
model-specific explanation method specifically designed for
random forests, which exploits the internal structure of the
learned trees to generate synthetic counterfactual instances.
Another approach that is conceived for explaining tree en-
sembles is called FOCUS [20]. It frames the problem of
finding counterfactual explanations as an optimization task and
uses probabilistic model approximations in the optimization
framework. Meanwhile, the rise of deep learning has given
way to more complex and opaque neural networks (NNs). In
this regard, DEEPFOOL [21] – which was originally designed
for crafting adversarial examples to undermine the robustness
of NNs – has proven effective also as a CF generation method.
However, CFs obtained from adversarial learning techniques
often require changing almost all the features of the original
instances, making them unrealistic to implement. Thus, Le
et al. [18] propose GRACE: a technique that explains NN
model’s predictions using sparser CFs, which are suitable also
for high-dimensional datasets. More recently, Lucic et al. [22]
have proposed CF-GNNExplainer, a counterfactual explana-
tion method explicitly designed for graph neural networks.

Gradient-aware. These explanation methods need access to
the model’s gradients, and thus apply only to differentiable
models. Amongst them, Mothilal et al. [23] propose DiCE, a
framework for generating and evaluating a diverse and feasible
set of counterfactual explanations from the model’s gradients.

Model-agnostic. This class of approaches can generate
explanations for any model. In this category, Guidotti et al. [5]
introduce LORE. First, LORE trains an interpretable surrogate
model (i.e., a decision tree) on the local neighborhood (gen-
erated by a genetic algorithm) of the sample to explain. Then,
from the logic of the surrogate decision tree, it derives an
explanation consisting of (i) a decision rule, which explains the
reasons for the prediction; and (ii) a set of counterfactual rules,
suggesting the changes to make to the instance’s features.
More recently, Karimi et al. [10] propose MACE, which
frames the generation of model-agnostic CFs into solving a
sequence of satisfiability problems, where both the distance
function (objective) and predictive model (constraints) are
represented as logic formulae.

Our RELAX method is totally model-agnostic and as
general and flexible as possible. Moreover, unlike existing
model-agnostic methods, RELAX is much more efficient in
generating optimal CFs. Indeed, RELAX requires to train a
DRL agent that makes use only of the input/output nature of
the target predictive model to explain, regardless of its internal
complexity or its gradients (as opposed to DiCE). Our method
better scales to high-dimensional, large datasets than LORE:
the genetic algorithm used to build each synthetic sample’s
neighborhood may be unfeasible for large feature spaces. Plus,
LORE also requires to train a locally-interpretable decision
tree that is tight to each generated neighborhood, and therefore
may be prone to overfitting. RELAX can also seamlessly
handle more complex models than MACE (e.g., deeper NNs),
which needs to construct a first-order logic characteristic
formula from the predictive model and test for its satisfiability.
This may be intractable when the formula (i.e., the model to
explain) is too large. Finally, as opposed to RELAX, neither
LORE nor MACE control over the sparsity of the generated
CFs; LORE does not even take into account their actionability.

B. Reinforcement Learning with Hybrid Action Space

Many real-world reinforcement learning (RL) problems
requires complex controls with discrete-continuous hybrid
action space. For example, in Robot Soccer [24], the agent
not only needs to choose whether to shoot or pass the ball
(i.e., discrete actions) but also the associated angle and force
(i.e., continuous parameters). Unfortunately, most conventional
RL algorithms cannot deal with such a heterogeneous action
space directly. The straightforward methods either discretize
the continuous action space into a large discrete set [25], or
convert a discrete action into a continuous action method [26],
but they significantly increase the problem complexity. To
overcome this issue, a few recent works propose to learn
RL policies over the original hybrid action space directly.
Specifically, they consider a parameterized action space con-
taining a set of discrete actions A = {a1, a2, . . . , a|A|} and
corresponding continuous action-parameter vk ∈ Vk ⊆ R.
In this way, the action space can be represented as: A =⋃

k{(ak, vk) | ak ∈ A, vk ∈ Vk}. Masson et al. [24] propose
a learning framework Q-PAMDP that alternatively learns the
discrete action selection via Q-learning and employs policy
search to get continuous action-parameters. Following the idea
of Q-PAMDP, Khamassi et al. [27] treat two actions separately.
The only difference is that they use policy gradient to optimize
the continuous parameters. Both methods are on-policy and
assume that continuous parameters are normally distributed.
Also, Wei et al. [28] propose a hierarchical approach to deal
with the parameterized action space, where the parameter
policy is conditioned on the discrete policy. Although efficient,
this method is found to be unstable due to its joint-learning
nature. Recently, in order to avoid approximation as well
as reduce complexity, Xiong et al. [29] introduce P-DQN,
which seamlessly combines and integrate both DQN [30] and
DDPG [31]. Empirical study indicates that P-DQN is efficient
and robust.
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C. Explainable Reinforcement Learning

As with traditional ML, the RL community has also been
asked for post-hoc explanation methods that extract explain-
able policies from trained agents. Prior work has applied
program synthesis to extract a high-level program from a DRL
policy to retain the RL policy’s performance while rendering
the policy’s decision logic interpretable in the program [32]–
[34]. As opposed to these methods, our algorithm does not
need to know a suitable context-free grammar to specify a
search space a priori. Decision trees were previously used by
various post-hoc explanation algorithms [35]–[37] to visualize
a DRL policy’s decision rules succinctly. These algorithms in
general distill the decision knowledge of an RL agent, guided
by the agent’s Q-value function, into a discrete decision tree
or a soft decision tree [35] following the DAGGER imitation
learning technique [38]. Unlike our approach, these methods
do not consider RL agents in parameterized action spaces with
both discrete actions and continuous parameters.

III. PROBLEM FORMULATION

Let X ⊆ Rn be an input feature space and Y an output
label space. Without loss of generality, we consider both the
K-ary classification setting, i.e., Y = {0, . . . ,K − 1}, and
the regression setting, i.e., Y ⊆ R. Suppose there exists a
predictive model hω : X 7→ Y , parameterized by ω, which
accurately maps any input feature vector x = (x1, . . . , xn) ∈
X to its label hω(x) = y ∈ Y .

