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Abstract

Multidimensional phenomena are often represented by complex data structures.
With the rapid growth of data availability and complexity, new methodologies
are needed to handle these kind of data. Among complex data structures, deep
interest has been devoted to three-dimensional data and network data, since many
applications can be represented as such. Among methodological techniques, cluster
analysis is one of the most popular and successful techniques for data exploration
and characterization. However, existing methodologies for describing and analyzing
such complex data use a hard approach to clustering, even though many applications
show the need to use a fuzzy approach, as it allows for better interpretation of results
and greater closeness of results to reality.

What is proposed in this thesis are new methodologies for applying fuzzy cluster-
ing to complex data structures, such as three-way data and network data. The fuzzy
approach to clustering proves extremely useful in the simulations and real-world
applications which will be discussed through the chapters.

The first chapter introduces the notions of complex data structures and positions
the problem, highlighting the rationale behind the proposed methodologies through
theoretical discussions and real-world practical examples. The second chapter
provides the reader with terminology used throughout the thesis and definitions of
basic concepts. From the third to the sixth chapter, four different research works
are presented.

The first work introduces the notions of three-way three-mode data, as a data
array made up by different units-by-variables matrix, each of which refers to a
specific occasion (usually time); by applying hierarchical clustering techniques to
each units-by-variables data matrix, a set of hierarchies (dendrograms) is obtained.
The new methodology proposes to obtain a fuzzy partition of the set of hierarchies
and simultaneously, within each class of the partition, identify a consensus hierarchy.

The second work can be considered as an extension of the previous one. Given a
set of hierarchies, the proposed new methodology makes it possible to obtain a fuzzy
partition of them, and within each class of the partition, identify a parsimonious
consensus dendrogram. The notion of parsimonious is extensively commented and
discussed in the corresponding chapter. However, here it is important to recall
that a parsimonious dendrogram is useful for getting a clear and direct idea of how
units aggregate into clusters, highlighting only the most important aggregations and
deleting misleading ones.

The third work introduces a new methodological proposal to obtain a fuzzy
partition of a three-way three-mode data array with corresponding consensus matrices
for each class in the partition and simultaneously reduce the dimension of the variables
in the consensus matrices by applying a disjoint second-order factor analysis. The
motivation and theoretical background are discussed in the corresponding chapter.

Finally, the last work focuses on how to apply different fuzzy clustering techniques
to a set of networks. In particular, the main issue that arises in this kind of problem
concerns how to represent networks so that they can be given as input to the
clustering algorithms. Several representations of networks involving probability
distributions and graph embedding techniques are presented and discussed.

The last chapter summarizes the main contents of the thesis, recalling the
methodological proposals, emphasizing their relevance and contribution, especially
their strength when applied to real scenarios. Finally, the necessity of using a fuzzy
approach to clustering and its main advantage are emphasized.
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1

Chapter 1

Motivation and introduction

Statistics is the grammar of science.

Karl Pearson

Multivariate collective phenomena are usually described by means of a set of
statistical units characterized by a set of variables observed on several successive
occasions that frequently represent time. This is the most complete way to statis-
tically describe phenomena under observation, because units can be represented
realistically in their complexity with a large number of variables, without naive
simplifications based on a few characteristics, and even the histories of units can be
compared over time in the same descriptive analysis in order to show convergences
or divergences over the considered time period. The data structure that allows this
complete statistical analysis is a three-way three-mode data array, where modes are
units, variables, and occasions and the term way refers to a dimension of the data,
i.e. rows, columns, layers.

When phenomena are economic, social, or demographic and occasions represent
times, the investigator may be interested in studying "stable" subsets of occasions
(e.g., years) where units do not change much in their cross-sectional relations; that
is, their pairwise dissimilarity structure does not change substantially and variables
do not differentiate consistently their covariance structure. In other terms, in these
subsets of occasions, the multivariate unit-by-variable data matrices are perceived
as similar to each other. Thus, in this situation, it is natural to identify clusters
of similar occasions, frequently corresponding to different historical periods. Then,
once the clusters of years are detected, as usually done in the partitioning methods
of Cluster Analysis, K centroids, one for each cluster, are identified to summarize
the elements belonging to each specific cluster. In this case, since we are dealing
with three-way data structures, the K centroids represent K consensus matrices
summarizing the unit-by-variable matrices belonging to the clusters. In other terms,
each consensus represents the closest data matrix -in a least-squares sense- to the
matrices belonging to the same cluster.

For a given occasion, it is also possible to observe, instead of the complete
units-by-variables data matrix, a hierarchy of the set of units, obtained by applying
hierarchical clustering on the original units-by-variables properly transformed in
its corresponding distance matrix or are directly observed. In such situations, the
investigator would need to obtain a single consensus hierarchy of the original set
of hierarchies, which can be defined as the closest hierarchy to the given set of
hierarchies.

For example, units (or objects) may correspond to a set of countries whose
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macroeconomic performance is compared over a series of years, by acquiring a
hierarchy of classes (a dendrogram) for each year with the property that countries,
in the same class in that year, are perceived as similar to one another. Thus, a
consensus hierarchy would identify similar clusters and similar agglomerations of
clusters in the different hierarchies.

Alternatively, such data may occur from data-gathering techniques, such as data
cards, in psychometric studies (Rosenberg and Kim, 1975; Whaley and Longoria,
2009), or products in marketing applications, where individuals (customers) are
required to sort similar items into clusters they perceived as homogeneous and then
asked to aggregate the clusters to obtain a hierarchy. Consequently, the consensus
hierarchy of the hierarchies defined by the customers would identify the closest
hierarchy to those observed.

In addition, a consensus may be needed when several different analyses of the
same set of objects are carried out. For example, hierarchical clustering methods
applied on the dissimilarity matrix computed on the same units-by-variables matrix
can vary and be different depending on the type of measure used to compute pairwise
dissimilarity or on the clustering criterion adopted. In effect, each decision that
is taken (e.g. choice of type of dissimilarity measure) involves a model for the
clusters that may bias the results of an analysis towards the assumptions of the
model. For this reason, investigators often carry out several different analyses of the
same set of objects, each implicitly incorporating a different set of assumptions that
are considered to be reasonable. A consensus classification may be considered an
ensemble classification estimating the true classification, that is, the classification
less likely to be biased towards the models corresponding to the separate analyses
and more likely to reflect the underlying structure of the data.

Finally, hierarchical classifications may be obtained by application of an ag-
glomerative or divisive algorithm separately to the same set of multivariate objects
observed on different occasions using a set of variables forming a three-way data set,
or panel data. A consensus hierarchy provides a way of simplifying this information
and obtaining an overall view of the relationships within the set of objects. Therefore,
identifying a consensus hierarchy allows us to fine similar clusters that have been
observed in the different hierarchies. In general, this implies that the assumption of
a single (hierarchical) clustering for the same objects can be too strict. This has
motivated the emerging area of multi-clustering (Muller et al., 2012) for which a
consensus hierarchical clustering may be required to highlight similar clusters and
similar agglomerations of clusters in different hierarchies.

Nevertheless, there are several situations in which obtaining a single consensus
hierarchy is too simplistic, misleading and naı̈ve because several differences may be
observed among the set given hierarchies and consequently, more than one consensus
hierarchy could be required to synthesize the initial hierarchies.

For example, the macroeconomic performances of different countries, after a
period of stability, may change under the effect of an economic shock. Thus, after a
period in which hierarchical relations remain similar, the relationships between the
countries may change, and the new relationships may remain stable for a successive
number of years. Therefore, for each period of stability, a different consensus
hierarchy may be required. In the case of data gathering, individuals or customers
might use two or more different criteria to sort the set of items, thereby producing
different hierarchical relations to be classified into homogeneous classes. In multi-
clustering there might be more than one general agreement among the different
clustering views. As a results, a reduced number of consensus classifications may be
sufficient to synthesize the different clustering views.

As the three-way three-mode data array is an important and useful complex data
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structure used to represent multivariate collective phenomena, so are the networks.
Indeed, they are a powerful model for describing problems in different scientific
fields, such as biology, informatics, and social sciences. Given a network, an intuitive
and naı̈ve analysis consists in applying clustering techniques to detect cluster of
entities, represented by the nodes in the networks. Being this task well-known and
widely explored in literature, a more interesting, novel and challenging task consists
in identify groups of homogeneous networks, given a set of networks: this need
is highly demonstrated by the usage of networks representation to describe many
problems pertaining to multiple disciplines. For example, in biology networks can
represent metabolites and the clustering will allow to identify groups of patients
with similar patologies (Manipur et al., 2020a); in transportation, networks may
represent airline companies and the need to use clustering is demonstrated by the
need of identifying groups of airline companies characterized by similar flight route
(Carpi et al., 2019); in trade, networks can represent imported/exported products in
the trade market and the identification of clusters of products allows to find which
products are characterized by similar trade behaviour (Tantardini et al., 2019).

In this brief introduction, I hope the reader already got the scent of the potential
of the application of clustering techniques to complex data structures (units-by-
variables matrices, hierarchies, networks) to group them into K clusters and to
identify K consensuses, referred as consensus matrices or consensus hierarchies or
network centroids, respectively. However, what is proposed in this dissertation is
to apply fuzzy clustering algorithms to such kind of data structures. In order to
stress the motivation behind the usage of a fuzzy approach and to make the reader
see first-hand the strength and advantages of such approach, it worthy recalling the
example of hierarchies describing the macroeconomic outlook of the countries in
several years. Imagine, for example, that during a period of stability, the hierarchies
of the macroeconomic outlook for different countries remain more or less equal. Thus,
each hierarchy is assigned to the class of the stable years with the membership degree
almost equal to one. Suppose an economic shock occurs that changes drastically
the macroeconomic outlook for each country and, consequently, the hierarchical
relations among countries. Then, after a period of instability, suppose that a new
stable period is observed. In that case, new hierarchical relations among countries
might be noted, and these relations will remain stable in this second period. Thus,
each hierarchy of countries will have a membership degree for this second class of
years almost equal to one. However, during the years when the shock occurred, it is
realistic to suppose that some countries will have features similar to those observed
before the shock, while others will have aspects of the stable period after the shock.
A hard secondary partition of the primary hierarchies would assign the hierarchy to
one or the other of these two classes of years, whereas a fuzzy partition would be able
to indicate the uncertainty of the years of the shock by specifying its membership
degrees for each of the classes. The range of values that can be taken by membership
degrees is seen as an advantage of fuzzy clustering methods over hard clustering
methods.

1.1 Content of the thesis

This section gives a brief summary of the dissertation structure. At first, basic
terminology and notations used through the paper is provided to make the reader
able to easily understand and to clarify some used terminology (Chapter 2). Then,
in the following chapters of this dissertation (Chapters 3-6), I include most of the
scientific papers belonging to my whole scientific production. As discussed above,
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what brings them together is the application of fuzzy clustering techniques to complex
data structure. Then, what differentiate between them is obviously the kind of
complex data structure which is object of analysis and the methodological proposals
presented to make further and deeper analysis.

Chapter 3 presents a novel methodology, called PARoDENo3WD (PARtition of
DENdrograms of a 3-Way Data array), to study multidimensional phenomena. The
proposed methodology allows to obtain a secondary fuzzy partition of the primary
hierarchies, where hierarchies belonging to the same class are perceived as similar
and each class is associated to a consensus hierarchy.
The contents of Chapter 3 were developed with Prof. Maurizio Vichi and Prof.ssa
Maria Brigida Ferraro, and are reported in a paper which is published in Information
Sciences (Bombelli, Ferraro, and Vichi, 2023).

Chapter 4 provides a new methodology aiming at fitting a fuzzy partition to a
set of hierchies of the same set of objects and at identifying parsimonious consensus
hierarchies. The methodological and theoretical background related to parsimonious
hierarchy is fully described in Section 4.2.
The contents of Chapter 4 were developed with Prof. Maurizio Vichi and they are
reported in a paper submitted to Statistics and Computing and is currently under
review.

Chapter 5 provides a new methodology which, given a set of units-by-variables
matrices, aims at obtaining a simultaneous reduction of the dimensions of the
occasions and the variables. This is done by obtaining a fuzzy partition of the matrices
to reduce the dimension of the occasions and by applying a Second-order Disjoint
Factor Analysis to the consensus matrices identifies for each class of the partition in
order to reduce the dimension of the variables. The theoretical background related
to the Second-order Disjoint Factor Analysis is provided in Section 5.2.
The contents of Chapter 5 were developed with Prof. Maurizio Vichi and they
are reported in a paper submitted to the Journal of Computational and Graphical
Statistics and is currently under review.

Finally, Chapter 6 is fully devoted on the application of fuzzy clustering techniques
to networks. Particularly, an important focus is given on how to represent networks
ensambles for fuzzy clustering.
The contents of Chapter 6 were developed with Prof.ssa Maria Brigida Ferraro,
Prof. Mario Rosario Guarracino and Dr. Ichcha Manipur and most of the chapter is
reported in a paper which is published in Data Mining and Knowledge Discovery
(Bombelli et al., 2023).

All the models presented in Chapter 3-5 have been implemented mainly by using
a MATLAB routine (MATLAB, 2021), while the research presented in Chapter 6
has been developed by using mainly the R software (R Core Team, 2022).
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Chapter 2

Notation and basic concept

For the convenience of the reader, the notation and the basic concepts used in
this dissertation are listed here. It is worth noticing that Chapter 6 does not strictly
follows this notation, as networks notation is introduced and discussed in the related
chapter.

List of Symbols
N, J, H, K number of observations, variables, occasions (layers), clusters of

primary hierarchies (or matrices in Chapter 5), respectively;

I ≡ {1, . . . , N} the set of indices identifying units;

J ≡ {1, . . . , J} the set of indices identifying variables;

H ≡ {1, . . . , H} the set of indices identifying occasions (layers);

K ≡ {1, . . . , K} the set of indices identifying clusters of primary hierarchies (or
matrices in Chapter 5);

µhk membership of h-th primary hierarchy (or matrix in Chapter
5) in the k-th cluster, for k ∈ K, for h ∈ H. For a given
occasion, the sum of the membership values for all clusters is
one; moreover, memberships can be hard, i.e. µhk ∈ {0, 1}, or
fuzzy i.e. µhk ∈ [0, 1];

m the fuzziness parameter or fuzzifier that controls how fuzzy the
classes of the partition are;

X = [xijh] an (N × J × H) three-way data matrix, formed by data matrices
[X1, ..., XH ], where value xijh is the observation on the i-th unit
(row), on the j-th variable (column) on the h-th occasion (layer);

D = [uilh] the (N ×N ×H) three-way matrix formed by dissimilarity matri-
ces [D1, ..., DH ], where value dilh is the dissimilarity between the
i-th unit (row) and the l-th unit (column) on the h-th occasion
(layer);

U = [uilh] the (N × N × H) three-way ultrametric matrix formed by ultra-
metric matrices [U1, ..., UH ], where value uilh is the ultrametric
distance between the i-th unit (row) and the l-th unit (column)
on the h-th occasion (layer);
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U∗ = [u∗
ilk] the (N × N × K) three-way consensus matrix formed by ultra-

metric matrices associated with the K consensuses [U∗
1, ..., U∗

K ],
where value u∗

ilh is the consensus ultrametric distance between the
i-th unit (row) and the l-th unit (column) on the k-th consensus
(layer).

Definition 1 (Dissimilarity matrix). A dissimilarity matrix D = [dij : i, j ∈ I], is
an N × N square matrix where elements satisfy the following properties: 1. non-
negativity: dij ≥ 0, ∀ i, j ∈ I; 2. null diagonal: dii = 0, ∀ i ∈ I; 3. symmetry:
dij = dji, ∀ i, j ∈ I.

Definition 2 (Distance matrix). A distance matrix is a dissimilarity matrix, in
which triplets of units satisfy properties 1-3, and also the following property: 4.
triangular inequality: dil ≤ dij + dlj , ∀ i, j, l ∈ I.

Definition 3 (Ultrametric matrix). An ultrametric matrix is a distance matrix,
which triplets satisfy also the following property: 5. ultrametric inequality: dil ≤
max{dij , dlj}, ∀ i, j, l ∈ I.

2.1 Three-way three-mode data
Formally, a three-way three-mode data array (matrix) is denoted by X = [xijh] of

size (N × J × H), where value xijh is the observation on the i-th unit (row), of the
j-th variable (column), on the h-th occasion (layer). Therefore, the three-way array
is the data structure used to organize multidimensional phenomena, with J variables
measured on the same set of N individuals, in H different occasions. X = [xijh] has
three modes: units (rows), variables (columns), and occasions (times, layers). The
term ’way’ refers to a dimension of the data, while the word ’mode’ is reserved for
the methods or models used to analyze the data (Kroonenberg, 2008). The array
X may be seen as a set of multivariate data matrices unit-by-variable, as many as
the number of occasions, representing a multi-view cross-sectional observation of
the phenomenon. On the other hand, X may be seen as a set of multivariate time
series matrices variable-by-time (when occasions are times), as many as the units,
representing the multivariate histories of the units to be compared over time.

2.2 Hierarchical clustering
Hierarchical clustering methods are popular procedures, which can be either

agglomerative or divisive, for yielding a hierarchy of partitioned units (Hartigan, 1975;
Gordon, 1999; Vichi, Cavicchia, and Groenen, 2022). They start from dissimilarity
data between pairs of N objects and produce a nested set of N − 1 partitions. The
most commonly used hierarchical clustering methods are agglomerative where pairs
of objects or clusters are merged into larger ones. The starting point is the set of
N singleton clusters, and after fixing a distance between clusters function of the
dissimilarities between units, the algorithm progressively agglomerates the closest
clusters into larger and larger ones until obtaining the whole set of units (bottom-up
procedure). In contrast, divisive clustering methods split the whole set of units or
its successively divided clusters until all clusters are singletons, by splitting each
time the most dissimilar (isolated) pair of clusters according to a fixed dissimilarity
between clusters (top-down procedure). In the simulation studies, as well as in the
applications on real data presented and discussed throughout the dissertation, the
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agglomerative procedure was considered for hierarchical clustering rather than the
divisive one. In fact, among others, there are two main advantages: first, outliers
can be better handled by agglomerative hierarchical clustering than by its divisive
counterpart, since in the former procedure outliers can be absorbed into larger
clusters, whereas the latter procedure can create clusters around outliers, leading
to suboptimal cluster results; second, the interpretability of the results is better
and clearer using a bottom-up procedure, since the entire merging process can be
observed, rather than the splitting process, and the choice of the number of clusters
can be based on the desired level of detail and granularity. Well-known hierarchical
clustering methods include the single linkage (Florek et al., 1951), the average
linkage (Sokal, 1958), the complete linkage (McQuitty, 1960), and Ward’s method
(Ward Jr, 1963), where, for the first three methods the dissimilarity between clusters
is fixed as the minimum, the mean, and the maximum, of the dissimilarities between
units (one in one cluster and the other in the other cluster), while for the fourth
method, the dissimilarity between clusters is the increase in the deviance when the
two clusters agglomerate into one. It is evident that the choice of linkage method to
be used in hierarchical clustering influences the structure of the hierarchy obtained.
In simulations and real applications, the average linkage method (UPGMA) was
mainly used. Note that each hierarchical clustering method produces as a solution
an N-tree, a hierarchy (dendrogram), and an ultrametric matrix.

2.3 N-tree

An N-tree T h = {{i}, (i ∈ I), I1,h, I2,h, . . . , IN−1,h, I} is an unordered rooted
tree with labeled leaves representing units (singletons) and internal nodes clusters
of units. Generally, the N -trees are binary, i.e., have exactly N − 1 internal nodes
and each node has at most two descendants. More precisely, the N -tree is described
as a set of subsets of I, with Il,h the generic l-th subset of I taken in the h-th
occasion: I ∈ T h; ∅ /∈ T h; {i} ∈ T h; if Ii,h, Il,h ∈ T h ⇒ (Ii,h ∩ Il,h) ∈ (Ii,h, Il,h, ∅).
Thus, the N -tree, for the h-th occasion, is given by the N trivial clusters (leaves)
{i}, (i ∈ I) and the N − 1 clusters of units (internal nodes), which are disjoint or
one included in the other, obtained by the N − 1 steps of fusion (agglomeration or
division) performed by a hierarchical algorithm (hence, the last cluster is I, i.e.,
the root). Thus, an N-tree specifies only the subsets belonging to a hierarchical
classification.

2.4 Dendrogram (Hierarchy)

A Dendrogram (hierarchy) is a diagram that shows the hierarchical relationships
between clusters of units. A vertically orientated dendrogram has on the x-axis the
units (singletons, leaves of the tree) and on the y-axis the level of fusion (agglomera-
tion or division) between clusters. The dendrogram is a valued N -tree, in which a
non-decreasing level of fusion is associated with each internal node and the root as
the size of the clusters increases. Formally, the primary dendrogram of occasion h-th
is, δh = {δ(I1,h), δ(I2,h), . . . , δ(IN−1,h)} and δ(Il,h) is the value of fusion determining
Il,h, such that if δ(Il,h) ≤ δ(Ii,h), implies: Il,h ⊆ Ii,h if Il,h ∩ Ii,h ≠ ∅; otherwise l ≤ i
if Il,h ∩ Ii,h = ∅.
The set of H dendrograms is denoted by ∆ = [δ1, δ2, . . . , δH ].
Johnson (1967) has proved a bijection between the set of ultrametric matrices and
the set of dendrograms (hierarchies), thus, to each dendrogram δh there corresponds
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an ultrametric matrix Uh, and vice versa. Hence, the set ∆ = [δ1, δ2, . . . , δH ] corre-
sponds to the set U = [U1, U2, ..., UH ]. In this dissertation, the primary hierarchies
are supposed observed with associated ultrametric matrices U1, U2, . . . , UH . When
hierarchies are not directly observed, the data array X = [xijh : i ∈ I, j ∈ J , h ∈ H]
is supposed given. Then, a fixed hierarchical clustering algorithm (Gordon, 1999) is
applied to each dissimilarity matrix Dh related to the data matrix Xh, h = 1, ..., H,
by choosing a dissimilarity measure between multivariate objects.
Each hierarchical classification applied on the data matrix Xh has associated: (i)
N-tree, (ii) Hierarchy (Dendrogram), (iii) Ultrametric matrix.

2.5 Cluster Analysis
Cluster Analysis or briefly clustering includes a large set of unsupervised method-

ologies and their associated algorithms that allow the grouping of the units into
clusters, with the property that intra-cluster units are perceived as similar, and
inter-cluster units are seen as different. In particular, when clustering regards a
partitioning problem (Gordon, 1999), units are grouped into, say, K clusters, and
one centroid for each cluster is identified to summarize the existing characteristics of
units within the cluster. It is important to remember that two clustering approaches
are possible in the partitioning problem: those hard and fuzzy. According to the
former, units are assigned exclusively to a single cluster, and a hard partition is
defined in this way. In the latter, the assignment is more flexible and allows each
unit to belong to all clusters, but with some degree of membership. This approach
allows the introduction of a form of "uncertainty" into the specification of clusters,
which helps the researcher to deal with situations where some units clearly have
characteristics of several clusters and therefore cannot be supposed to belong to a
single cluster only. Specifically, a membership degree matrix [µik]i=1,...,N,k=1,...,K , is
defined with size N × K, having the property of being row-stochastic, i.e. being
such that

∑K
k=1 µik = 1, ∀ i = 1, . . . , N . In detail, when a hard approach is used,

then µik ∈ {0, 1}, ∀ i = 1, . . . , N, k = 1, . . . , K; instead, when a fuzzy approach is
used, then µik ∈ [0, 1], ∀ i = 1, . . . , N, k = 1, . . . , K.

2.6 Fuzzy Clustering
In some practical situations objects do not have a clear assignment to a cluster,

but, unfortunately, if a hard/standard approach is used, each object is only assigned
to one cluster. To overcome this drawback, the fuzzy approach to cluster analysis
was introduced. It allows each object to be assigned to all clusters with certain
membership degrees varying in the unit interval: µhk ∈ [0, 1] and

∑K
k=1 µhk =

1, ∀ h ∈ H. The most known and used fuzzy clustering method is the fuzzy c-
means by Bezdek (Bezdek, 1981), the fuzzy generalization of the k-means algorithm
(MacQueen, 1967b). It is a fuzzy algorithm that starts from a units-by-variables data
matrix and consists of clustering N units into K clusters, allowing each unit to belong
to more than one cluster. It returns as output the clusters’ prototypes (centroids)
and a membership matrix [µhk], i.e. an (N × K) matrix with the generic element
µhk satisfying a) µhk ∈ [0, 1] ∀ h ∈ H, ∀ k ∈ K and b)

∑K
k=1 µhk = 1, ∀ h ∈ H and

indicating the extent to which each unit belongs to the corresponding cluster.
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Chapter 3

Consensus and fuzzy partition of
dendrograms from a three-way
dissimilarity array

3.1 Introduction

This chapter addresses the problem of obtaining partitions of the set of hierar-
chical partitions of objects. The hierarchical partitions to be partitioned will be
referred to as primary hierarchies (dendrograms). A fuzzy partition of a set of
primary hierarchies will be, instead, referred to as a secondary fuzzy partition. The
methodology described in this chapter aims to obtain a secondary fuzzy partition
of the set of primary hierarchies into classes for which primary hierarchies with a
relevant membership degree for the same class are perceived as similar to one another.
Each class will have an associated consensus hierarchy, which serves as a summary
of the set of primary hierarchies belonging to the class. The new methodology is
named PARtionon of DENdrograms of a 3-Way Data array, or PARoDENo3WD.
A flowchart describing the methodology and clarifying the process is displayed in
Figure 3.1. The secondary partition is fuzzy because it can describe ’uncertainties’
in the observed set of primary hierarchies and provides further information: for
each class the membership degrees can show which primary hierarchies are more
strongly associated with it and which hierarchies have only a weak association.
Therefore, each hierarchy contributes to the definition of all classes according to
different membership degrees.

For the technical formulation of the methodology proposed in this chapter, the
reader may refer to Chapter 2.
An outline of the material in this chapter is as follows. Section 3.2 reviews the
literature. In Section 3.3 the proposed methodology is fully described and detailed.
Section 3.4 includes an extended simulation study for the evaluation of the perfor-
mance of the new methodology. Section 3.5 provides the application of the proposed
methodology to a real dataset. Finally, in Section 3.6 general remarks and specific
considerations are given.

3.2 Related literature

The proposed methodology for clustering three-way data has some features that
are similar and different with respect to past approaches. However, all methodologies
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from a three-way dissimilarity array

Figure 3.1. Flowchart describing the proposed methodology PARoDENo3WD

proposed in the literature either use a hard approach only, or do not aim to identify
different primary consensuses. More precisely, they define different consensus data
matrices, i.e., views of the data, and a hard secondary partition for occasions. In a
maximum likelihood framework, Cappozzo, Alessandro, Michael, et al. (2021) applied
a clustering technique to perform a hard partition of the occasions. Similarly, Cariou,
Alexandre-Gouabau, and Wilderjans (2021) proposed a constrained algorithm to
perform a hard partition of the occasions according to units and variables. A
different problem is addressed by Schoonees, Groenen, and van de Velden (2021)
who proposed a model to simultaneously partition the three modes in a hard way.
Bocci and Vicari (2019) recommended another clustering algorithm in a three-way
two-mode data framework. In the neuroscience framework, Durieux and Wilderjans
(2019) transformed the three-way data into a two-way symmetric similarity matrix,
then applied classical hard clustering algorithms, such as hierarchical clustering and
Partitioning Around Medoids, to the corresponding dissimilarity matrix.

Among the most recent research works focused on three-way data structure,
Yağ and Altan (2022) proposed to detect plant diseases using an optimization
algorithm with low computational complexity to analyze a set of images (i.e. a set
of 256 × 256 pixels matrices). In addition, it is worth mentioning Abu Arqub, Singh,
and Alhodaly (2021) and Abu Arqub et al. (2021), who deeply investigated fuzziness
in the mathematical field.

It must be noted that in many recent papers, the term ’multi-view data’ refers to
the notion of ’multi-way data arrays’ and frequently ’three-way data’. The multi-view
clustering is associated with the multi-view data: it aims to cluster the dataset
with multiple views. A recent review of these methods is given in Fu et al. (2020).
Multi-view clustering can be categorized into three typologies based on the approach
used in the clustering process (Yin et al., 2015). Algorithms of the first typology
find a unique consensus subspace (low-rank data matrix) of the different views, then
cluster the data using a cluster analysis algorithm directly on the low-rank data
matrix or on the (dis)similarity matrix associated with it. It is worth mentioning Yu
et al. (2020) who focused on clustering multi-view data of high dimension with an
active three-way clustering method; in the same context, Chao et al. (2019) proposed
to use a multi-view co-cluster analysis that aims to partition objects into consistent
clusters across the views. Their paper proposed a method to cope with missingness



3.3 PARtition of DENdrograms of 3-Way Data array (PARoDENo3WD) 11

problem, which is less sensitive to imputation uncertainty. In addition, Yang et
al. (2022) proposed a multi-view robust clustering method to be used when the
information is not complete, namely when either the assumption of view consistency
or the assumption of instance completeness does not hold. In the framework of
incomplete multiview clustering, Wen et al. (2022) provided a detailed review of the
existing contributions on this topic.

The second type of multi-view clustering integrates the multi-view data into
the clustering process. A well-known example is the co-EM algorithm (Bickel and
Scheffer, 2004). The third type of multi-view clustering is called multi-view ensemble
clustering, where the final clustering result is derived from the integration of the
different clustering views of the data (Hussain, Mushtaq, and Halim, 2014). Another
proposal on this topic is the contribution of El Hajjar, Dornaika, and Abdallah (2022),
who proposed multi-view clustering, by integrating two embeddings to overcome the
limitation of the standard multi-view spectral clustering.

It is worth observing that all proposed multi-view clustering methods have
attracted more and more attention because they are known to improve the single-
view clustering performance. The main difference between the proposed methodology
PARoDENo3WD and the multi-view clustering is that the former allows improvement
of the single-view clustering, but also partitions the different clustering views into
classes with the property that clustering views with a relevant membership degree
for the same class are perceived as similar to one another.

3.3 PARtition of DENdrograms of 3-Way Data array
(PARoDENo3WD)

A data set pertaining to the same sets of units and variables, observed on
different occasions (i.e., a set of multivariate data matrices) may be arranged into a
three-way array X = [xijh], i ∈ I, j ∈ J , h ∈ H with three modes: units (rows),
variables (columns), and occasions (times, layers). These data can be considered as
the result of the observation, on N units, of J variables repeated for H occasions.
The term ’way’ refers to a dimension of the data, while the word ’mode’ is reserved
for the methods or models used to analyze the data (Kroonenberg, 2008). For
an introductory discussion on multi-way data analysis, the reader may refer to
Coppi and Bolasco (1989). In econometrics, when the dimension occasion is the
time, the three-way arrays are referred to as balanced panel data (Diggle et al.,
2002). In computer science, these data are referred to as data cubes and much
research has been concentrated on the definition of a series of data exchange formats,
support storage, and transmission, such as MDX, to allow data cube interoperability
(Friedrich et al., 2021; Madaan and Gosain, 2022).

In this chapter, a three-way array of dissimilarity data is assumed to be observed
D = [Dilh : i, l ∈ I, h ∈ H]. Each dissimilarity matrix Dh included in D can
be also obtained by computing a dissimilarity measure between each pair of units
in Xh. The three-way ultrametric matrix U = [uilh : i, l ∈ I h ∈ H], could be
assumed to have been observed as the result of a data-gathering process as discussed
in the introduction. The ultrametric matrices U1, . . . , UH could be also computed
by applying a hierarchical clustering algorithm to the H dissimilarity matrices
D1, . . . , DH . Indeed, uilh measures the difference between i-th and l-th units in
the h-th primary classification, indicating the value of fusion of the smallest subset
containing both units.

We are now in a position to state the new proposed methodology.
Given the three-way ultrametric matrix U formed by ultrametric matrices
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[U1, ..., UH ], the problem of finding a fuzzy secondary partition into K clusters of
the H primary dendrograms and of identifying within each class of the secondary
partition a consensus ultrametric matrix is mathematically formulated, according to
the following quadratic constraint optimization problem with respect to continuous
variables U∗

k, µhk and m:



minimize
K∑

k=1

H∑
h=1

∥Uh − U∗
k∥2µm

hk =

minimize
N∑

i=1

N∑
l=1

K∑
k=1

H∑
h=1

(uilh − u∗
ilk)2µm

hk

s.t.
K∑

k=1
µhk = 1 for h ∈ H

µhk ∈ [0, 1] for h ∈ H, k ∈ K
u∗

ilk ≤ max{u∗
ipk, u∗

lpk}
u∗

ipk ≤ max{u∗
ilk, u∗

lpk}
u∗

lpk ≤ max{u∗
ipk, u∗

ilk} for i = 1, . . . , N − 2,

l = i + 1, . . . , N − 1,

p = l + 1, . . . , N

(3.P1)

The number K of clusters of the secondary partition is a parameter of (3.P1) to
be fixed a priori. The simulation study in Section 3.4 fully discusses the performances
of different methods for choosing K. The first two constraints guarantee that U, and
therefore ∆, is fuzzily partitioned. The symbol µhk is the membership degree of h-th
primary hierarchy in the k-th secondary consensus hierarchy, for k ∈ K, for h ∈ H.
The membership degrees can assume values between 0 and 1, i.e. µhk ∈ [0, 1] and,
for a given primary hierarchy, the sum of the membership degrees for all consensus
hierarchies is equal to one. The fuzziness value, or fuzzifier, m is the second and last
parameter of (3.P1) to be fixed a priori. It controls how fuzzy the partition of the
primary hierarchies tends to be. For m −→ ∞ the clustering tends to be maximally
fuzzified, leading to the same constant membership degrees 1

K ; when m −→ 1 the
membership degree tends to be either 0 or 1 and the fuzzy approach becomes the
classical hard one. Many investigators have carried out analyses using m = 2. We
have adopted the choice of setting m = 2 as widely used in the literature. Clearly, it
may happen that the choices of the two parameters K and m are not independent,
and this aspect will be recalled in further developments. The last three constraints
guarantee that each matrix U∗

k is ultrametric. The matrix U∗
k is the k-th Least

Squares Secondary Consensus Dendrogram (k-LSSCD).

