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Abstract

In this paper we study the variational problem associated to support vector regression in Banach

function spaces. Using the Fenchel-Rockafellar duality theory, we give explicit formulation of the dual

problem as well as of the related optimality conditions. Moreover, we provide a new computational

framework for solving the problem which relies on a tensor-kernel representation. This analysis

overcomes the typical difficulties connected to learning in Banach spaces. We finally present a large

class of tensor-kernels to which our theory fully applies: power series tensor kernels. This type of

kernels describe Banach spaces of analytic functions and include generalizations of the exponential

and polynomial kernels as well as, in the complex case, generalizations of the Szegö and Bergman

kernels.

Keywords: support vector regression, regularized empirical risk, reproducing kernel Banach
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1 Introduction

Support vector regression is a kernel-based estimation technique which allows to estimate
a function belonging to an infinite dimensional function space based on a finite number of
pointwise observations [7, 21, 23, 24]. The (primal) problem is classically formulated as an
empirical risk minimization on a reproducing kernel Hilbert space of functions, the regulariza-
tion term being the square of the Hilbert norm. This infinite dimensional optimization problem
is approached through its dual problem which turns out to be finite dimensional, quadratic
(possibly constrained), and involving the kernel function only, evaluated at the available data
points [7, 20, 24]. Therefore, the knowledge of the kernel suffices to completely describe and
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solve the dual problem as well as to compute the solution of the primal (infinite dimensional)
problem. This is what it is known as the kernel trick and makes support vector regression
effective and so popular in applications.

Learning in Banach spaces of functions is an emerging area of research which in principle
permits to consider learning problems with more general types of norms than Hilbert norms
[5, 10, 27]. The main motivation for this generalization comes from the need of finding more
effective sparse representations of data or for feature selection. To that purpose, several types
of alternative regularization schemes have been proposed in the literature, and we mention,
among others, ℓ1 regularization (lasso), elastic net, and bridge regression [8, 11]. Moreover,
the statistical consistency of such more general regularization schemes have been addressed in
[5, 6, 8, 15]. However, moving to Banach spaces of functions and Banach norms pose serious
difficulties from the computational point of view [22]. Indeed, even though, in this more
general setting, it is still possible to introduce appropriate reproducing kernels [27], they fail
to properly represent the solution of the dual and primal problem, so that the dual approach
becomes cumbersome. For this reason, the above mentioned estimation techniques are often
implemented by directly tackling the primal problem and therefore, as a matter of fact, reduces
to a finite dimensional estimation methods (that is to parametric models).

In this work we address support vector regression in Banach function spaces and we provide
a new computational framework for solving the associated optimization problem, overcoming
the difficulties we discussed above. Our model is described in the primal by means of an
appropriate feature map in Banach spaces of features and a general regularizer. We first
study, in great generality, the interplay between the primal and the dual problem through the
Fenchel-Rockafellar duality. We obtain an explicit formulation of the dual problem, as well as
of the related optimality conditions, in terms of the feature map and the subdifferentials of
the loss function and of the regularizer. As a byproduct we also provide a general representer
theorem.

Next, we consider the setting of a linear model described through a countable dictionary
of functions with the regularization term being the ℓr-norm of the related coefficients, with
r = m/(m − 1) and m an even integer. This choice allows r > 1 to be close to 1 and
hence to approximate ℓ1 regularization, possibly keeping the stability properties of the ℓ2

regularization based estimation. Then we introduce a new type of kernel function which turns
to be a symmetric positive-definte tensor of order m, and we prove that it allows to formulate
the dual problem without any reference to the underlying feature map as well as to evaluate
the optimal solution function at any point in the input space. In this way, the dual problem
becomes a finite dimensional convex homogeneous m-degree-polynomial minimization problem
which can be solved by standard smooth optimization algorithms, e.g., the conjugate gradient
method. In the end, we show that the kernel trick can be fully extended to tensor-kernels and
makes the dual approach in the Banach setting still viable for computing the solution of the
primal (infinite dimensional) problem. Finally, we illustrate the theoretical framework above
by presenting an entire class of tensor-kernel functions, that is power series tensor-kernels,
which are extensions of the analogue matrix-type power series kernels considered in [29]. We
show that this class includes kernels of exponential and polynomial type as well as, in the
complex case, generalizations of the Szegö and Bergman kernels.
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The rest of the paper is organized as follows. Section 2 gives basic definitions and facts.
Section 3 presents the dual framework for SVR in general Banach spaces of features. In
Section 4 we introduce tensor kernels and explain their role in making Banach space problems
more practical numerically. Section 5 treats tensor kernels of power series type, which give
rise to a general class of function Banach spaces to which the theory applies. Finally Section 6
contains conclusions.