The idea of counterfactual explanations is to reveal the
rationale behind predictions made by hω on individual in-
puts x by means of counterfactual examples (CFs). More
specifically, for an instance x, a CF x̃ ̸= x according to
hω is found by perturbing a subset of the features of x,
chosen from the set F ⊆ {1, . . . , n}. The general goal of
such modification is to transform x into x̃ so to change the
original prediction, i.e., hω(x̃) ̸= hω(x) [13]. In particular,
this depends on whether hω is a classifier or a regressor. In
the former case, the objective would be to transform x into
x̃ so to change the original predicted class c = hω(x) into
another c̃ = hω(x̃), such that c̃ ̸= c. Notice that c̃ can be either
specified upfront (i.e., targeted CF) or it can be any c̃ ̸= c (i.e.,
untargeted CF). In the case hω is a regressor, instead, the goal
is trickier: one possible approach to specifying the validity of
a counterfactual example x̃ is to set a threshold δ ∈ R \ {0}
and let |hω(x̃) − hω(x)| ≥ δ. However, CFs found via such
a thresholding are sensitive to the choice of δ [39].

Either way, as long as the CF classification or regression
goal is met, several CFs can be generally found for a given
input x. This may lead to a situation where many CFs are
in fact unrealistic or useless, as they are too far from the
original instance. Therefore, amongst all the possible CFs, we
search for the optimal x̃∗ as the most “reasonable”, “closest”
to x. Intuitively, this is to favor CFs that require the minimal
perturbation of the original input.

More formally, let gθ : X 7→ X be a counterfactual
generator, parametrized by θ, that takes as input x and
produces as output a counterfactual example x̃ = gθ(x). For a
given sample D of i.i.d. observations drawn from a probability

distribution, i.e., D ∼ pdata(x), we can measure the cost of
generating CFs with gθ for all the instances in D, using the
following counterfactual loss function:

LCF(gθ;D, hω) =
1

|D|
∑
x∈D

ℓpred(x, gθ(x);hω)+λℓdist(x, gθ(x)).

(1)
The first component (ℓpred) penalizes when the CF prediction

goal is not satisfied. Let C ⊆ X be the set of inputs which
do not meet the CF prediction goal, e.g., in the case of
classification, C = {x ∈ X | hω(x) = hω(gθ(x))}. Once
the set C is defined in terms of the desired CF prediction goal,
we can compute ℓpred as follows:

ℓpred(x, gθ(x);hω) = 1C(x), (2)

where 1C(x) is the well-known 0-1 indicator function, which
evaluates to 1 if x ∈ C, or 0 otherwise.

The second component ℓdist : X×X 7→ R>0 is any arbitrary
distance function that discourages x̃ to be too far away from
x. For example, ℓdist(x, gθ(x)) = ||x− gθ(x)||p, where || · ||p
is the Lp-norm. In this work, inspired by previous approaches,
we set ℓdist equal to L1-norm [5].

In addition, λ serves as a scaling factor to trade off between
ℓdist and ℓpred. Notice, though, that not every input feature
can be lightheartedly modified to generate a valid CF, either
because it is strictly impossible to do it (e.g., the “age”
of an individual cannot be changed), and/or due to ethical
concerns (e.g., the “race” or the “political tendency” of a
person). Therefore, we must restrict F to the set of actionable
features only. Notice that F is domain-specific (i.e., what
subset of input features are considered actionable depends on
the application domain). Anyway, the size of F is known and
fixed apriori, i.e., 1 ≤ |F| ≤ n. Plus, we may want to limit the
maximum number of actionable features that can be perturbed
at most, i.e., pmax ≤ m, where 1 ≤ m ≤ |F|.

Eventually, we can find the optimal CF generator g∗ = gθ∗

as the one whose parameters θ∗ minimize (1), i.e., by solving
the following constrained objective:

θ∗ = argmin
θ

{
LCF(gθ;D, hω)

}
subject to: pmax ≤ m.

(3)

This in turn allows us to generate the optimal CF x̃∗ for any
x, as x̃∗ = g∗(x). Finally, the resulting optimal counterfactual
explanation can be simply computed as ex = x̃∗−x [40]. The
overview of a generic counterfactual explanation framework is
shown in Fig. 1.

Fig. 1: Overview of a generic counterfactual explainer.
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IV. PROPOSED FRAMEWORK: RELAX

In this work, we propose to find the optimal CF generator
for any arbitrary predictive model – i.e., to solve the con-
strained optimization problem defined in (3) – via deep rein-
forcement learning (DRL). We call our method Reinforcement
Learning Agent eXplainer (RELAX).

A. Markov Decision Process Formulation

We consider the problem of computing the optimal coun-
terfactual example x̃∗ from x ∈ D – i.e., the optimal CF
generator g∗ defined in (3) – as a sequential decision-making
task. More precisely, we refer to the standard reinforcement
learning setting, where at each time step an agent: (i) takes
an action (i.e., selects a feature of the original sample x to
tweak and the magnitude of such change) and (ii) receives
an observation (i.e., the prediction output by hω on the input
just modified according to the action taken before) along with
a scalar reward from the environment. The process continues
until the agent eventually meets the specified CF prediction
goal and the optimal CF x̃∗ is found.

We formulate this process as a standard Markov Decision
Process (MDP) M = {S,A, T , p0, r, γ}. Below, we describe
each component of this framework, separately.

States (S). At each time step t, the agent’s state is St =
st, where st = (xt,ft) ∈ S represents the current modified
sample (xt) along with the set of features changed so far (ft).
More specifically, ft ∈ {0, 1}|F| is an |F|-dimensional binary
indicator vector, where ft[k] = 1 iff the actionable feature k
has been modified in one of the actions taken by the agent
before time t. Initially, when t = 0, x0 = x and f0 = 0|F|.

If the prediction goal is met, e.g., hω(xt) ̸= hω(x), the
agent reaches the end of the episode and the process terminates
returning x̃∗ = xt as the CF for x. Otherwise, the agent
must select an action At = at so to: (i) pick a feature to
change amongst those which have not been modified yet and
(ii) decide the magnitude of that change.

Discrete-Continuous Hybrid Actions (A). To mimic the
two-step behavior discussed above, differently from com-
pletely discrete or continuous actions, we consider a discrete-
continuous hybrid action space, according to the two-tier
hierarchical structure detailed below.

For an arbitrary step t, we maintain the set of feature
identifiers that the agent is allowed to modify Ft; initially,
when t = 0, F0 = F as the agent can pick any of the
actionable features to change. Then, at each time step t > 0,
the agent first chooses a high level action kt from the discrete
set Ft ⊂ F = F \

⋃t−1
j=0 kj . This is to allow each feature to

be selected at most in one action. Upon choosing kt ∈ Ft, the
agent must further select a low level parameter vkt ∈ R, which
specifies the magnitude of the change applied to feature kt.
It is worth noticing that we can confine the action’s range
and direction by directly putting a constraint on the low
level parameter vkt

. Overall, at = (kt, vkt
), and our discrete-

continuous hybrid action space is:

At = {(kt, vkt
) | kt ∈ Ft, vkt

∈ R}.