Remark 1. The ultrametricity of U∗
k requires that O(N3) triplets in U∗

k satisfy the
ultrametric inequality u∗

il ≤ max{u∗
ij , u∗

lj}, ∀ i, j, l ∈ I. An equivalent condition is
that every triple of objects i, j, l ∈ I possesses the property that the two largest values
in the set {u∗

il, u∗
ij , u∗

lj} are equal. ■

From Remark 1 it follows that the O(N3) constraints guaranteeing the ultra-
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metricity of the consensus matrices can be also expressed synthetically as follows:
N−2∑
i=1

N−1∑
l=i+1

u∗
ilk≤min{u∗

ipk,u∗
lpk}

N∑
p=l+1

(u∗
ipk − u∗

lpk)2 = 0 for k ∈ K (3.1)

In other words, equation 3.1 holds because an ultrametric matrix is a Euclidean
matrix where triplets of values represent the edges of equilateral or acute isosceles
triangles of a Euclidean space. Thus, in each triplet, the largest two values must
be equal and their squared difference equal to zero. Therefore, when U∗

k is not
ultrametric constraint (3.1) forces it to be so.
Remark 2. From Remark 1, problem (3.P1) can be stated synthetically as follows,
by including Equation (3.1):

minimize
K∑

k=1

H∑
h=1

∥Uh − U∗
k∥2µm

hk =

minimize
N∑

i=1

N∑
l=1

K∑
k=1

H∑
h=1

(uilh − u∗
ilk)2µm

hk

s.t.
K∑

k=1
µhk = 1 for h ∈ H

µhk ∈ [0, 1] for h ∈ H, k ∈ K
N−2∑
i=1

N−1∑
l=i+1

u∗
ilk≤min{u∗

ipk,u∗
lpk}

N∑
p=l+1

(u∗
ipk − u∗

lpk)2 = 0 for k ∈ K

(3.P2)

■

In problem (3.P1), the H ultrametric matrices can be replaced by H dissimi-
larity matrices, named primary dissimilarity matrices and Problem (3.P1) can be
formulated as follows:

minimize
H∑

h=1

K∑
k=1

∥Dh − U∗
k∥2µm

hk =

minimize
N∑

i=1

N∑
l=1

K∑
k=1

H∑
h=1

(dilh − u∗
ilk)2µm

hk

s.t.
K∑

k=1
µhk = 1 for h ∈ H

µhk ∈ [0, 1] for h ∈ H, k ∈ K
u∗

ilk ≤ max{u∗
ipk, u∗

lpk}
u∗

ipk ≤ max{u∗
ilk, u∗

lpk}
u∗

lpk ≤ max{u∗
ipk, u∗

ilk} for i = 1, . . . , N − 2,

l = i + 1, . . . , N − 1,

p = l + 1, . . . , N

(3.P3)
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In (3.P3) the first two constraints guarantee that the set of matrices D is soft parti-
tioned; the following three triplets of constraints guarantee that U∗

k is ultrametric.

3.3.1 Least-Squares Estimation
In order to solve (3.P3), it is worth noticing that it can be decomposed into two

minimization sub-problems:

(A) Given µ̂hk, the partial minimization of the objective function of (3.P3) with
respect to secondary consensus matrices U∗

k is:



minimize
H∑

h=1

K∑
k=1

∥Dh − U∗
k∥2µ̂m

hk =

minimize
N∑

i=1

N∑
l=1

K∑
k=1

H∑
h=1

(dilh − u∗
ilk)2µ̂m

hk

s.t.
u∗

ilk ≤ max{u∗
ipk, u∗

lpk}
u∗

ipk ≤ max{u∗
ilk, u∗

lpk}
u∗

lpk ≤ max{u∗
ipk, u∗

ilk} for i = 1, . . . , N − 2,

l = i + 1, . . . , N − 1,

p = l + 1, . . . , N

(3.P4)

The solution to this sub-problem (A) can be found by using the Sequential
Quadratic Programming (SQP) algorithm (Powell, 1983). SQP is an iterative
method able to solve constrained non-linear optimization problems. SQP methods
solve a sequence of optimization subproblems, each of which optimizes a quadratic
model of the objective subject to a linearization of the constraints (Wright and
Nocedal, 2006).

Remark 3. It is worth noting that SQP can solve Problem (3.P4) with O(N3)
constraints on the ultrametricity of matrix U∗

k or the problem with the same ob-
jective function of Problem (3.P4) by considering just the single constraint on the
ultrametricity of matrix U∗

k (Equation (3.1)). ■

Remark 4. The unconstrained least square solution of (3.P4) is given by Ūk, for k ∈
K, where

Ūk = 1∑H
h=1 µ̂m

hk

H∑
h=1

µ̂m
hkDh, (3.2)

that is, the arithmetic mean matrix of Dh, for h ∈ H, weighted by µ̂m
hk. ■

Proof. It is needed to show that the solution in Equation 3.2 is a minimum for the
objective function of Problem (3.P4), which is the following:

F =
H∑

h=1

K∑
k=1

∥Dh − U∗
k∥2µ̂m

hk (3.3)
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To prove it, we show that Ūk expressed in Equation 3.2 is a critical point, i.e. dF
dU∗

k
is

null if and only if Equation 3.2 holds. Then, it is needed to show that Ūk expressed

in Equation 3.2 is a minimum for F , that d2F
dU∗2

k

∣∣∣∣
U∗

k
=Ūk

is larger than 0.

The first derivative of F w.r.t. U∗
k is

dF
dU∗

k

=
H∑

h=1
µ̂m

hk

d

dU∗
k

tr[(Dh − U∗
k)′(Dh − U∗

k)] (3.4)

Focusing on tr[(Dh − U∗
k)′(Dh − U∗

k)], we have that:

tr[(Dh − U∗
k)′(Dh − U∗

k)] =
= tr[D′

hDh − D′
hU∗

k − U∗′
k Dh + U∗′

k U∗
k] =

= tr[D′
hDh] − 2tr[U∗′

k Dh] + tr[U∗′
k U∗

k]
(3.5)

where the last equality is given by the fact that tr(AB′) = tr(A′B). Moreover, by
recalling some properties of the derivatives of the traces (see, for example, Petersen,
Pedersen, et al. (2008)), we have:

d

dU∗
k

(
tr[D′

hDh] − 2tr[U∗′
k Dh] + tr[U∗′

k U∗
k]
)

=

= d

dU∗
k

tr[D′
hDh] − 2 d

dU∗
k

tr[U∗′
k Dh] + d

dU∗
k

tr[U∗′
k U∗

k] =

= 0 − 2Dh + 2U∗
k

(3.6)

where the last equality is given by the fact that d
dA tr(A′B) = B and d

dA tr(A′A) =
2A.
Then, Equation 3.4 becomes:

dF
dU∗

k

=
H∑

h=1
µ̂m

hk(−2Dh + 2U∗
k) = −2

H∑
h=1

µ̂m
hk(Dh − U∗

k) (3.7)

Now, we set Equation 3.4 equal to 0 and we obtain

dF
dU∗

k

= 0 ⇐⇒ −2
H∑

h=1
µ̂m

hk(Dh − U∗
k) = 0 ⇐⇒ (3.8)

−2
H∑

h=1
µ̂m

hkDh = −2
H∑

h=1
µ̂m

hkU∗
k ⇐⇒

H∑
h=1

µ̂m
hkDh =

H∑
h=1

µ̂m
hkU∗

k

Therefore, the critical point is:

Û∗
k = 1∑H

h=1 µ̂m
hk

H∑
h=1

µ̂m
hkDh (3.9)

The second derivative of F w.r.t. U∗
k is

d2F
dU∗2

k

= −2
H∑

h=1
µ̂m

hk(−1) = 2
H∑

h=1
µ̂m

hk (3.10)
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which is always larger than 0. Therefore, d2F
dU∗2

k

∣∣∣∣
U∗

k
=Û∗

k

> 0.

Thus,

Û∗
k = 1∑H

h=1 µ̂m
hk

H∑
h=1

µ̂m
hkDh = Ūk (3.11)

is a minimum of F .

Typically, matrices Ūk are not ultrametric. However, using Ūk as initial values
of (3.P4) the SQP algorithm generally stops at a stationary point in a few iterations,
because the constrained solution generally needs only a few steps. Problem (3.P4) is
equivalent to the following problem with respect to U∗

k:

minimize
K∑

k=1
∥Ūk − U∗

k∥2
H∑

h=1
µ̂m

hk =

minimize
N∑

i=1

N∑
l=1

K∑
k=1

(ūilk − u∗
ilk)2

H∑
h=1

µ̂m
hk

s.t.
u∗

ilk ≤ max{u∗
ipk, u∗

lpk}
u∗

ipk ≤ max{u∗
ilk, u∗

lpk}
u∗

lpk ≤ max{u∗
ipk, u∗

ilk} for i = 1, . . . , N − 2,

l = i + 1, . . . , N − 1,

p = l + 1, . . . , N,

(3.P5)

To prove the equality between problems (3.P4) and (3.P5), we prove that the
minimization of

H∑
h=1

K∑
k=1

∥Dh − U∗
k∥2µ̂m

hk (3.12)

w.r.t. U∗
k under the ultrametricity constraints is equivalent to the minimization of

K∑
k=1

∥Ūk − U∗
k∥2

H∑
h=1

µ̂m
hk (3.13)

w.r.t. U∗
k under the ultrametricity constraints. It has to be observed that the

following decomposition holds:
∥Dh − U∗

k∥2 = ∥Dh − Ūk∥2 + ∥Ūk − U∗
k∥2 (3.14)

Proof.
∥Dh − U∗

k∥2 = ∥Dh − Ūk + Ūk − U∗
k∥2 =

= tr[
(
(Dh − Ūk) + (Ūk − U∗

k)
)′((Dh − Ūk) + (Ūk − U∗

k)
)
] =

= tr[(Dh − Ūk)′(Dh − Ūk)] + tr[(Ūk − U∗
k)′(Ūk − U∗

k)]+
+tr[(Dh − Ūk)′(Ūk − U∗

k)] + tr[(Ūk − U∗
k)′(Dh − Ūk)] =

= tr[(Dh − Ūk)′(Dh − Ūk)] + tr[(Ūk − U∗
k)′(Ūk − U∗

k)]+
+2tr[(Dh − Ūk)′(Ūk − U∗

k)] =
= ∥Dh − Ūk∥2 + ∥Ūk − U∗

k∥2 + 2tr[(Dh − Ūk)′(Ūk − U∗
k)]

(3.15)
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The second-last equality is given by the fact that tr[A′B] = tr[B′A]. Note that
tr[(Dh − Ūk)′(Ūk − U∗

k)] is 0, as Ūk is the weighted arithmetic mean matrix of
matrices Dh.

Therefore, we have that

minimize
H∑

h=1

K∑
k=1

∥Dh − U∗
k∥2µ̂m

hk, (3.16)

is equivalent to

minimize
( H∑

h=1

K∑
k=1

∥Dh − Ūk∥2µ̂m
hk +

H∑
h=1

K∑
k=1

∥Ūk − U∗
k∥2µ̂m

hk

)
, (3.17)

which is equivalent to

minimize
H∑

h=1

K∑
k=1

∥Dh − Ūk∥2µ̂m
hk + minimize

H∑
h=1

K∑
k=1

∥Ūk − U∗
k∥2µ̂m

hk (3.18)

because, given µ̂hk, the two minimization problems are independent.
Moreover, we observe that

∑H
h=1

∑K
k=1 ∥Dh − Ūk∥2µ̂m

hk is already minimized being
Ūk the minimum for the unconstrained version of Problem (3.P4).
Therefore, the solution of Equation 3.16 is equivalent to the solution of the mini-
mization of

∑H
h=1

∑K
k=1 ∥Ūk − U∗

k∥2µ̂m
hk, which can be also written as

∑K
k=1 ∥Ūk −

U∗
k∥2∑H

h=1 µ̂m
hk. Given µ̂hk, then, the minimization of

∑K
k=1 ∥Ūk − U∗

k∥2∑H
h=1 µ̂m

hk
can be obtained by solving K separate independent minimization problems with re-
spect to U∗

k under the ultrametricity constraints. This holds because for each k ∈ K,∑H
h=1 µ̂m

hk is a constant in the objective function. Problem (3.P5) can be solved by
using SQP. An alternative way to optimize (3.P5) is to apply the average linkage
method (UPGMA) on matrices Ūk, for k ∈ K, because UPGMA is well-known to
find a LS solution to (3.P5). In fact, (3.P5) transforms the dissimilarity matrix Ūk

into the closest ultrametric matrix.

(B) Given Û∗
k, the partial minimization of the objective function of (3.P3) with

respect to the membership degree µhk is:

minimize
H∑

h=1

K∑
k=1

∥Dh − Û∗
k∥2µm

hk

s.t.
K∑

k=1
µhk = 1 for h ∈ H

µhk ∈ [0, 1] for h ∈ H, k ∈ K

(3.P6)

The minimization of sub-problem (B) is obtained by solving it using the first-order
conditions for stationarity. Indeed, the stationary point can be found by considering
the Lagrangian function

L =
H∑

h=1

K∑
k=1

∥∥∥Dh − Û∗
k

∥∥∥2
µm

hk −
H∑

h=1
λh

(
K∑

k=1
µhk − 1

)
, (3.19)
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where the solution with respect to µhk is

µhk = 1∑K
k′=1

(
dhk/dhk′

) 2
m−1

, for h ∈ H, k ∈ K. (3.20)

where dlp = tr[(Dl − Û∗
p)′(Dl − Û∗

p)].

Proof. To prove the solution stated in Equation 3.20, the Lagrangian function in
Equation 3.19 has to be derived with respect to µhk and with respect to λh. Then,
set the two derivatives equal to zero. In the following, for the sake of brevity and
simplicity, we let dhk denote

∥∥∥Dh − Û∗
k

∥∥∥ = tr[(Dh − Û∗
k)′(Dh − Û∗

k)].
The first derivative with respect to µhk is

d

dµhk
L = d2

hkmµm−1
hk − λh (3.21)

The first derivative with respect to λh is

d

dλh
L =

K∑
k=1

µhk − 1 (3.22)

By setting equal to zero Equation 3.21, we obtain:

d

dµhk
L = d2

hkmµm−1
hk − λh = 0 ⇐⇒ µhk =

(
λh

md2
hk

) 1
m−1

(3.23)

By setting equal to zero Equation 3.22, we obtain:

d

dλh
L =

K∑
k=1

µhk − 1 = 0 ⇐⇒
K∑

k=1
µhk = 1 (3.24)

By inserting Equation 3.24 into Equation 3.23:

K∑
k′=1

µhk′ =
K∑

k′=1

(
λh

md2
hk′

) 1
m−1

= 1 ⇐⇒
(

λh

m

) 1
m−1 K∑

k′=1

(
1

d2
hk′

) 1
m−1

= 1 (3.25)

(
λh

m

) 1
m−1

= 1∑K
k′=1

(
1

d2
hk′

) 1
m−1

(3.26)

By inserting Equation 3.26 into Equation 3.23,

µhk =
(

λh

md2
hk

) 1
m−1

⇐⇒ µhk = 1∑K
k′=1

(
d2

hk

d2
hk′

) 1
m−1

⇐⇒

⇐⇒ µhk = 1∑K
k′=1

(
dhk
dhk′

) 2
m−1

(3.27)

Equation 3.27 proves the solution stated in Equation 3.20.
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After the solution of sub-problems (A) and (B), the objective function generally
reduces w.r.t. the previous iteration, or at least does not increase. Thus, the two
steps (A) and (B) are reiterated. Since the objective function is bounded below
by zero, after some iterations the algorithm stops at a stationary point that is not
guaranteed to be the global minimum of the problem. For this reason, the algorithm
is recommended to be run from several initial starting points to improve the chance
to identify the global optimal solution. The algorithm can now be presented.

ALGORITHM for (3.P3):

0. Initialization
Set t = 0; ϵ > 0 convergence constant; random initialization from a uniform
distribution of the membership degree matrix [µ̂hk], h ∈ H, k ∈ K

1. Do t = t + 1

2. Given µ̂hk, solve sub-problem (A)
Compute Ūk, for k ∈ K as follows

Ūk = 1∑H
h=1 µ̂m

hk

H∑
h=1

µ̂m
hkDh (3.28)

Solve (3.P5) by SQP algorithm.

3. Given Ûk, solve sub-problem (B)
The solution of (3.P6) is given by:

µhk = 1∑K
j=1

(
dhk/dhj

) 2
m−1

, for h ∈ H, k ∈ K. (3.29)

where dlp = tr[(Dl − Û(t)
p )′(Dl − Û(t)

p )].

4. Stopping rule
Repeat steps 1-3 until the difference between the objective functions of (3.P3)
at iteration t and t − 1 is greater than ϵ.

Note that the algorithm generally stops after a few iterations. The optimal solution
cannot be guaranteed; therefore, the researcher is advised to repeat the analysis
from several random starts and retain the best solution.

3.4 Simulation study
To assess the performance of the proposed methodology, a large simulation study

has been developed. Dissimilarity matrices have been simulated according to the
following model:

Dh = Uk + Eh Dh ∈ Gk for k ∈ K, h ∈ H. (3.30)

where Eh, h ∈ H is a matrix of errors generated from a normal distribution and
then symmetrized. The parametric uncertainty on the errors is introduced to
assess the performance of the new methodology under different scenarios. However,



20
3. Consensus and fuzzy partition of dendrograms

from a three-way dissimilarity array

note that the proposed technique uses the LS estimation method and, therefore,
it does not require knowledge of the parametric distribution of the data. Thus,
each dissimilarity matrix Dh belonging to class Gk of the secondary partition is
assumed to be reconstructed by the ultrametric matrix Uk that identifies a hierarchy
(dendrogram).

Matlab software (MATLAB, 2021) was used to perform the analysis and to plot
the results.

The simulation study is organized into four scenarios with two levels of errors.
For each scenario and error level, 200 three-way matrices have been generated for a
total of 1800 samples (for Scenario 0 only one error was considered and for Scenario
1 a total of 400 three-way matrices are generated for each level of error). Scenario 0
studies the number of random starts necessary to reduce the final local minimum
occurrences. Scenario 1 assesses whether the proposed methodology recognizes the
existing underlying hard partition, if each dissimilarity matrix is generated by a
single consensus Uk. Scenario 2 aims to assess whether the proposed methodology
distinguishes between dissimilarity matrices characterized by a single consensus
and those generated by more than one consensus, thus producing a fuzzy partition.
Scenario 3 discusses the choice of the optimal number of clusters. Additional details
on the settings of the four scenarios are reported in Sections 3.4.1, 3.4.2, 3.4.3, and
3.4.4.

The K ultrametric matrices Uk necessary to generate dissimilarity matrices Dh

have been defined according to the Absenteeism at work Data Set, downloaded from
the UCI Machine Learning repository, to use a realistic situation for the simulation
study. The dendrograms associated with the K ultrametric consensus matrices
are reported in Figure 3.2: each dendrogram refers to a season and describes the
hierarchical classification of 19 employees in a workspace according to some personal
characteristics and variables related to their absenteeism behavior. Then, adding the
error matrices to the consensus Uk, the dissimilarity matrices Dh will be generated
in such a way that still contain Uk, but not exactly (unless the error is so high to
overwhelm the ultrametric structure) and represent new members of the cluster Gk.

3.4.1 Scenario 0: assessment of random starts

The new methodology does not guarantee the identification of the global optimal
solution. This is expected since the partitioning problem is known to be NP-hard
(Křivánek and Morávek, 1986).

Thus, before presenting the results, it was necessary to focus on a preliminary Sce-
nario, i.e. Scenario 0, where the choice of the number of random starts (RndStarts)
is discussed. Indeed, in this Scenario, the new algorithm was run 200 times with
a high level of error under the conditions of hard secondary partition of primary
dissimilarity matrices (for details, see Scenario 1 in Section 3.4.2), by letting the
number of RndStarts assume the values [1, 2, 3, 5, 10, 20, 30, 40, 50].

3.4.2 Scenario 1: hard secondary partition of primary dissimilarity
matrices

In the first scenario of the simulation study, for each of the 4 consensus ultrametric
matrices, 3 dissimilarity matrices have been generated, to obtain 12 dissimilarity
matrices. More formally,

Dh = Uk + Eh Dh ∈ Gk for k = 1, . . . , 4, h = 1, . . . , 12. (3.31)

https://archive.ics.uci.edu/ml/datasets.php
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Figure 3.2. Consensus dendrograms of Absenteeism Data

Thus, from this generation process, the true hard secondary partition of the 12
matrices is known. Indeed, each dissimilarity matrix is generated by a unique
consensus and, therefore, a hard secondary partition of the 12 matrices is expected,
especially when the added error Eh is ’small’. On the other hand, an increasing
’fuzzification’ of the partition is foreseen with an increasing error Eh which will
reduce the similarity of each dissimilarity matrix to the corresponding consensus.

Therefore, in this first scenario of the simulation study, 200 samples of three-way
dissimilarity matrices are generated with size (19 × 19 × 12), for two error levels,
hence, for a total of 400 samples.

Note that the low error allows us to obtain 100% of ARI equal to 1, while the
high error must allow the model to still hold in a majority of cases. Indeed, ARI is
equal to 1 for 62% of cases, but ARI values show quite high variability, reaching a
minimum value of 0.45.

3.4.3 Scenario 2: fuzzy secondary partition of primary dissimilarity
matrices

The second scenario of the simulation study considers a mixed situation where
some dissimilarity matrices are generated by a unique consensus matrix, as before,
while some others are generated by the average of two consensuses.

More precisely, considering the ultrametric consensus matrices U1 and U2, for
each of the 2 consensus ultrametric matrices, 3 dissimilarity matrices were generated
to obtain 6 dissimilarity matrices, according to the model, as follows:

Dh = Uk + Eh Dh ∈ Gk for k = 1, 2, h = 1, . . . , 6. (3.32)
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Moreover, 3 additional dissimilarity matrices were generated by

Dl = U1 + U2
2 + El, l = 7, 8, 9, (3.33)

where U1+U2
2 is the average consensus of the two original ultrametric matrices, U1

and U2. Therefore, in this case, the new methodology is applied to a total of H = 9
dissimilarity matrices.

Thus, for the first six generated matrices a (nearly) hard membership to the
unique generating consensus is expected, while for the other three generated matrices
a fuzzy membership degree to the consensuses included in the average is supposed.
To assess whether the methodology recognizes the fuzzy nature of the last three
dissimilarity matrices, a ’Detection of fuzziness’ index is included and fully detailed
in Section 3.4.5.

Therefore, in this second scenario of the simulation study, 200 samples of three-
way dissimilarity matrices are generated with size (19 × 19 × 9), with two error
levels, hence, for a total of additional 400 samples. Also in this case two levels of
errors are used: low error leads to a 100% of ARI equal to 1, while high error gives
a 54% of ARI equal to 1. Moreover, the ARI distribution associated with the high
error is highly variable, and, in the remaining 56% of cases, ARI takes values mainly
between 0.6 and 0.9, but also reaches a minimum at level 0, as is observed in the
corresponding boxplot.

Note that, in both Scenarios 1 and 2, the correct number of clusters is known a
priori from how the data are generated from the model. Indeed, in Scenario 1, the
data were produced from K = 4 original ultrametric matrices (dendrograms), while
in Scenario 2, K = 2 ultrametric matrices were used. However, the choice of the
number of clusters is an important issue that deserves careful consideration, because
K is generally unknown a priori. Thus, Scenario 3 has been additionally considered
in the simulation study to assess the performance of the new methodology using
different well-known methods for choosing the number of clusters of the partition,
as described in Section 3.4.4.

3.4.4 Scenario 3: assessment of K
This additional scenario was realized to assess the optimal number of clusters:

indeed, even if the number of clusters is known a priori in the simulation study, in
the applications generally K is not known. Thus, the choice of K was investigated
using several indices. The first measure is the fuzzy version of the Silhouette index
(Campello and Hruschka, 2006a); the pseudo F index (Caliński and Harabasz, 1974)
and the Xie-Beni index (Xie and Beni, 1991) were then considered. The dissimilarity
matrices were generated under both Scenario 1 and 2. In each Scenario, and for
each level of error, the number of iterations was set equal to 200. At each iteration,
when the dissimilarity matrices were generated under the conditions of Scenario 1,
K is let to vary in the interval [2, 6], while, under the conditions of Scenario 2, it is
let to vary in the interval [2, 4]. Recall that the expected K was equal to 4 and 2,
according to the generation process of Scenario 1 and Scenario 2, respectively. For
each sample, the new algorithm was applied and the Fuzzy Silhouette, the pseudo F,
and the Xie-Beni indices were computed. This was repeated for the different values
of K. So, in the end, for each index, 5 and 3 (under Scenarios 1 and 2, respectively)
final distributions of 200 values are obtained, each distribution corresponding to one
specific K and each value corresponding to one specific sample. The procedure was
repeated for both low and high levels of error.
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3.4.5 Performance evaluation
The results of the simulation study on the performances of the new method have

been evaluated using the following measures:

• ARI: Adjusted Rand Index (Hubert and Arabie, 1985). The ARI index
measures the similarity between the hard partitions defined by the generated
matrices when MAP (Dh is assigned to the cluster with maximal membership
degree) is used for both the true partition and the partition provided by the
new algorithm. It usually ranges in the interval [0, 1]: it is equal to 0 when
the reference partition is compared to a partition that would be obtained just
by chance and it is equal to 1 when the two partitions perfectly match. It
can also yield negative values, meaning that the agreement between the two
partitions is less than what is expected by chance (Wagner and Wagner, 2007).

• FUZZY ARI: Fuzzy Adjusted Rand Index (Campello, 2007). This is a fuzzy
version of the ARI and compares the true (hard) partition and the fuzzy one
obtained. The closer it is to 1, the more similar the two partitions.

• FUZZY RI: Fuzzy Rand Index (Campello, 2007). This is a fuzzy version of
the RI index (Rand, 1971), ranging in the interval [0, 1] and measuring the
similarity between the true (hard) and the obtained fuzzy partitions: the closer
it is to 1, the more similar the two partitions.

• RMSE: Root Mean Square Error. The RMSE is computed to quantify the
difference between the original (generated) ultrametric matrices and those
obtained by the algorithm. The RMSE is defined as the square root of the
Mean Square Error between the K consensus ultrametrics provided by the new
algorithm, and the K ’true’ original ones. The lower the RMSE, the better
the results.

• Detection of fuzziness index for Scenario 2. It is defined as the percentage of
times based on 200 simulations the algorithm finds as membership degrees
of the last three dissimilarity matrices two values similar to one another, i.e.
close to 0.5, 0.5. The index provides a measure to assess how many times the
algorithm is able to recognize the fuzzy nature of the last three dissimilarity
matrices; when it is equal to 100%, the algorithm always softly assigns the
dissimilarity matrices to clusters.

• Percentage of local minima: at each iteration, the value of the objective
function for the generated true partition was computed and compared with the
one that the algorithm returns as the optimal value. If the resulting objective
function is higher than the true one, a local minimum has been found and
underfitting occurred.

Moreover, to assess if the assignment is substantially hard or fuzzy as expected
in Scenarios 1 and 2, the mean membership matrix is considered, i.e. the matrix
obtained by averaging the obtained membership matrices over all the simulation’s
iterations.

3.4.6 Results of the simulation study under Scenario 0
The results are reported in Table 3.1. The percentage of local minima always

decreases with the increase of the RndStarts until reaching 0, when the number of
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random starts is set equal to 40. Thus, in each simulation study of Scenarios 1 and
2, the selected number of random starts for the whole simulation study was set to
RndStarts = 40.

Table 3.1. Local minima occurrences (%) under Scenario 1 with high error.

RndStarts 1 2 3 5 10 20 30 40 50
% 37.5 28.5 26.5 17.5 9.5 5.0 2.5 0.0 0.0

From Table 4 it can be observed that with 1 random start of the algorithm and
high error, the new methodology performs well, identifying the optimal solution in
a large majority of cases (about 63%). It is worth noticing that with 20 random
starts, the algorithm identifies the global optimal solution in 95% of cases, and with
40 random starts the algorithm was never trapped in local minima. Thus, in the
following scenarios of the simulation study, the number of random starts was fixed
to 40.

3.4.7 Results of the simulation study under Scenario 1
Figures 3.3 (a) and (b) show the results of the performances of the new methodol-

ogy, for Scenario 1 (H=12, K=4) when low and high error levels are used; Table 3.2
lists the corresponding summary statistics of the performance indicators described
in Section 3.4.5. Particularly, both the mean and the median of the distributions
of the indices are reported. Moreover, it is important to clarify how mean RMSE,
median RMSE, and max RMSE are computed. At each iteration, the mean, the
median, and the maximum values of the 4 RMSE values are computed, where the 4
RMSE values compare the ultrametric matrices found by the algorithm and the true
original ultrametric matrices. This is done in each iteration, to obtain the whole
distribution.

(a) Low level of error (b) High level of error

Figure 3.3. Performance of the new methodology. Scenario 1 with low and high errors.

Table 3.2. Summary statistics. Scenario 1 with low and high errors.

Level of error local minimum
(%)

ARI
(median, mean)

Fuzzy ARI
(median, mean)

Fuzzy RI
(median, mean)

mean RMSE
(median, mean)

median RMSE
(median, mean)

max RMSE
(median, mean)

Low 0.000 1.000, 1.000 0.706, 0.704 0.898, 0.897 0.006, 0.006 0.006, 0.006 0.007, 0.008
High 0.000 1.000, 0.870 0.712, 0.673 0.323, 0.265 0.021, 0.029 0.021, 0.027 0.033, 0.052
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When using low error, optimal performances of the new methodology are observed,
with very high (close to 1) values for ARI, fuzzy ARI, and fuzzy RI, and low (close to
0) RMSE. Therefore, in all generated samples, on the one hand, the new methodology
perfectly detects the true partition, assigning dissimilarity matrices to the correct
clusters and, on the other, identifies as the consensus ultrametric matrix for each
cluster of dissimilarity matrices the one that is very close to the true ultrametric
matrix which has generated the data.

Note that the new methodology recognizes the generated hard partition and
gives a membership value close to 1 to each dissimilarity matrix of the cluster. The
mean membership matrix obtained averaging all the obtained membership matrices
is reported in Table 3.3 (a) (results are approximated to 3 digits). Results confirm
that the membership is always larger than 0.7 as expected.

When using high error, from Figure 3.3 (b) it can be observed that, even if in
a large majority of times the new methodology recognizes the true partition, in
more than the remaining 30% of cases, the ARI is quite different from 1, reaching
a minimum at level of 0.45. Moreover, the fuzzy version of the ARI is quite low
reaching a minimum at level of 0.2. This is due to the resulting membership matrix,
which is no longer nearly hard, but closer to a fuzzier one. Indeed, looking at the
memberships mean matrix in Table 3.3 (b), it is observed that the resulting partition
has a fuzzier form: for example, the membership degrees of Cluster 2 and Cluster 4
for the second dissimilarity matrix are very close to each other. The fuzzy structure
of Table 3.3 (b) represents what was expected in the setting of Scenario 1 (Section
3.4.2). Indeed, fuzzification of the resulting partition occurs because the error in the
generating model is increased. This makes the algorithm misidentify the generating
model and makes it almost fail to reconstruct the original consensus ultrametric
matrices (see max RMSE in Table 3.2). However, note that to evaluate the partition
with the ARI index, the MAP is applied to the resulting fuzzy membership matrices,
and therefore this explains why most of the ARI turns out to be 1.

3.4.8 Results of the simulation study under Scenario 2
The performance of the methodology in recognizing, on the one hand, the hard

nature of the first 6 generated dissimilarity matrices, and, on the other hand, the
fuzzy nature of the last 3 generated dissimilarity matrices is now evaluated.

Here, in particular, it is worth focusing on the ability of the methodology to
recognize the membership degrees that the new methodology assigns to the ’hybrid’
generated dissimilarity matrices. Indeed, the new fuzzy methodology must also take
into account the ’grey-scale’ nature of some dissimilarity matrices: a matrix can
indeed belong to one cluster, to one another, and even to both of them, with a
membership degree that indicates the strength of that membership. Results for low
and high errors are provided in Figure 3.4 (a) and (b), respectively and Table 3.4
lists the summary statistics. Particularly, both the mean and the median of the
distributions of the indices are reported. Moreover, it is important to clarify what
mean RMSE, median RMSE, and max RMSE mean: at each iteration, the mean,
the median, and the maximum values of the 2 RMSE values are computed, where
the 2 RMSE values compare the resulting and the true original ultrametric matrices.
This is done in each iteration, to obtain the whole distribution.
By analyzing the low error results, in Figure 3.4 (a) and Table 3.4, the high ARI, fuzzy
ARI, and fuzzy RI show that the methodology is able to recognize the underlying
true partition.

Moreover, low values of RMSE mean that the obtained consensus ultrametric
matrices are very close to the true ones. Finally, from the last column of Table 3.4,
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Table 3.3. Mean membership matrices. Scenario 1 with low and high errors.