Transition Function (T ). Let at = (kt, vkt) ∈ At be the
generic action that the agent can take at time t. The action at
deterministically moves the agent from state st to state st+1,
by operating on xt and ft as follows:

T ((xt,ft), at, (xt+1,ft+1)) =

{
1, if xt

at⇝ xt+1 ∧ ft
at⇝ ft+1

0, otherwise.
(4)

The statements xt
at⇝ xt+1 and ft

at⇝ ft+1 are shorthand
for xt+1[kt] = xt[kt] + vkt and ft+1[kt] = 1, respectively.
This corresponds to increasing the value of feature kt by the
magnitude vkt

, and updating the binary indicator vector ft

accordingly.
Reward (r). The reward is computed on the basis of the

objective function defined in (3) and has the following form:

r(st, at) =

{
1− λ(ℓtdist − ℓt−1

dist ), if hω(xt) ̸= hω(x)

−λ(ℓtdist − ℓt−1
dist ), otherwise,

(5)

where ℓtdist = ℓdist(x,xt) and λ ∈ R>0 is a parameter that
controls how much weight to put over the distance between
the current modified instance (xt) and the original sample (x).
In other words, the agent aims to reach a trade-off between
achieving the CF prediction goal and keeping the distance of
the counterfactual from the original input sample x as lower
as possible.

Policy (πθ). We define a parametrized policy πθ to maxi-
mize the expected reward in the MDP problem. Our ultimate
goal, however, is to find an optimal policy π∗ = πθ∗ that
solves (3). It is worth noticing that finding the optimal policy
π∗ that maximizes the expected return in this environment
is equivalent to minimizing (1), and thereby finding the
optimal CF generator g∗. The equivalence between these two
formulations can be shown as follows:

θ∗ = argmin
θ

1

|D|
∑
x∈D

ℓpred(x, gθ(x);hω) + λℓdist(x, gθ(x))

= argmax
θ

1

|D|
∑
x∈D

−ℓpred(x, gθ(x);hω)− λℓdist(x, gθ(x))

= argmax
θ

1

|D|
∑
x∈D

{
1− λ(ℓtdist − ℓt−1

dist ), if hω(xt) ̸= hω(x)

−λ(ℓtdist − ℓt−1
dist ), otherwise,

= argmax
θ

1

|D|
∑
x∈D

T∑
t=1

r(st, πθ(st)).

Here, T defines the maximum steps taken by the agent for
each sample x and is set to 50,000. Finally, remember that
we set ℓdist equal to L1-norm, which is notoriously hard to
optimize via gradient-based methods. However, in our DRL
framework, this is incorporated into the reward function, which
avoids us relying on its gradient.

B. Policy Optimization

We use the P-DQN framework [29] to find the optimal
policy π∗. As mentioned before, at each time step the agent
takes a hybrid action at ∈ At to perturb the currently modified
xt, obtained from the original input x.
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Fig. 2: Overview of our proposed RELAX framework.

In Q-learning, one aims at finding the optimal Q-value func-
tion representing the expected discounted reward for taking
action at at a given state st. Inside the Q-value function, the
continuous parameter vkt

is associated with the discrete action
kt, which means vkt

is the optimal action given state st and
kt: vkt = arg supv Q(st+1, kt, v). We therefore cast this as a
function vQkt

(st). Thus, the Bellman equation can be written
as:
Q(st, kt, vkt) =

Ert,st+1
(rt + γmax

kt

Q(st+1, kt, v
Q
kt
(st+1))|st, at = (kt, vkt

)).

As with DQN, a deep neural network (DNN)
Qθ1(st, kt, vkt) is used to approximate the Q-value function,
and we fit vQkt

with another deterministic policy network
vθ2

kt
(st), where θ1 and θ2 are the parameters of the two

DNNs. To find the optimal θ∗
1 ,θ

∗
2 , we minimize the following

loss functions via stochastic gradient descent:

LQ(θ1) = [Qθ1(st, kt, vkt
)− yt]

2,

Lπ(θ2) = −
∑
kt∈F

Q(st, kt, v
θ2

kt
(st)),

where the yt is the n-step target [41]. Theoretically, as the
error diminishes, the Q network converges to the optimal
Q-value function and the policy network outputs the op-
timal continuous action. However, this method is unstable
in practice. This is because DQN only sample transition
pairs uniformly from the replay buffer. Therefore, we adopt
prioritized experience replay [42] to effectively learn from
pairs with high expected learning value. As a measurement
for learning potential, prioritized experience replay samples
transition pairs with probability pj based on their TD error:
pt ∝ |Rj + γQtarget(sj , Q(sj , aj))−Q(sj−1, aj−1)|β , where
β is a parameter to determine how much prioritization is
used. During the training procedure, the transition pairs are
stored into the replay buffer with their priority, and a new

data structure – i.e., a sum tree – is employed to efficiently
update the priority and sample pairs from the replay buffer.

C. Hierarchical Curiosity-Driven Exploration

In the procedure of generating counterfactual examples, the
sparse reward problem is inevitably met due to the large state
and action space. Reward shaping is a typical solution that
converts the sparse reward to a dense one [43] [44]; however,
it is hard to design the intermediate rewards for all black
box models. Hence, we develop a hierarchical curiosity-driven
exploration mechanism to P-DQN.

Specifically, we use a Random Network Distillation (RND)
module [45], i.e., a curiosity-driven approach to generate state
curiosity ri,st by quantifying the next-state novelty, which
will be further combined with the external rewards rt to
generate the modified reward r′t = ri,st + rt. RND transforms
the exploring procedure into a supervised learning task by
minimizing the following mean squared error:

ri,st = ||f̂(st, η1)− f(st)||2,

where f(st) is the fixed target network and f̂(st, η1) is
a trainable predictor network learning to distill the target
network. The loss of trained input state (st) will decrease as the
frequency of visited states increases; therefore, ri,st of novel
states are expected higher.

Considering that the bonus is obtained after reaching the
next state st+1 and will be combined with the environment
reward, the agent tends to follow the existing experiences
rather than keeps exploring unknown states by taking various
actions. To encourage the exploration of different actions
at each state, we introduce the RND module to reflect the
frequency of each action. At state st, the curiosity of a hybrid
action at = (kt, v

θ2

kt
(st)) is given by:

ri,at = ||ĝ(st, at, η2)− g(st, at)||2,

where g and ĝ have the same role as f and f̂ , respectively.
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Here, we leverage state curiosity ri,st to enhance high-
level index planning in discrete spaces, and ri,at is adopted
as low-level action curiosity for enthusiastically searching
continuous parameters. Finally, we organically incorporate the
two-level curiosity loss into the loss functions defined above
in Section IV-B:

L′
Q(θ1, η1) = [Qθ1(st, kt, vkt

)− yt]
2 + ||f̂(st, η1)− f(st)||2,

L′
π(θ2, η2) = −

∑
kt∈F

Q(st, kt, v
θ2

kt
(st)) + ||ĝ(st, at, η2)− g(st, at)||2.

It is worth remarking that at is a function of θ2. By
alternately updating θ2 and η2, the policy network vQkt

will
learn to balance the action’s potential value and novelty.

The overview of our proposed RELAX framework is de-
picted in Fig. 2.

D. Global vs. Local Policy

So far, we have considered one single agent as responsible
for generating the CFs for all the instances of a given
dataset, and hereinafter we refer to it as RELAX-GLOBAL.
This allows us to learn a generalized policy that is able to
produce counterfactuals, which are not tailored to a specific
input sample. Algorithm 1 describes the training of RELAX-
GLOBAL with the hierarchical curiosity-driven exploration
technique discussed in Section IV-C above.

Algorithm 1 Training RELAX-GLOBAL Agent with Curiosity

1: θ1 ← initialize the deep Q-network Qθ1

2: θ2 ← initialize the deterministic policy network vθ2
kt

3: η1 ← initialize the RND state modules f̂ , f
4: η2 ← initialize the RND action modules ĝ, g
5: M← initialize the replay buffer
6: i← 1
7: while i ≤max epochs do
8: x ∼ D ▷ Sample a training instance x from D
9: x0 ← x

10: s0 = (x0,f0) ▷ Initial state
11: t← 0
12: for t ≤ T do ▷ Maximum agent steps for each sample

(T=50,000)
13: vkt ← vθ2

kt
(st) ▷ Compute the continuous parameter

14: at ← (kt, vkt) ▷ Select the discrete action by ε-greedy
15: ri,at ← ||ĝ(st, at, η2)− g(st, at)||2
16: ▷ Generate action curiosity ri,at

17: rt, st+1 ← T (st, at)
18: ▷ The agent gets the reward and observes the next state
19: ri,st ← ||f̂(st, η1)− f(st)||2, r′t = ri,st + rt
20: ▷ Generate state curiosity ri,st and modified reward r′t
21: pt ← compute the importance pt
22: M← ({st}, {at}, {r′t}, {st+1}, {pt})
23: ▷ Store transition into the replay buffer
24: B ∼M ▷ Randomly sample batch B from M
25: θ1 ← θ1 − γ1∇L′

Q(θ1, η1), η1 ← η1 −
γ2∇L′

Q(θ1, η1)
26: θ2 ← θ2−γ3∇L′

π(θ2, η2), η2 ← η2−γ4∇L′
π(θ2, η2)

27: ▷ Update the parameters of both networks via SGD
28: t← t+ 1
29: end for
30: i← i+ 1
31: end while
32: return θ1,θ2 ▷ Optimal parameters of both networks

However, in some cases, the CF generation process should
in fact capture the peculiarities of each individual original
instance. To accomodate such a need, we introduce a variant
to our proposed method, called RELAX-LOCAL.

RELAX-LOCAL trains a dedicated agent for crafting the
optimal CF for a single target example. It starts by initializ-
ing RELAX-LOCAL’s policy with one pretrained RELAX-
GLOBAL’s policy. Then, using a standard transfer learning
approach [46], RELAX-LOCAL is fine-tuned on the target
samples. This step consists of randomly generating synthetic
training data points around the target example, using a method
similar to [5]. Specifically, we uniformly sample data points
whose Euclidean distance from the target example is at most
equal to one.3

V. DISTILL INTERPRETABLE AGENT’S POLICY

The complex neural network structure of a DRL policy
learned by RELAX for generating CFs poses a challenge for
understanding and reasoning about the decision logic of the
agent. To explain the decision process of the agent, we distill
knowledge from the learned policy to a much simpler decision
tree (DT) model. The DT approximates the policy’s operation
and resembles its internal logic, yet it is naturally interpretable
as its tree-based structure reveals simple but comprehensive
decision rules made by the DRL agent.4

Extracting a decision tree to interpret a complex neural
network is an established practice, often conducted by a
teacher-student training process [35], [36], [47]. However, we
cannot simply adopt this strategy because the hybrid action
space of our CF generation policy consists of both discrete
actions and continuous parameters. Our approach, detailed in
Algorithm 2 and depicted in Fig. 3, addresses this challenge
and consists of the following two key steps.

1) Trajectories Collection. We sample trajectories of state-
action pairs generated by a teacher DRL policy to train a
student DT. The student model may encounter states that are
not possible under the teacher’s induced state distribution due
to imperfect approximation. As in previous work [38], our
solution to this problem is data augmentation. We iteratively
sample a set of additional states by simulating the current DT
model, and add the teacher’s decision on these samples to the
training dataset.

2) Decision Tree Training. At each training step of a
student DT, following [36], we resample state-action pairs
from the current (augmented) training dataset with probability
proportional to state importance:

p((s, a)) ∝ (Qπ∗
(s, π∗(s))− mina′∈AQ

π∗
(s, a′))1D[(s, a)],

where π∗ is the DRL teacher policy and A is the policy’s
parameterized action space. An action a ∈ A includes both
a discrete action and its continuous parameter. A state-action
pair has a higher priority to be sampled if the action on the
state significantly outweighs other actions, deemed by the Q-
value function of the teacher policy π∗.

3Notice that all our input samples are normalized unit vectors.
4We remark that directly learning such tree models is infeasible as a tree

structure cannot be updated by gradient-based optimization.
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Fig. 3: Overview of our proposed RELAX agent’s policy distillation framework.

We train a student DT in two steps to approximate discrete
actions and their continuous parameters of a teacher policy,
separately. Firstly, we learn a DT to predict DRL policy’s
discrete actions, where each leaf node indicates the feature k
to change. Then, we train a two-layer Multi-Layer Perceptron
for Regression (MLP-REG) to learn a function at each leaf
node that takes as input the current state (the input x and
the selected feature k) and predicts the continuous parameter
for the discrete action indicated by the leaf node, i.e., the
magnitude of the feature change vk.

Algorithm 2 Extracting rules from the RELAX agent with
hybrid action space

1: D ← ∅ ▷ Initialize dataset with empty set
2: π̂0 ← π∗ ▷ Initialize the policy with the agent’s policy
3: for i ≤ N do
4: Di ← {(s, π∗(s)) ∼ dπ̂i−1} ▷ Sample B trajectories
5: D ← D ∪Di ▷ Update the dataset
6: D′ ← {(s, k) ∼ p(s, k)} ▷ Resample from the dataset,

where k is the discrete action
7: Train decision tree π̂i

8: end for
9: π̃ ← best_policy({π̂1, . . . , π̂N})

10: for each leaf l in π̃ do
11: Train a two-layer MLP-REG ml to fit the continuous action

vk with s as the input.
12: end for

return π̃, {ml : l ∈ π̃} ▷ Return the decision tree π̃ for discrete
action and a set of {ml} for continuous action.