(a) Low level of error
Cluster 1 Cluster 2 Cluster 3 Cluster 4

0.903 0.037 0.024 0.036
0.030 0.717 0.068 0.185
0.022 0.077 0.839 0.062
0.029 0.187 0.054 0.730
0.903 0.037 0.024 0.036
0.030 0.717 0.068 0.185
0.022 0.078 0.837 0.063
0.029 0.188 0.054 0.729
0.901 0.037 0.025 0.037
0.030 0.717 0.068 0.185
0.022 0.077 0.839 0.062
0.029 0.188 0.055 0.728

(b) High level of error
Cluster 1 Cluster 2 Cluster 3 Cluster 4

0.752 0.088 0.072 0.088
0.056 0.369 0.212 0.363
0.063 0.223 0.494 0.220
0.062 0.364 0.200 0.374
0.752 0.088 0.072 0.088
0.056 0.368 0.213 0.363
0.063 0.224 0.492 0.221
0.062 0.364 0.200 0.374
0.750 0.089 0.072 0.089
0.056 0.369 0.213 0.362
0.063 0.223 0.493 0.221
0.062 0.364 0.200 0.374

it is seen that the methodology always recognizes the fuzzy assignment of the last
three dissimilarity matrices to the two clusters. In particular, Table 3.5 (a) (results
are approximated to 3 digits) shows the membership degree matrix obtained by
averaging over the whole simulation experiment.
From Table 3.5 (a), the behavior of the methodology is assessed. Indeed, for the first
6 dissimilarity matrices which are generated from one original ultrametric matrix,
the corresponding membership values are close to 1, meaning that they are fully
assigned to their cluster, in a hard sense. For the last 3 dissimilarity matrices,
instead, the membership degrees fully respect their fuzzy nature: indeed, values
corresponding to the first two clusters are very close to one another, meaning that
the dissimilarity matrix belongs to both clusters, or in other words, is almost exactly
in the middle of the two. This result confirms what was expected and highlights the
flexibility of the new methodology when used in a fuzzy context.

Turning to the high level of error, good results are again observed by comparing
the true and the obtained partitions, as the ARI, fuzzy ARI, fuzzy RI in Figure
3.4 (b) and Table 3.4 and the membership matrix in Table 3.5 (b) show. Moreover,
Table 3.5 (b) shows that the methodology is able to recognize which dissimilarity
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(a) Low level of error (b) High level of error

Figure 3.4. Performance of the new methodology. Scenario 2 with low and high errors.

Table 3.4. Summary statistics. Scenario 2 with low and high errors.

Level of error local minimum
(%)

ARI
(median, mean)

Fuzzy ARI
(median, mean)

Fuzzy RI
(median, mean)

mean RMSE
(median, mean)

median RMSE
(median, mean)

max RMSE
(median, mean)

Detection of fuzziness
(%)

Low 0.000 1.000, 0.995 0.462, 0.461 0.731, 0.731 0.012, 0.012 0.012, 0.012 0.014, 0.014 100
High 0.000 1.000, 0.698 0.398, 0.394 0.699, 0.697 0.014, 0.014 0.014, 0.014 0.016, 0.016 100

Table 3.5. Mean membership matrices. Scenario 2 with low and high errors.

(a) Low level of error
Cluster 1 Cluster 2

0.995 0.005
0.011 0.989
0.995 0.005
0.011 0.989
0.995 0.005
0.011 0.989
0.454 0.546
0.454 0.546
0.454 0.546

(b) High level of error
Cluster 1 Cluster 2

0.940 0.060
0.061 0.939
0.940 0.060
0.062 0.938
0.940 0.060
0.061 0.939
0.462 0.538
0.460 0.540
0.460 0.540

matrices are fully (in a hard way) assigned to clusters and which are fuzzily assigned.
Also in this case, it is able to reconstruct the true ultrametric matrices, as the low
values of the RMSE show.

3.4.9 Results of the simulation study under Scenario 3
The optimal number of clusters has been evaluated using the Fuzzy Silhouette

(Fuzzy Sil.) index (Campello and Hruschka, 2006a), the pseudo F index (Caliński
and Harabasz, 1974), and the Xie-Beni (XB) index (Xie and Beni, 1991). Values
of K that optimize such indices under Scenario 1 (Section 3.4.2) are reported in
Table 3.6 (a) and (b), with low and high levels of error, respectively. Values of K
that optimize such indices under Scenario 2 (Section 3.4.3) are reported in Table 3.7
(a) and (b), with low and high levels of error, respectively. Specifically, the Fuzzy
Silhouette and the pseudo F indices are maximized, while the Xie-Beni index is
minimized.
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Table 3.6. Optimal number of clusters according to the Fuzzy Silhouette, Pseudo F, and
Xie-Beni indices: occurrences (%) under Scenario 1 with low and high errors. Expected
value K∗ = 4.

(a) Low level of error
K* Fuzzy Sil. Pseudo F XB index
2 0.0 0.0 0.0
3 0.0 0.0 0.0
4 100.0 100.0 100.0
5 0.0 0.0 0.0
6 0.0 0.0 0.0

(b) High level of error
K* Fuzzy Sil. Pseudo F XB index
2 34.0 55.0 67.5
3 45.0 37.0 24.5
4 21.0 8.0 8.0
5 0.0 0.0 0.0
6 0.0 0.0 0.0

Table 3.7. Optimal number of clusters according to the Fuzzy Silhouette, Pseudo F, and
Xie-Beni indices: occurrences (%) under Scenario 2 with low and high errors. Expected
value K∗ = 2.

(a) Low level of error
K* Fuzzy Sil. Pseudo F XB index
2 100.0 100.0 100.0
3 0.0 0.0 0.0
4 0.0 0.0 0.0

(b) High level of error
K* Fuzzy Sil. Pseudo F XB index
2 75 78 59.5
3 19 20.5 36.5
4 6 1.5 4

Table 3.6 (a) shows that in all the 200 iterations, when generating the dissimilarity
matrices under Scenario 1 with low error, the methodology detects the true number
of clusters (K∗ = 4), according to all the indices. The same happens when the
dissimilarity matrices are generated under Scenario 2 with low error (see Table 3.7
(a)). When using high error under the conditions of Scenario 2, Table 3.7 (b) shows
that in the majority of the simulations the algorithm detects again the true number of
clusters (K∗ = 2). The high error causes the indices to be more imprecise. However,
all the indices detect simultaneously K∗ = 2 as optimum in more than half of the
simulations (53.5%). On the contrary, Table 3.6 (b) shows that under the conditions
of Scenario 1 according to both XB and Pseudo F indices, the methodology chooses
K∗ = 2 as the optimal number of clusters, as this is the mode of the distributions
for these two indices. Instead, Fuzzy Sil. leads the methodology to choosing K∗ = 3.
It is worth mentioning that the methodology in some occasions leads to choose
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K∗ = 4: in particular, Fuzzy Sil. selects K∗ = 4 in 21% of the iterations; instead,
XB and Pseudo F return K∗ = 4 in only 8% of the iterations, the second of these
being a conservative index. In more details, XB, and Pseudo F simultaneously select
K∗ = 4 as optimum, while all the three indices simultaneously return K∗ = 4 in
only 6% of the iterations. Therefore, the optimal K∗ = 4 is chosen quite rarely,
probably because the error too strongly masks the four ultrametric matrices. Indeed,
when using high error the membership degree matrices tend to be very fuzzy, i.e.
each dissimilarity matrix tends to have membership degrees very similar to one
another: consequently, the level of error makes the indices suffer in recognizing
that the true partition is given by four ultrametrics. For this reason, additional
methods for choosing the number of clusters should be investigated and a specific
simulation study fully dedicated to the choice of K should be carried out. This is
beyond the scope of this work, but it is emphasized that additional investigation is
needed. However, it is recommended to base the decision regarding the selection
of the number of clusters not only on the use of indices appropriately designed to
select the optimal K, but also on the interpretation of the resulting partitions.

3.5 Real dataset application
To fully motivate the utility of the methodology that has been proposed, and

clearly illustrate the concepts of single secondary consensus dendrogram, and multi-
ple secondary consensus dendrograms with a fuzzy partition of primary dendrograms,
a real data-set showing the long-term scenario 2005-2020 of macroeconomic perfor-
mances, as measured by 6 major economic indicators, of the national economies
of the G7 most-industrialized countries is considered. These panel data form a
three-way data array (7 × 6 × 16), where the first dimension represents the G7 coun-
tries: Canada (CAN,1), Germany (DEU,2), France (FRA,3), Great Britain (GBR,4),
Italy (ITA,5), Japan (JPN,6), United States of America (USA,7); while the second
dimension corresponds to the six economic indicators: Gross Domestic Product (US
dollars/capita) measures the value added created through the production of goods
and services in a country during a year (GDP); Composite Leading Indicator shows
short-term economic movements in qualitative rather than the quantitative term
(Long-term average =100) (CLI); Long-Term Unemployment Rate for people who
have been unemployed for 12 months or more shows the proportion of these long-term
unemployed among all unemployed (LUR); Short-term Interest rate measures the
rates at which short-term borrowings are effected between financial institutions
(SIR); Current Account Balance of payments measures the country’s international
transactions with the rest of the world as a percentage of the gross domestic product
(CAB); and Saving Rate (SR) measures the difference between disposable income
and final consumption expenditure divided by gross domestic product (SR). Finally,
the third dimension of the three-way data array regards the time period from 2005
to 2020. These data have been downloaded from OECD.Stat which includes data
and metadata for OECD countries and is frequently used by OECD to depict the
macroeconomic outlook.

Each data matrix (units-by-variables (7 × 6)) Xh, for h = 1, . . . , 16, (period
2005, . . . , 2020) has been normalized by using the min-max normalization, where the
min and the max of variables are over the entire period 2005-2020. For each matrix
Xh the Euclidean (7 × 7) distance matrix Dh between units has been computed. In
Figure 3.5 the dendrograms ∆ = {δ1, δ2, . . . , δ16} of Ward’s method of hierarchical
clustering, computed on matrices D1, D2, . . . , D16 are shown for the years from 2005
to 2020. The hierarchical clustering of the G7 countries in different years exposes

https://stats.oecd.org/
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dissimilarities and convergences in the economic characteristics of G7 countries.

Figure 3.5. Hierarchical clustering of G7 countries by 6 economic variables from 2005 to
2020

The hierarchical clustering of the G7 countries is obtained by one single or multiple
consensuses of primary dendrograms of the different years. A single consensus would
be sufficient if all the dendrograms from 2005 to 2020 were similar or nearly so. To
assess the similarity between dendrograms, we examine the associated N -trees (as
defined in Section 2). Concerning the real dataset, the N -trees of the dendrograms
from 2005 to 2020, which include only internal nodes of the tree, and thus exclude
singleton clusters {i}, i = 1, . . . , 7, are shown in Table 3.8. Two dendrograms δh

and δm are similar if they have the same N -trees Th = Tm. When dendrograms are
similar, they have a perfect strict consensus tree (Sokal and Rohlf, 1981) since each
class of the consensus belongs to each original similar tree. It is ’perfect’ because
100% of classes coincide between dendrograms. For example, the dendrogram of 2006
is similar to the one of 2007. They differ only according to the levels of aggregation
and therefore they may be represented by a perfect strict consensus tree. However,
during 2008-2009 -probably due to the deep economic crisis- countries’ economies
start to change and different clusters of countries appear. As a consequence, the
dendrograms change more radically from the previous ones. Another three similar
dendrograms are indeed found only several years later in 2015, 2016, and 2018.
However, these last ones show different initial aggregations of countries from those
of 2006 and 2007. This suggests that multiple secondary consensuses are needed to
show the clustering changes for the entire period. On the other hand, dendrograms in
different years have some classes of countries in common. For example {FRA, ITA}
and {GBR, USA} or {CAN, USA} are frequently found in all dendrograms. This
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suggests that all dendrograms may contribute to defining the consensuses. Thus,
great flexibility in the new clustering methodology is needed to understand and assess
how much these common classes contribute to the definition of the consensuses. Vichi
(1998), with Principal Classification Analysis (PRINCLA), considers as consensuses
the orthogonal linear combinations of the original dendrograms. The orthogonality
produces a hard pseudo-partition of dendrograms (it is not exactly a partition, as it
excludes dendrograms that alone contribute to one principal component), so only
disjoint subsets of original dendrograms may contribute to defining the consensuses.
Vichi (1999), with Partition and Least-Squares Consensus Classification Analysis
(PARSCLA), defines the partition of dendrograms in K homogeneous classes and
the LS consensus for each class. Therefore, PRINCLA and PARLSCLA identify
consensuses related to disjoint subsets of dendrograms. In other words, an original
dendrogram can contribute to the definition of a unique consensus only. In this
work, to allow the required flexibility to define consensuses with the contribution of
all original primary dendrograms, the Least-Square fuzzy secondary partition of the
dendrograms with a consensus for each class is proposed.

Table 3.8. The N -trees of the dendrograms from 2005 to 2020; these exclude singleton
clusters {i}, i=1,..,7.

T2005={{FRA,ITA},{GBR,USA},{DEU,FRA,ITA},{DEU,FRA,ITA,JPN},{CAN,GBR,USA},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}
T2006={{FRA,ITA},{GBR,USA},{DEU,JPN},{CAN,GBR,USA},{DEU,FRA,ITA,JPN},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}
T2007={{FRA,ITA},{GBR,USA},{DEU,JPN},{CAN,GBR,USA},{DEU,FRA,ITA,JPN},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}

T2008={{FRA,ITA},{GBR,USA},{CAN,JPN},{DEU,FRA,ITA},{CAN,FRA,ITA,JPN},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}
T2009={{FRA,ITA},{GBR,USA},{FRA,ITA,JPN},{CAN,GBR,USA},{DEU,FRA,ITA,JPN},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}

T2010={{GBR,ITA},{FRA,JPN},{CAN,USA},{CAN,GBR,USA},{CAN,FRA,GBR,ITA,JPN,USA},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}
T2011={{GBR,JPN},{FRA,ITA},{GBR,JPN,USA},{CAN,FRA,ITA},{CAN,FRA,GBR,ITA,JPN},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}

T2012={{FRA,JPN},{GBR,ITA},{CAN,USA},{FRA,GBR,ITA,JPN},{DEU,GBR,JPN,USA},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}

T2013={{FRA,JPN},{CAN,USA},{FRA,ITA,JPN},{FRA,GBR,ITA,JPN},{DEU,FRA,GBR,JPN,ITA},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}
T2014={{FRA,JPN},{CAN,USA},{FRA,ITA,JPN},{FRA,GBR,ITA,JPN},{CAN,DEU,USA},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}

T2015={{FRA,JPN},{CAN,USA},{FRA,ITA,JPN},{CAN,GBR,USA},{DEU,FRA,ITA,JPN},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}
T2016={{FRA,JPN},{CAN,USA},{FRA,ITA,JPN},{CAN,GBR,USA},{DEU,FRA,ITA,JPN},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}
T2017={{CAN,GBR},{FRA,ITA},{FRA,ITA,JPN},{CAN,GBR,USA},{DEU,FRA,ITA,JPN,},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}
T2018={{FRA,JPN},{CAN,USA},{FRA,ITA,JPN},{CAN,GBR,USA},{DEU,FRA,ITA,JPN},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}
T2019={{FRA,JPN},{CAN,GBR},{FRA,ITA,JPN},{CAN,GBR,USA},{DEU,FRA,ITA,JPN},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}

T2020={{FRA,GBR},{CAN,USA},{ITA,JPN},{CAN,GBR,USA},{DEU,ITA,JPN,},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}

Indeed, the methodology proposed here, when applied to the OECD panel data,
gives very reliable results with a fuzzy partition of the dendrograms and a consensus
dendrogram for each class of the partition. The 16 original dendrograms, shown in
Figure 3.5, have been split into 4 clusters (the number K=4 was chosen by using the
Fuzzy Silhouette index, see Section 3.4.4 and 3.4.9) with 4 consensus dendrograms,
and the corresponding N -trees reported in Figure 3.6 and Table 3.9, respectively.

Figure 3.6. Resulting consensus dendrograms, representing hierarchical clustering of G7
countries by 6 economic variables
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Focusing on the memberships of the original dendrograms to each cluster of the
secondary partition, it can be observed that some dendrograms have nearly hardly
assignments to one cluster, but also that some others are softly assigned to more
than one cluster. The highest memberships of the 16 dendrograms to the 4 clusters
of dendrograms of the new proposed methodology are reported in Table 3.10. It can
be observed that dendrograms corresponding to the years 2015, 2016, 2017, 2018,
and 2019 have a nearly hard membership to the fourth cluster with consensus TC4
and indeed, these dendrograms share with the corresponding consensus dendrogram
almost all clusters.

Dendrograms which are more flexibly associated with the resulting consensus
ultrametrics are those corresponding to the years 2008, 2012, and 2020 which identify
three distinct periods. The year 2008 may be considered the initial year of the
great recession observed globally in national economies, while the year 2012 can be
seen as the first year in which there was partial recovery from the recession (source:
Investopedia). Finally, the year 2020 relates to the COVID-19 recession. In 2008,
but also 2009, dendrograms have clusters between those of the period 2005-2007
(cluster 1) and those of the period 2010-2011 (cluster 2). The dendrogram for 2008 is
characterized, among the others, by classes {FRA, ITA}, and {GBR, USA} that are
typical of the period 2005-2007. Germany in 2008 started to show a larger distance
with respect to the other countries and this is typical of the dendrograms for 2010,
2011, and 2012. The dendrogram related to the year 2012 has characteristics of the
dendrograms of the period 2010-2011 and the period 2013-2014, sharing with them
the classes {CAN, USA}, {FRA, JPN}. Finally, the dendrogram related to the year
2020 has a class {CAN, USA} that makes it belong to both Clusters 3 and 4 and a
class {CAN, GRB, USA} that makes it also belong to Clusters 1 and 2 and increases
the membership to Cluster 3. Thus, it can be observed that dendrograms for the
years 2008, 2009, 2012, and 2020 reflect the changes in the heterogeneity of the G7
countries, as their soft fuzzy membership confirms. To be more precise, the changes
in the hierarchical clustering of the G7 countries are due to the different economic
changes in the period 2005 - 2020.

The reader can notice that clusters substantially keep within them the chrono-
logical order of the dendrograms.

Table 3.9. The N -trees of the resulting consensus dendrograms representing hierarchical
clustering of G7 countries by 6 economic variables; these exclude singleton clusters {i},

i=1,..,7.

TC1={{ITA,FRA},{GBR,USA},{DEU,JPN},{CAN,GBR,USA},{DEU,FRA,ITA,JPN},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}
TC2={{FRA,JPN},{GBR,ITA},{CAN,USA},{FRA,GBR,ITA,JPN},{CAN,FRA,GBR,ITA,JPN,USA},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}
TC3={{FRA,JPN},{CAN,USA},{FRA,ITA,JPN},{FRA,GBR,ITA,JPN},{CAN,DEU,USA},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}
TC4={{FRA,JPN},{FRA,ITA,JPN},{CAN,USA},{CAN,GBR,USA},{FRA,DEU,ITA,JPN},{CAN,DEU,FRA,GBR,ITA,JPN,USA}}

Table 3.10. Cluster assignment of the original dendrograms to 4 clusters, with the highest
membership degree.

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Cluster 1 1 1 1, 2 1, 3 2 2 2, 3 3 3 4 4 4 4 4 1,2,3,4

Membership degree 0.79 0.77 0.77 0.28,0.25 0.34, 0.30 0.89 0.78 0.46, 0.48 0.93 0.88 0.87 0.87 0.91 0.87 0.93 0.28, 0.23, 0.28, 0.21

3.6 Conclusion
A set of primary hierarchies (dendrograms) of the same set of units is often

available to the researcher. For example, in economic applications, primary hier-

https://www.investopedia.com/terms/g/great-recession.asp
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archies can be found by hierarchically clustering countries according to variables
for each different year or applying, on the same dissimilarity matrix, different ag-
glomerative algorithms. In psychometric studies, the hierarchies are obtained from
data cards, a well-known data-gathering technique, while in marketing applications,
hierarchies are given by the customers who rate and classify some products and
then continue to classify classes to obtain a hierarchy. A relevant research problem
discussed in this chapter is to find single or multiple consensuses of the set of
primary dendrograms. When all primary hierarchies are similar to one another, a
single secondary hierarchical consensus is sufficient. This is generally achieved by
multi-view clustering methods that are highly appreciated because they improve
single-view clustering. However, when primary hierarchies change quite drastically
in the given set, a unique consensus of the whole set of primary hierarchies would
be a too unrealistic and narrow synthesis of the dendrograms. In addition, it is
also possible to hypothesize situations where groups of dendrograms may share
some elements, i.e. the corresponding N -trees may have similar classes. In such
situations, not only must the methodology be able to identify multiple consensuses,
but it must also allow each dendrogram to contribute with a different weight in
defining each consensus. Therefore, in this work, it is proposed to develop a cluster-
ing methodology, named PARoDENo3WD, that allows identification of classes of
primary dendrograms perceived as similar (secondary partition), synthesis of each
class of the primary dendrograms by a consensus dendrogram, and the use of a fuzzy
approach to associate to each primary dendrogram a membership degree for each
class of the secondary partition.

In the application to a real dataset described in Section 3.5, this methodology
was extremely helpful to classify G7 countries observed in a period from 2005 to 2020
in order to show dissimilarities and convergences in the economic characteristics of
G7 countries.

The proposed methodology PARoDENo3WD has also been extensively tested
in a simulation study, by generating 1800 three-way datasets. In the design of the
study, the parametric uncertainty has been defined by using a multivariate normal
distribution. This was useful to compare the performance of the new methodology in
different scenarios with different levels of error in the data. However, it is important
to observe that PARoDENo3WD is a non-parametric methodology, which does not
require knowing the data distribution and can also be applied for large three-way
data arrays. A fuzzy clustering approach has been adopted to handle the clustering
uncertainty, i.e., the uncertainty in the assignment of the units to clusters. In the
simulation study, this uncertainty has been fully analyzed. The results show that
PARoDENo3WD is able to identify both the hard and the fuzzy partitions of the set
of dendrograms and also to summarize the starting dissimilarities using consensus
dendrograms which are very close to the original generated ones. Moreover, the
simulation was used to study the performance of several methodologies to evaluate
how to choose the number of classes of the secondary fuzzy partition. The Fuzzy
Silhouette, the Pseudo F, and the Xie-Beni indices were used to detect the number
of classes. Specifically, they always select the true number of classes when a low
level of error is used and naturally tend to be more imprecise when a high level
of error is used. In addition, when the underlying partition is hard, the indices
tend to underestimate the number of classes when a high level of error is used.
PARoDENo3WD does not guarantee the global optimal solution because of the
clustering problem that is well-known to be NP-hard. Hence, the simulation study
analyzes the problem of local minimum solutions. It is observed that 40 random
starts will drastically reduce this problem. The algorithm is fast, even facing some
issues with data storage: indeed, dissimilarity matrices are of order N2.
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This work contributes to the introduction of a new methodology in the three-way
clustering literature and the multi-view clustering and opens up the possibilities
for new applications in such a framework. In addition, in order to face the com-
plexity issue due to data storage, a future project could be the development of a
new methodology based on a parsimonious approach, in such a way that the first
aggregations of the unit in the dendrogram are ignored and only the ones starting
from a specific level are considered by the algorithm. In this way, the secondary
consensus dendrograms will have a parsimonious structure and the whole complexity
will be reduced.
In addition, as highlighted during the illustration of the methodology, an important
aspect that requires further consideration and study relates to the evaluation of
how and to what extent the choice of the number of clusters affects the choice of
fuzzyness parameters and vice versa. Moreover, it might be interesting to study
in depth how sensitive the algorithm is to the choice of linkage method used in
hierarchical clustering.
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Chapter 4

Parsimonious consensus
hierarchies, partitions and fuzzy
partitioning of a set of
hierarchies

4.1 Introduction
This chapter addresses the problem of obtaining partitions of the set of hier-

archical classification of objects. These will be referred to as primary hierarchies
with associated primary ultrametric matrices, knowing that there is a bijection
between hierarchies and ultrametric matrices (Johnson, 1967). A fuzzy partition of
a set of primary hierarchies will be referred to as a secondary fuzzy partition. The
aim of the methodology described in this chapter is to obtain a secondary fuzzy
partition of the set of primary hierarchies into classes with the property that primary
hierarchies with a relevant membership degree for the same class are perceived as
similar to one another. Each of the classes will have an associated parsimonious
consensus hierarchy, which serves as a summary of the set of primary hierarchies
belonging to the class. The secondary partition is fuzzy because it can describe
some “uncertainties” that occur in the observed set of primary hierarchies and it
provides further information: the membership degrees can show for each class which
primary hierarchies are more strongly associated with it and which hierarchies have
only a loose association. Therefore, each hierarchy contributes to the definition
of all classes according to different membership degrees. The consensus hierarchy
(tree) is parsimonious, because it limits its internal nodes to a reduced number G
(where G is much smaller than the number N of objects). Thus, the parsimonious
trees has the property that clusters appearing in excess of K are viewed as very
close to each other and perceived as almost indistinguishable and irrelevant in the
hierarchy. In addition, the consensus includes the optimal partition into K clusters.
Frequently investigators wish to identify this optimal partition in the hierarchy to
detect the most relevant classification of its nested partitions. A flowchart describing
the methodology and clarifying the process is displayed in Figure 4.1. The flowchart
is also useful to synthesize graphically the data structure.

The remainder of this chapter is organized as follows. Section 4.2 is fully dedicated
to recall the terminology and the review of the literature; Section 4.3 describes the
proposed methodology and its estimation. The performance of the new methodology
is tested in an extended simulation study presented and discussed in Section 4.4
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Figure 4.1. Flowchart describing the proposed methodology

and Section 4.5 includes the applications to real datasets. Finally, Section 4.6 gives
remarks and considerations on future developments.

4.2 Notation and theoretical background

The notation used in this framework has been already formalized in Chapter 2;
relatively to this chapter, the three-way consensus matrix U∗ = [u∗

ilk] (N × N × K)
are formed by (2G − 1)-ultrametric matrices, where G is the number of clusters
forming a partition of the N units. Formally, U∗ = [U∗

1, . . . , U∗
K ], where U∗

k is a
N × N (2G − 1)-ultrametric matrix, for k = 1, . . . , K. The H primary hierarchies
are supposed observed with associated ultrametric matrices U1, U2, . . . , UH . When
they are not observed, then they are built by applying a fixed hiearachical clustering
algorithm (Gordon, 1999) to each dissimilarity matrix Dh related to the data
matrix Xh, h = 1, . . . , H which make up the three-way three-mode data array
X = [xijh : i ∈ I, j ∈ J , h ∈ H].

From the H given ultrametric matrices, K parsimonious consensus dendrograms,
i.e. K (2G − 1)-ultrametric matrices, summarizing the original H hierarchies will
be identified. Each (2G − 1)-ultrametric matrix, is a square N dimensional matrix
with elements satisfying ultrametric inequalities and with off-diagonal elements that
can assume one of at most (2G − 1) positive different values.

It is now necessary to introduce the model used to obtain a parsimonious tree,
associated to a (2G − 1)-ultrametric matrix.
Therefore the theoretical background on parsimonious hierarchy necessary for the
reader to follow the new methodology is reported in the following. The theoretical
data structure for multivariate objects and dissimilarities examined on different
occasions used in this chapter is the three-way array.
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4.2.1 Well-Structured Partition (WSP)

A partition of objects into G clusters has two main characteristics: the isolation
between clusters and the heterogeneity within clusters. The partition is usually
represented by a classification matrix, which is a clustering model for dissimilarities
in the well-known model-based clustering framework. Rubin (1967) proposed to
model the classification matrix by three matrices: the diagonal matrix W Dk =
[W dk

gg > 0 : W dk
gt = 0, g, t = 1, . . . , G, (g ̸= t)], the squared matrix BDk = [Bdk

gt >

0 : Bdk
gg = 0, t, g = 1, . . . , G, (t ̸= g)] and the membership matrix Mk = [mk

ig :
mk

ig ∈ {0, 1} for i = 1, . . . , N, g = 1, . . . , G, and
∑G

g=1 mig = 1 ∀ i = 1, . . . , N ],
modelling heterogeneity within clusters, isolation between clusters and the partition
into G classes, respectively. Thus, the classification matrix identifying a partition is
modelled as follows

U∗
k = Mk(BDk)M′

k + Mk(W Dk)M′
k − diag(Mk(W Dk)M′

k), (4.1)

In order to obtain a Well-Structured Partion (Rubin, 1967), Equation (4.1) is subject
to the constraint

max{W dk
gg : g = 1, . . . , G} ≤ min{Bdk

gt : t, g = 1, . . . , G, (g ̸= t)} (4.2)

In other words, dissimilarities within clusters must be smaller than the dissimilarities
between clusters. For the sake of brevity, the matrix form of constraint (4.2) will be
used in the rest of the chapter, i.e.

BDk > W Dk. (4.3)

4.2.2 Parsimonious Hierarchies

When matrix BDk satisfying constraint 4.2 is also an ultrametric matrix of order
G, then U∗

k is a square (2G − 1)-ultrametric matrix of order N , with off-diagonal
elements that can assume one of at most (2G − 1) different values: 0 < W dk

gg ≤
Bdk

gt(g, t = 1, . . . , G; g ̸= t) (Vichi, 2008).
More formally: U∗

k = [uk∗
il ], uk∗

ii = 0, uk∗
il ≥ 0, uk∗

il = uk∗
li , uk∗

il ≤ max(uk∗
ir , uk∗

lr ) ∀ (i, l, r);
furthermore uk∗

il ∈ {0, W dk
gg, Bdk

gt}, with 0 < W dk
gg ≤ Bdk

gt ∀(g, t : g ̸= t).
There exists a bijection between ultrametric matrices Uh and dendrograms

(hierarchies), which has been proved by Johnson (1967). Thus, H ultrametric
matrices are associated with a set of H dendrograms representing the primary
hierarchies ∆ = [δ1, δ2, . . . , δH ].

To clearly show what is meant by parsimonious hierarchy, in the following we
consider a (2G − 1) dendrogram when G = 5 and also its corresponding BD and
W D matrices. More precisely, on the one hand, the entries on the main diagonal of
the matrix W D are the values of heterogeneity within the G = 5 clusters and are
displayed on the y-axis of Figure 4.2, representing the levels of aggregation between
the units of each cluster; on the other hand, the off-diagonal entries of the matrix
BD are the values of isolation between the clusters and are displayed on the y-axis of
Figure 4.2, representing the levels of aggregation between each pair of the considered
G clusters of the partition.
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Table 4.1. Matrices of isolation between clusters (BD) and heterogeneity with clusters
(W D)

BD =


0 Bd12 Bd13 Bd14 Bd15

Bd21 0 Bd23 Bd24 Bd25
Bd31 Bd32 0 Bd34 Bd35
Bd41 Bd42 Bd43 0 Bd45
Bd51 Bd52 Bd53 Bd54 0

 =


0 10.5 11.375 11.375 12.25

10.5 0 11.375 11.375 12.25
11.375 11.375 0 8.5 12.25
11.375 11.375 8.5 0 12.25
12.25 12.25 12.25 12.25 0



W D =


W d11 0 0 0 0

0 W d22 0 0 0
0 0 W d33 0 0
0 0 0 W d44 0
0 0 0 0 W d55

 =


5 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 4 0
0 0 0 0 5



Figure 4.2. Representation of a (2G − 1)-dendrogram when G = 5. A 9-dendrogram is
shown; the first five clusters (C1, . . . , C5) form a partition; clusters C6 = {C1, C3}, C7 =
{C2, C4}, C8 = {C6, C7}, C9 = {C5, C8}, specify the hierarchical structure of the parti-
tion

Clearly, the parsimonious dendrogram (PD) displayed in Figure 4.2 is associated
with a parsimonious hierarchy. Moreover, it is worth noting that the associated
isolation and heterogeneity matrices displayed in Table 4.1 have the following
characteristics: matrix W D is a diagonal matrix with positive entries on the main
diagonal, the matrix BD is an ultrametric matrix, and the WSP constraint (4.2 or
4.3) holds, with the maximum value of W D, i.e. 5 being smaller than the minimum
value of matrix BD, i.e. 8.5.

The choice of G (in general, of the number of classes in a partition problem) is an
open question and requires further consideration. In our applications (Section 4.5),
the choice of G is either suggested in the literature or known a priori. Nevertheless,
it is important to discuss and make a few remarks about it. It is crucial to remember
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that the choice of G is related to the WSP model subject to the constraint of matrix
BD being an ultrametric matrix of order G. In fact, in this way the obtained
consensus matrix U∗

k corresponds to a parsimonious hierarchy of order (2G − 1).
As a first consideration, it should be noted that the choice of G influences the
number of parameters to estimate the inter-cluster isolation (BD) and within-cluster
heterogeneity (W D) matrices; more precisely, the larger G is, the larger the number
of parameters to be estimated and the smaller the fit of the objective function.
Therefore, by letting G vary in a reasonable range and storing the solutions of the
objective function, it is suggested to keep the smallest G that produces the strongest
variation in the solutions of the objective function, as Cattell (1966) proposed in a
factor analysis framework. In this way, a reasonably interpretable final partition can
be obtained (Vichi, 2008).

4.3 Fuzzy partition of hierarchies and their parsimo-
nious consensus dendrograms

The methodology proposed in this chapter aims to find a fuzzy partition in K
classes of the primary hierarchies with (2G−1)-ultrametric consensuses (parsimonious
trees) for each class of the partition.
In order to achieve this goal the following optimization problem has to be solved
w.r.t. Mk, BDk, W Dk, and µm

hk,

minimize
K∑

k=1

H∑
h=1

∥Uh − U∗
k∥2µm

hk = 

consensuses
fitting WSP and
fuzzy partition of

hierarchies

minimize
K∑

k=1

H∑
h=1

∥Uh − (Mk(BDk)M
′
k + Mk(W Dk)M

′
k+

− diag(Mk(W Dk)M
′
k))∥2µm

hk

s.t.
K∑

k=1

µhk = 1 for h = 1, . . . , H

µhk ∈ [0, 1] for h = 1, . . . , H, k = 1, . . . , K

mk
ig ∈ {0, 1} for i = 1, . . . , N, g = 1, . . . , G

G∑
g=1

mig = 1 for i = 1, . . . , N

BDk > W Dk

Bdk
il ≤ max{Bdk

ip, Bdk
lp}

Bdk
ip ≤ max{Bdk

il, Bdk
lp}

Bdk
lp ≤ max{Bdk

ip, Bdk
il} for i = 1, . . . , G − 2, l = i + 1, . . . , G − 1, p = l + 1, . . . , G.

(4.P1)

(4.C1)

(4.C2)
(4.C3)

(4.C4)

(4.C5)
(4.C6)
(4.C7)
(4.C8)

Constraints 4.C1 and 4.C2 guarantee that the set of ultrametric matrices
U1, U2, . . . , UH is partitioned in a fuzzy way, i.e., into K classes: each ultrametric
matrix belongs to the k-th class with the h-th membership µhk. Constraints 4.C3,
4.C4 and 4.C5 are needed to guarantee that the partition is well-structured. Finally,
the last triplet of constraints, i.e. constraints 4.C6, 4.C7 and 4.C8, guarantees that
the matrix BD is ultrametric. The whole set of constraints in 4.P1 allows us to
obtain a fuzzy partition of the primary hierarchies into K classes, by identifying K
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parsimonious ultrametric matrices U∗
k: in this way, each consensus is a (2G − 1)-

ultrametric matrix, and therefore has a parsimonious tree associated with it. The
reader can see that if the last triplet of constraints, i.e. constraints 4.C6, 4.C7 and
4.C8, is ignored, then the K consensus matrices are matrices that identify just a
well-structured partition and not a parsimonious hierarchy. Finally, the fuzziness of
the partition is controlled by the parameter m, named fuzzifier. In particular, when
m −→ 1 the partition tends to become hard, i.e. the membership degrees tend to be
either 0 or 1; for m −→ ∞ membership tend to be constant and equal to 1/K.

Therefore, problem (4.P1) can be used in order to solve the following sub-
problems:

(4.P1.a) Given H primary hierarchies, obtain a fuzzy secondary partition of the primary
hierarchies, and for each class of the secondary partition identify a consensus
well-structured partition. This problem consists of solving 4.P1 subject to
constraints 4.C1-4.C5.

(4.P1.b) Given H primary hierarchies, obtain a fuzzy secondary partition of the primary
hierarchies and for each class of the secondary partition identify a consensus
hierarchy with a parsimonious structure. This problem consists of solving 4.P1
subject to constraints 4.C1-4.C8.

(4.P1.c) Given a single hierarchy (dendrogram), find the closest well-structured partition.
If the hierarchy is not initially given, i.e. if a dissimilarity matrix is given, then
its corresponding hierarchy or ultrametric matrix can be obtained by applying
UPGMA, or any other hierarchical clustering algorithm, to the dissimilarity
matrix. This problem consists of solving 4.P1 subject to constraints 4.C1-4.C5
when H = 1 and K = 1.

(4.P1.d) Given a single hierarchy (dendrogram), find the closest parsimonious dendro-
gram. If the hierarchy is not initially given, i.e. if a dissimilarity matrix is
given, then its corresponding hierarchy or ultrametric matrix can be obtained
by applying UPGMA, or any other hierarchical clustering algorithm, to the dis-
similarity matrix. This problem consists of solving 4.P1 subject to constraints
4.C1-4.C8 when H = 1 and K = 1.

4.3.1 Least-Squares Estimation

In order to implement (4.P1), it is worth noting that it can be decomposed into
two alternating minimization sub-problems:

(A) the partial minimization of the objective function of (4.P1) with respect to
centroid matrices when these are the parsimonious hierarchies (1). i.e., U∗

k, and µ̂hk

is given.
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minimize
K∑

k=1

H∑
h=1

∥Uh − (Mk(BDk)M
′
k + Mk(W Dk)M

′
k − diag(Mk(W Dk)M

′
k))∥2µ̂m

hk

s.t.
mk

ig ∈ {0, 1} for i = 1, . . . , N, g = 1, . . . , G

G∑
g=1

mig = 1 for i = 1, . . . , N

BDk > W Dk

Bdk
il ≤ max{Bdk

ip, Bdk
lp}

Bdk
ip ≤ max{Bdk

il, Bdk
lp}

Bdk
lp ≤ max{Bdk

ip, Bdk
il} for i = 1, . . . , G − 2, l = i + 1, . . . , G − 1, p = l + 1, . . . , G

(4.P2)

(4.C3)

(4.C4)

(4.C5)
(4.C6)
(4.C7)
(4.C8)

The solution of this sub-probem (A) can be found by using the Sequential Quadratic
Programming (SQP) algorithm (Powell, 1983).
It is worth noting that the unconstrained least square solution of (4.P2) is given by
Ūk, for k = 1, . . . , K, where

Ūk = 1∑H
h=1 µ̂m

hk

H∑
h=1

µ̂m
hkUh (4.4)

is the weighted arithmetic mean matrix of Uh, for h = 1, . . . , H, weighted by µ̂m
hk.

Typically, matrices Ūk are not (2G-1)-ultrametrics. However, only a few iterations
are needed for the SQP algorithm to run, if the problem (4.P2) takes as initial values
the matrices Ūk. For this reason, the following problem is minimized with respect
to U∗

k:

minimize
K∑

k=1

∥Ūk − (Mk(BDk)M
′
k + Mk(W Dk)M

′
k − diag(Mk(W Dk)M

′
k))∥2

H∑
h=1

µ̂m
hk

s.t.
mk

ig ∈ {0, 1} for i = 1, . . . , N, g = 1, . . . , G

G∑
g=1

mig = 1 for i = 1, . . . , N

BDk > W Dk

Bdk
il ≤ max{Bdk

ip, Bdk
lp}

Bdk
ip ≤ max{Bdk

il, Bdk
lp}

Bdk
lp ≤ max{Bdk

ip, Bdk
il} for i = 1, . . . , G − 2, l = i + 1, . . . , G − 1, p = l + 1, . . . , G

(4.P3)

(4.C3)

(4.C4)

(4.C5)
(4.C6)
(4.C7)
(4.C8)

by using SQP. An alternative way to optimize (4.P3) is to solve problem (4.P3),
by using a coordinate descent algorithm where in the step of computing BDk the
UPGMA algorithm is applied on the matrix BDk, since UPGMA is known to find
an optimal LS ultrametric transformation of BDk. In this way, the WSP model
(model 4.1) is solved subject to the ultrametricity constraint of the matrix BD
(i.e. constraints 4.C6, 4.C7, 4.C8) on matrices Ūk, for k = 1, . . . , K to obtain the
corresponding parsimonious ultrametric matrix. In practice, (4.P3) transforms the
dissimilarity matrix Ūk into the closest (2G − 1)-ultrametric matrix.
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(B) the partial minimization of the objective function of (4.P2) with respect to the
fuzzy partition [µhk] when Û∗

k is given

minimize
H∑

h=1

K∑
k=1

∥Uh − Û∗
k∥2µm

hk

s.t.
K∑

k=1
µhk = 1 for h = 1, . . . , H

µhk ∈ [0, 1] for h = 1, . . . , H, k = 1, . . . , K.

(4.P4)

(4.C1)

(4.C2)

This sub-problem (B) is obtained by solving it by means of the first-order conditions
for stationarity. In fact, the stationary point can be found by considering the
Lagrangian function

H∑
h=1

K∑
k=1

∥∥∥Uh − Û∗
k

∥∥∥2
µm

hk −
H∑

h=1
λh

(
K∑

k=1
µhk − 1

)
, (4.5)

where the solution with respect to µhk is

µhk = 1∑K
j=1

(
chk/chj

) 2
m−1

, for, h = 1, . . . , H, k = 1, . . . , K. (4.6)

where clp = tr[(Ul − Û∗
p)′(Ul − Û∗

p)].

After the solution of the two sub-problems (A) and (B) the objective function
generally reduces w.r.t. the previous iteration, or at least does not increase. Since it
is bounded below by zero, after some iterations the algorithm stops to a stationary
point that is not guaranteed to be the global minimum of the problem. For this
reason, the algorithm is recommended to be run from several initial starting points
to improve the chance of identifying the global optimal solution. The steps of the
algorithm can now be formally presented.

ALGORITHM for (4.P1):

0. Initialization
Set t = 0; ϵ > 0 convergence constant; and randomly generate the member-
ship degree matrix [µhk], with k = 1, . . . , K, h = 1, . . . H from a uniform
distribution and make it row-stochastic.

1. Do t = t + 1

2. Given [µ̂hk], solve sub-problem (A) with SQP algorithm or considering the
following steps:

(a) Compute Ūk, for k = 1, . . . , K as follows:

Ūk = 1∑H
h=1 µ̂∗

hk

H∑
h=1

µ̂∗
hkUh (4.7)
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(b) Solve problem (4.P3) as follows. For sake of simplicity, we let F be the
objective function of problem (4.P3), namely:

F (BDk,W Dk, M) =
K∑

k=1
∥Ūk − (Mk(BDk)M′

k + Mk(W Dk)M′
k+

− diag(Mk(W Dk)M′
k))∥2

H∑
h=1

µ̂m
hk (4.8)

It is worth noting that when minimizing (4.8) w.r.t. BDk, W Dk and Mk,
µ̂hk is fixed (constant) and therefore only

F (BDk,W Dk, M) =
K∑

k=1
∥Ūk − (Mk(BDk)M′

k + Mk(W Dk)M′
k+

− diag(Mk(W Dk)M′
k))∥2 (4.9)

will be minimized w.r.t. BDk, W Dk and Mk.
i. Fixing M̂k, differentiate the objective function of (4.P3) (Equation

4.9) w.r.t. W Dk and equate to zero. The solution W D̂k will have as
generic element on the main diagonal:

ˆ
W dk

gg =
∑N

i=1
∑N

l=1,i ̸=l Ūk
ilm̂

k
igm̂k

lg∑N
i=1

∑N
l=1,i ̸=l m̂k

igm̂k
lg

(g = 1, . . . , G); (4.10)

ii. Fixing M̂k, differentiate the objective function of (4.P3) (Equation
4.9) w.r.t. BDk and equate to zero. The solution BD̂k will have as
generic element:

ˆ
Bdk

gf =
∑N

i=1
∑N

l=1,i ̸=l Ūk
ilm̂

k
igm̂k

lf∑N
i=1

∑N
l=1 m̂k

igm̂k
lf

(g, f = 1, . . . , G); (4.11)

iii. Fixing W D̂k and BD̂k, minimize the objective function of (4.P3)
(Equation 4.9) w.r.t. Mk. The minimization is done row by row,
namely minimizing the objective function w.r.t. row i of Mk (mk

i ),
fixing the other rows of Mk; formally the minimization will be done
considering Mk = [m̂k

1 , m̂k
2 , . . . , mk

i , . . . , m̂k
N ]′. Therefore, unit i

belongs to the gth class, mk
ig = 1, if the objective function of (4.P3)

reaches its minimum compared to the situations where unit i is
assigned to any other class v = 1, . . . , G, v ̸= g. Otherwise, unit
i does not belong to class g, i.e. mk

ig = 0. Formally, for each
i = 1, . . . , N :

m̂k
ig = 1, if F (BDk,W Dk, [m̂k

1 , m̂k
2 , . . . , mk

i = ig, . . . , m̂k
N ]′) =

= min{F (BDk,W Dk, [m̂k
1 , m̂k

2 , . . . , mk
i = if , . . . , m̂k

N ]′) :
: f = 1, . . . , G (f ̸= g)},

m̂k
ig = 0, otherwise,

where if is the fth row of the identity matrix of order G.
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The proofs of the aforementioned estimates are given by Vichi (2008).

3. Given Û, solve sub-problem (B)
The solution of (4.P4) is given by:

µhk = 1∑K
j=1

(
chk/chj

) 2
m−1

, for, h = 1, . . . , H, k = 1, . . . , K. (4.12)

where clp = tr[(Ul − Û(t)
p )′(Ul − Û(t)

p )].

4. Stopping Rule
Repeat steps 1-3 until the difference between the objective function at iteration
t and the objective function at iteration t − 1 is greater than ϵ.

4.4 Simulation study
To assess the performance of the proposed methodology, an extended simulation

study has been developed. It consists mainly of two experiments. The former aims
to assess whether the proposed methodology is able to recognize the underlying
generated hard partition; the latter studies the performance of the proposed method-
ology in recognizing the underlying generated fuzzy partition. The simulation is
organized in the two above briefly described experiments by considering two levels
of errors in the data generation process. The errors have been generated from a
normal distribution and then symmetrized. For each experiment and error level
200 three-way ultrametric matrices have been generated for a total of 800 samples.
Details are provided in the corresponding Sections 4.4.1 and 4.4.2. In addition, 200
three-way ultrametric matrices have been generated to study how to avoid local
minima in the final solution of the algorithm.

Clearly, since the partitioning problem of a set of multivariate objects is an
NP-hard problem (Křivánek and Morávek, 1986), there is no guarantee that the
new methodology finds a global optimum; indeed, it is possible that the obtained
minimum is just a local one. For this reason, the algorithm for each data set is run
by using several randomly generated partitions (briefly, "random starts") and the
best solution is retained in order to increase the chance of identifying the global
minimum solution. More specifically, the correct choice of the number of random
starts has been decided by running an experiment, using a high level of error in the
generated ultrametric matrices (see Section 4.4.1). The new algorithm was run by
letting the number of random starts be 1, 5, 10, 20, 30, and 40. Then, the percentage
of the final solutions ending in a local minimum has been computed. Table 4.2
reports the local minima occurrence (percentage), as the number of random starts
increases. It has to be noted that when the number of random starts is set equal to
10, local minima do not occur. Thus, the number of random starts for the whole
simulation study was set RndStarts = 10. From Table 4.2 it can be observed that

Table 4.2. Local minima occurrences (%)

RndStarts 1 5 10 20 30 40
% 20 5 0 0 0 0

even with only 1 random start the performance of the algorithm is good, with only
20% local minima occurrences. When 5 random starts are used, the percentage of
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local minima strongly decreases (5%), thus identifying the global minimum in 95%
of cases.

The difference in the number of random starts used to avoid local minima in
the simulation studies discussed in Chapter 3 and in this Chapter is mainly due
to the following reasons. Firstly, because of the process of generating the input
matrices: in fact, in Chapter 3, Section 3.4, 12 dissimilarity matrices were generated
from 4 ultrametric matrices, while in this simulation study, 12 ultrametric matrices
were generated from 4 parsimonious ultrametric matrices. Secondly, because of the
optimization problem: when the number of constraints of an optimization problem
(here 3.P1) is smaller than the number of constraints of another optimization
problem (here 4.P1), the dimension of the search space of the former is higher than
the dimension of the latter. Consequently, the probability of local minima occurring
is lower in the latter problem than that in the former. In fact, when the search
space is large or high-dimensional, the task of finding the global solution is arduous
due to the presence of a large search space and a large number of local minima.
Moreover, the complexity of the problem increases with the size of the search space;
in other words, the proportion of the region attracting the global optimum to the
entire search space (region) decreases with dimensionality and the depth of local
minima increases (D’Angelo and Palmieri, 2021). Also, it is important to remember
that in the two simulation studies, while the number of matrices generated is the
same, the size of the search space is different. Thus, to reduce the risk of getting
trapped in local minima, in addition to the different number of random starts to be
used, it would be necessary to increase the number of input matrices needed to cover
the entire search space in the first problem (here 3.P1) (Sharma and Jabeen, 2023).

The results of the simulation studies are analyzed by considering several external
validity indices to compare the obtained partition with the true one. Adjusted Rand
Index (ARI, by Hubert and Arabie (1985)), fuzzy Adjusted Rand Index (Fuzzy ARI,
by Campello (2007) and fuzzy Rand Index (Fuzzy RI, by Campello (2007)) have
been used. In addition, the Normalized Root Mean Square Error (NRMSE) has
been used to compare the obtained consensus matrices with the true ones. Finally,
the Mean Membership Matrices are computed to assess whether the methodology
is able to recognize the fuzzy or hard assignment: these matrices are obtained by
averaging all the membership matrices resulting from each run of the algorithm after
optimally permuting their columns in order to avoid the label switching problem.

4.4.1 First simulation: hard assignment experiment
The first simulation has been developed by considering four (2G − 1)-ultrametric

matrices, with G = 4. Each of these matrices is associated with a parsimonious
dendrogram, as shown in Figure 4.3, where the 4 clusters (C1 − C4) are clearly
visible.
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Those four (2G − 1)-ultrametric matrices (U∗
k, k = 1 . . . , 4) are used to generate

the H = 12 starting ultrametric matrices (primary hierarchies) (Uh, h = 1, . . . , 12).
In fact, from each U∗

k, k = 1, . . . , 4, three different ultrametric matrices are generated
by adding a symmetric error matrix to U∗

k and forcing the resulting dissimilarity
matrix to be ultrametric, by using an average linkage method (UPGMA). Thus,
a total of H = 12 ultrametric matrices are obtained and given as input to the
algorithm to recognize the hard assignment, since each of the H ultrametric matrices
is associated with the single consensus matrix. The algorithm returns as output
not only the obtained secondary partition, but also the parsimonious hierarchy
associated with each class of the partition.

It has to be noted that two levels of errors are considered. A low error should
guarantee that the algorithm works in optimal conditions and it should always be
able to find the global optimum solution with an ARI always equal to 1. In other
words, the algorithm always detects the true (secondary) partition. The high error
should identify a strongly biased situation, where the algorithm is able to recognize
the true (secondary) partition in the majority of cases.

Table 4.3 reports the corresponding summary statistics of the performance
aforementioned indicators. Particularly, both the mean and the median of the
indices regarding 200 iterations are shown. The NRMSE is reported with three
different statistics: indeed, in each iteration K NRMSE are computed, each of those
measuring the difference between the k-th resulting ultrametric and the k-th original
true one; then, the mean, the median and the maximum values are computed.

Table 4.3. Summary statistics. Experiment under a hard assignment with low and high
errors.

Level of error Statistics local minimum
(%) ARI Fuzzy ARI Fuzzy RI mean NRMSE median NRMSE max NRMSE

Low median 0.000 1.000 0.835 0.947 0.006 0.006 0.007
Low mean 0.000 1.000 0.835 0.947 0.005 0.005 0.007
High median 0.000 1.000 0.590 0.504 0.427 0.444 0.469
High mean 0.000 0.869 0.610 0.505 0.415 0.423 0.468

When using low error, the algorithm performed very well. Indeed, values of ARI,
fuzzy ARI and fuzzy RI are close to 1, while values of NRMSE are quite low (Table
4.3). When using high error, the methodology detects only few times the true
partition and low values of ARI, Fuzzy ARI and Fuzzy RI are shown in Table
4.3. The percentage of ARI equal to one is 86.9%, as hypothesised from a high
level of error. In addition, the values of the NRMSE are significantly larger than
zero, meaning that the true parsimonious consensus dendrograms are not perfectly
detected.
Moreover, the methodology is able to recognize the underlying hard secondary
partition of the ultrametric matrices (primary hiearchies). Indeed, the membership
value of each ultrametric matrix to the corresponding cluster is frequently close to
1. The mean membership matrix obtained averaging the 200 obtained matrices is
reported in Table 4.4. Results confirm that when using low error the membership is
always larger than 0.8 as expected (Table 4.4 (a)). When using high error, the true
partition is still detected, but the highest value (indicating the strongest membership)
is about 0.5 (Table 4.4 (b)).

4.4.2 Second simulation: fuzzy assignment experiment
The second simulation has been developed by considering two (2G−1)-ultrametric

matrices, with G = 5. The associated parsimonious dendrograms are shown in Figure
4.4.
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Table 4.4. Mean membership matrices. Experiment under a hard assignment with low and
high error.

(a) low error
Cluster 1 Cluster 2 Cluster 3 Cluster 4

0.875 0.042 0.040 0.043
0.874 0.042 0.040 0.043
0.875 0.042 0.040 0.043
0.041 0.857 0.049 0.053
0.041 0.857 0.049 0.053
0.041 0.856 0.049 0.053
0.040 0.049 0.863 0.048
0.040 0.049 0.863 0.048
0.040 0.049 0.863 0.048
0.042 0.053 0.048 0.857
0.042 0.053 0.048 0.857
0.042 0.053 0.047 0.857

(b) high error
Cluster 1 Cluster 2 Cluster 3 Cluster 4

0.540 0.155 0.149 0.156
0.537 0.156 0.150 0.157
0.540 0.155 0.149 0.156
0.147 0.469 0.188 0.196
0.147 0.470 0.187 0.196
0.146 0.473 0.186 0.195
0.144 0.189 0.483 0.184
0.144 0.189 0.484 0.183
0.144 0.189 0.484 0.183
0.149 0.195 0.182 0.474
0.149 0.195 0.181 0.475
0.149 0.195 0.181 0.475

Those K = 2 (2G − 1)-ultrametric matrices (U∗
k, k = 1 . . . , 2) are used to generate

the H = 9 starting ultrametric matrices (primary hierarchies) (Uh, h = 1, . . . , 9)
under a fuzzy assignment scenario. Specifically, from each U∗

k, k = 1, . . . , K, three
different ultrametric matrices are generated by adding a symmetric error matrix
to U∗

k and forcing the resulting dissimilarity matrix to be ultrametric, by using an
averaging linkage method (UPGMA). Thus, 6 ultrametric matrices are generated
and expected to be hardly associated to the corresponding cluster, being themselves
generated by one consensus matrix. Moreover, an additional 3 ultrametric matrices
are generated by averaging the two consensus matrices, and then adding a symmetric
error term, and forcing the resulting matrix to be ultrametric by UPGMA. In this
way, the last three ultrametric matrices are expected to be softly associated with both
clusters, being themselves generated by a linear combination of the two consensus
parsimonious ultrametric matrices.

Therefore, a total of H = 9 ultrametric matrices are obtained and given as input
to the algorithm in order to recognize the fuzzy assignment. The algorithm returns
as output not only the obtained secondary partition but also the parsimonious
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Figure 4.4. Consensus parsimonious dendrograms (fuzzy assignment experiment)

hierarchy associated with each class of the partition.
It has to be noted that also in this case two levels of errors are considered. A

low error guarantees that the partition is always detected and therefore all the ARI
are equal to 1, while a high error masks the true partition, but still the algorithm
detects the partition in the majority of cases.

For the results, we expect that the algorithm almost hardly assigns the first six
ultrametric matrices (primary hierarchies) to the corresponding cluster and softly
assigns the last three ultrametric matrices (primary hierarchies) to both the clusters.
We ran the experiment with both low and high error levels. The results are shown
in Table 4.5, which reports the main statistics of interest and also the percentage
of fuzziness detection, i.e. the proportion of occurrences in which the methodology
is able to recognize that the last three ultrametric matrices are generated by both
the consensuses. When using low error, the percentage of ARI equal to 1 is 100%.
When the level of error is high, the percentage of ARI exactly equal to 1 is 62%.

Table 4.5. Summary statistics. Experiment under a fuzzy assignment with low and high
errors.

Level of error Statistics local minimum
(%) ARI Fuzzy ARI Fuzzy RI mean NRMSE median NRMSE max NRMSE Fuzzyness detection

Low median 0.000 1.000 0.490 0.760 0.229 0.229 0.326 1.000
Low mean 0.000 1.000 0.450 0.720 0.219 0.219 0.316 1.000
High median 0.000 1.000 0.480 0.740 0.252 0.252 0.286 1.000
High mean 0.000 0.620 0.429 0.715 0.252 0.252 0.286 1.000

From Table 4.5, we notice that the methodology is able to recognize the underlying
partition. For both errors, the mean values of Fuzzy ARI and Fuzzy RI are about
0.5. Clearly, when low error is used, the performance is slightly better. Moreover,
the NRMSE are significantly larger than zero, showing differences between generated
and obtained consensus parsimonious matrices. In addition, we notice that the
proportion of occurrences in which the methodology is able to recognize the fuzzy
nature of the last three ultrametric matrices is 1, meaning that the methodology
always softly assigns those matrices to both the clusters, regardless the level of error
used.
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It is worth observing that the new methodology is able to recognize the fuzzy
nature of the last three ultrametric matrices (primary hierarchies) and also that
the first six are generated by just one consensus matrix. Table 4.6 shows the mean
membership matrix, highlighting that for the first 6 ultrametric matrices the highest
membership value is close to 0.9; instead, for the last three ultrametric matrices,
both memberships are approximately close to 0.5, meaning that those matrices are
softly assigned to both clusters, as expected.

Table 4.6. Mean membership matrices: experiment under a fuzzy assignment with low and
high errors.

(a) low error
Cluster 1 Cluster 2

0.987 0.013
0.987 0.013
0.987 0.013
0.010 0.990
0.010 0.990
0.010 0.990
0.538 0.462
0.538 0.462
0.538 0.462

(b) high error
Cluster 1 Cluster 2

0.985 0.015
0.985 0.015
0.985 0.015
0.016 0.984
0.016 0.984
0.016 0.984
0.495 0.505
0.495 0.505
0.494 0.506

4.5 Real applications
In the following, two applications to real data are analyzed. The former consists

of applying the methodology to the zoo dataset (UCI repository) and refers to
problem (4.P1.d): given a dendrogram, find the closest Least-Square parsimonious
dendrogram. The latter consists of applying the methodology to the girls’ growth
curves dataset (Sempé and Médico-Sociale, 1987) and refers to problem (4.P1.b):
given a set of primary hierarchies, find a fuzzy secondary partition of them, and
within each class of the secondary partition, identify a consensus parsimonious
dendrogram. Details on the dataset descriptions and on the results of the analyses
are provided below.

4.5.1 Zoo data
For the zoological dataset (dowloaded from the UCI Machine Learning Repository

and donated by Richard Forsyth’s) the problem will be reduced in finding the closest
parsimonious dendrogram to a given one.

The dataset consists of 101 observations (animals) and 18 variables; more in
detail, 15 variables are binary, highlighting in each animal the presence/absence of
hair, feathers, eggs, milk, airbone, aquatic, predator, toothed, backbone, breathes,
venomous, fins, tail, domestic, catsize; one variable is categorical and refers to the
number of legs of each animal; one variable refers to the animal name; finally, the
last variable is a class attribute, providing the animals’ taxonomy in seven classes:
mammals, birds, reptiles, fishes, amphibians, insects, and invertebrates. The whole
dataset does not contain any missing value.

For the application, we used the 15 binary variables only. From the units-by-
variables data matrix, the dissimilarity matrix D1 of dimension 101 × 101 was

https://archive.ics.uci.edu/ml/datasets/zoo
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obtained by computing the squared Euclidean distance between each pair of units.
Then, given D1, its closest ultrametric matrix U1 was found by applying the UPGMA
algorithm on D1. Finally, the proposed algorithm, applied on U1 by setting G = 7
and using 100 random starts, found a unique (K = 1) consensus parsimonious
dendrogram. In Figure 4.5 and 4.6, the starting ultrametric matrix and the closest
parsimonious dendrogram are shown, respectively. As it is shown in Figure 4.5,
the partition of the animals in G = 7 clusters with cutoff level 1.94 is not clearly
identifiable, because by moving the cutoff level slightly up (level 1.95) or down (level
1.91) the number of clusters of the partition varies from 6 to 8. Thus, there is an
uncertainty in the identification of the cutting level. In practice, the visual inspection
of the dendrogram does not show a clear distinction between the partitions on 6, 7,
or 8 clusters. This situation does not occur in Figure 4.6, where the G = 7 classes
are clearly visible and identifiable by the investigator. In this case, the taxonomy of
animals (mammals, birds, reptiles, fishes, amphibians, insects, and invertebrates) is
clearly identified and their clustering aggregations (such as oviparous vs mammals,
non-toothed vs toothed and non-aquatic vs aquatic) can be appreciated.

In order to understand whether the classification taxonomy is recognized, we
compared it with the partition of the animals in G = 7 classes derived from the
complete (UPGMA) dendrogram in Figure 4.5 and with the partition corresponding
to the consensus parsimonious dendrogram in Figure 4.6. The ARI values are equal
to 0.796 and 0.853, respectively. Thus, the taxonomy in 7 classes is better recovered
by the PD. Therefore, in terms of classification tasks, our proposal performs better
than the standard methodology. The confusion matrix between true partition in 7
classes and the one of PD is displayed in Table 4.7. We observe that most of the
animals are correctly classified (bold on the diagonal) and only 13% of animals are
misclassified (13 animals out of n = 101 animals) and are highlighted in red in the
Table 4.7.

Table 4.7. Confusion matrix: true partition compared to obtained partition of animals of
the PD (zoo dataset). In bold the correctly classified animals, in red the misclassified
animals.

36 0 0 0 5 0 0
0 20 0 0 0 0 0
0 1 4 0 0 0 0
0 0 0 13 0 0 0
0 0 4 0 0 0 0
0 0 0 0 0 8 0
0 0 0 0 0 3 7

It is worthy to observe that the hierarchical aggregations in PD (in Figure 4.6)
have a very clear meaning. For G = 7, we have: mollusks (aquatic animals of the
class ’invertebrates’) (C1), bugs and worm, slug, scorpion (terrestrial animals of the
class ’invertebrates’) (C2), birds and tortoile (one animal of class ’reptiles’) (C3),
fishes (C4), amphibians and reptiles (all but tortoile) (C5), terrestrial mammals
(C6) and finally aquatic mammals (e.g. "dolphin", "platypus", "sealion", "porpoise"
and "seal") (C7). Moreover, the parsimonious dendrogram allows the study of all
the aggregations of those clusters into wider ones: the first aggregations into wider
clusters occur by grouping terrestrial mammals and acquatic mammals (C6 and
C7) in the ’mammals’ cluster (C6+C7) thanks to the variable ’acquatic’ and by
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grouping fishes and amphibians+reptiles (C4 and C5) thanks to the variables related
to the presence/absence of ’breath’ and ’fins’; moreover, the partition into 4 clusters
is obtained by grouping mollusks and insects (C1 and C2); then, birds (C3) join
the cluster with mollusks and bugs (C1+C2) thanks to the variable related to the
presence/absence of ’feathers’, ’tails’ and ’backbone’ and thus creating a partition
with G = 3 clusters. Finally, in order to obtain a partition with G = 2 clusters,
thanks to the variable ’toothed’, this new cluster (C1+C2+C3), characterized by all
non-toothed and mostly terrestrial animals and with no fins and no hair, is aggregated
with the cluster including fishes, amphibians and reptiles (C4+C5), characterized
by all toothed animals with no feathers, no hair, mostly aquatic and vertebrates.
The obtained cluster (C1 + C2 + C3 + C4 + C5) referring to ’oviperous’ animals and
the cluster (C7+C8) referring to the ’mammals’ make up the partition in only two
clusters, where the discriminant variable is the one referring to presence/absence of
’milk’.

4.5.2 Girls’ growth curves
For the second application we use the girls’ growth curves dataset (Sempé and

Médico-Sociale, 1987), downloaded from the webpage of Prof. P.M Kroonenberg and
donated by Prof. M. Sempé. The dataset includes 8 physical measurements of 30
girls collected from 1953 until 1975 during a French auxiological study: particularly,
the biometric variables related to physical growth (weight, length, crown-rum length,
head circumference, chest circumference, arm, calf, pelvis) are measured yearly in
the selected girls, who started the experiment at age 4 and ended the experiment at
age 15. The data set is therefore a three-way data array with three modes: the first
refers to 30 girls, the second to 8 variables, and the third to 12 years.

The objective of the analysis is to compute 12 dendrograms (primary hierarchies)
and apply our methodology to identify a fuzzy secondary partition of them and within
each class of the secondary partition, identify a consensus parsimonious dendrogram.
Before applying the new methodology, a preliminary data manipulation is needed,
by normalizing the overall dataset with min-max normalization, where the min and
the max of variables are over the entire period (4-15 years old). Then, the overall
average trends of the 8 observed variables among the 30 girls are shown in Figure
4.7. The trends are clearly increasing and it is possible to observe a change in the
slope of the growth around age 9-10.

The starting H = 12 dendrograms (H ultrametric matrices or primary hierarchies)
are obtained by considering the H matrices XN

h , h = 1, . . . , 12, where XN
h is the

30 × 8 normalized data matrix referring to the physical measurements at age h.
Then, we obtained the H dissimilarity matrices Dh, h = 1, . . . , 12 by computing the
Euclidean distance between each pair of units. Finally, in Figure 4.8 the dendrograms
∆ = {δ1, . . . , δ12} of Ward’s method of hierarchical clustering, computed on matrices
D1, D2, . . . , D12 are from age 4 to age 15 years old.

Given the H = 12 primary hierarchies, the algorithm is applied on the corre-
sponding ultrametric matrices U1, . . . , U12, by using 100 random starts and setting
G = 3 and K = 2, as suggested by Kroonenberg et al. (1987). The algorithm finds a
fuzzy partition of the primary hierarchies into K = 2 clusters and within each class
of the secondary partition identifies a consensus parsimonious dendrogram, i.e. a
(2G − 1)-ultrametric matrix, where G = 3 identifies the number of classes of the
girls.

The obtained fuzzy partition is illustrated in Table 4.8, where for each age of
the girls the corresponding cluster and the related membership degree are reported.
In particular, we observe that the chronological order is retained, as ages 4-8 belong

https://three-mode.leidenuniv.nl/data/girlsgrowthcurvesinfo.htm
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Figure 4.7. Average trends of the variables of interests from age 4 until age 15 (girls’
growth curves dataset).

almost hardly to the first cluster, and ages 11-15 belong almost hardly to the second
cluster. In addition, ages 9 and 10 are more softly associated to both clusters, having
membership degrees quite fuzzier and closer to one another. This result is interesting
and meaningful: indeed, at ages 9 and 10 we observed in Figure 4.7 that several
curves change their slopes. More generally, it has been shown by many research
studies (Breehl and Caban, 2021; Farello et al., 2019) that the puberty period for
girls starts around age 8 and therefore ages 9 and 10 are exactly when the puberty
period is in progress. For this reason, we can conclude that the proposed approach
allows us to detect the ages which can be considered as a transitional period in these
data .