As shown in Section VII-B, our experiments demonstrate
that a decision tree distilled with Algorithm 2 can produce
interpretable policies at the cost of a small performance
degradation, which ranges from 5% to 11% of the original
teacher policy’s validity.

VI. EXPERIMENTS

In this section, we describe the experiments we conduct
to validate our CF generation method. To demonstrate the
effectiveness, efficiency, and flexibility of RELAX, we assess
the quality of explanations extracted from several models
learned either for classification or regression tasks.

A. Setup
Datasets and Tasks. We test with six public tabular datasets:

Breast Cancer, Credit Card Fraud, Diabetes, Sonar, Wave, and
Boston Housing. The first five are associated with classification
tasks, whereas the last one with regression. A complete
overview of the main properties of these data collections is
available in Table I.

Dataset N. of Instances N. of Features Task
Breast Cancer [48] 699 10 (numerical) class.
Credit Card Fraud [49] 1,000,000 7 (mixed) class.
Diabetes [50] 768 8 (numerical) class.
Sonar [51] 208 60 (numerical) class.
Wave [52] 5,000 21 (numerical) class.
Boston Housing [53] 506 14 (mixed) regr.

TABLE I: Main characteristics of the six public datasets used.

Predictive Models. Each dataset is randomly split into
70% training and 30% test portions. For each task and the
associated dataset, we train the suitable set of predictive
models chosen amongst the following: Random Forest (RF),
Adaptive Boosting (ADABOOST), Gradient Boosting (XG-
BOOST), Multi-Layer Perceptron (MLP), and Multi-Layer
Perceptron for Regression (MLP-REG). Both MLP and MLP-
REG are fully-connected feed-forward neural networks with
two hidden layers; MLP includes also a logistic (i.e., sigmoid)
activation function at the last output layer. Notice that some
combinations do not apply, e.g., MLP-REG is only trained
on the Boston Housing dataset. We perform 10-fold cross
validation on the training set portion of each dataset to fine-
tune the hyperparameters of all the trainable models. Hence,
for each task/dataset pair, we re-train all the applicable models
with the best hyperparameters on the whole training set,
and we measure their performance on the test set previously
hold out. To assess the quality of the predictive models,
we use accuracy for classification and RMSE for regression.
Eventually, we consider only the best performing model(s)
for each task/dataset pair. For example, for Breast Cancer we
take into account two models, i.e., RF and MLP, which result
the most accurate ones and behave similarly to each other. In
Table II, we summarize the characteristics of each predictive
model used in combination with the benchmarking datasets.

Counterfactual Generator Baselines. We compare RE-
LAX with all the CF generator baselines described in Sec-
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Dataset [Best Model] Structure Acc.=▲/RMSE=•
Breast Cancer [RF] #trees=100 0.99 (▲)
Credit Card Fraud [XGBOOST] #trees=100 0.98 (▲)
Diabetes [ADABOOST] #trees=100 0.79 (▲)
Wave [XGBOOST] #trees=100 0.95 (▲)
Breast Cancer [MLP] L1=64; L2=128 1.00 (▲)
Sonar [MLP] L1=256; L2=256 0.90 (▲)
Wave [MLP] L1=100; L2=200 0.97 (▲)
Boston Housing [MLP-REG] L1=50; L2=128 3.36 (•)

TABLE II: Model structure and performance for each
dataset/task pair.

tion II. NEAREST-CT is considered the simplest approach.
Furthermore, we distinguish between model-specific (tree-
specific: FEATTWEAK and FOCUS; NN-specific: DEEPFOOL
and GRACE), gradient-aware (DiCE), and model-agnostic
(LORE and MACE).

Methodology. We compare the set of CF generation methods
that are suitable for each dataset/target model in Table II. In
particular, model-agnostic techniques (including both variants
of our RELAX) clearly apply to every setting, whereas model-
specific approaches can be tested only when the target model
matches (e.g., FOCUS can be used only in combination with
tree-based models). Eventually, we generate a separate CF for
each input sample in the test set of every dataset above, using
all the CF generators relevant to the setting at hand, i.e., all the
model-agnostic methods, gradient-aware (if applicable), and
model-specific techniques that apply.

Evaluation Metrics. We evaluate the quality of generated
CFs according to the following four standard metrics [6]:
Validity, Proximity, Sparsity, and Generation Time. Validity
measures the ratio of CFs that actually meet the prediction
goal to the total number of CFs generated;5 the higher the
validity the better. Proximity computes the distance of a CF
from the original input sample; in this work, we use L1-
norm to measure proximity, and therefore the smaller it is
the better. Sparsity indicates the number of features that must
be changed according to a CF, and therefore is equivalent to
the L0-norm between a CF and the corresponding original
input sample. The smaller it is the better, as sparser CFs
likely lead to more human-interpretable explanations. Finally,
Generation Time computes the time required to generate CFs,
which, clearly, should be as small as possible. All the metrics
above are averaged across all the test input samples. Moreover,
experiments were repeated 5 times and results are expressed
as the mean ± standard deviation.

B. Explainability Evaluation

Sparsity-Validity Trade-off. In Fig. 4, we plot the number
of perturbed features (i.e., sparsity) versus the validity of
counterfactuals obtained with different CF generation meth-
ods, when applied to classification tasks. More specifically,
we fix a threshold on the maximum number of features that
each CF generator is allowed to perturb and we show: (i) the
actual sparsity; and (ii) the validity of the generated CFs. The
rationale of this analysis is to show which method is able to

5Some work consider the complementary metric, which is known as Fidelity
and is equal to (1-Validity).

achieve the best trade-off between two contrasting metrics:
sparsity and validity. Intuitively, the larger is the number of
perturbed features, the higher is the chance of obtaining a
valid counterfactual. On the other hand, we should privilege
sparser CFs, i.e., CFs that modify as less features as possible,
since those require less effort and therefore are possibly more
interpretable and feasible to implement.

Results show that both RELAX-GLOBAL and RELAX-
LOCAL achieve the best balance between sparsity and validity.
That is, our method outperforms all the baselines in terms of
validity and, more importantly, it obtains these results even
when we set a very restrictive threshold on sparsity, i.e., when
few features are modified. As expected, though, if we soften
such a cap on the number of features allowed to change, other
methods like LORE may eventually match the performance
of RELAX or even reach higher validity scores. In fact, not
controlling for sparsity will make all CF generation methods
behave similarly. This is what we observe when we test with
DEEPFOOL or the simplest NEAREST-CT baseline, which by
design tend to generate valid CFs only if a large fraction of
the input features get modified. Due to this behavior, both
DEEPFOOL and NEAREST-CT cannot be visualized in the
plots, as they fall outside the range of sparsity values imposed
in our experiments. Furthermore, although MACE is model-
agnostic, its applicability to neural network target models is
problematic due to its large computational cost [10]. Besides,
the only implementation of MACE remaining available works
only in combination with RF target models, and this is why
we used it only in the first setting (Breast Cancer [RF]).