Table 4.8. Cluster assignment of the original dendrograms to 2 clusters, with the highest
membership degree.

Age 4 5 6 7 8 9 10 11 12 13 14 15
Cluster 1 1 1 1 1 1,2 1,2 2 2 2 2 2

Membership degree 0.91 0.95 0.96 0.96 0.88 0.67,0.33 0.44, 0.56 0.82 0.90 0.91 0.87 0.78

In addition, the resulting parsimonious consensus dendrograms are shown in
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Figure 4.8. Hierarchical clustering of the girls by 8 biometric variables from age 4 until
age 15 (girls’ growth curves dataset).



56
4. Parsimonious consensus hierarchies, partitions

and fuzzy partitioning of a set of hierarchies

Figure 4.9, where we can clearly see the aggregations of the girls into G = 3 clusters
and the distinct agglomerations of these clusters. It is worthy to notice that clusters
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Figure 4.9. Resulting consensus dendrograms, representing hierarchical clustering of girls
by 8 biometric variables (girls’ growth curves dataset).

C1, C2 and C3 of girls, identified in the two parsimonious dendrograms, have some
common individuals, but also show some differences due to the fact that some girls
have changed the pattern of growth from the first period to the second, thus, moving
from one cluster to another. In order to better visualize and interpret the results,
the hard partition of ages was considered by applying MAP (maximum a posteriori)
to the membership degree matrix. This allowed us to have separate plots of the
trends of the variables for the two clusters of ages, and the three clusters of girls.
For the visualization task and to reduce the amount of trends to be plotted it was
decided to plot only the three dimensions identified by Kroonenberg et al. (1987) and
named Skeletal Length, Skeletal Width and Stoutness: Skeletal Length is referred to
variables length and crown-rump length, Skeletal Width to variables head and pelvis,
Stoutness to variables weight, chest, arm and calf. The trends of these dimensions
are shown in Figure 4.10 (solid lines) separately by cluster of ages and cluster of girls,
as well as the average trend of each dimension in that specific period (i.e. cluster of
ages) (dotted lines).

From Figure 4.10, it is possible to comment on the clusters of girls obtained
separately for each cluster of ages. We observe that the trends of the girls who
belong to the first cluster between ages 4 and 9 (C1 in the left dendrogram in Figure
4.9) are quite far below the average level, meaning that those girls are below average
stature, characterized by a less rapid growth and low levels of biometric variables.
Girls belonging to the second cluster when they are between 4 and 9 years old (C2
in the left dendrogram in Figure 4.9) grow on average: trends are very close to
the corresponding average; they can be considered a cluster of average stature girls.
Finally, those who belong to the third cluster of girls between ages 4 and 9 (C3 in the
left dendrogram in Figure 4.9) have trends far above the average ones. This means
that those girls are the most robust and tallest ones (above average stature girls).
In addition, focusing on the ages 10-15, girls who fall into the first cluster are the
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ones in the first cluster between ages 4-9 except for unit 3 (as depicted in Figure 4.9,
cluster C1): their trends have similar behaviour as in the earlier ages, being far below
the average; therefore this cluster identifies the below average stature girls. The
second cluster of girls being between 10 and 15 years old (C2 in the right dendrogram
in Figure 4.9) have trends following the average, as happens in the earlier ages,
except for Skeletal Length, which is slightly above the average. Therefore, the cluster
groups together the average stature girls; it is worth mentioning that unit 3, who
falls in the below average stature girls cluster between ages 4 and 9, joins the average
stature girls cluster in the next ages’ period, meaning that her biometric variables’
trends returned to the average level. Finally, the third cluster of girls between ages
10-15 (C3 in the right dendrogram in Figure 4.9) have similar trends as the earlier
ages, thus identifying the above average stature girls.

In conclusion, the analysis allowed us to identify two distinct clusters of ages
(one for ages 4-8, one for ages 11-15), except for ages 9-10 which are in the middle
of the two, characterizing a transitional period in the girls’ physical growth. In
addition, for each cluster of ages a consensus parsimononious dendrogram has been
identified. Both of the consensus dendrograms identify three distinct clusters of girls.
By analyzing these separately per cluster of ages, we noticed that they correspond to
below average stature girls (C1 in Figure 4.9), average stature girls (C2 in Figure 4.9)
and above average stature girls (C3 in Figure 4.9); more specifically, considering the
entire period, very few girls are always under the average (see clusters C1 of Figure
4.9), some girls who were on average during ages 4-9 became above the average in
the following ages (see for example unit 7 and 28 move from C2 to C3 in Figure
4.9), and some girls who were above the average during ages 4-9 became on average
during the next years (see for example unit 5 moves from C3 to C2 in Figure 4.9).

4.6 Conclusion
The new methodology proposed in this chapter makes it possible to solve several

problems:

(i) Given H primary hierarchies, obtain a fuzzy secondary partition of the primary
hierarchies, and for each class of the secondary partition identify a consensus
well-structured partition (where within-cluster distances are all smaller than
between-cluster distances). This problem consists of solving simultaneously
a fuzzy partitioning problem to identify the secondary partition and K least-
squares optimal differences between ultrametric matrices of a cluster of the
secondary partition and a consensus well-structured partition that should
identify the partition closest to the hierarchies (see the problem (4.P1.a) in
Section 4.3);

(ii) Given H primary hierarchies, obtain a fuzzy secondary partition of the primary
hierarchies, and for each class of the secondary partition identify a consensus
parsimonious dendrogram. This problem consists of solving simultaneously
a fuzzy partitioning problem to identify the secondary partition and K least-
squares optimal differences between a subset of ultrametric matrices and a
consensus parsimonious dendrogram (see the problem (4.P1.b) in Section 4.3);

(iii) Given a single hierarchy (dendrogram), find the closest well-structured partition.
This is a problem frequently considered in hierarchical clustering, where the
investigator has to find an optimal partition by the visual inspection of the
dendrogram or by means of a specific methodology. This problem consists
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of solving the problem (i) above when a single dendrogram is observed or
computed, and it is necessary to find a single well-structured partition (see
the problem (4.P1.a) with H = 1 and K = 1, in Section 4.3).

(iv) Given a single hierarchy (dendrogram), find the closest parsimonious dendro-
gram. This is an evolution of the previous problem (iii) where the investigator
wishes to find an optimal partition in G classes in the ultrametric matrix
(dendrogram) and the corresponding optimal aggregations from G to 1. This
problem consists of solving the problem (ii), when a single dendrogram is ob-
served or computed and it is necessary to find a single consensus parsimonious
dendrogram (see the problem (4.P1.b) with H = 1 and K = 1, in Section 4.3).

For problems (iii) and (iv) if the hierarchy is not initially given, i.e. if a dissimilarity
matrix is given, then its corresponding hierarchy or ultrametric matrix can be
obtained by applying UPGMA, or any other hierarchical clustering algorithm, to
the dissimilarity matrix.
For problems (i) and (ii) a secondary fuzzy partition that allows each dendrogram of
the primary partition to belong to all clusters of the secondary partition according
to different membership degrees is required. This guarantees great flexibility in the
results and their interpretation.
For each class of the fuzzy partition, a consensus hierarchy (dendrogram) is identified.
However, several authors have noted that the complete sets of partitions and clusters
of the dendrogram are not all used by investigators, even hindering interpretation
(Gordon, 1999). One approach for resolving this difficulty has involved the construc-
tion of a parsimonious dendrogram that contains a limited number of internal nodes.
Some information is lost here, but the main features of the data are represented
more clearly (Gordon, 1999). For this reason, the consensus hierarchy in this chapter
has a parsimonious structure.
It is important to recall that, using a fuzzy approach to clustering, all primary
hierarchies contribute to the definition of each consensus hierarchy according to
their membership degree. Therefore, each consensus hierarchy is mainly determined
by the primary hierarchy whose membership degree is sufficiently high (e.g. >0.7),
while the contribution of primary hierarchies whose membership degree is low is
less relevant. Therefore, it is important to emphasize that the contribution of each
primary hierarchy is taken into account in the definition of consensus hierarchies by
fuzzy assignment to clusters. However, it is important to mention that, especially
to better visualize and interpret the results, very often MAP is applied to the
membership degree matrix to hardly divide the occasions into clusters.

The proposed methodology has been tested in an extended simulation study,
where 1000 three-way arrays of ultrametric matrices have been generated. Two
scenarios of hard assignment and fuzzy assignment of the primary hierarchies to the
consensus hierarchies have been considered. The study showed good results, not
only in recovering the underlying true secondary partition but also in identifying
consensus parsimonious dendrograms very similar to the original ones.

The methodology has also been applied to real datasets; the results of the analyses
show that the proposed methodology is helpful in partitioning the primary hierarchies
in a fuzzy manner, by identifying correctly the hierarchies which share characteristics
with more than one cluster of the secondary partition: for example, in the application
to girls’ growth curves dataset, two periods of contiguous ages are identified and the
hierarchies corresponding to two transitional years from one period to the following
are reasonably softly assigned to both periods. In addition, for each class (period) of
the fuzzy partition, the methodology identifies a consensus parsimonious dendrogram,
which really facilitates the interpretation of the aggregation of the girls.
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This research work introduces a new methodology in multidimensional data
analysis and opens up the possibility to new applications and further developments.
Among the further developments, it might be interesting to study in depth how
sensitive the algorithm is to the choice of linkage method used in hierarchical
clustering.
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Chapter 5

Fuzzy clustering and
dimensionality reduction of a
three-way data matrix

5.1 Introduction

This chapter addresses the problem of obtaining a fuzzy partition of the set of
units-by-variables matrices. A fuzzy clustering technique is proposed to identify
a set of K clusters, their associated K consensus matrices, and the membership
degrees of each original data matrix to the detected clusters. It has to be observed
that the clusters of years and the corresponding consensus matrices are identified
supposing that the dissimilarity relation between units and covariance structure
between variables do not change much so that data matrices in the cluster are
perceived to be one similar to the other. Therefore, the investigator is also interested
to synthesize the covariance structure of each cluster by means of a dimensional
reduction model. Since variables are supposed correlated, second-order disjoint factor
analysis (Cavicchia and Vichi, 2022) is supposed to identify a latent hierarchical
structure of the variables.

Thus to summarize, given a three-way three-mode data matrix X, in this chapter,
a simultaneous fuzzy partitioning of the occasions is found that best identifies a
reduced set of K consensus matrices, each one with covariance structure summarized
by a different second-order disjoint factor analysis. For each consensus matrix is
identified: a) a set of first-order factors with the corresponding loading matrix and
b) a second-order factor, namely a general composite indicator. Formally, given K
consensus matrices, for each k = 1, . . . , K, a set of factors Yk and their corresponding
loading matrix Ak and a general composite indicator gk will be identified, reporting
the scores of each of the N units in the latent dimension. The ranking of the values
of the latent dimension (composite indicator) allows for assessing differences between
units and defining their total order for each class of occasions. Actually, the final
clustering of the units according to the latent dimension will allow the identification
of equivalence classes of units, where it is not possible to appreciate their differences,
while differences will be assessed between classes of units. This means that the
ranking will be considered only between clusters of units.
A flowchart describing the methodology and clarifying the process is displayed in
Figure 5.1.

It has to be clearly observed that the fuzzy clustering for the occasions and the
second-order factor analysis for the variables are estimated simultaneously in the
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Figure 5.1. Flowchart describing the proposed methodology

three-way data matrix to avoid the sequential estimation of the clustering and factor
analysis that may produce masking effects of the global optimal solution.

The new methodology is estimated according to a least-square coordinate descent
method by using an efficient algorithm. As usual in many multivariate methodologies,
the algorithm does not guarantee that the global optimal solution of the clustering
and the simultaneous dimensional reduction of the three-way array is achieved. For
this reason, it is advised to run the algorithm from different starting points to
increase the chance to detect the global optimal solution.

The remainder of this chapter is organized as follows. Section 5.1.1 is fully
dedicated to the review of the literature in this framework; Section 5.2 is useful to
recall the basic notions and models used in the methodological proposal; Section
5.3 describes the proposed methodology and its estimation. In Section 5.4, the new
methodology is applied to a real-case study, namely to the well-being dataset How’s
Life. Finally, Section 5.5 gives remarks and considerations on future developments.

5.1.1 Related Literature

The proposed methodology is included in a general framework of the clustering
techniques for three-way data, or, from an Information Technology (IT) point-of-
view, in a ’multi-view data’ background. Most of the proposed approaches focus on
clustering with a hard assignment of units to clusters. For example, a constrained
algorithm to hardly partition the occasions according to units and variables has been
proposed by Cariou, Alexandre-Gouabau, and Wilderjans (2021) and an algorithm in
a maximum likelihood framework performing clustering to obtain a hard partition of
the occasions has been proposed by Cappozzo, Alessandro, Michael, et al. (2021). A
different problem is addressed by Bocci and Vicari (2019) who proposed an algorithm
to cluster a three-way two-mode data. Another approach of clustering in a three-way
three-mode data framework is proposed by Schoonees, Groenen, and van de Velden
(2021) who simultaneously hardly partition the three modes.

A completely different approach is provided by Durieux and Wilderjans (2019),
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who provide a two-way symmetric dissimilarity matrix synthesizing the three-way
data. Then, they apply standard hard clustering algorithms, such as Partitioning
around Medoids, to the matrix.

In a framework of multi-view data, collected from multiple sources or containing
multiple features, many research works have been published. For example, Khan
et al. (2022) have proposed a multi-view data clustering via nonnegative matrix
factorization with manifold regularization. The non-negative matrix factorization is
applied before clustering to obtain a meaningful clustering solution. However, the
factorization frequently does not retain some characteristics of the data structure,
and a manifold regularization is needed to retain the geometrical feature of the data.
In the same framework of multi-view clustering with matrix factorization, also the
contribution of Yang et al. (2020) is interesting. They suppose that the clustering
performance is characterized by the data distribution, and they have decided to
propose a tri-factorization based on the Non-Negative Matrix Factorization model
with an embedding matrix. In this way, they claim that the obtained consensus
matrices better represent the multi-view data in the subspace. With a similar aim
to improve clustering performance, Zhao et al. (2023) have proposed to combine
multi-view clustering with binary code learning including several new useful features.
Indeed, they have proposed an orthogonal mapping binary graph method (OMBG),
which makes every view of the multi-view data orthogonal and embeds a binary
graph structure into the unified binary multi-view clustering framework. The
orthogonalization allows to eliminate redundant information and the binary graph
structure permits to achieve an optimal clustering result.

5.2 Theoretical Framework
In order to allow the reader to clearly follow the proposed new methodology, it is

worth mentioning the necessary theory, which is based on the deep knowledge of the
three-way data analysis, together with simultaneous fuzzy clustering and factorial
methods of dimensional reduction.
In a framework of three-way three-mode data, our interest is to consider H unit-
by-variable matrices and to apply a fuzzy clustering technique to softly group them
into K clusters, with K << H. So this is a generalization of the usual partitioning
problem because the elements to be classified are not units but matrices of data unit-
by-variable. In this case, several occasions (layers), such as years, can belong to more
than one cluster of matrices and therefore can contribute to the definition of more
than one consensus matrix. The membership degree matrix [µhk]h=1,...,H,k=1,...,K

considered in this chapter has dimension H × K and its generic element µhk belongs
to the interval [0, 1], ∀ h = 1, . . . , H, ∀ k = 1, . . . , K.

Factor analysis techniques are used to reduce the space of variables by using latent
variables (LV) factors that produce a dimensionality reduction of the variables. These
methodologies are often applied when the given set of J manifest variables (MV) are
correlated and represent one or more latent concepts that are not directly measurable.
The latent concepts reconstruct the MVs with different levels of abstraction, from the
most specific, closer to the observed variables, to the most general ones synthesizing
the common relationships of the MVs. Usually, a reduced set of LVs, say Q, (factors,
latent dimensions, or components are terms used interchangeably) are able to
explain and reconstruct most of the information contained in the original data-set.
Exploratory Factor Analysis (EFA), Principal Components Analysis (PCA), and
many variations and extensions are generally used to solve this task.

In general, LVs, and MVs (observed indicators) are statistically related and the
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Factor Analysis (EFA) model describes their relationships by measuring with the
LVs the unobservable latent concepts (constructs).

In general, two types of relationships can exist between LVs and MVs: they can
be either reflective or formative. When a "reflective" relationship exists it means
that LVs cause the MVs, or in other words, MVs reflect the influence of LVs, or,
are affected by the LVs. On the contrary, a "formative" relationship between MVs
and LVs exists when MVs cause (define, explain) the LVs. The reflective relation
assumes that the MVs are correlated and the LVs explain this correlation, while the
formative approach supposes that MVs are uncorrelated and that they are used to
form the LVs.

Based on the type of relationship that is supposed to be observed, two approaches
are possible in FA. If the researcher assumes a model behind the data, because
a theory supports the existence of fixed relationships between MVs and LVs, the
analysis is used to confirm or reject the model, that is, the presence and the level
of these relations. In this case, the analysis follows a confirmative approach, and a
Confirmatory Factor Analysis is used (CFA). On the contrary, if the researcher has not
a theory that defines the existence and the level of relationships, which are unknown,
the analysis follows an explorative approach, or, a mixed confirmative/explorative
approach. In this last case, the known relations between MVs and LVs are fixed and
all the other relationships between LVs and MVs are explored by the analysis.

The aforementioned methodologies aim to define uncorrelated LVs, but very
often these last are correlated because there are cross-loadings, i.e., MVs that are
correlated with two or more LVs and that induce a correlation between LVs. Thus,
researchers wish to explain this remaining correlation between LVs by means of a
general LV of the "second-order" with respect to those obtained by the "first-order"
FA. For example, Vichi (2017) has proposed the Disjoint Factor Analysis (DFA) that
can identify a reduced set of first-order factors with a sparse loading matrix and
define two or more factors that could be correlated, although not highly correlated
because otherwise these factors would have been further combined into a smaller
number. In this context, Cavicchia and Vichi (2022), have introduced the second-
order DFA that identifies a two-level hierarchy of factors. In practice, they first
obtain a first-order factor analysis identifying a reduced set of multidimensional
concepts, then the second order allows them to obtain a single general factor. The
first-order and second-order LVs are estimated simultaneously. It is useful to explain
this methodology with additional details and clear formalization because it will be
included in the new proposed methodology for three-way data.

5.2.1 Second-order disjoint factor analysis
For the moment let the three-way data matrix degenerate into an N × J data

matrix X, that is, H=1. The Second-Order Factor Analysis (2O-FA) model can be
obtained by merging two different nested models involving two typologies of latent
factors: Q (Q << J) first-order factors and a single (nested) general factor. In
particular, letting x be the (J × 1) multivariate observation, then:

x = Ay + w, (5.1)
y = cg + u, (5.2)

where A is the (J × Q) matrix of first-order factors loadings, y is the (Q × 1) vector
denoting the first-order factor scores, and w is a (J × 1) random vector of errors; in
addition, g is the general factor and c is the (Q × 1) vector of general factor loadings.
Finally, u is a (Q × 1) random vector of errors.
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Model (5.1) finds Q specific theoretical constructs by means of a common factor
model that identifies common information with Q factors related to the Manifest
Variables, while model (5.2) detects the general latent construct by means of a
one-factor model.

Therefore, given an N × J data matrix X, by merging models (5.1) and (5.2),
the 2O-FA model can be written in a matrix form as follows:

X = gc′A′ + E, (5.3)

where g = [g1, . . . , gN ]′ is the N ×1 vector denoting the second-order (general) factor
scores, and E is the N × J matrix of errors.

Since the Disjoint FA (DFA) is used as a general framework to simplify factors
interpretation, it is worth recalling the additional property of the loading matrix A
and the advantages of the model. According to disjoint models, the loading matrix
A is of the following form:

A = BV, (5.4)

where V = [vjq] is a (J × Q) binary and row stochastic matrix identifying a partition
of MVs into Q subsets corresponding to Q factors. If the jth MV belongs to the qth
subset then vjq = 1, otherwise, vjq = 0; whereas, B = diag(b1, . . . , bJ) is a (J × J)
scaling diagonal matrix weighting variables and such that b2

j > 0, and the operator
diag(·) of a vector produces a diagonal matrix of that vector.
The main advantage of this Disjoint model is the simplification of the loading matrix
A that captures the simplest structure, i.e. the sparsest, which means that each MV
is reconstructed only by a single factor. In other words, a disjoint class of variables
reflects the influence of a single factor, and all classes form a partition of the MVs.

It is worth specifying that even if DFA assumes orthogonal factors, that is,
Σy = IQ, in the 2O-DFA this condition is relaxed in order to allow a hierarchical
structure of the data.

5.3 The new methodological proposal for three-way data

The methodology proposed in this chapter aims to find a fuzzy partition in K
clusters of the H unit-by-variable matrices and identify for each class a consensus
matrix. Simultaneously, it aims to reduce the dimension of the obtained consensus
matrices, by applying a 2O-DFA to each of them. Therefore, given a set of H >
1 matrices, the goal is to softy cluster them into K > 1 groups, each of them
summarized by a set of Qk first-order latent variables and one second-order latent
variable (or general composite indicator). The number Qk of first-order latent
variables can be different in each consensus matrix.
In order to achieve this goal the following optimization problem has to be solved



66
5. Fuzzy clustering and dimensionality reduction

of a three-way data matrix

w.r.t. continuous variables gk, ck, Bk, µm
hk and discrete variables Vk:



minimize
H∑

h=1

K∑
k=1

∥Xh − gkc′
kBkV′

k∥2µm
hk

s.t.
K∑

k=1
µhk = 1 for h = 1, . . . , H

µhk ∈ [0, 1] for h = 1, . . . , H, k = 1, . . . , K

vjqk ∈ {0, 1} for j = 1, . . . , J, q = 1, . . . , Qk

k = 1, . . . , K

Qk∑
q=1

vjqk = 1 for j = 1, . . . , J, k = 1, . . . , K

Bk = diag(b1k, . . . , bJk) for k = 1, . . . , K

b2
jk > 0 for j = 1, . . . , J, k = 1, . . . , K

(5.P1)

(5.C1)

(5.C2)
(5.C3)

(5.C4)

(5.C5)
(5.C6)

Constraints (5.C1) and (5.C2) guarantee that the set of unit-by-variable matrices
X1, X2, . . . , XH is partitioned in a fuzzy way, i.e., into K clusters: each matrix
belongs to the k-th cluster with the h-th membership degree µhk. In addition,
constraints (5.C3), (5.C4), (5.C5), (5.C6) allow the dimensionality reduction model
to be disjoint. More in details, the binary and row-stochasticity properties of
Vk, k = 1, . . . , K (constraints (5.C3) and (5.C4)) allow each MV to contribute to the
definition of one factor only, while the constraints on Bk, k = 1 . . . , K (constraints
(5.C5) and (5.C6)) allow the matrix to give each variable the weight in defining each
component.
Finally, the fuzziness of the partition is controlled by the parameter m, named
fuzzifier. In particular, when m −→ 1 the partition tends to become hard, i.e. the
membership degrees tend to be either 0 or 1; for m −→ ∞ membership tend to be
constant and equal to 1/K.

5.3.1 Least-Squares Estimation

In order to implement (5.P1), it is worth noting that it can be decomposed into
two alternating minimization sub-problems:

(A) the partial minimization of the objective function of (5.P1) w.r.t. continuous



5.3 The new methodological proposal for three-way data 67

variables gk, ck, Bk, and discrete variables Vk, when µ̂hk is given.

minimize
H∑

h=1

K∑
k=1

∥Xh − gkc′
kBkV′

k∥2µ̂m
hk

s.t.
vjqk ∈ {0, 1} for j = 1, . . . , J, q = 1, . . . , Qk,

k = 1, . . . , K

Qk∑
q=1

vjqk = 1 for j = 1, . . . , J, k = 1, . . . , K

Bk = diag(b1k, . . . , bJk) for k = 1, . . . , K

b2
jk > 0 for j = 1, . . . , J, k = 1, . . . , K

(5.P2)

(5.C3)

(5.C4)

(5.C5)
(5.C6)

The solution of this sub-problem (A) can be found by using the Sequential Quadratic
Programming (SQP) algorithm (Powell, 1983).
It is worth noting that objective function of (5.P2) can be rewritten as follows:

H∑
h=1

K∑
k=1

∥Xh − gkc′
kBkV′

k∥2 =
H∑

h=1

K∑
k=1

∥Xh − X̄k∥2 +
H∑

h=1

K∑
k=1

∥X̄k − gkc′
kBkV′

k∥2 (5.5)

where,

X̄k = 1∑H
h=1 µ̂m

hk

H∑
h=1

µ̂m
hkXh, (5.6)

is the weighted arithmetic mean matrix of Xh, for h = 1, . . . , H, weighted by µ̂m
hk,

which represents the closest LS solution of the unconstrained (5.P2) problem (first
term of the right hand side of (5.5)). Thus, it remains to minimize the second term of
the right hand side of (5.5) under the constraints (5.C3)-(5.C6), that is, the following
optimization problem:

minimize
H∑

h=1

K∑
k=1

∥X̄k − gkc′
kBkV′

k∥2µ̂m
hk

minimize
K∑

k=1
∥X̄k − gkc′

kBkV′
k∥2

H∑
h=1

µ̂m
hk

s.t.
vjqk ∈ {0, 1} for j = 1, . . . , J, q = 1, . . . , Q,

k = 1, . . . , K

Q∑
q=1

vjqk = 1 for j = 1, . . . , J, k = 1, . . . , K

Bk = diag(b1k, . . . , bJk) for k = 1, . . . , K

b2
jk > 0 for j = 1, . . . , J, k = 1, . . . , K

(5.P3)

(5.C3)

(5.C4)

(5.C5)
(5.C6)
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To prove the equality between problems (5.P2) and (5.P3), we prove that the
minimization of

H∑
h=1

K∑
k=1

∥Xh − gkc′
kBkV′

k∥2µ̂m
hk (5.7)

w.r.t. continuous variables gk, ck, Bk, and discrete variables Vk, under the con-
straints (5.C3)-(5.C6), is equivalent to the minimization of

K∑
k=1

∥X̄k − gkc′
kBkV′

k∥2
H∑

h=1
µ̂m

hk (5.8)

w.r.t. continuous variables gk, ck, Bk, and discrete variables Vk, under the con-
straints (5.C3)-(5.C6). It has to be proved that the following decomposition holds:

∥Xh − gkc′
kBkV′

k∥2 = ∥Xh − X̄k∥2 + ∥X̄k − gkc′
kBkV′

k∥2 (5.9)

Proof.

∥Xh − gkc′
kBkV′

k∥2 =
∥Xh − X̄k + X̄k − gkc′

kBkV′
k∥2 =

= tr[
(
(Xh − X̄k) + (X̄k − gkc′

kBkV′
k)
)′((Xh − X̄k)+

+(X̄k − gkc′
kBkV′

k)
)
] =

= tr[(Xh − X̄k)′(Xh − X̄k)]+
+tr[(X̄k − gkc′

kBkV′
k)′(X̄k − gkc′

kBkV′
k)]+

+tr[(Xh − X̄k)′(X̄k − gkc′
kBkV′

k)]+
+tr[(X̄k − gkc′

kBkV′
k)′(Xh − X̄k)] =

= tr[(Xh − X̄k)′(Xh − X̄k)]+
+tr[(X̄k − gkc′

kBkV′
k)′(X̄k − gkc′

kBkV′
k)]+

+2tr[(Xh − X̄k)′(X̄k − gkc′
kBkV′

k)] =
= ∥Xh − X̄k∥2 + ∥X̄k − gkc′

kBkV′
k∥2+

+2tr[(Xh − X̄k)′(X̄k − gkc′
kBkV′

k)]

(5.10)

The second-last equality is given by the fact that tr[A′B] = tr[B′A]. Note that
tr[(Xh − X̄k)′(X̄k − gkc′

kBkV′
k)] is 0, as X̄k is the weighted arithmetic mean matrix

of matrices Xh.

Therefore, we have that

minimize
H∑

h=1

K∑
k=1

∥Xh − gkc′
kBkV′

k∥2µ̂m
hk, (5.11)

is equivalent to

minimize
( H∑

h=1

K∑
k=1

∥Xh − X̄k∥2µ̂m
hk +

H∑
h=1

K∑
k=1

∥X̄k − gkc′
kBkV′

k∥2µ̂m
hk

)
, (5.12)
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which is equivalent to

minimize
H∑

h=1

K∑
k=1

∥Xh − X̄k∥2µ̂m
hk + minimize

H∑
h=1

K∑
k=1

∥X̄k − gkc′
kBkV′

k∥2µ̂m
hk (5.13)

because, given µ̂hk, the two minimization problems are independent.
Moreover, we observe that

∑H
h=1

∑K
k=1 ∥Xh − X̄k∥2µ̂m

hk is already minimized being
X̄k the minimum for the unconstrained version of Problem (5.P2).
Therefore, the solution of Equation (5.11) is equivalent to the solution of the
minimization of

H∑
h=1

K∑
k=1

∥X̄k − gkc′
kBkV′

k∥2µ̂m
hk (5.14)

which can be also written as
K∑

k=1
∥X̄k − gkc′

kBkV′
k∥2

H∑
h=1

µ̂m
hk (5.15)

Given µ̂hk, then, the minimization of (5.15) can be obtained by solving K separate
independent minimization problems with respect to continuous variables gk, ck, Bk,
and discrete variables Vk, under the constraints (5.C3)-(5.C6). This holds because
for each k,

∑H
h=1 µ̂m

hk is a constant in the objective function.
The solution of problem (5.P3) can be found by using SQP. An alternative way to
optimize (5.P3) is to solve it by using a coordinate descent algorithm where at each
step the 2O-DFA is applied to each of the consensus matrices X̄k subject to the
constraints (5.C3)-(5.C6).

(B) the partial minimization of the objective function of (5.P1) with respect to the
fuzzy partition [µhk] when ĝk, ĉk, B̂k, V̂k are given:

minimize
K∑

k=1

H∑
h=1

∥Xh − ĝkĉ′
kB̂kV̂′

k∥2µm
hk

s.t.
K∑

k=1
µhk = 1 for h = 1, . . . , H

µhk ∈ [0, 1] for h = 1, . . . , H, k = 1, . . . , K

(5.P4)

(5.C1)

(5.C2)

This sub-problem (B) can be minimized by considering the Lagrangian function

H∑
h=1

K∑
k=1

∥∥∥Xh − ĝkĉ′
kB̂kV̂′

k

∥∥∥2
µm

hk −
H∑

h=1
λh

(
K∑

k=1
µhk − 1

)
, (5.16)

where the solution with respect to µhk is

µhk = 1∑K
j=1

(
dhk/dhj

) 2
m−1

, for, h = 1, . . . , H, k = 1, . . . , K. (5.17)

where dlp = tr[(Xl − ĝpĉ′
pB̂pV̂′

p)′(Xl − ĝpĉ′
pB̂pV̂′

p)].
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Proof. To prove the solution stated in Equation 5.17, the Lagrangian function in
Equation 5.16 has to be derived with respect to µhk and with respect to λh. Then,
set the two derivatives equal to zero. In the following, for the sake of brevity
and simplicity, we let dhk denote

∥∥∥Xh − ĝkĉ′
kB̂kV̂′

k

∥∥∥ = tr[(Xh − ĝkĉ′
kB̂kV̂′

k)′(Xh −
ĝkĉ′

kB̂kV̂′
k)].

The first derivative with respect to µhk is

d

dµhk
L = d2

hkmµm−1
hk − λh (5.18)

The first derivative with respect to λh is

d

dλh
L =

K∑
k=1

µhk − 1 (5.19)

By setting Equation 5.18 equal to zero, we obtain:

d

dµhk
L = d2

hkmµm−1
hk − λh = 0 ⇐⇒

⇐⇒ µm−1
hk = λh

md2
hk

⇐⇒ µhk =
(

λh

md2
hk

) 1
m−1

(5.20)

By setting Equation 5.19 equal to zero, we obtain:

d

dλh
L =

K∑
k=1

µhk − 1 = 0 ⇐⇒
K∑

k=1
µhk = 1 (5.21)

By inserting Equation 5.20 into Equation 5.21:

K∑
k′=1

µhk′ =
K∑

k′=1

(
λh

md2
hk′

) 1
m−1

= 1 ⇐⇒

⇐⇒
(

λh

m

) 1
m−1 K∑

k′=1

(
1

d2
hk′

) 1
m−1

= 1 ⇐⇒

(5.22)

⇐⇒
(

λh

m

) 1
m−1

= 1∑K
k′=1

(
1

d2
hk′

) 1
m−1

(5.23)

By inserting Equation 5.23 into Equation 5.20,

µhk =
(

λh

md2
hk

) 1
m−1

⇐⇒ µhk = 1∑K
k′=1

(
d2

hk

d2
hk′

) 1
m−1

⇐⇒ (5.24)

⇐⇒ µhk = 1∑K
k′=1

(
dhk
dhk′

) 2
m−1

(5.25)

Equation 5.24 proves the solution stated in Equation 5.17.
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After the solution of the two sub-problems (A) and (B) the objective function
generally reduces w.r.t. the previous iteration, or at least does not increase. Then,
the algorithm stops to a stationary point which is not guaranteed to be the global
minimum. This is due to the fact that a partitioning problem is included in
(5.P1), which corresponds to an np-hard problem. For this reason, the algorithm is
recommended to be run from several initial starting points to improve the chance
of identifying the global optimal solution. The steps of the algorithm can now be
formally presented.

ALGORITHM for (5.P1):

0. Initialization
Set t = 0; ϵ > 0 convergence constant; and randomly generate the member-
ship degree matrix [µhk], with k = 1, . . . , K, h = 1, . . . H from a uniform
distribution and make it row-stochastic.