A similar analysis on the sparsity vs. validity trade-off for
the Boston Housing regression task is shown in Table III. In
this case, we compare only our two variants of RELAX since
none of the CF generation baselines considered is designed
to operate in a regression setting. As expected, the larger is
the threshold δ used to determine if the prediction goal of the
counterfactual example is met the harder is for RELAX to
find a valid counterfactual.

Validity (Sparsity)
Thr. (δ) RELAX-GLOBAL RELAX-LOCAL

0.20 0.81± 0.09 (3.02± 0.17) 0.87± 0.05 (3.10± 0.18)
0.40 0.74± 0.06 (3.09± 0.16) 0.81± 0.05 (3.18± 0.16)
0.60 0.70± 0.06 (3.21± 0.12) 0.77± 0.03 (3.28± 0.09)

TABLE III: Sparsity vs. Validity of counterfactuals generated
by RELAX for the Boston Housing regression task.

Finally, analogous conclusions can be drawn if we compare
proximity vs. validity: RELAX is able to strike the best
balance also between those two conflicting metrics.

Generation Time. Although validity and sparsity (proxim-
ity) are crucial to measure the quality of a CF generation
method, efficiency is pivotal as well. Therefore, we compare
the average generation time for each model-agnostic CF gener-
ator, namely LORE, MACE, and our RELAX in its two vari-
ants. We focus on model-agnostic methods because we want
this comparison to be as general as possible. Table IV shows
that our method takes up to 42% less time than other model-
agnostic baseline to produce valid counterfactuals, which
happen to be also closer to the original instances. This result
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Fig. 4: Sparsity vs. Validity of counterfactuals generated by RELAX and other baselines for classification tasks.

is even more remarkable if we consider that the counterfactual
generation time of RELAX includes the training time of the
DRL agent.

We report the table with the complete results of all experi-
ments in our GitHub repository.6

C. Hyperparameter Tuning

Our CF generation method is associated with a number
of controlling parameters. To understand the impact of these
parameters, we analyze the behavior of RELAX on the Sonar
dataset with MLP as the target classifier and the maximal
sparsity limited to 5 features.

The scaling factor λ. We first investigate the effect of
the scaling factor λ on the generated CFs, picking it from
0.001, 0.01, 0.1, 1, 10. As shown in Fig. 5, λ controls the
balance between sparsity and validity. Indeed, larger values
of λ force the agent to prefer sparser CFs at the expense of
lower validity (see Fig. 5 – left), whereas smaller values of λ
result in the opposite behavior (see Fig. 5 – right).

The target model’s architecture. We assess the robustness
of our CF generation method when applied to different target
neural network architectures. More specifically, Table V shows
the impact of different MLP architectures on the validity
and sparsity of counterfactuals generated by RELAX in

6https://github.com/Mewtwo1996/ReLAX.git/eval/results.md

Fig. 5: The impact of λ on Sparsity (left) and Validity (right).

comparison with three competitors: GRACE (NN-specific),
DiCE (gradient-aware), and LORE (model-agnostic). We may
observe that GRACE, DiCE, and LORE are all sensitive to
the MLP size, i.e., when the target neural network is getting
large the validity and sparsity of CFs generated with those two
methods deteriorate significantly. In the case of GRACE and
DiCE, the reason for that detrimental effect is due to the fact
that they leverage the gradient of the function approximated
by the neural network, which is obviously correlated with
the complexity of the MLP structure. Despite model-agnostic,
LORE requires to accurately learn a locally-interpretable sur-
rogate model of the target neural network, which may be hard
when this becomes too complex. Eventually, RELAX is more
robust toward different MLP structures, and its performance
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Metric Dataset [Models] CF Generation Methods
RELAX-GLOBAL RELAX-LOCAL LORE MACE

Proximity

Breast Cancer [RF,MLP] [4.46, 5.92] [4.49, 5.87] [4.63,5.63] [4.47, N/A]
Credit Card Fraud [XGBOOST] [1.43] [1.38] [1.42] [N/A]

Diabetes [ADABOOST] [4.41] [4.50] [4.76] [N/A]
Sonar [MLP] [7.32] [7.66] [7.36] [N/A]

Wave [XGBOOST, MLP] [5.93,6.38] [6.02, 6.50] [6.60, 6.41] [N/A, N/A]
Boston Housing [MLP-REG] [5.10] [5.36] [N/A] [N/A]

Generation Time (secs.) * 1500 1320 2100 2280

TABLE IV: Comparison of Proximity and Generation Time for model-agnostic CF generation methods.

Validity (Sparsity)
MLP size Accuracy RELAX-GLOBAL RELAX-LOCAL GRACE DiCE LORE
[256, 256] 0.88 0.76 (2.95) 0.90 (3.19) 0.62 (3.32) 0.68 (4.20) 0.60 (3.65)
[128, 128] 0.85 0.80 (2.69) 0.90 (2.88) 0.73 (2.85) 0.77 (2.71) 0.76 (3.21)
[64, 64] 0.79 0.90 (1.88) 0.95 (1.93) 0.86 (1.90) 0.92 (2.11) 0.90 (2.52)

TABLE V: The impact of different MLP architectures on the Validity (Sparsity) of counterfactuals.

is quite consistent independently of the MLP size. Indeed, the
agent underneath RELAX truly treats the target model as a
black box regardless of its internal complexity.

The efficiency of pretraining. Finally, we show how
pretrained RELAX-GLOBAL improves the performance of
RELAX-LOCAL. More specifically, we train RELAX-LOCAL
as described in Section IV-D, and compare it with an-
other agent learned from scratch. Unsurprisingly, initializing
RELAX-LOCAL with pretrained RELAX-GLOBAL reduces
its CFs generation time, as shown in Table VI.

Setting Validity (Sparsity) Generation Time (secs.)
without pretraining 0.80 (3.27) 1132
with pretraining 0.90 (3.19) 500

TABLE VI: Performance of RELAX-LOCAL with/without
pretrained RELAX-GLOBAL.

VII. PRACTICAL IMPACT

In this section, we further validate the power of our CF
generation method on two practical downstream tasks: (i)
providing actionable recommendations and (ii) interpreting
agent’s policy explanations. For both tasks we consider two
real-world use cases: Diabetes and COVID-19. The former
attempts to identify diabetic patients from a dataset of health-
care records. The latter aims to predict the risk of mortality
due to the COVID-19 pandemic from a dataset of demographic
information collected by country-level reports.