1. Do t = t + 1

2. Given [µ̂hk], solve sub-problem (A) with SQP algorithm or considering the
following steps:

(a) Compute X̄k, for k = 1, . . . , K as follows:

X̄k = 1∑H
h=1 µ̂m

hk

H∑
h=1

µ̂m
hkXh (5.26)

(b) Solve problem (5.P3).

3. Given ĝk, ĉk, B̂k, V̂k , solve sub-problem (B)
The solution of (5.P4) is given by:

µhk = 1∑K
j=1

(
dhk/dhj

) 2
m−1

, for, h = 1, . . . , H, k = 1, . . . , K. (5.27)

where dlp = tr[(Xl − ĝpĉ′
pB̂pV̂′

p)′(Xl − ĝpĉ′
pB̂pV̂′

p)].

4. Stopping Rule
Repeat steps 1-3 until the difference between the objective function at iteration
t and the objective function at iteration t − 1 is greater than ϵ.

5.3.2 Remarks
It is worth mentioning that in order to allow the researcher to use either a

confirmative approach or an explorative approach, explained in Section 5.2, in the
2O-DFA, it is possible to specify a constraints option, i.e. a vector of length equal
to the number of manifest variables in the data set (J). When a confirmative
approach is used, then the vector is a vector specifying which latent concepts define
the corresponding manifest variable, while when an explorative approach is used,
then the vector is left empty. Obviously, in a confirmative approach, the vector of
constraints directly influence the structure of the matrix Vk.
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The main outputs of the algorithm implementing our proposed methodology
are the membership degree matrix [µhk], the continuous variables gk, ck, Bk, and
discrete variables Vk, which satisfy the constraints of model (5.3).

In particular, once the general composite indicators are obtained, then it is
possible to rank units according to their scores and to discuss and make considerations
on the results. However, frequently very small differences between scores of several
units are observed, These differences cannot be considered statistically significant to
decide if one unit comes before another. Thus, these units actually form equivalence
classes and for these, the individual ranking cannot be realistically assessed. For
this reason, instead of considering the complete ranking of all units, ignoring the
statistical uncertainty, we find the ranking of the classes, i.e., the multivariate partial
ranking defined in the "poset" literature Linear Ordered Partition (Stanley, 1997).
In this way, we find C classes of units, by considering the small differences between
scores as negligible. Given that we are seeking a hard partition of N units into C
groups according to one variable and assuming that we are in a framework in which
there exists a latent variable that defines the ranking of the units, then we can apply
the Kmeans (Lloyd, 1982a; MacQueen, 1967a) algorithm on the general composite
indicator in order to find the optimal partition. By letting C vary in an appropriate
and reasonable interval, we apply the Kmeans algorithm and we compute the Fmax
statistic (Caliński and Harabasz, 1974), which is proved to be a good measure for
identifying the optimal C. Since in this case we are interested in having a large
number of clusters to rank, we choose the highest C provided that the corresponding
index value does not decrease more than 5% from the maximum value that the index
takes in the range {1, . . . , C}. In other words, we choose the number of clusters c at
which the value of Fmax is between [mFmax−0.05·mFmax, mFmax+0.05·mFmax],
where mFmax := maxc Fmax(c), ∀ c ∈ {1, . . . , C}.

Once the optimal partition of units into C cluster is obtained, then it is possible
to represent clusters and their centroids as the values which characterize the clusters,
as is usually done in the clustering problems. Then the final ranking between clusters
of units can be provided. In this way, units belonging to the same cluster are not
comparable in terms of their scores, but they are statistically different from units in
the other clusters.

By summing up our methodology, we can state that given a three-way three-mode
data array, the proposed methodology allows us to find a fuzzy partition of occasions
into K classes, and within each class, identify a consensus matrix of dimensions
N × J which serves as "centroid". In addition, simultaneously, from each of the K
consensus matrices, it is possible to apply a hierarchical factor analysis model in order
to find several factors (specific composite indicators) and a single general composite
indicator. It is worthy recalling that the number of specific composite indicators
can vary among consensus matrices. The proposed methodology, therefore, allows
the reduction of the number of occasions H by identifying K groups of occasions
and simultaneously the reduction of the number of variables J of each consensus
matrix by, firstly finding Qk factors and finally identifying 1 single general composite
indicator.

Moreover, in order to better represent the results, an additional dimensionality
reduction is considered. Indeed, once K general composite indicators (of dimension
N × 1) are obtained, then a linear ordered partition of the units is applied in order
to find C groups of units and therefore obtaining K synthesized general composite
indicators (of dimension C × 1), given by the "centroids" of the groups.
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5.4 Application to well being dataset

The proposed methodology is extremely useful when a set of multivariate observa-
tions of the same statistical units is provided for a given period of time. In this case,
an interesting objective is to identify groups of years and simultaneously for each
group detect a general composite indicator that is able to capture the differences
between units in that specific period of time, by considering their ranking.

This is the case for example of the well-being dataset. In our analysis, How’s
Life- Well Being dataset (downloadable here), was considered following the OECD
website that warns on the use of the classical Well Being Dataset (downloadable
here).1 The How’s Life-Well Being (HLWB) dataset measures similar dimensions
and variables to the ones of the classical Well-Being Dataset. It reports data for
different years and for 38 OECD countries, which are members of the Organisation
for Economic Cooperation and Development, (OECD), which includes most of the
world’s developed economies and several emerging economies. We consider the whole
time period from 2005 to 2021.

However, several data processing steps were needed before implementing our
methodology. First of all, there was the need to impute missing data and this has
been done by using the k-Nearest Neighbors imputation (Troyanskaya et al., 2001)
Secondly, data have been normalized by using the min-max normalization, where
the min and the max are taken over the entire period (2005-2021). In addition, the
variable Road Deaths was further manipulated so that the observation is obtained
by subtracting the normalized value from the observed maximum. In this way,
the variable Road Deaths was polarized correctly. Of course, the interpretation is
reversed and the variable could be renamed "Difference about max Road Deaths".
Finally, since our methodology requires a three-way array formed by the same units
and variables over different years, some variables not present in all years have not
been included. Therefore, the three-way array is formed by H =17 unit-by-variable
matrices, with N =38 countries of OECD and referring to J =10 variables. The
data were normalized and imputed as described above. Each variable is associated
with a known dimension of Well-being as described by the OECD. More specifically,
the following variables were considered: Household income (dimension: Income and
Wealth), Employment rate (dimension: Work and Job Quality), Gender wage gap
(dimension: Work and Job Quality), Earnings (dimension: Work and Job Quality),
Housing affordability (dimension: Housing), Households with internet access at
home (dimension: Housing), Life expectancy at birth (dimension: Health), Perceived
health (dimension: Health), Voter turnout (dimension: Civic Engagement), Road
deaths (dimension: Safety). In addition, OECD in its report clearly identifies two
main larger dimensions: indeed, well-being can be considered in terms of material
living conditions (housing, income, jobs) and quality of life(community, education,
environment, governance, health, life satisfaction, safety, and work-life balance).
In the remainder of the paper, the two dimensions Qualify of Life and Material
Living Conditions will be referred to as QL and MLC, respectively. Merging all the
information stated above, we can summarize the characteristics of our dataset in
Tables 5.1 and 5.2.

1In fact, it is written ’Data cannot be compared between editions of the Better Life Index. For
time series, please refer to the How’s Life – Well-being database’. This means that the Better Life
Index (classical Well-Being Dataset) can be only used to measure the current well-being condition;
instead, the How’s Life Well Being can be used to make comparisons over time.

https://stats.oecd.org/Index.aspx?DataSetCode=HSL
https://stats.oecd.org/index.aspx?DataSetCode=BLI
https://www.oecd.org/wise/oecd-well-being-database-2022-definitions.pdf
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Table 5.1. Information on three-way three-modes data: well-being data

Modes Modes’ Representation Cardinality
Units OECD Countries N=38

Variables Indicators of WB J=10
Layers Years H=17

Table 5.2. Information on variables of the three-way three-modes data: well-being data

Variable Type of indicator Dimension Dimension OECD
Household income Average Income and Wealth Material living conditions
Employment rate Average Work and Job Quality Material living conditions
Gender wage gap Average Work and Job Quality Material living conditions

Earnings Average Work and Job Quality Material living conditions
Housing affordability Average Housing Material living conditions

Households with internet access at home Average Housing Material living conditions
Life expectancy at birth Average Health Quality of life

Perceived health Average Health Quality of life
Voter turnout Average Civic Engagement Quality of life

Difference about max Road Deaths Average Safety Quality of life

5.4.1 Data Analysis
We applied our methodology to the aforementioned described dataset. The

parameters K (number of clusters) and Q1, . . . , QK (number of factors for each
consensus matrix X̄k, ∀ k = 1, . . . , K) are appropriately chosen.

The parameter K was a priori selected by considering internal validity indices,
Fuzzy Silhouette (FS), Xie-Beni (XB), and Calinski-Harabasz (CH) indices (Campello
and Hruschka, 2006a; Xie and Beni, 1991; Caliński and Harabasz, 1974). The
algorithm has been run from 200 random starts to avoid local minima, by letting
K vary in [2, 6]. For each iteration, and for each value of K: i) we computed the
aforementioned indices, ii) we selected the number of clusters (K) that optimizes
the indices; at the end of 200 iterations, we chose the value of K which was selected
the most. According to FS and CH indices, the best K was set equal to 2. We
intuitively consider this choice as sense-full also because, the period 2005-2021 can
be divided at least into two parts. In the period 2005 - 2009, the year 2008 may
be considered the initial year of the great recession that in 2009 continued to be
observed globally in national economies. The effects of the crisis are evident in 2010
and 2011 when a period of instability is still observed: indeed, according to the
OECD statement, 2010 was a year when the impacts of the financial crisis continued
to be deeply felt in many OECD countries (source: OECD website). The year 2012
can be seen as the first year of the beginning of the recovery from the recession
(source: Investopedia website) and therefore from 2012 a period of slow recovery
with some stability is observed. In 2020 the infectious disease Covid-19 has spread
all over the world in a few short months, but its effects on the national economies are
not visible until 2021: indeed, as the World Bank website shows, the Covid-19 crisis
had a major impact in 2021, a year that thus demonstrated that the pandemic has
a far-reaching impact and touched every possible area of development. In addition,
the OECD website reports that as the pandemic progressed, many people began to
feel exhausted, especially in 2021. So this last crisis is not visible yet in the data
that stop in 2021.
We will explore if the economic situation now described is recognized by the fuzzy
clustering with some years hardly assigned to one of the two stability periods, and
with some others more softly assigned to unstable periods.

https://www.oecd-ilibrary.org/sites/9870c393-en/index.html?itemId=/content/publication/9870c393-en
https://www.investopedia.com/terms/g/great-recession.asp#toc-recovery-from-the-great-recession
https://www.worldbank.org/en/news/feature/2021/12/20/year-2021-in-review-the-inequality-pandemic
https://www.oecd-ilibrary.org/sites/1e1ecb53-en/index.html?itemId=/content/publication/1e1ecb53-en
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(b) screeplot for X̄2

Figure 5.2. Screeplot to choose the number of factors

Clearly, the choice of K influences the choice of different number of factors
Q1, . . . , QK . Regarding the number of factors for each consensus matrix, we selected
the best one according to the elbow method. In particular, for the first consensus
matrix, Q1 was set as equal to 2, while for the second the elbow was observed when
Q2 was set as equal to 3. The elbow plots can be analyzed in Figure 5.2.

However, it is important to mention that the 2O-DFA can be also run by imposing
several constraints on the loading matrix. For this reason, we mainly implemented
the methodology on the dataset by using two scenarios:

• By using the unconstrained version of the algorithm, we let Q1 and Q2 be
data-driven chosen (explorative approach). Therefore, Q1 = 2, Q2 = 3, as
discussed above.

• By using the constrained option of the algorithm, we set Q1 = Q2 = 2 and
impose constraints on the variables’ contributions to factors as identified by
OECD (see last column in Table 5.2) (confirmative approach). In particular,
for each consensus matrix X̄k, the constraint vector constrk of dimension
(J × 1) was used to indicate for each variable if the variable is constrained to
be in a fixed class; the generic element of the vector is the number identifying
the factor the variable contributes to defining. Formally, constrk

j = q, ∀ j =
1, . . . , J, ∀ q = 1, . . . , Q, ∀ k = 1, . . . , K. When constraints are fixed, the
2O-DFA can be seen as a confirmatory second-order disjoint factor analysis.

Once K and Qk, ∀ k = 1, . . . , K are set, the algorithm is able to find the fuzzy
partition of the H original data matrices, identify K consensus matrices, identify
K matrices of correlations between variables and factors of dimension J × Qk and
the general composite indicator gk, with the corresponding vector of coefficient
ck, ∀ k = 1, . . . , K.

The best solution (in terms of objective function minimization) over 200 runs
was retained.

5.4.1.1 Membership Degree Matrix

The first output we analyze refers to the fuzzy membership degree matrix which
is shown in Table 5.3.

We observe that our proposed approach is very appropriate for this application.
As can be noticed, a fuzzy approach for clustering matrices allows these (in this
application data matrices represent years) to belong either hardly or softly to clusters.
In particular, we notice that the chronological order is retained and the whole period
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Table 5.3. Membership degree matrix: well-being data

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Cluster 1 0.858 0.870 0.870 0.888 0.769 0.561 0.388 0.257 0.221 0.162 0.108 0.102 0.080 0.102 0.133 0.138 0.226
Cluster 2 0.142 0.130 0.130 0.112 0.231 0.439 0.612 0.743 0.779 0.838 0.892 0.898 0.920 0.898 0.867 0.862 0.774
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Figure 5.3. Mosaic plot displaying on the x-axis the % membership degree to each cluster

is mainly split into two sub-periods (years: 2005-2009 and 2012-2021); the years
2005-2009 are almost hardly assigned to the first cluster, the years 2012-2021 are
almost hardly assigned to the second cluster, while the two years exactly in the
middle of the two clusters (2010 and 2011) are instead softly assigned to both of them.
Indeed, we realized that the economic and social shock occurred and the transition
from a sub-period to another one started in the year 2010 – a year when the impacts
of the financial crisis continued to be deeply felt in many OECD countries (see
OECD website).
The membership degree can be better visualized when a mosaic plot is used. In
Figure 5.3, we observe for a given year a stacked barplot characterized by two colors,
one for each cluster and where the length of each bar is given by the membership
degree (in %) of the corresponding cluster. As can be seen, from 2005 to 2009 the
bar is almost completely green, meaning high membership for cluster one, while
from years 2012 to 2021 almost completely yellow, meaning high membership for
cluster two. Finally, the years 2010-2011 which correspond to a transitional period,
have yellow and green bars of similar length, meaning similar membership for both
clusters.

Hereafter, to better interpret and visualize the results of the applications of
2O-DFA and Multivariate Clusters Ranking, the whole period 2005 − 2021 was
divided into two sub-periods, the first from 2005 to 2010, the second from 2011 to
2021. The subdivision was implemented using the maximum a posteriori (MAP)
technique applied to the membership degree matrix in Table 5.3. The MAP is a tool
to obtain the hard counterpart of a fuzzy partition by hardly assigning each unit to
the cluster whose membership degree is highest.
Therefore, in the following, results are presented and commented on separately by
sub-period. It is worth remembering that the consensus matrices are obtained as
Least-Squares approximation of the original data matrices. This corresponds to
computing the weighted average of matrices, where weights are given by the degrees

https://www.oecd-ilibrary.org/sites/9870c393-en/index.html?itemId=/content/publication/9870c393-en
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to which each original data matrix belongs to the cluster.
For this reason, the years 2005-2010 (hardly belonging to the first cluster) are the
main contributors to the first consensus matrix, while the years 2011-2021 (hardly
belonging to the second cluster) are the main contributors to the second consensus
matrix as can be seen from Table 3.

5.4.1.2 First order DFA

The results of applying 2O-DFA consist of Qk first-order factors and a single
second-order factor, or general composite indicator, for each k = 1, . . . , K. In this
section, we comment on the first-order DFA.

It is worthwhile to analyze and discuss the matrices of correlation values between
each manifest variable and each indicator (first-order factor) obtained by applying
the proposed algorithm to the data set in both a constrained and unconstrained
scenario. The matrix of correlations between variables and factors, considering the
two consensus matrices separately, is shown in Table 5.4. Note that the resulting
matrices are disjoint: in fact, we applied 2O-DFA, which causes each variable to be
associated with only one factor. Also, in Table 5.4, the factors are sorted from left
to right according to the descending order of their explained variance; the name of
the columns and their colors help the reader to understand, compare and grasp the
similarities and dissimilarities between the dimensions identified in the two scenarios.

First, we note that once the constraints on the V matrix are given, the algorithm
calculates the covariances (and thus the correlations) between the variables and
the factors. We observe that for both consensus matrices, the variables are highly
and positively correlated with the corresponding factor, with the only exceptions
being Gender wage gap and Housing affordability. This is an indication that the
current location of these variables may not seem optimal and/or that these two
variables contribute little to the definition of material living conditions as defined by
the OECD. This result is confirmed passing from the period 2005-2010 to 2011-2021
where the correlation tends to nullify for these two variables. Thus, excluding Gender
wage gap and Housing affordability, correlations confirm the classification provided
by the OECD and shown in table 5.2.

In the unconstrained scenario, in which we let the algorithm choose the number
of factors in a data-driven manner, two factors are considered for the first consensus
matrix and three for the second. The number of factors is chosen by the elbow
method (Figure 5.2), and from the heatmaps showing the correlations between the
variables in each consensus matrix (see Figure 5.4), these two parameters seem to
be a good choice, consistent with the structure of the data: in fact, two and three
blocks of variables are clearly visible.

Focusing on the first consensus matrix (years 2005-2010), the factors do not
completely correspond to those provided by the OECD (constrained version), al-
though some similarities can be noted: in fact, the QL dimension is the same as in
the constrained scenario, but two additional variables, namely Household income
and Earnings, also contribute to its definition. Moreover, the two variables whose
correlations with the MLC dimension in the constrained scenario were very low (close
to 0.3), namely Gender wage gap and Housing affordability, in the unconstrained
scenario are highly and positively correlated with the MLC dimension. Thus, the
empirical evidence does not confirm that these two variables are coherent with the
QL. Shifting Household income and Earnings from MLC to QL produces from the
empirical evidence a more consistent measure of QL with respect to the one defined
theoretically by OECD with an increase of Cronbach’s alpha from 0.018 (near-zero
consistency) to 0.694, at the expense of a slight reduction of the Cronbach’s alpha
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Table 5.4. Disjointed matrices of correlations between the variables and the factors under
two scenarios: constrained and unconstrained (well-being dataset).

first consensus: 2005-2010

unconstrained constrained

Variable QL MLC QL MLC
Household income 0.889 0.000 0.000 0.810
Employment rate 0.000 0.773 0.000 0.709
Gender wage gap 0.000 0.542 0.000 0.234

Earnings 0.915 0.000 0.000 0.909
Housing affordability 0.000 0.401 0.000 0.298

Households with internet access at home 0.000 0.902 0.000 0.839
Life expectancy at birth 0.877 0.000 0.917 0.000

Perceived health 0.844 0.000 0.826 0.000
Voter turnout 0.855 0.000 0.858 0.000

Difference about max Road Deaths 0.790 0.000 0.864 0.000

Cronbach’s alpha 0.694 0.586 0.018 0.732
Explained variance (%) 44.646 18.658 30.066 28.329

Total explained variance (%) 63.304 58.395

second consensus: 2011-2021

unconstrained constrained

Variable QL MLC1 MLC2 MLC QL
Household income 0.878 0.000 0.000 0.880 0.000
Employment rate 0.000 0.839 0.000 0.698 0.000
Gender wage gap 0.000 0.000 0.777 0.100 0.000

Earnings 0.914 0.000 0.000 0.897 0.000
Housing affordability 0.000 0.000 0.777 0.096 0.000

Households with internet access at home 0.000 0.859 0.000 0.848 0.000
Life expectancy at birth 0.784 0.000 0.000 0.000 0.868

Perceived health 0.751 0.000 0.000 0.000 0.720
Voter turnout 0.861 0.000 0.000 0.000 0.878

Difference about max Road Deaths 0.000 0.755 0.000 0.000 0.744

Cronbach’s alpha 0.894 0.357 0.342 0.695 0.187
Explained variance (%) 35.252 20.118 12.063 28.048 25.96

Total explained variance (%) 67.433 54.008
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(a) First consensus matrix

(b) second consensus matrix

Figure 5.4. Correlation matrices of the consensus matrices

from 0.732 (MLC, according to OECD definition) to 0.586.
Focusing on the second consensus matrix (years 2011-2021), we note that House-

hold income and Earnings still remain, together with the other variables, the main
contributors to the QL dimension. Also in this sub-period, this variables’ aggregation
produces from the empirical evidence a more consistent measure of QL with respect
to the one defined theoretically by OECD with an increase of Cronbach’s alpha
from 0.187 (low consistency) to 0.894 (high consistency). Thus the perception of QL
remains the same in the two periods with the only exception of the variable Difference
about max Road Deaths. In addition, we notice that in the second sub-period the
variables related to the MLC dimension according to the OECD classification, in the
unconstrained scenario, are divided into two subsets. So in this period after the crisis,
the shock has produced a different perception of the MLC. Variables Employment
rate, Households with internet access at home and Difference about max Road Deaths
are the first specific dimension of the MLC (referred to as MLC1). Variables Gender
wage gap and Housing affordability form the second specific dimension of MLC
(named MLC2). After the crisis, there was major attention to Employment and
Households with the internet from one side and the Gender wage gap together with
Housing affordability on the other side. Furthermore, we note that in the constrained
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scenario Gender wage gap and Housing affordability are very poorly correlated, with
a correlation coefficient close to zero, to the MLC dimension: therefore, in the second
sub-period (years 2011-2021) the OECD classification of dimensions leads to deleting
the above variables in terms of their contribution to the MLC dimension. In contrast,
in the unconstrained scenario, this no longer the case: in fact, the two variables are
highly correlated with the associated factor and alone define the latent dimension
(MLC2). Therefore, in this application the unconstrained scenario allows for a better
explanation and identification of the contributions of the variables to the factors.

Focusing on the objective function, the 2O-DFA uses the explained variance as
a measure of the goodness of fit of the model. Analysis of the model fit statistics
shows that the fit is greater in the unconstrained scenario than in the constrained
one. In this sense, we can conclude that using the factors identified by a data-driven
approach resulted in a solution that suggests the strengths and weaknesses of the
OECD characterization of Well-being and allows the researchers to understand how
to modify the definitions that do not seem sustained in the years by empirical pieces
of evidence. The strength of this methodology is to define factors that can be seen
as the consensus of the factors in sub-periods of years.

Finally, it is worth commenting on the correlations between the factors obtained
in this first-order DFA, shown in the Table 5.5.

(a) First consensus matrix
Fact1 Fact2

Fact1 1.00 0.51
Fact2 0.51 1.00

(b) Second consensus matrix
Fact1 Fact2 Fact3

Fact1 1.00 0.73 -0.41
Fact2 0.73 1.00 -0.28
Fact3 -0.41 -0.28 1.00

Table 5.5. Correlations between factors resulted from first-order DFA applied on the two
consensus matrices

Looking at Table 5.5, we note that the factors identified by applying first-order DFA
to both consensus matrices are highly correlated. In the context of higher-order
factor analysis, this result clearly demonstrates that a second-order DFA is needed
so that a single factor (general composite indicator) explains this residual part of
correlation and represents an overall synthesis of the original J variables. The K = 2
composite indicators, one for each consensus matrix, are analyzed and discussed in
the next section. The product of the correlation coefficients of the first and second
order defines the contribution of each original variable to the general composite
indicator.

5.4.1.3 General Composite Indicators

Once the first-order dimensions have been found, the second-order DFA makes
it possible to identify K = 2 general composite indicators, one for each consensus
matrix X̄k, for k = 1, 2. Since better results are obtained in the unconstrained
scenario, the general composite indicators we analyze here are those obtained in this
scenario.

For each consensus, a ranking of the N = 38 OECD countries can be obtained.
In fact, the general composite indicator provides the score for each unit and can
be considered as the well-being indicator, measuring a nation’s progress in terms of
health, wealth, and personal well-being.
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However, it is necessary to remember that the ranking of countries based on
the scores of the overall composite indicator cannot be used directly because very
small differences are observed between the scores of different units, so a meaningful
and unambiguous interpretation cannot be reached. Using the complete ranking of
all units corresponds to ignoring the statistical uncertainty around the units. For
example, the scores of Finland and Korea are 0.239 and 0.235 for the first period
2005-2010, so they are basically incomparable, meaning that Finland cannot be
said to come before Korea. Similar situations are observed for the Slovak Republic
and Hungary (-0.602 and -0.606), Australia and Denmark (0.316 and 0.301), the
United States, and Luxembourg (0.382 and 0.377), which have almost the same
score in the first period. This situation is also repeated for the ranking of the second
period 2011-2021, where, for example, Portugal and the Slovak Republic have exactly
the same score (-0.338), France and Finland have very similar scores (0.144 and
0.142) so as Sweden and Australia (0.316 and 0.315, respectively). Therefore, we
apply the specialized K-Means for unidimensional variables to the scores of the
general composite indicator to find C homogeneous classes of countries. In this way,
countries in the same cluster are considered incomparable and define equivalence
classes in terms of ranking, while counties in one cluster differ from those in other
clusters. The choice of C should not be parsimonious because we want to have a
granular ranking of clusters. This is explained in detail in Section 5.3.2. We let C
be chosen from the Fmax statistics with additional flexibility shown in Figure 5.5
and C = 12 and C = 10 were considered, respectively.

(a) First consensus matrix (b) Second consensus matrix

Figure 5.5. Fmax values of resulting partition by applying K-Means on the general
composite indicator scores for both the consensus matrices as c varies (well-being
dataset)

The final solution, obtained when C = 12 in the first case and C = 10 in the
second, leads to the partition of countries shown in Table 5.6, where the values
of the cluster centroids are also given. The analysis was conducted using the R
package Ckmeans.1d.dp (Song, Wang, and Song, 2022), and more specifically the
Ckmeans.1d.dp function, which implements the Ckmeans.1d.dp algorithm to cluster
univariate data given by a numeric vector into C groups by dynamic programming
(Wang and Song, 2011; Song and Zhong, 2020) and guarantees the optimality of
clustering, as the total of within-cluster sums of squares is always the minimum
given the number of clusters C.

Looking at the obtained partitions, it can be seen that several countries have
improved their well-being indicator over time: this is the case, for example, of Lux-
embourg, Canada, Germany, New Zealand, Spain, Colombia, and Turkey. However,
comparing the two clustering partitions, corresponding to the two sub-periods, makes
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Table 5.6. Partition of countries in C = 12 and C = 10 clusters and related centroids,
when K-Means is applied to the composite indicator scores associated to the first and to
the second consensus, respectively (well-being dataset)

(a) First consensus matrix
cluster centroid countries

1 0.609 Iceland, Switzerland

2 0.408 Netherlands, Norway,
United States, Luxembourg

3 0.323 Canada, Sweden, Australia, Denmark

4 0.242 Austria, Japan, United Kingdom,
Finland, Korea, Belgium

5 0.148 Germany, Israel,
France, Ireland

6 0.036 New Zealand, Spain
7 -0.107 Italy, Chile, Slovenia
8 -0.201 Costa Rica, Portugal, Greece
9 -0.335 Czech Republic, Estonia
10 -0.492 Colombia, Poland, Lithuania

11 -0.613 Latvia, Slovak Republic,
Hungary, Mexico

12 -0.744 Türkiye

(b) Second consensus matrix
cluster centroid countries

1 0.505 Switzerland, Luxembourg, Iceland

2 0.327
Norway, Netherlands,

Denmark, Sweden,
Australia, Canada,

United States, New Zealand

3 0.219
Belgium, Austria,

Germany, United Kingdom,
Ireland

4 0.141 France, Finland, Israel
5 0.043 Japan, Spain, Italy
6 -0.072 Chile, Slovenia

7 -0.234 Colombia, Czech Republic,
Costa Rica, Greece

8 -0.371 Portugal, Slovak Republic,
Korea, Poland

9 -0.470 Estonia, Türkiye,
Hungary, Lithuania

10 -0.667 Latvia, Mexico

it possible to show that some other countries have worsened their well-being index:
this is the case, for example, of Mexico, Latvia, Estonia, Portugal, Japan, and Korea.
For the sake of clarity and interpretation of the results, among the aforementioned
countries, we analyze New Zealand and Korea in particular: the former is character-
ized by a well-being index close to zero, signifying an average behaviour in terms of
well-being policies, in the first sub-period; in the second sub-period, on the other
hand, it scores similar to the countries in the second position, meaning that over
time it has implemented good policies, not only social but also economic, in order
to increase the well-being of its citizenry. On the contrary, Korea scored positive
and relatively high in the first sub-period, while in the second sub-period, it ranked
substantially worse, below the mean of the countries, meaning that its policies have
been able to reduce the well-being index.

As additional note, it has to be considered that Iceland, Switzerland, the Nether-
lands, Norway, Luxembourg and the United States are always in the top two clusters,
which means that their scores have always been at the top in the two sub-periods;
in other words, in terms of comparison with other countries over the period under
review, they have not changed their policies either to improve or to worsen the
state of wealth, health, personal and social well-being of their citizens. In particular,
Switzerland and Iceland are always in the top group, which means that over the
entire period, they were able to provide good services. Indeed, by examining the
original variables related to health, wealth, and personal and social well-being, we
can see that the values of these variables for the countries mentioned above are
consistently at the top of their rankings throughout the period. In fact, looking
at Table 5.7, we can see that ranking Iceland and Switzerland according to these
variables separately for each year results in ranking positions that are often among
the top.

It has to be noted that the partition into C = 12 clusters of countries in the
first consensus matrix leads to one singleton clusters, namely Turkey (cluster 12);
the identification of singleton cluster is strictly related to the country behavior in
terms of the well-being index: in fact, this country is standing alone and behaving
differently from other countries during the period under consideration, having a
score that is significantly different from that of other countries, a score that deviates
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Table 5.7. Ranking position of Iceland and Switzerland based on the normalized values of
Earning and Employment Rate reported at years 2005, 2006, 2007, 2017, 2018, 2019

(a) Earnings
country 2005 2006 2007 2017 2018 2019

Iceland 3 2 2 2 1 2
Switzerland 2 3 3 4 4 4

(b) Employment Rate
country 2005 2006 2007 2017 2018 2019

Iceland 1 1 1 1 1 2
Switzerland 2 2 4 3 3 3

significantly from the nearest centroid and is itself a centroid.
To summarize the results, countries whose centroid values of the overall composite

indicator are high and positive correspond to countries with a high well-being index;
countries whose centroid values of the overall composite indicator are medium-high
and positive are those countries characterized by a better-than-average well-being
index; finally, countries whose centroid values are negative and low correspond to
countries that are always below the average level of the well-being index.

It is possible to appreciate the differences in well-being indicator scores by looking
at the maps shown in Figure 5.6.

The analysis of the rankings and, more specifically, analysis of the identified
groups of countries allowed us to compare countries’ policies and citizens’ perceptions
of personal and social comfort, health, wealth, and well-being.

In conclusion, our methodology allowed us to start from a complex data structure,
i.e., a set of H data matrices (N × J) and obtain, at the end of the process, K
composite indicators of N units, where K = 2 are the clusters of years; most years
are hardly assigned to the corresponding cluster, while two years exactly in the
middle of the two periods (clusters), corresponding to transition years, were correctly
identified by the fuzzy membership. In addition, a partitioning algorithm was applied
to the two composite indicators to obtain C classes of countries in both sub-periods,
where the ranking can be considered more realistically and hence the final groups of
countries are more easily interpreted.

5.5 Conclusion

Given a three-way data matrix characterized by three modes, N units, J variables,
and H occasions, a new methodology is introduced that allows the fuzzy partitioning
of occasions into K clusters and identification of K consensus data matrices. At the
same time, the covariance structures of each of the K consensuses are summarized
by the corresponding disjoint second-order factor analysis. In more detail, for
each consensus data matrix, we obtain a) a set of first-order factors with the
corresponding loadings matrix and b) a second-order factor analysis, i.e., a general
composite indicator, and Q specific composite indicators.
In addition, the scores of each general composite indicator can be ranked, and
such ranking allows for the evaluation of differences between units. However, it
is suggested to apply a partitioning algorithm to obtain C equivalence classes of
units, each of which groups countries whose difference between scores cannot be
appreciated. In this way, it is possible to appreciate the differences between classes
and produce their ranking.

It should be emphasized that the fuzzy clustering of occasions and the second-
order factor analysis are computed simultaneously in the three-way data matrix to
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(a) First consensus matrix

(b) Second consensus matrix

Figure 5.6. Composite indicator scores associated to the first and to the second consensus,
respectively (well-being dataset)
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avoid the sequential estimation of clustering and factorial methods that, as it is
well-known, could produce masking effects of the overall optimal solution.

The new methodology is estimated by a least-squares coordinate descent method
by using an efficient algorithm.

The proposed methodology is extremely useful when one has a set of multivariate
observations of the same statistical units for a specific time period. In this case, the
goal is to identify year groups and, simultaneously, for each group, detect an overall
composite indicator that is able to capture the differences between the units over
those specific years, considering their compote indicators and corresponding ranking.

Within this framework, the proposed methodology was applied to the well-being
dataset. The How’s Life-Well Being (HLWB) dataset measures several variables
and reports data for several years and 38 OECD countries. We consider the entire
time period from 2005 to 2021. Therefore, the three-way matrix consists of H = 17
unit-by-variable matrices, with N = 38 OECD countries monitored on J = 10
variables considered proxies of the well-being.
The fuzzy approach to clustering is very appropriate for this application. In fact, the
fuzzy partitioning of years can be easily interpreted and the results are realistic and
meaningful: first, the chronological order is maintained; second, the whole period
is mainly divided into two sub-periods: most years are hardly assigned to clusters,
while the two years (2010 and 2011) exactly in the middle of the two clusters are
instead softly assigned to both. In fact, the transition from the first sub-period to
the second began in 2010, a year in which the impacts of the financial crisis were
deeply felt in many OECD countries. Therefore, the soft allocation of these two
years is significant and fully consistent with their transitional characterization.
In addition, with the second-order DFA it was possible to identify K = 2 overall
composite indicators and to obtain a ranking of N = 38 OECD countries. For
the reasons mentioned above, we find a multivariate partial ranking by applying a
K-Means to the scores of general composite indicators to find C groups of countries.
The analysis of the identified countries’ groups allowed for a reasonable comparison
of countries’ policies and people’s perceptions of health, wealth, and personal so as
social personal comfort.

The proposed methodology is a powerful tool for multivariate data analysis
because it includes several tasks, simultaneously solved, of clustering, dimensional
reduction, and ranking, typically sequentially computed in many applications with an
understandable reduction of optimality of the final solution. Specifically, given a three-
way data matrix, the new methodology allows for the simultaneous fuzzy partitioning
of occasions into K clusters and ranking of units within each cluster according to
general composite indicator scores obtained by disjoint second-order factor analysis
applied to each consensus matrix. There are many possible applications of the
methodology in different areas: for example, in economic studies, it can be used
to obtain a fuzzy partition of years and simultaneously rank countries in each sub-
periods according to their economic behavior.
The methodology opens up the possibilities of further developments, according to
different data analysis aims.
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Chapter 6

Representing ensembles of
networks for fuzzy cluster
analysis

6.1 Introduction

Networks represent a powerful model for problems in different scientific and
technological fields, such as neuroscience (Simpson, Hayasaka, and Laurienti, 2011;
Obando and de Vico Fallani, 2017), molecular biology (Grazioli, Martin, and Butts,
2019), biomedicine (Yang et al., 2014; Granata et al., 2020a), sociology (Heckerman,
1997; Jiang et al., 2014; Slaughter and Koehly, 2016), social network analysis (Tang
and Liu, 2011; Tagarelli, Amelio, and Gullo, 2017) and political science (Moody and
Mucha, 2013). As the number of network applications increases, so does the need
for novel data analysis techniques, particularly for fuzzy cluster analysis.

A well-known approach to the clustering problem on a network is the detection
of clusters of nodes (or communities). This task is widely explored in literature, and
many research works focus on applying both hard and fuzzy clustering algorithms
to a network to detect the underlying community structure. Among the studies
utilising hard clustering algorithms to detect node clusters, we recall Asur, Ucar,
and Parthasarathy (2007) who proposed a methodology to be applied on protein
network where they applied standard conventional graph clustering techniques to find
communities of nodes inside a weighted network and combined the clustering results
to get a consensus clustering. A systematic investigation of consensus clustering
for detection of community structures in complex networks was performed by
Lancichinetti and Fortunato (2012). A general overview of the existing methodologies
used to summarize clustering results is given by Ghosh and Acharya (2011), who
provided a detailed review of cluster ensembles. Ou-Yang, Yan, and Zhang (2017)
proposed a methodology to obtain communities of nodes or protein complexes by
using information taken from multiple heterogenous protein networks.
Instead, among the research works that have focused on applying fuzzy clustering
algorithms to detect clusters of nodes, one example is the study conducted by
Havens et al. (2013), in which they employed the Fuzzy k-Means (FkM) algorithm to
identify fuzzy communities within social networks. A different proposal is addressed
by Runkler and Ravindra (2015) who apply the Non-Euclidean Relational Fuzzy
k-Means (NERFkM) algorithm to the dissimilarity matrices obtained using three
algorithms for crisp graph clustering: the Newman-Girvan, the Small World, and the
Signal algorithms. Bhatia and Rani (2017) use a Parallel Fuzzy Clustering Algorithm
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for handling scalable graph data and Zaidi (2012) focuses on a network structure to
find clusters of web pages according to related keywords. In particular, the author
uses the Fuzzy Agglomerative Hierarchical clustering algorithm and Hierarchical
Hyperspherical Divisive Fuzzy k-Means.

All the articles mentioned above focus on considering a single node as the
statistical unit. On the contrary, we consider a single network as the unit of interest.
Thanks to its structure, a network provides a more detailed representation of the
problem yet introduces new complexity. In this context, with the fast-growing
availability of data and ensembles of networks, several research areas can focus
on clustering networks. In biology, networks can represent, for example, tumour
metabolism: the nodes are the metabolites, and edges connect pairs of nodes involved
in the same reaction. In this case, the interest is to characterise groups of patients
based on the tumor type (Manipur et al., 2020a). In air passenger transport, each
graph represents an airlines company, nodes are airports and edges flight routes.
The aim is to study how the airline companies can be grouped (Carpi et al., 2019;
Tantardini et al., 2019), accordingly to the structure of their routes. In the field
of commerce and trade, products can be represented by networks, whose nodes
are countries and edges are the export/import trades, and the interest is to group
products with similar trade behaviour (Tantardini et al., 2019). In political science,
Yin, Shen, and Butts (2022) propose a model-based clustering to identify groups of
networks: in their case study, networks represent co-voting patterns, nodes represent
Senators, and edges link Senators that vote concurrently. In a sociological study,
Brandes, Lerner, and Nagel (2011) apply a clustering technique to detect clusters of
networks of migrants in Spain and USA and for each cluster of networks determine
its role structure: in particular, they extract a feature vector from each network and
apply standard clustering methods (e.g. k-Means). In medicine, Duroux and Van
Steen (2023) identify groups of networks by computing similarity between networks
via appropriate distance measures; they apply the methodology to nitroaromatic
compound networks and brain networks. Finally, several applications in different
areas are provided by Ni et al. (2017), whose aim is to find groups of networks while
detecting common clusters within each network group.

To the best of our knowledge, this is the first work focusing on identifying how
to represent ensembles of networks for fuzzy cluster analysis. Indeed, related works,
such as the aforementioned ones, use a single hard approach to clustering: this
means that each network can belong to one cluster only. However, depending on
their representation, networks may have characteristics in common to more than one
cluster, and therefore in such situations, a more flexible approach is more adequate.
In this sense, the fuzzy approach guarantees major flexibility than the hard approach,
by allowing each network to belong to all clusters according to different membership
degrees.

It is important to emphasise the distinctive nature of our work in comparison to
previous proposals regarding ensemble network clustering. While prior approaches
either concentrate on applying fuzzy and hard node clustering methods to detect
clusters of nodes or focus solely on using hard clustering techniques to ensemble of
networks to detect clusters of networks, our proposal distinguishes itself by employing
a fuzzy clustering approach to identify clusters of networks.

To cluster networks, we need to find an adequate representation. In the early
proposals on this topic, networks have been represented using some topological
characteristics, such as density, the average number of nodes per edge, centrality
indexes, to name a few. The pros of such a choice are that even if the networks do
not share a common set of nodes, it is still possible to obtain a representation in
some vector space and apply standard clustering techniques. Moreover, networks of
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different sizes find a representation in the same vector space. The cons rely mainly
on the fact that very different networks might be represented by the same values of
the chosen features, making the data analysis difficult or impossible.

Another option would be to represent the network using its adjacency matrix,
a 0, 1 matrix, whose dimension is the number of nodes, encoding the presence of a
connection between nodes i and i′ with a 1 in position i, i′. This matrix representation
would make it possible to use matrix norms to induce a distance. The limit of this
solution is that a matrix norm cannot account for differences in specific parts of the
network and therefore ignores its topological characteristics.

To overcome these limits, we study two types of network representations: a
probabilistic representation of graphs where the Jensen-Shannon Divergence is used
to compute pairwise distances and a whole-graph embedding representation. The
embedding techniques provide a vector space representation of the networks to
identify a space that is optimal with respect to some characteristics.

Once we have chosen how to adequately represent the networks, it is possible to
apply fuzzy clustering algorithms. More in detail, we applied Non-Euclidean Fuzzy
Relational Clustering, introduced by Davé and Sen (2002), and the Fuzzy Analysis
clustering, introduced by Rousseeuw and Kaufman (1990), when the networks
are represented by a matrix of distances; instead, we applied the Fuzzy k-Means
(Bezdek, 1981), the Fuzzy k-Means with polynomial fuzzifier (Klawonn and Höppner,
2003), the Fuzzy k-Means based on L1 metric (Jajuga, 1991) and the Fuzzy k-
Medoids (Krishnapuram et al., 2001), when they are in form of a feature matrix.
We empirically compare the strategies, highlighting their possible uses in different
scenarios. Finally, we analyze the performances of the algorithms applied to the
proposed networks representations of two ensemble of networks: the former is the
European Air Transportation Network (Cardillo et al., 2013), the latter is obtained
from the FAOSTAT, the Food and Agriculture Organization of United Nations
database.

The chapter is organised as follows: Section 6.2 gives a brief introduction to graphs
(in this context synonymous of networks); Section 6.3 explains the methodology and
details the algorithms used in our analysis; Section 6.4 focuses on the applications on
simulated and real datasets: both the networks descriptions and the main clustering
results are provided. Finally, Section 6.5 contains concluding remarks and future
work.

6.2 Definitions
6.2.1 Graphs

A graph or a network is a mathematical entity representing connections or
relationships between pairs of objects, or more in general, between several objects.
A graph G = (V, E) is an ordered tuple of 2 sets: V = {v1, . . . , vN } is the set of its
N unique nodes, and E = {e1, . . . , eM } is the set of its M edges. The set E is a
subset of V × V , E ⊆ V × V , the set of all possible edges. In the case of undirected
graphs, each edge is an (un)ordered node pair, el = (vi, vi′) ∀ l = 1, . . . , M , and
∀ i, i′ = 1, . . . , N , not necessarily i ̸= i′, as it is possible to have self loops. If the
edges have an orientation, we call the graph oriented (directed). In non-oriented
graphs, the relation represented by the edge between a pair of objects is symmetric.
In contrast, in the case of directed graphs, the orientation of the edges (that are
represented by arrows) points out a two-level relation. Aside from orientation,
edges might be weighted or unweighted; the weights, representing the strength of
the connection between two nodes, are usually shown as numbers just above the
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corresponding edges. Focusing on nodes, they usually identify units inside the
network. Therefore, they are unique, and their labels are the key identifiers. The
label can either be a number, a letter, or a word.
Finally, in a graph G = (V, E), we define a path (walk) from vertex vi to vertex vi′

as a sequence of edges {e0, e1, . . . , ez} joining a sequence of vertices, where vi is the
starting node, and vi′ is the final node. If there exists a path from node vi to node
vi′ we will say that vi′ is reachable from vi. In an unweighted network, the length of
a path is equal to the number of its edges, In a weighted one, the length of a path is
given by the sum of weights of its edges. We refer to the shortest (geodesic) path as
the path connecting two nodes with the shortest length. The length of the longest
shortest path is called the diameter of a network.

6.2.2 Network representations
We adapted diverse network representations to assess the fuzzy clustering algo-

rithms. These representations are based on probability distributions of topological
network properties and whole-graph embeddings.

Networks are often represented as probability distributions of their topological
features. In this study, we use two such distributions, (Carpi et al., 2019; Granata
et al., 2018; Granata et al., 2020b), describing global and local network properties,
the Node Distance Distribution and the Transition Matrix, which will be explained
in the following subsections.

As additional networks’ representation, it is also possible to use the whole-
graph embedding representation. The embedding techniques provide a vector space
representation of the networks to identify a space that is optimal with respect to
some characteristics. Particularly, the Joint Emdedding Technique (Wang et al.,
2021) and the Denoising Autoencoder (Gutiérrez-Gómez and Delvenne, 2019) are
described in the following subsections.

6.2.2.1 Node Distance Distribution

The Node Distance Distribution (NDD) summarizes the graph by using a row-
stochastic matrix of dimension N × d, where N is the cardinality of the set V and d
is the diameter of the graph, i.e. the length of the longest shortest path existing in
the graph.

More in details, the NDD of node i, denoted as Ni(l), is defined as the fraction of
nodes reachable with a shortest path of length l from node i. The matrix describing
the NDD of a graph G is obtained by computing Ni(l) for each node i = 1, . . . , N
and for each length l ∈ L, where L is the set of lengths of all the shortest paths
inside the graph G. More formally, the NDD of graph G is defined as N1, . . . , NN ,
where Ni =

[
Ni(1), . . . , Ni(d)

]
, ∀ i = 1, . . . , N and contains information about the

global topology of graph G.
Operationally, in order to represent a graph G by its NDD the following steps are
needed:

1. Compute a matrix M1 of dimension N ×N , filled by the lengths of the shortest
paths joining each pair of nodes in the graph.

2. Build a new matrix M2 of dimension N × d, where d is the diameter of the
network: each entry is the number of shortest paths starting from the node in
the row-position and having length equal to the one in the column-position.

3. Divide each entry by N − 1: this is the final matrix M3, i.e. the NDD
representation of the graph.
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As an example, Table 6.1 shows the aforementioned steps used to obtain the
NDD the unweighted, undirected graph represented in Figure 6.1.

1

2

3

4

5

6

7

Figure 6.1. An example of unweighted, undirected network.

The matrix in 6.1 (c) is the final representation of the graph through its Node
Distance Distribution. It is a row-stochastic matrix, having as generic element in
position (i, l) the fraction of nodes reachable from node i with a shortest path of
length l. For example, half of the nodes are reached from node labeled with 7 with
a shortest path of length 2.

It is worthy mentioning that the NDD of a graph provides information about
the global topology of the graph.

The NDD is a very important and useful tool in order to obtain a synthetic
representation of the network. Indeed, each graph is represented by a matrix of
dimension N × d, and even in a network with very large vertex cardinality, the
diameter d is often very short; when this is the case, the network can be referred
to as a small-world network. In other words, a network satisfies the small-world
property if the average geodesic distance between pairs of nodes is small relative to
the total number of nodes in the network.

The most popular example related to the small-world network refers to Milgram’s
studies. In the 1960s, sociologist Stanley Milgram conducted several studies to verify
the existence of short social connection paths between people and to quantify the
average distance between entities in a social network; in other words, his goal was to
measure the length of paths between any two nodes in a social network by counting
the number of friendship ties between any two people. His studies showed that
human society can be regarded as a small-world network, and his discovery is often
associated to the sociological theory Six degrees of separation: according to the
theory, any two people in the world are likely to be connected by a path with no
more than 6 edges. In particular, the researcher carried out an experiment in the
United States whose purpose was to count how many nodes (people) were needed to
send a packet from one randomly selected person to another; the results showed that
about an average of 6 friendship ties united those two people. Similar experiments
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Table 6.1. Operational procedure to obtain the NDD of the graph G displayed in Figure
6.1.

(a) step 1

1 2 3 4 5 6 7
1 0 1 1 3 2 4 3
2 1 0 1 2 1 3 2
3 1 1 0 2 1 3 2
4 3 2 2 0 1 3 2
5 2 1 1 1 0 2 1
6 4 3 3 3 2 0 1
7 3 2 2 2 1 1 0

(b) step 2

1 2 3 4
1 2 1 2 1
2 3 2 1 0
3 3 2 1 0
4 1 3 2 0
5 4 2 0 0
6 1 1 3 1
7 2 3 1 0

(c) step 3

1 2 3 4
1 0.33 0.17 0.33 0.67
2 0.50 0.33 0.17 0.00
3 0.50 0.33 0.17 0.00
4 0.17 0.50 0.33 0.00
5 0.67 0.33 0 0.00
6 0.17 0.17 0.50 0.17
7 0.33 0.50 0.17 0.00

have been conducted to investigate this interesting topic more thoroughly; among
the others, a fairly recent experiment by Dodds, Muhamad, and Watts (2003),
characterized by randomly selected sample and by the use of email addresses instead
of physical addresses as in Milgram (1967), shows that there is a median of five
to seven steps between each pair of people in the world. As a final note, it is
interesting to know that in his article Milgram never mentioned the notion of degree
of separation; it was later coined by John Guare, an American playwrite who titled
one of his plays six degree of separation (Guare, Sandrich, and Loewenberg, 2000)
and his brilliant idea popularized the phrase and related social theory.

6.2.2.2 Transition Matrix

A Transition Matrix (TM) of order s represents a graph using a row-stochastic
N ×N matrix (TM of order s), having element T s

ii′ equal to the probability of node i′

to be reached in s steps by a random walker located in position i, ∀ i, i′ ∈ {1, . . . , N}.
Operationally, in order to represent a graph G by its Transition Matrix of order s,
the following steps are needed:

1. Build a matrix M of dimension N × N , a 0/1 matrix filled by 1, if starting
from the row-node it is possible to reach the column-node in s steps.

2. Compute the row sums of M.

3. Divide each entry of M by the n-column vector of row sums.

In practice, as an example, Table 6.2 shows how to obtain the TM of second order
(s = 2) representing the network in Figure 6.1.
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Table 6.2. Operational procedure to obtain the TM of order 2 of the graph G displayed in
Figure 6.1.

(a) step 1

1 2 3 4 5 6 7
1 0 0 0 0 1 0 0
2 0 0 0 1 0 0 1
3 0 0 0 1 0 0 1
4 0 1 1 0 0 0 1
5 1 0 0 0 0 1 0
6 0 0 0 0 1 0 0
7 0 1 1 1 0 0 0

(b) step 2

1 2 3 4 5 6 7 sum
1 0 0 0 0 1 0 0 1
2 0 0 0 1 0 0 1 2
3 0 0 0 1 0 0 1 2
4 0 1 1 0 0 0 1 3
5 1 0 0 0 0 1 0 2
6 0 0 0 0 1 0 0 1
7 0 1 1 1 0 0 0 3

(c) step 3

1 2 3 4 5 6 7
1 0.00 0.00 0.00 0.00 1 0.00 0.00
2 0.00 0.00 0.00 0.50 0.00 0.00 0.50
3 0.00 0.00 0.00 0.50 0.00 0.00 0.50
4 0.00 0.33 0.33 0.00 0.00 0.00 0.33
5 0.5 0.00 0.00 0.00 0.00 0.50 0.00
6 0.00 0.00 0.00 0.00 1 0.00 0.00
7 0.00 0.33 0.33 0.33 0.00 0.00 0.00

The matrix in Table 6.2 (c) is the final row-stochastic matrix of dimension N × N ,
representing the graph through its Transition Matrix of order 2.

It is worthy mentioning that the transition matrix of order 1 of the graph G is
just the Adjacency matrix of G, rescaled by the degree of each node (number of edges
adjacent to the node). In addition, the TM of a generic order s can be obtained as
TMs = (TM1)s.

Finally, the TM of a graph provides information about the connectivity of the
graph.

6.2.2.3 Distribution distances

Networks are often represented as probability distributions of their topological
features, such as the Node Distance Distribution and the Transition Matrix, which
can be summarized as follows:

• Node Distance Distribution (NDD): N r
i (l), the NDD of node i in graph Gr, is

the fraction of nodes in Gr reachable with the shortest path of length l from
node i.

• T r(s), the Transition Matrix (TM) of a graph Gr of order s: T r
ii′(s) is the

probability of a node i to be reached in s steps by a random walker located at
node i′ in the graph Gr.

Once the graph are represented as probability distributions, then a dissimilarity
metric between probability distribution can be used to obtain the dissimilarities
between graphs. Formally, let Gp and Gq be two graphs, with NDDs for node i
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N p
i and N q

i respectively, and TMs of order s=2: T p(2) and T q(2) respectively. By
averaging over all N nodes, the MN and MT graph distances are defined as:

MN (Gp, Gq) = 1
N

N∑
i=1

√
J (N p

i , N q
i ), (6.1)

MT (Gp, Gq) = 1
N

N∑
i=1

√
J (T p

i (2), T q
i (2)). (6.2)

where J is the Jensen-Shannon distance of distributions (Fuglede and Topsoe,
2004a), which is recalled for the reader in Section 6.2.2.4. Thus each row of MN

and MT contain the networks’ dissimilarities. More precisely, the resulting matrix,
usually called Gram matrix or Distance matrix (Manipur et al. (2020a)), is a squared
symmetric matrix, having null diagonal elements and non-negative off-diagonal
elements. According to Schieber et al. (2017a), such network dissimilarity measure
matrix is very precise. Indeed it compares, through the Jensen–Shannon divergence,
topological differences between networks. In particular, the generic element of the
dissimilarity matrix is equal to 0 if the corresponding graphs are isomorphic and is
positive if the pair of graphs are not isomorphic: in this latter case, we can also say
that the dissimilarity value quantifies the topological differences between the two
graphs.

6.2.2.4 Jensen-Shannon Divergence

According to Fuglede and Topsoe (2004b), the Jensen-Shannon Divergence
is a smoothed and symmetrized version of the Kullback-Leibler divergence, one
of the most important divergence measure of information theory (Kullback and
Leibler, 1951a). The Jensen-Shannon Divergence (JSD) measures how different is
the probability distribution P compared to the reference probability distribution Q
and it is defined as follows:

JSD(P ||Q) = 1
2D(P ||M) + 1

2D(Q||M) (6.3)

where
M = P + Q

2
and

D(A||B) =
∑
x∈X

A(x) log
(

A(x)
B(x)

)
(6.4)

is the Kullback-Leibler divergence between two generic discrete distributions A and
B with support over X , or, when the two probability distributions are continuous,

D(A||B) =
∫
X

A(x) log
(

A(x)
B(x)

)
dx (6.5)

In other words, the Kullback-Leibler divergence, also known as directed divergence
in Kullback and Leibler (1951a) or discrimination information in Kullback (1997a),
is the expectation of the logarithmic difference between the probabilities P and Q,
where the expectation is taken using the probability P .
It is important to notice that the logarithm in (6.4) and in (6.5) can be the natural
logarithm, i.e. ln(·), or can be at base 2.
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6.2.2.5 Denoising Autoencoder

Neural network approaches to generate graph embeddings have been used for
several clustering and classification applications. The main task of graph embedding
is to project the graphs into a vector space while preserving their properties. Here,
we consider the Denoising Autoencoder (DAE) approach by Gutiérrez-Gómez and
Delvenne (2019) for generating unsupervised embeddings of graphs sharing the same
set of nodes.

A corrupted version of a network is fed to the autoencoder, following which it is
trained to reconstruct a clean version of the original input graph. The powers of the
adjacency matrices are vectorised and used as input to the DAE. Finally, euclidean
distances are computed to construct a distance matrix between the embeddings. In
our experiments, we evaluated the embedding dimensions: 800 and 1600; we fixed
the power of the adjacency matrices at 3.

6.2.2.6 Joint Embedding

Joint Embedding (JE) is a matrix factorization-based embedding method proposed
by Wang et al. (2021). Given a set of undirected graphs, the method first identifies
a linear subspace spanned by rank one symmetric matrices; and then projects the
adjacency matrices of the graphs into this subspace. The projection coefficients give
the features of each graph.

Given R graphs,
{
Gri

}R

i=1, with Ai being the corresponding adjacency matrix,
the d-dimensional Joint Embedding of graphs

{
Gri

}R

i=1 is given by

(λ̂1, . . . , λ̂R, α̂1, . . . , α̂d) = argmin
λi,∥αk∥=1

R∑
i=1

∥Ai −
d∑

k=1
λi[k]αk ∗ αT

k ∥2 (6.6)

where d is the embedding dimension, ∥·∥ is the Frobenius norm, λi is the loading
for graph i, λi[k] is the kth entry of the vector λi and α represents the vector with
latent positions of the embedding.

The embedding dimensions d of 2 and 10 are evaluated in the clustering experi-
ments.

6.3 Fuzzy networks clustering
Cluster analysis in a network framework may be applied with a dual purpose:

on the one hand, to detect clusters of networks, on the other hand, to recognize
clusters of nodes (communities) in one network. We are interested in considering
each network as a statistical unit and investigating how the graphs can be grouped
and the algorithm’s performance through some validity indices. Generally, clustering
algorithms apply either to a relational data matrix or a feature (or object) matrix. In
the former case, the matrix represents relationships (e.g., dissimilarities) between the
units; in the latter case, the matrix has row vectors (one for each unit) representing
some features of the corresponding unit. Therefore, we need to obtain a well-defined
matrix before applying clustering techniques. The clustering algorithms differ from
one another for the input matrix they require. In particular, we focus on algorithms
that use a fuzzy approach. Unlike the classical/hard approach, the fuzzy one assigns
each unit to a cluster with a membership degree, taking values in the interval
[0, 1]. The unit interval limits indicate complete non-membership and complete
membership, respectively. In this work, on the one hand, we use the so-called
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Non-Euclidean Relational Fuzzy Clustering (Davé and Sen, 2002) and the so-called
Fuzzy Analysis Clustering or FANNY (Rousseeuw and Kaufman, 1990), which take
as input relational data (such as a distance matrix); on the other, we use the Fuzzy
k-Means (Bezdek, 1981), the Fuzzy k-Means with polynomial fuzzifier (Klawonn
and Höppner, 2003), the Fuzzy k-Means based on L1 metric (Jajuga, 1991) and the
Fuzzy k-Medoids (Krishnapuram et al., 2001), that take as input a feature matrix.

6.3.1 Fuzzy clustering algorithms for feature matrix
This Section is fully devoted to recall several clustering algorithms which take

as input a feature matrix: in particular, the Fuzzy k-Means algorithms, as well as
some of its variations. Clearly, as the algorithms take as input a feature matrix,
the technique described in Section 6.2.2.6 (Joint Embedding) is used to represent
networks by rows.

A de-facto standard fuzzy clustering method is the Fuzzy k-Means (FkM) (Bezdek,
1981), the fuzzy generalisation of the k-means algorithm (MacQueen, 1967b). Given
a data matrix X of order N × J , where N and J are the number of units and
features/variables, respectively, and letting d(xi, xi′) denote the dissimilarity between
objects xi and xi′ , the FkM objective function to be minimised to find K clusters is:

JFkM =
N∑

i=1

K∑
k=1

µm
ikd2(xi, hk) (6.7)

s.t.
µik ∈ [0, 1] ∀ i = 1, . . . , N, ∀ k = 1 . . . , K (6.8)

K∑
k=1

µik = 1 ∀ i = 1, . . . , N, (6.9)

The matrix [µik]i=1,...,N,k=1,...,K is of order N × K and contains the membership
degrees, while H is the K × J prototype matrix. The parameter m (> 1) indicates
the fuzziness of the partition. A common choice for m is in the interval [1.5, 2]. The
clustering is not meaningful for m → ∞, leading to the same constant membership
degree for each unit. In contrast, the fuzzy approach will become the classical hard
one when m → 1, the membership degree tends to be either 0 or 1.

A variation of FkM algorithm is introduced by Jajuga (1991), who proposed the
Fuzzy k-Means based on L1 metric (FkM.L1), i.e. a variation of the standard Fuzzy
k-Means, which generally use the Euclidean metric to measure the distance between
the units. In this variation, instead, the L1 metric is used.

A particular version of Fuzzy k-Means, i.e. the Fuzzy k-Medoids (FkMed),
introduced by Krishnapuram et al. (2001), consists in considering the medoids as
centroids. In particular, letting C = {c1, . . . , cK} ci ∈ X represent a subset of X
with cardinality K, Xk represent the set of all subsets of X with cardinality K, the
objective function is the following:

JFkMed =
N∑

i=1

K∑
k=1

µm
ikd2(xi, ck) (6.10)

s.t.
µik ∈ [0, 1] ∀ i = 1, . . . , N, ∀ k = 1 . . . , K (6.11)
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K∑
k=1

µik = 1 ∀ i = 1, . . . , N, (6.12)

The matrix C is a K × J matrix having K medoids, i.e. representative objects of
the data set, by rows. Each cluster is therefore represented by one medoid.

A later proposal is provided by Klawonn and Höppner (2003), who introduced
the Fuzzy k-Means with polynomial fuzzifier (FkM.pf), which is an extension of
the Fuzzy k-Means algorithm. More in details, the authors proposed to use an
alternative fuzzifier function, i.e. the polynomial fuzzifier function. Formally, a
fuzzifier function is a continuous, strictly increasing function f = [0, 1] → [0, 1], with
f(0) = 0 and f(1) = 1. Klawonn and Höppner (2003) proposed to use the following
fuzzifier function: 1−β

1+β µ2
ik + 2β

1+β µik, β ∈ [0, 1), which replaces the fuzzifier function
of FkM in Equation 6.7, i.e. um

ik. The parameter β describes the ratio of distances
at which the clustering result becomes crisp. The polynomial fuzzifier function is
in some way a linear combination between hard clustering and FkM with fuzzifier
m = 2.

6.3.2 Fuzzy clustering algorithms for relational data matrix
Some fuzzy clustering algorithms which take as input a relational data matrix

are now recalled. Clearly, to apply the following clustering algorithms, it is needed
to obtain a matrix of distances between networks and for this reason the techniques
explained in Sections 6.2.2.3 and 6.2.2.5 are used.

The Fuzzy Analysis clustering (FANNY) algorithm (Rousseeuw and Kaufman,
1990) is a fuzzy clustering method for relational data, such as distances/dissimilarities.
FANNY consists in minimizing the following optimization problem:

JFANNY =
K∑

k=1

N∑
i′=1

N∑
i=1

µ2
ikµ2

i′kd(xi, xi′)

2
N∑

s=1
µ2

sk

(6.13)

s.t.
µik ∈ [0, 1] ∀ i = 1, . . . , N, ∀ k = 1 . . . , K (6.14)

K∑
k=1

µik = 1 ∀ i = 1, . . . , N, (6.15)

In Equation 6.13, d(·, ·) usually is the L1-distance.
A generalization of the FANNY algorithm is the so-called Non-Euclidean Fuzzy

Relational Clustering (NEFRC) algorithm (Davé and Sen, 2002). The authors,
indeed, allow for a general fuzzifier m: in Equation 6.13, they replaced the exponent
2 of µik with a general m. In addition, they allow any relational data matrix coming
from a general distance.

6.4 Empirical analysis
Before describing the datasets and showing the application of clustering algo-

rithms on simulated and real networks and the main results, a brief excursus on the
graphical representation of the results and on the clustering evaluation metrics is
needed.
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6.4.1 Visual exploratory analysis and evaluation metrics
Two-dimensional space coordinates for graphs are obtained by reducing the

mutual distance matrix D through a dimensionality reduction method. In particular,
we use the t-distributed Stochastic Neighbor Embedding (t-SNE), a nonlinear
dimensionality reduction technique allowing the embedding of high-dimensional
data for visualization in a low-dimensional space. Nearby points model similar
observations and dissimilar observations are modelled by distant points (Van der
Maaten and Hinton, 2008).
Here, we use the Barnes-Hut implementation of t-SNE introduced in Van Der Maaten
(2014), which is available in the R package, Rtsne (Krijthe, 2015). In the following
sections, we present the results through the t-SNE and analytically, by using some
external validity indices, such as the Adjusted Rand Index (ARI) (Hubert and Arabie,
1985) and the Adjusted Mutual Information (AMI) (Vinh, Epps, and Bailey, 2010)
when the true partition is available. When the true partition is not provided, we
use the Silhouette index (Sil) (Rousseeuw and Kaufman, 1990) and its fuzzy version
(Fuzzy Sil) (Campello and Hruschka, 2006b) as internal validity indices. Clustering
partition is obtained by "discretizing" the membership degree matrix: each unit is
assigned to the cluster whose membership degree is the highest.

6.4.2 Simulated data
In this Section the application to two different sets of simulated data is shown,

in particular, the application of NEFRC and FANNY algorithms to the distance
matrices while FkM, FkMed, FkM.pf and FkM.L1 to the feature matrix. We let
the fuzzifier m range in a sequence from 1.1 to 2 by 0.1 to have as many clustering
validity indices as the m’s. We show the median result and deviation measures such
as the interquartile range (IQR) and the standard deviation (SD).

The first set of simulated networks is generated using the Multiple Random
Eigen Graphs (MREG) model, defined in Wang et al. (2021) as

(λi, Ai)R
i=1 = MREG(F, h1, . . . , hd).

Given R graphs, A1, ...AR are their random adjacency matrices, generated with the
d-dimensional MREG model. {λi}R

i=1 are random variables, and F denotes their
distribution on χ, where χ ⊆ Rd such that xT y ∈ [0, 1], for all x, y ∈ χ. {hk}d

k=1
are vectors which satisfy

∑d
k=1 λi[k]hkhT

k ∈ [0, 1]n×n, for all λ ∈ χ.
A d=2 dimensional MREG dataset with 200 graphs having 100 nodes each was

generated using this model. The graphs belong to 2 classes, with 100 graphs in each
class. We set λ=[24.5, 4.75] for class 1 and λ=[20.75, 2.25] for class 2. The entries
of h1 are all set to 0.1; we set the first half entries of h2 to -0.1, and the remaining
to 0.1 (Wang et al., 2021). The clustering task consists of grouping networks with a
similar distribution of edges.

The Lancichinetti–Fortunato–Radicchi (LFR) benchmark generator (Lancichinetti,
Fortunato, and Radicchi, 2008) is used to construct the second simulated dataset of
undirected and unweighted networks. The parameter µ controls the strength of the
communities in the dataset: small values of µ result in well-defined communities.
Therefore, the clustering task consists in detecting networks with similar communities
structures. The LFR dataset contains three classes with 100 graphs each, generated
using three different values: µ = 0.1, 0.5, and 0.8, with all graphs containing 100
nodes. In the simulation study we represent each ensemble of networks using distance
matrices, i.e. MN , MT , DAE, and the feature matrix JE, and we apply clustering
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on them. For simulated datasets, the number of clusters is a priori known and
therefore the clustering algorithms were run by asking for the true number of clusters.
The obtained partitions were then compared to the true ones by means of external
cluster validity indices, such as ARI and AMI indices.
For the MREG networks best results are obtained by using MN , DAEd=1600 and
JEd=2. Table 6.3, Table 6.4 and Figure 6.2 show results of the application of NEFRC
and FANNY to MN and DAE and of FkM, FkMed, FkM.pf and FkM.L1 to JE.
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(a) NEFRC applied on MN (b) NEFRC applied on
DAEd=1600

(c) FANNY applied on MN (d) FANNY applied on
DAEd=1600

(e) FkM applied on JEd=2 (f) FkMed applied on JEd=2

(g) FkM.pf applied on JEd=2 (h) FkM.L1 applied on JEd=2

Figure 6.2. t-SNE representation of clustering results of NEFRC, FANNY, FkM, FkMed,
FkM.pf and FkM.L1 (MREG networks). Misclassified units are circled in black. The
intensity of the colors is given by the membership degree of each network to the
corresponding assigned cluster.