A. Providing Actionable Recommendations

Similarly to previous work on counterfactual explana-
tions [19], [40], we show how RELAX-LOCAL (hereinafter,
RELAX) can be used to generate meaningful actionable
recommendations in the two real-world scenarios considered.

Before digging into details, we want to distinguish between
correlation and causality in our target black box models
to explain. Most ML models focus on accurately learning
correlations between input features and output predictions,
but lack in reasoning about cause-effect relations. In order
to generate faithful explanations with RELAX, we follow the
pipeline to build ML models without considering causality,

which is a common practice adopted by other explanation
methods. However, we will extend our method to capture
causal relationships in the future work.

Use Case 1: Diabetes. We use the popular dataset collected
from the National Institute of Diabetes and Digestive and Kid-
ney Diseases. This contains 768 instances, each one labeled
either as 1 (positive for diabetes) or 0 (negative for diabetes).

Here, we want to show that RELAX is able to provide
suggestions of which features should be perturbed in order to
turn a patient with diabetes into a healthy one. To achieve
this goal, we first randomly split the dataset into two parts,
70% for training and 30% for testing. Then, we train the
following models to learn the binary classifier for predicting
diabetic patients: SVM, RF, ADABOOST, and XGBOOST.
After running 10-fold cross validation, our best-performing
classifier is ADABOOST with 100 trees, which is able to reach
about 79% accuracy on the test set. As our task is to find the
optimal counterfactual explanation for patients with diabetes,
we focus on converting positive samples into negative ones.
We first rank the features according to the importance score
induced by the ADABOOST model, as depicted in Fig. 6 (left).
Thus, we generate the CFs for 55 diabetic patients in the test
set using our RELAX algorithm. It is worth recalling that
we enforce our method to perturb actionable features only.
Specifically, features like Pregnancy, Pedigree, and Age cannot
be modified, since they are historical properties of the patient.
Eventually, we consider the set of actionable features along
with their associated constraints (↑ = increase, ↓ = decrease),
if any, as follows:

• Plasma Glucose (Plas) (↓): Normal plasma glucose levels
are defined as under 100 mg/dL during fasting and less
than 140 mg/dL 2-hours postprandial. In practice, values
from 100 mg/dl to 126 mg/dl are diagnostic of pre-
diabetes.

• Skin Thickness (Skin) (↓): Triceps skin fold thickness
reflects the level of body fat. Higher values may lead to
obesity, in turn, increasing the chances of diabetes.

• Insulin (Insu): 2-hour serum insulin (mu U/ml). Accord-
ing to the research, skin thickness is significantly related
to duration of diabetes.

• Body Mass Index (BMI): BMI computed as
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(weight in kg)/(height in m)2. A higher BMI raises the
risk of having uncontrolled diabetes and complications
related to it.

Fig. 6: Left: The ranking of features according to their
importance. Right: Feature changes for transforming a diabetic
patient into a healthy one.

The RELAX agent tweaks 1.49 features on average, and the
average proximity (i.e., L1-norm) between the original sample
and the corresponding counterfactual example is 2.18. Fig. 6
(right) shows the direction of feature changes as suggested
by CFs. Generally speaking, these recommendations (e.g.,
lowering the BMI) are compliant with those typically provided
by domain knowledge experts [54] [55].

Use Case 2: COVID-19. In this scenario, the goal is
to demonstrate that counterfactual explanations provided by
RELAX may help countries that suffer from high COVID-19
mortality taking effective actions, economically and medically,
to reduce such risk. In other words, we aim to show that
our method can suggest which attributes should be changed
(and to what extent) so that high-risk labeled instances can
be converted to normal. To achieve that, we first need to
learn a binary classifier that predicts whether the country’s
death risk due to COVID-19 is high or not, given the country-
level features. This, in turn, requires collecting and labeling a
dataset to train predictive models on.

Inspired by previous work addressing a similar task [56],
we gather 17 country-level demographic features from 156
countries across 7 continents [57]–[60]. Furthermore, we label
each instance with a binary class denoting the COVID-19 risk
of mortality (“high” vs. “normal”), as in [56]. This dataset is
made publicly available.7

We randomly split our collected dataset into two parts,
i.e., 70% used for training and 30% for test. Therefore, we
train the following models to learn the binary classifier for
predicting COVID-19 mortality risk: SVM, RF, ADABOOST,
and XGBOOST. After running 10-fold cross validation, the
best-performing model turns out to be XGBOOST with 500
trees, which achieves 85% accuracy on the test set. We sort the
features according to the ranking induced by the XGBOOST
model, as shown in Fig. 7 (left). Then, we generate with our
RELAX algorithm the CFs for the 16 high-risk countries in

7https://github.com/Mewtwo1996/ReLAX.git/use-cases/covid-19/dataset/
covid-19.csv

the test set. It is worth remarking that, although the target
binary classifier is learned considering all the features from
the whole training set, we force RELAX to tweak only the
subset of actionable features so that effective suggestions
can be found by observing the generated CFs. Besides, in
order to avoid bizarre recommendations, we constrain the
change of (actionable) features toward a “plausible” direction
(e.g., it would not make any sense to suggest increasing
the unemployment rate of a country). Below is the set of
actionable features along with their associated constraints (↑
= increase, ↓ = decrease), if any:

• Death Rate (↓): Measures the number of overall deaths
per 1,000 mid-year population before 2020 (i.e., it does
not include deaths due to COVID-19).

• Unemployment Rate (UR) (↓): Represents the number of
unemployed people as a percentage of the labor force;
high unemployment is usually associated with lower
living standards.

• Doctors per 10,000 (↑): Indicates the number of physi-
cians per 10,000 people.

• Nurses per 10,000 (↑): Counts the number of nursing and
midwifery personnel per 10,000 people.

• Urban Population Rate: Measures the ratio of people
who live in urban areas over the total population, which
could be adjusted via a series of rational policies.

• Obesity Prevalence: Denotes the percentage of a coun-
try’s population considered to be obese.

The RELAX agent tweaks 1.67 features on average, and the
average proximity (i.e., L1-norm) between the original sample
and the corresponding counterfactual example is 1.18. Fig. 7
(right) shows the direction of feature changes as suggested by
the generated CFs.