Tables 6.3 and 6.4 show the algorithm’s performance using the clustering validity
indices. When NEFRC is applied to MN , and FkM is applied to JE, high ARI and
AMI indices are obtained, which show that most of the networks are correctly assigned
to their original clusters. By analyzing the results of the application of FANNY to
the distance matrices, we observe that the validity indices are slightly lower than
the ones by using the NEFRC algorithm. The same occurs when comparing the
results of the application of FkMed, FkM.pf and FkM.L1 with the results of the
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Table 6.3. Main results of the application of NEFRC and FANNY to Distance Matrices
(MREG networks)

NEFRC FANNY
MN DAEd=1600 MN DAEd=1600

ARI AMI ARI AMI ARI AMI ARI AMI
Median 0.81 0.72 0.76 0.67 0.64 0.64 0.76 0.67

IQR 0 0 0.04 0.03 0.1 0.09 0.01 0.01
SD 0.01 0.02 0.02 0.02 0.06 0.05 0.02 0.01

Table 6.4. Main results of the application of FkM, FkMed, FkM.pf and FkM.L1 to Joint
Embeddings Matrix (MREG networks)

FkM FkMed FkM.pf FkM.L1
JEd=2 JEd=2 JEd=2 JEd=2

ARI AMI ARI AMI ARI AMI ARI AMI
Median 0.9 0.83 0.86 0.78 0.87 0.79 0.88 0.80

IQR 0 0 0 0 0.06 0.08 0 0
SD 0.01 0.01 0 0 0.05 0.05 0 0

application of the classical FkM.
Figure 6.2 shows that the two clusters are well separated; the circled points highlight
networks that the algorithms have misclassified. We can indeed study the misclassified
units in-depth using the fuzzy membership degree matrix. By applying NEFRC to
distance matrices, we notice that, on average, around 40% of misclassified networks
are in the middle of the two cluster prototypes. Therefore, the unit can be assigned
to any cluster, with both membership degrees close to 0.5. Regarding the application
of FkM to JEd=2, we notice that out of 5 misclassifications, one is approximately
in the middle of the two clusters prototypes whose membership degrees are 0.58
and 0.42. Therefore, membership degrees allow us to consider the uncertainty of an
assignment of a unit to a cluster and then eventually add information on clustering
interpretation: this represents one of the main advantages of a fuzzy approach.

For the second set of simulated networks, i.e., LFR, we performed pairwise
comparisons. More specifically, we applied clustering on the restricted set of networks
having µ = 0.1 and µ = 0.5; the same is done on the restricted set of networks
having µ = 0.1 and µ = 0.8 and on the one with networks characterised by µ = 0.5
and µ = 0.8. Finally, a triple-wise comparison also has been made.
By applying the NEFRC algorithm to MN , the true partitions are well detected
when analyzing pairwise comparisons between the first class of networks (i.e., those
generated using µ = 0.1) and the second one (µ = 0.5) and between the first one
and the third one (µ = 0.8). The same analysis has been carried out by using the
FANNY algorithm, but the results are slightly worse in terms of validity indices,
being them lower than the ones obtained by applying the NEFRC algorithm to the
same matrices. A summary of the results is provided in Table 6.5 and Figure 6.3.
From the summary table (Table 6.5), high clustering indices show that most units
are correctly assigned to their original cluster; from the visual representation (Figure
6.3), the clusters are well separated. When we investigate the membership degrees,
we observe that for the first pairwise comparison (µ = 0.1 and µ = 0.5), all the
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(a) NEFRC applied on MN (µ =
0.1 − µ = 0.5)

(b) NEFRC applied on MN (µ =
0.1 − µ = 0.8)

(c) FANNY applied on MN (µ =
0.1 − µ = 0.5)

(d) FANNY applied on MN (µ =
0.1 − µ = 0.8)

Figure 6.3. t-SNE representation of clustering results of NEFRC and FANNY (LFR
networks). Misclassified units are circled in black. The intensity of the colors is given by
the membership degree of each network to the corresponding assigned cluster.

Table 6.5. Main results of the application of NEFRC and FANNY to Distance Matrices
(LFR networks).

NEFRC FANNY
MN ( µ = 0.1 and µ = 0.5) MN (µ = 0.1 and µ = 0.8) MN (µ = 0.1 and µ = 0.5) MN (µ = 0.1 and µ = 0.8)
ARI AMI ARI AMI ARI AMI ARI AMI

Median 0.77 0.72 0.79 0.72 0.75 0.71 0.77 0.72
IQR 0.02 0.02 0.02 0.02 0 0 0 0
SD 0.01 0.01 0.01 0.01 0.01 0.01 0 0

misclassified units by NEFRC are in the middle of the two cluster prototypes with
both membership degrees close to 0.5. For the second pairwise comparison (µ = 0.1
and µ = 0.8), we can state similarly: in this case, among the 11 misclassifications by
NEFRC, 45% is close to both cluster prototypes.

The results show that fuzzy algorithms essentially recognize the true partition
when representing the networks with the MN distance matrix. Moreover, the fuzzy
approach gives the membership degree matrix, which is helpful in terms of clustering
interpretation, as stated previously. Indeed, we can understand the results deeply
and quantify the uncertainty related to the assignment of a given network to a given
cluster.

6.4.2.1 European Air Transportation Network

This section is devoted to the analysis of European Air Transportation Network.
The European Air Transportation Network (ETN) (Cardillo et al. (2013)) is a
multiple network made of 37 networks: each network represents a different European
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airline company. All network share the same set of nodes, i.e. 450 nodes, representing
European airports and they have different edges, representing flights routes. These
network layers are undirected and unweighted and in our analysis we consider each
layer as an individual network to which the MN and DAE are applied, followed by
network clustering.

The aim of the analysis is to obtain groups of European airline companies
(networks) characterized by similar structural features. In this real case study, the
true partition is not known, i.e. the ground truth is not available, and therefore we
used the internal validity indices to evaluate the obtained partitions. In particular,
the Silhouette index (Sil) and its fuzzy version (Fuzzy Sil) were computed to choose
the optimal number of clusters K. Furthermore, we ran all the algorithms by letting
the number of clusters K range in [2, 6] and we kept the solution with the value of
K that maximizes the values of the validity indices.

In this work, we applied NEFRC to MN and DAE and FkM to JEd=2. The
results highlight that the FkM algorithm applied to JEd=2 with K = 2 clusters
leads to a Sil value equal to 0.88 and to a Fuzzy Sil value equal to 0.95. NEFRC
algorithm applied on DAEd=800 network representation with K = 2 clusters leads to
a Sil index of 0.69 and to a Fuzzy Sil index of 0.76. Table 6.6 reports the values of
the cluster validity indices and the values of K corresponding to the best partition
(K = 2 in all the cases).

Table 6.6. Main results of the application of NEFRC to Distance Matrices and of FkM to
Joint Embeddings Matrix (European Air Transportation Networks).

NEFRC FkM
MN DAEd=800 JEd=2

Sil 0.48 0.69 0.88

Fuzzy Sil 0.48 0.76 0.95

K* 2 2 2

The FkM algorithm applied to JE actually detects two clusters: it groups together
in one cluster all but one networks; the other cluster instead is made by the network
representing Ryanair Airline company. We observe that Ryanair has one peculiar
characteristic: it is the network that has the lowest number of isolated nodes, i.e. it
is the company that, among all the other companies considered in this study, covers
the most number of airports (nodes).

The NEFRC algorithm applied to DAE tends to put together companies on
regional basis: it pairs Lufthansa and Air Berlin (Germany), Scandinavian Airlines
and Norwegian (Scandinavia), Aegean Airlines and Olympic Air (Greece), Ryanair
and Air Lingus (Ireland), Germanwings and SunExpress (Germany). As highlighted
also in Tantardini et al. (2019), in many instances the two paired airlines are the
leading national company and a low-cost company, offering different journey and
price conditions on the same routes: this is the case for example for Ryanair (Low
Cost) and Aer Lingus (Leading National Company) in Ireland or for Air Berlin
(Low cost) and Lufthansa (Leading National Company) in Germany. Indeed, airlines
based in the same region share the same airports and therefore the nodes of two
airlines based in the same nation are typically similar. This reduces the distance
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between the corresponding networks and explains why the two companies (i.e. the
two networks) are placed in the same cluster.

By focusing on networks’ structure, as in Tantardini et al. (2019), we observe
that the first cluster groups together non-star networks, while the second cluster
groups together all pure-star networks and all networks close to star topology. A
star topology is characterized by nodes that are not directly connected to each other,
but they are connected to a central node, normally called a hub; as a consequence
all nodes are indirectly connected one another through the central one; so we can
think about the hub as the center of the star and the other nodes different from the
hub as the points of the star.

(a) (b)

(c)

Figure 6.4. European Air Transportation Networks: Pure-star networks (a) and networks
close to a star topology (b) belonging to the second cluster; some of non-star networks
(c) belonging to the first cluster (according to NEFRC results applied on DAE).

Indeed, in our clustering results, the second cluster groups together all pure-star
networks (see Figure 6.4 (a)): KLM, whose hub is Amsterdam Airport Schipol,
having degree 62; Brussel Airlines whose hub is Brussels Airport, having degree 43;
Czech Airlines, having as hub Václav Havel Airport Prague with degree 26; the last
pure-star network is the one representing Malev Hungarian Airlines, whose hub is
Budapest Liszt Ferenc International Airport, having degree 34. All these networks
are therefore represented in the same way, as a star, with one node (airport) at the
center of the star and all the others nodes as the points of the star. The difference
among those networks is the number of nodes. The second cluster includes also
networks close to a star topology (see Figure 6.4 (b)). In particular: Iberia, British
Airways, Niki and Finnair. On the other hand, the first cluster groups networks that
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have no hub and whose nodes have similar nodes degrees: graphically (see Figure
6.4 (c)) it is not possible to identify a main central hub and most of the nodes are
connected one another.

Finally, by following the idea of Carpi et al. (2019), we notice that among the
37 airlines companies, 17 of them joined three airlines alliances: Star Alliance, One
World, Skyteam. We then investigate whether our clustering results can match
this classification; so, by considering only those 17 out of 37 networks, we find out
that our algorithm (NEFRC applied to DAE) detects only two clusters. This is
not surprising: indeed, we realize that airlines’ alliances include companies that
are not similar each other in terms of covered regions; indeed, airlines belonging
to the same alliance fly from and to different airports and then the corresponding
networks have dissimilar nodes. Instead, our algorithm recognizes in the same cluster
networks that have similar nodes, i.e. companies that share the most of the flight
routes and airports. For example, Air Berlin that joined One World Alliance is
placed in the same cluster of Lufthansa, that instead is part of Star Alliance. This
result demonstrates the importance of properly representing networks: indeed, the
DAE representation together with the application of NEFRC have been useful to
recognize clusters characterized by similar flight routes, without being influenced by
the existing theoretically underling grouping structure.

This real application allowed us to study the performance of the proposed
clustering algorithms obtaining good results in terms of validity indices, and also
meaningful considerations regarding clustering interpretation.

6.4.3 FAO correlations networks
This section is devoted to the analysis of FAO correlations networks. The dataset

consists of 140 networks where each network represents a country and share the
same set of nodes. The nodes represent 21 variables related to sustainability, cli-
mate change, economic and production indicators (downloaded from the FAOSTAT
database https://www.fao.org/faostat/en/#data). For each country, we gener-
ated a network as follows: we consider 21 time series of the indicators of interest
from 1990 to 2019. In order to avoid autocorrelation, we detrended the data using
the function detrend of the R package pracma (Borchers, 2021). The function
removes the linear trend from the data by computing the least-squares fit of a line
and subtracting the resulting function from the data. After detrending, we computed
the correlation matrix for each country and transformed each correlation matrix
into an adjacency matrix by adding an edge between any pair of variables whenever
the correlation between them, in its absolute value, is higher than a threshold (0.7).
Therefore, the generic element of the adjacency matrix for country c, Ac

ij , is 1 if
variables i and j are highly correlated, 0 otherwise. Table 6.7 provides a detailed
overview of the variables (nodes).

In this real case study, the true partition is not known, i.e. the ground truth
is not available, and therefore we used the internal validity indices to evaluate the
obtained partitions. In particular, the Silhouette index (Sil) and its fuzzy version
(Fuzzy Sil) were computed to choose the optimal number of clusters K. Furthermore,
we ran all the algorithms by letting the number of clusters K range in [2, 6] and
we kept the solution with the value of K that maximizes the values of the validity
indices.

By applying the clustering algorithms to the matrices representation of the
networks, we noticed that MT , DAE and JE have good results. Table 6.8 reports
the values of the cluster validity indices and the values of K corresponding to the
best partition, i.e. the number of clusters that maximizes the validity indices. Figure

https://www.fao.org/faostat/en/#data
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Table 6.7. Node labels and description (source: FAOSTAT).

Node label Node name Node description
v 1 CH4 LULUCF total methane (CH4) emissions, measured in kilotonnes, from land-use, land-use change and Forestry.
v 2 CH4 AFOLU total methane (CH4) emissions, measured in kilotonnes, from Agriculture, Forestry, and Other Land Use.
v 3 CH4 Emissions on agricultural land total methane (CH4) emissions, measured in kilotonnes, from Agriculture.
v 4 CH4 Farm-gate emissions Farm-gate total methane (CH4) emissions, measured in kilotonnes.
v 5 CH4 land-use change total methane (CH4) emissions, measured in kilotonnes, from land-use change.
v 6 CO2 LULUCF total emissions of carbon dioxide (CO2), measured in kilotonnes, from land-use, land-use change and Forestry
v 7 CO2 AFOLU total carbon dioxide (CO2) emissions, measured in kilotonnes, from Agriculture, Forestry, and other land-use.
v 8 CO2 Emissions on agricultural land total carbon dioxide (CO2) emissions, measured in kilotonnes, from Agriculture.
v 9 CO2 Farm-gate emissions Farm-gate total carbon dioxide (CO2) emissions, measured in kilotonnes.
v 10 CO2 land-use change total carbon dioxide (CO2) emissions, measured in kilotonnes, from land-use change.
v 11 N2O LULUCF total nitrous oxide (N2O) emissions, measured in kilotonnes, from land-use, land-use change and Forestry.
v 12 N2O AFOLU total nitrous oxide (N2O) emissions, measured in kilotonnes, from Agriculture, Forestry, and Other Land Use.
v 13 N2O Emissions on agricultural land total nitrous oxide (N2O) emissions, measured in kilotonnes, from Agriculture.
v 14 N2O Farm-gate emissions Farm-gate total nitrous oxide (N2O) emissions, measured in kilotonnes.
v 15 N2O land-use change total nitrous oxide (N2O) emissions, measured in kilotonnes, from land-use change.
v 16 Agriculture Gross per capita Production Index Number (2014-2016 = 100) for agricultural products.
v 17 Livestock Gross per capita Production Index Number (2014-2016 = 100) for livestock.
v 18 Vegetables and Fruit Primary Gross per capita Production Index Number (2014-2016 = 100) for vegetables and fruit.
v 19 Gross Domestic Product gross domestic product (in value US$ per capita, 2015 prices).
v 20 Agricultural land share of the agricultural land in land area (%).
v 21 Temperature change increment of temperature (measured in °C) in the meteorological year w.r.t the previous year.

6.5 shows the resulting clusters.

Table 6.8. Values of the cluster validity indices and of the optimal numbers of clusters (K∗)
related to the application of NEFRC and FANNY to Distance Matrices and of FkM,
FkMed, FkM.pf, FkM.L1 to Joint Embeddings Matrix (FAO correlation networks).

NEFRC FANNY FkM FkMed FkM.pf FkM.L1
MT DAE MT DAE JE JE JE JE

Sil 0.1 0.33 -0.1 0.53 0.51 0.51 0.51 0.50

Fuzzy Sil 0.77 0.66 0.72 0.6 0.78 0.75 0.73 0.78

K* 3 5 3 2 4 4 4 4

FkM algorithm applied to JE leads to a Sil value equal to 0.51 and a Fuzzy Sil
value equal to 0.78 and its performance is slightly better than the ones of FkMed,
FkM.pf and FkM.L1. Moreover, NEFRC algorithm applied on MT and DAE network
representations leads to a Fuzzy Sil index of 0.77 and 0.66, respectively. Also in
this case, NEFRC performs better than FANNY, as the indices show. Moreover,
NEFRC applied to DAE representation of the networks identifies K = 5 clusters,
but one of them is only made up with one country, Chile.

From Figure 6.5 we can see that clusters are well separated when using JE and
DAE representation. Since FkM applied on the JE representation of networks leads
to the highest cluster validity indices, we will discuss its resulting partition. Figure
6.6 depicts the obtained clustering.

The map shows some European countries grouped with some Asian countries
and Canada. Moreover, Latin American countries are in the same cluster as some
African countries. The USA and Central America share some characteristics with
Central African countries and some Asian countries and islands; finally, Australia is
in the same cluster as Spain and some Asian and African countries.

We can explore cluster characteristics and structure by looking at Figure 6.7 with
graphs that summarize the four clusters. In Figure 6.7, edges are colored differently
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(a) NEFRC applied on MT (b) NEFRC applied on DAE

(c) FANNY applied on MT (d) FANNY applied on DAE

(e) FkM applied on JE (f) FkMed applied on JE

(g) FkM.pf applied on JE (h) FkM.L1 applied on JE

Figure 6.5. t-SNE representation of clustering results of NEFRC, FANNY, FkM, FkMed,
FkM.pf and FkM.L1 (FAO correlation networks). The intensity of the colours is given
by the membership degree of each network to the corresponding assigned cluster.
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Figure 6.6. Clusters obtained by applying FkM to the JE representation of FAO correlations
networks. The intensity of the colors is given by the membership degree of each network
to the corresponding assigned cluster.

according to the frequency they appear within the networks belonging to the same
cluster. In particular, grey edges represent those shared by less than 50% of graphs
belonging to the same cluster; blue edges represent those in common between 50%
and 80% of networks belonging to the same cluster; finally, red edges are those edges
that appear in most of the networks (i.e. more than 80%) in the same cluster.

We can characterise the first cluster as the one where most networks show a high
correlation between N2O AFOLU emissions and N2O emissions from agricultural
land and farm-gate. CO2 land-use change emissions are highly correlated with
CO2 LULUCF and CO2 AFOLU emissions. In most countries, there is a high
correlation between CO2 emissions on agricultural land and CO2 AFOLU emissions
and CO2 emissions on agricultural land and CO2 LULUCF emissions. Moreover,
CO2 LULUCF and CO2 AFOLU emissions are highly correlated, as CH4 emissions on
agricultural land and CH4 AFOLU emissions. More than half of countries belonging
to the first cluster have a high correlation between CO2 emission for land-use change
and CO2 emissions on agricultural land, CH4 LULUCF and CH4 land-use change,
CH4 LULUCF and N2O LULUCF, N2O LULUCF and N2O land-use change. We
conclude that these countries have high correlations between variables related to
CO2 emissions and between variables related to N2O emissions.
Following the same rationale, countries in the second cluster have a high correlation
between variables related to emissions of the same gas (CH4, N20 and CO2) and
between variables related to emissions of different gases (CH4 and N2O). That means
in almost all the countries belonging to the second cluster, emissions of the same
gas for a different purpose are highly correlated, and emissions of different gas for
a different purpose. Also, we observe that emissions of CO2 highly correlate with
each other.
Cluster 3 is again characterised by a high correlation between CH4 and N2O emissions.
However, differently from before, we do not observe neither a high correlation between
the variables related to CO2 emissions, nor a high correlation between land-use
change emissions.
Finally, the fourth cluster groups countries sharing high pairwise correlations between
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(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

Figure 6.7. FAO correlation networks: results from the application of FkM to JE represen-
tation.

N2O emissions stemming from agricultural activities, those from farm-gate and those
from AFOLU. Also, high pairwise correlations appear between CH4 emissions
stemming from agricultural, farm-gate and AFOLU.

By summing up, we notice that the clusters are different from one another
according to the different edges they contain. In other words, clusters can be
described and interpreted using the most common edges between the networks in
the same cluster. We observe that the main difference is mainly driven by the
relationships (i.e. high correlations) between variables related to emissions.

By analyzing our clustering results and comparing them with the reports by the
UN, we can make the following considerations. In the first cluster one of the top
four emitters, i.e. USA, (see United Nations Environment Programme (2019)) is
grouped together with Sub-Saharan Countries, where there are energy and land-based
emissions (see United Nations Climate Change (2022)), and Pakistan, that has as
main contributors to the total emissions energy, agriculture and forestry sectors (see
Ministry of Climite Change Government of Pakistan (2022)). In the second cluster,
one of the top four emitters, i.e. India, (see United Nations Environment Programme
(2019)) is grouped together mainly with Latin American Countries: in India, the main
driver to emission has been electricity production (see Ministry of Environment Forest
and Climate Change Government of India (2021)), in Latin American Countries, for
many years the share of national emissions from the Land Use, Land Use Change
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and Forestry sectors was huge; due to the reduction of deforestation, the share
from Land Use, Land Use Change and Forestry is decreasing, and consequently the
share of the Energy and Agriculture sectors is becoming larger (see for example
Ministry of Foreign Affairs, Ministry of Science, Technology and Innovations (2020),
World Bank Group (2022b), and World Bank Group (2022c)). The third cluster
groups countries, such as South Africa, Australia, Chile, and Egypt, whose main
contributor to the emissions is the energy sector (see for example Department of
Forestry, Fisheries and the Environment (2021), Australian Government, Department
of Environment and Energy (2019), Minister of Environment of Chile (2018), and
Ministry of Environment, Egyptian Environmental Affairs Agency (2018)). Finally,
the last cluster groups two of the top four emitters, i.e. Europe and Canada (United
Nations Environment Programme, 2019), and mainly Saudi Arabic and China: we
observe that in this case, those countries do not share the main emission driver,
being oil and gas sector for Canada (see Environment and Climate Change Canada
(2020)), energy sector for Europe and Saudi Arabic (see European Commission
(2020) and Ministry of Energy, Industry and Mineral Resources, Kingdom of Saudi
Arabia (2018), respectively) and power sector for China (see World Bank Group
(2022a)).

This application highlights how to study the performance of clustering algorithms
on network ensembles. As a final remark, we note that a simple application of a
clustering technique to the matrix having units on the rows and covariates based
on correlation on the columns, could possibly work in case of correlation networks,
but would not scale up with an increasing number of variables. Indeed, let p be the
number of indicators we are considering. The number of columns of such a matrix will
be the cardinality of the set of all the possible correlations between the p indicators,
i.e. the cardinality of the set of all the possible combinations of 2 indicators among p,
that is given by the binomial coefficient

(p
2
)

= p!
2!(p−2)! = p·(p−1)·(p−2)!

2!(p−2)! = p·(p−1)
2 ≃ p2.

Therefore, describing our observations using covariates based on correlation, rather
than networks, would make the complexity of our clustering problem increase
quadratically with the number of indicators, while it is only linearly using a network
representation.

6.5 Final remarks
This study explores clustering analysis when the statistical units are networks.

To this extent, we focus on different methodologies that can provide a suitable
representation of the sample of the networks for subsequent data analysis. Our explo-
ration moves along two different directions. In the first case, we represent networks
in terms of their topological characteristics in the node distance distribution. The
distance among these representations can be evaluated using probability distribution
distances, resulting in a matrix of pairwise distances between networks. In the second
case, we use a whole network embedding approach, transforming the networks into
a subspace of a fixed dimension. We applied fuzzy clustering algorithms in both
cases, using standard metrics to evaluate their performance on synthetic and real
datasets. Our analysis provides valuable hints for cluster analysis and highlights
the pros and cons of the different obtained combinations. The present chapter is a
first step in exploring these methodologies, which we believe will provide a path for
further exploration and development of novel methodologies. For example, among
the further developments, it may be of interest to apply a similar methodology to
weighted and oriented networks.
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Chapter 7

Final discussion

Nowadays, as the complexity of real-world phenomena increases, so does the
need for new data structures and methodologies to handle that complexity. In
particular, cluster analysis is one of the most popular and successful techniques for
data exploration and characterization. In this thesis, it is proposed to contribute
to current research on modeling multidimensional phenomena by introducing the
application of fuzzy clustering techniques to complex data structures such as three-
dimensional data and networks. In particular, new methodologies are presented for
soft partitioning a set of units-by-variables matrices, a set of hierarchies, and a set
of networks.

Chapter 1 provides a general introduction to data structures and the position
of the problem. Theoretical motivations and real-world examples useful for giving
concrete meaning to the problem are presented. Basic theoretical concepts and
general notation are introduced and formalized in Chapter 2. Chapters 3, 4, 5, 6 are
the main chapters that include the methodological proposals.

Chapter 3 focuses on finding a fuzzy partition of a set of hierarchies and for
each class in the partition identifies a consensus hierarchy. Indeed, in cluster
analysis, a problem often faced is to find a consensus on a set of hierarchical
classifications of the same set of objects, called primary hierarchies (dendrograms).
A unique consensus of the primary hierarchies, called the secondary hierarchy,
is sufficient to synthesize relevant clustering information only when the primary
dendrograms are similar to each other. In contrast, when the primary hierarchies
change dramatically, a unique consensus of the entire set of primary hierarchies
would be an overly unrealistic and narrow synthesis of the dendrograms. In these
situations, when several differences between the original dendrograms are observed,
more than one secondary consensus hierarchy is needed to clearly synthesize the
different primary hierarchies. Furthermore, it can happen that different groups of
dendrograms share some characteristics, and thus in such situations each original
dendrogram must contribute to the definition of all consensus dendrograms. The
required flexibility is provided by the use of a fuzzy approach to clustering. Our
methodology, PARoDENo3WD (PARtition of DENdrograms of a 3-Way Data array),
aims to obtain a secondary fuzzy partition of primary hierarchies, where hierarchies
belonging to the same class are perceived as similar. Each class is associated
with a consensus hierarchy. The fuzzy approach allows each primary hierarchy to
contribute to the definition of all classes in the secondary partition, according to
different degrees of membership. In this way, "clustering uncertainty" is taken into
account. The performance of PARoDENo3WD was evaluated with an extended
simulation study, generating 1800 three-way datasets. The results show that the
methodology can identify both hard and fuzzy partitions of the dendrogram set
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and also identify consensus dendrograms close to those originally generated. An
application of PARoDENo3WD on a real data set is provided. In particular, the
application to OECD data reporting economic indicators for G7 countries from
2005 to 2020 has proved extremely useful in obtaining consensus hierarchies of G7
countries and in identifying groups of years characterized by stability and, among
these groups, years that correspond to periods of transition. The fuzzy approach in
this application is extremely useful and its advantages are clearly highlighted. Indeed,
the real application to the OECD countries confirms the ability of the proposed
methodology to obtain a secondary fuzzy partition of the set of primary hierarchies
capable of describing the uncertainty of the hierarchical relations of countries during
years in which an economic shock was observed.

An extension of the proposal presented in Chapter 3 is provided in Chapter 4,
which focuses on identifying a fuzzy partition of primary hieararchies and identifying,
withing each class of the partition, a consensus hierarchy, characterized by the
peculiar property of being parsimonious. More in details, a methodology for fitting a
fuzzy partition and a parsimonious consensus hierarchy (ultrametric matrix) to a set
of hierarchies of the same set of objects is described. The reason behind the use of
parsimonious hierarchy lies in the fact that the complete sets of partitions and clusters
of the dendrograms are not all used by investigators, even hindering interpretation,
as noted by several authors (Gordon, 1999). One approach for resolving this difficulty
has involved the construction of parsimonious trees that contain a limited number
of internal nodes. In this way, some information is lost, but the main features
of the data are more clearly represented. Therefore, in order to better study the
partitioning of the set of dendrograms and identify the most relevant consensus
parsimonious dendrograms we present a new methodology that identifies a secondary
fuzzy partition of the original primary dendrograms and a parsimonious consensus
dendrogram for each class of the secondary fuzzy partition. Each consensus includes
an optimal consensus hard partition of objects and all agglomerative hierarchical
aggregations among the clusters of the consensus partition. The performance of the
methodology is illustrated by an extended simulation study and applications to real
data. In more detail, the proposed methodology was tested in an extended simulation
study, in which 1000 three-way ultrametric matrices were generated in two scenarios
of hard and fuzzy assignment of primary hierarchies to consensus hierarchies. The
study showed good results, not only in recovering the true underlying secondary
partition, but also in identifying consensus parsimonious dendrograms very similar to
the original ones. In addition, the results of applying the methodology to a real case
show that the proposed methodology is useful for partitioning primary hierarchies in
a fuzzy manner, correctly identifying hierarchies that share features with more than
one cluster of the secondary partition: for example, in the application to the girls’
growth curve dataset, two contiguous age periods were identified, and the hierarchies
corresponding to two years of transition from one period to the next are assigned
reasonably softly to both periods. Furthermore, for each class (period) of the fuzzy
partition, the methodology identifies a consensus parsimonious dendrogram, which
really facilitates the interpretation of the aggregation of girls.

When researchers are interested in comprehensively and statistically analyzing
a collective phenomenon, a three-mode data matrix X, where the modes are the
units, the variables and the occasions, is the data structure to use properly. The
occasions are often different times, so that the units can be observed in their natural
complexity across a large set of variables, and also the history of the units can be
followed and analyzed over time in the same descriptive statistical analysis. When X
has a large dimension, it is important to synthesize information by identifying classes
of similar occasions in which units are described by a reduced set of latent variables.
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Within this framework, a simultaneous reduction of occasions and variables of X is
proposed, and the methodological formulation and its application are provided in
Chapter 5. It is assumed that the phenomenon being analyzed has a reduced set
of views, each consisting of a set of occasions in which the units do not change the
cross-sectional structure of the variables very much and thus the corresponding data
matrices are perceived to be similar to each other. It is further assumed that the
variables are correlated in these classes of occasions and a reduced set of correlated
latent variables is identified. A fuzzy clustering of occasions allows the identification
of K clusters of multivariate data matrices that are similar within the cluster. For
each cluster, the closest data matrix that represents a consensus matrix of those
in the cluster is identified. The variables in the cluster are correlated and retain
their covariance structure, which can be summarized for each consensus matrix
by applying a disjoint second-order factorial analysis. Then, the proposal allows
for soft clustering of occasions into K clusters and for each consensus matrix to
first identify a set of Q first-order factors and the corresponding loadings matrix
and second identify a single general factor, which can be considered as the most
synthetic indicator summarizing the original J variables. The proposed methodology
is extremely useful when you have a set of multivariate observations of the same
statistical units for a specific time period. In this case, the goal is to identify groups
of years and, simultaneously, for each group, identify an overall composite indicator
that is able to capture the differences between the units in those specific years
by considering their composite indicators and corresponding ranking. Within this
framework, the proposed methodology was applied to the well-being dataset, where
its strength and usefulness were revealed. The How’s Life-Well Being (HLWB)
dataset measures several variables and reports data for several years and OECD
countries. The fuzzy approach to clustering is very appropriate for this application:
in fact, it allows the identification of groups of years of stability and years that
correspond to periods of transition. In addition, with second-order DFA it was
possible to identify K overall composite indicators and obtain a ranking of OECD
countries. A multivariate partial ranking was obtained by applying a K-Means
to the scores of the overall composite indicators to identify C groups of countries.
The analysis of the identified country groups allowed a reasonable comparison of
countries’ policies and people’s perceptions of health, wealth, and personal and social
comfort.

In the end, as statistical network analysis finds application in an increasing
number of disciplines, new methodologies are needed to handle such complexity. In
this framework, Chapter 6 focuses on how to represent sets of networks for fuzzy
clustering. In detail, computational procedures are provided to identify clusters
of networks, where each network represents an object, based on fuzzy clustering
algorithms, particularly Non-Euclidean Fuzzy Relational Clustering (NEFRC), Fuzzy
Clustering Analysis (FANNY) and Fuzzy k-Means (FkM) algorithms with their
variants (such as Fuzzy k-Means with polynomial fuzzifier, Fuzzy k-Means based
on L1 metric, Fuzzy k-Medoids). Clustering algorithms are applied to networks
represented through probability distributions of their topological properties or
through vector representations derived from integer graph embedding methods. In
particular, we explore three different network representations based on probability
distributions, autoencoder and joint embedding. We verify the suitability and
discuss the characteristics of the algorithms through simulations and real case
studies. In terms of real applications, our methodology has proven extremely useful
in finding groups of airlines with similar flight route structures and groups of countries
characterized by similar correlations between environmental variables. Our analysis
provides valuable insights for cluster analysis and highlights the pros and cons of
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the different combinations obtained.
To conclude, what is proposed in this dissertation aims to contribute to the

research of multidimensional phenomena, which are evolving not only in dimension
but also in complexity. The growing dimensions and complexity of real-world
problems makes the use of complex data structures necessary and the need of novel
methodology to handle such kind of data urgent. The proposed methodologies have
been tested on several real-world cases and the results are promising. The results of
the application to real data sets emphasize and reinforce the importance of using
the fuzzy approach to clustering, as it is extremely useful in obtaining meaningful
considerations of clustering interpretation. As the history of scientific, economic and
sociological events teaches us, multidimensional and multiyear phenomena develop
in a period composed of stable and transitional sub-periods, and the proposed
methodology allows us also to identify this peculiarity.
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