Generally speaking, the CFs provide reasonable actions to
take by exploiting the domain knowledge learned by the black-
box model. In particular, we observe that the CFs suggest five
main changes: (i) Decreasing the death rate;8 (ii) Decreasing
the unemployment rate; (iii) Increasing the nurse rate per
10,000 people; (iv) Decreasing the urban population rate;
and (v) Decreasing the obesity prevalence. Not only those
recommendations look sensible, as much as straightforward
or even obvious, but their accuracy is also confirmed by
the fact that many countries have indeed adopted similar
strategies to counter the impact of COVID-19. For example,
US approved the visa for more than 5,000 international nurses
to strengthen the health workforce.9 Moreover, according to
the investigation made by the US Center for Disease Control
and Prevention,10 obese patients with COVID-19 aged 18
years and younger are associated with a 3.07 times higher
risk of hospitalization and a 1.42 times higher risk of severe
illness. Thus, reducing the obesity prevalence can indeed lower
mortality risk. Finally, reducing the unemployment rate, as
well as the urban population rate, may allow a wider range
of people to enhance their social community awareness, take

8Albeit it may sound odd, reducing the death rate can subsume a broader
suggestion for improving the life quality of a country.

9https://www.npr.org/sections/health-shots/2022/01/06/1069369625/
short-staffed-and-covid-battered-u-s-hospitals-are-hiring-more-foreign-nurses

10https://www.cdc.gov/obesity/data/obesity-and-covid-19.html
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consciousness of the risks of the pandemic, and ultimately
adopt a safe lifestyle.

Fig. 7: Left: The ranking of features according to their
importance. Right: Feature changes for transforming a high
mortality risk country into a normal one.

B. Interpreting Agent’s Policy Explanations

Using Algorithm 2 described in Section V, we distill deci-
sion rules to interpret the counterfactual explanations learned
by the RELAX-GLOBAL (hereinafter, RELAX) agent’s policy
on the two use cases considered.
Use Case 1: Diabetes. We first train a specific DRL agent via
RELAX to generate CFs for positive samples (i.e., patients
with diabetes). The validity of this method is 0.90, whereas
sparsity measures 1.86. Then, we distill the agent to a hybrid
decision tree to generate CFs. The validity degradation of the
tree model is within 5% of the original neural network policy.
Fig. 8 displays the top-4 layers of the distilled decision tree.

Fig. 8: Top-4 layers of the distilled decision tree (Diabetes).

The decision variable of each node contains Glucose (G),
Blood Pressure (BP), Skin Thickness (S), Body Mass Index
(BM), Pedigree (P), Age (A), and their indicator variables: IG,
IBP , IS , IBM , IP and IA, which denote if the corresponding
variable has been used. Also, we show the frequency of final
decisions of each tree path on the fourth layer.

Thus, we are able to interpret the logic behind counterfactual
explanations generated by RELAX using the distilled decision
tree, along two directions: (i) capturing existing knowledge and
(ii) discovering new rules. Concerning (i), we observe that the
decision variables used to split the branch at each node in
the first three layers (i.e., G, BM, S, and BP) are known to be
indeed relevant for determining diabetic condition, as reported

in previous work [19]. With the information provided by these
variables, our DRL agent will select the target variable to
modify. Regarding (ii), instead, we notice that the decision
tree takes multiple variables into consideration, rather than
relying on a single variable like [19]. On the top four layers,
6 variables collectively classifies input into 16 branches. For
instance, when IG = 0 and IBM = 0, the condition of
Skin Thickness and Glucose jointly exert strong impact on
the severity of diabetes. Moreover, although only modifying
actionable features, the tree model also illustrates how non-
actionable features affect a final decision. In this tree, the value
of Pedigree is also considered as a decision node on the third
layer since it affects the Q-value function significantly.
Use Case 2: COVID-19. As with the previous use case, we
first train a specific DRL agent via RELAX to generate CFs
for positive samples (i.e., countries with high mortality rate
due to COVID-19). The validity of the method is 0.78, and its
sparsity measures 1.98. Then, a hybrid decision tree is adopted
to distill the agent’s policy. The validity degradation of the tree
model is within 11% of the original neural network policy.
Fig. 9 depicts the top-4 layers of the distilled decision tree.

Fig. 9: Top-4 layers of the distilled decision tree (COVID-19).

The decision variable of each node contains Death Rate
(DR), Unemployment Rate (UR), Obesity Prevalence (OBE),
Urban Population Rate (UP), Doctor per 10,000 (DP), Nurse
per 10,000 (NP), Infant Mortality (IM), Median Age (MA),
GDP, along with their indicator variables: IDR, IUR, IDP ,
which denote if the corresponding variable has been used.
Also, we show the frequency of final decisions of each tree
path on the fourth layer.

We interpret the logic behind the RELAX agent along
with the same two axes considered for the previous use case:
(i) capturing existing knowledge and (ii) discovering new
rules. Concerning (i), as depicted in the decision tree, many
influential factors are incorporated. Specifically, within each
decision node of the first three layers, Unemployment Rate,
Death Rate, Obesity Prevalence, Nurse per 10,000, and GDP
are used to split the branches. According to [56], we find that
these geopolitical and demographic attributes at the country-
level exert strong impact on generating the CFs. Regarding (ii),
the decision tree serves as a strong tool to discover interaction
among independent variables. Variables that appear together in
a traversal path are interacting with one another. For instance,
on the top 4 layers, Death Rate (DR), Obesity Prevalence
(OBE) and Doctor per 10,000 (DP) jointly work to split the
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branches. In other words, whether OBE and DP affect the CFs
depend on the condition of DR. Based on this observation, we
recommend the institutions or governments could decrease the
COVID-19 risk of mortality by focusing on these three specific
factors, and further investigating their relation.

VIII. CONCLUSION AND FUTURE WORK

In this work, we presented RELAX, the first method for
generating model-agnostic counterfactual examples based on
deep reinforcement learning with hierarchical curiosity-driven
exploration. We implemented two variants of it: RELAX-
GLOBAL and RELAX-LOCAL. The former learns a gener-
alized agent’s policy from a whole set of training instances,
whereas the latter trains a dedicated agent’s policy for crafting
the optimal counterfactual of a single target example via trans-
fer learning from a pretrained RELAX-GLOBAL. Extensive
experiments run on six public tabular datasets demonstrated
that RELAX significantly outperforms all the considered
counterfactual generation baselines in every standard quality
metric. Our method is scalable with respect to the number
of features and instances, and can explain any black-box
model, regardless of its internal complexity and prediction
task (i.e., classification or regression). Moreover, we proposed
a distillation algorithm that extracts decision rules from the
RELAX agent’s policy in the form of an interpretable decision
tree, thereby making the counterfactuals generation process
itself explainable. Finally, we showed the ability of RELAX
to provide actionable recommendations and distill interpretable
policy explanations in two practical, real-world use cases.

In future work, we plan to investigate how RELAX can be
extended to generate explanations for non-tabular input data,
such as images and text, and how to enforce counterfactual
examples laying on the original data manifold.
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