2 Basic definitions and facts

Let F be a real Banach space. We denote by F∗ its dual space and by 〈·, ·〉 the canonical
pairing between F and F∗, meaning that, for every (w,w∗) ∈ F × F∗, 〈w,w∗〉 = w∗(w). We
denote by ‖·‖ the norm of F as well as the norm of F∗. Let F : F → ]−∞,+∞]. The domain
of F is domF = {w ∈ F | F (w) < +∞} and F is proper if domF 6= ∅. Suppose that F
is proper and convex. The subdifferential of F is the set-valued operator ∂F : F → 2F

∗

such
that,

(∀w ∈ F) ∂F (w) =
{
w∗ ∈ F∗

∣
∣ (∀v ∈ F) F (w) + 〈v − w,w∗〉 ≤ F (v)

}
,

and its domain is dom ∂F = {w ∈ F | ∂F (w) 6= ∅}. The Fenchel conjugate of F is the
function F ∗ : F∗ → ]−∞,+∞] : w∗ ∈ F∗ 7→ supw∈F 〈w,w∗〉 − F (w). We denote by Γ0(F)
the set of proper, convex, and lower semicontinuous functions on F . If C ⊂ F , we denote
by ιC the indicator function of C, that is ιC : F → ]−∞,+∞], such that, for every w ∈ F ,
ιC(w) = 0 if w ∈ C, and ιC(w) = +∞ if w /∈ C. Let F ∈ Γ0(F). Then the following duality
relation between the subdifferentials of F and its conjugate F ∗ holds [26, Theorem 2.4.4(iv)]

(∀ (w,w∗) ∈ F ×F∗) w∗ ∈ ∂F (w) ⇔ w ∈ ∂F ∗(w∗). (2.1)

Let p ∈ [1,+∞[. The conjugate exponent of p is p∗ ∈ ]1,+∞] such that 1/p + 1/p∗ = 1.
If (Z,A, µ) is a finite measure space, we denote by 〈·, ·〉p,p∗ the canonical pairing between the

Lebesgue spaces Lp(µ) and Lp∗(µ), i.e., 〈f, g〉p,p∗ =
∫

Z
fg dµ. If K is a countable set, we define

the sequence space

ℓp(K) =

{

(wk)k∈K ∈ R
K

∣
∣
∣
∣

∑

k∈K

|wk|
p < +∞

}

endowed with the norm ‖w‖p =
(∑

k∈K |wk|
p)1/p. The pairing between ℓp(K) and ℓp

∗

(K) is
〈w,w∗〉p,p∗ =

∑

k∈Kwkw
∗
k.

The Banach space F is called smooth [4] if, for every w ∈ F there exists a unique w∗ ∈ F∗

such that ‖w∗‖ = 1 and 〈w,w∗〉 = 1. The smoothness property is equivalent to the Gâteaux
differentiability of the norm on F \ {0}. We say that F is strictly convex if, for every w
and every v in F such that ‖w‖ = ‖v‖ = 1 and w 6= v, one has ‖(w + v)/2‖ < 1. Let F
be a reflexive, strictly convex and smooth real Banach space and let p ∈ ]1,+∞[. Then the
p-duality map of F is the mapping [4]

Jp : F → F∗ such that (∀w ∈ F) 〈w, Jp(w)〉 = ‖w‖p and ‖Jp(w)‖ = ‖w‖p−1. (2.2)
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This map is a bijection from F onto F∗ and its inverse is the p∗-duality map of F∗. Moreover,
for every w ∈ F and every λ ∈ R+, Jp(λw) = λp−1Jp(w) and Jp(−w) = −Jp(w). The mapping
J2 is called the normalized duality map of F . The Banach space ℓp(K) is reflexive, strictly
convex, and smooth, and, it is immediate to verify from (2.2) that, its p-duality map is

Jp : ℓ
p(K) → ℓp

∗

(K) : w = (wk)k∈K 7→ (|wk|
p−1 sign(wk))k∈K. (2.3)

Moreover, J−1
p : ℓp

∗

(K) → ℓp(K) is the p∗-duality map of ℓp
∗

(K), hence it has the same form as
(2.3) with p replaced by p∗.

Fact 2.1 ([1, Example 13.7]). Let F be a reflexive, strictly convex, smooth, and real Banach
space, let p ∈ ]1,+∞[, and let ϕ ∈ Γ0(R) be even. Then (ϕ ◦ ‖·‖)∗ = ϕ∗ ◦ ‖·‖ and

(∀w ∈ F) ∂(ϕ ◦ ‖·‖)(w) =







∂ϕ(‖w‖)

‖w‖p−1 Jp(x) if w 6= 0

{w∗ ∈ F∗ | ‖w∗‖ ∈ ∂ϕ(0)} if w = 0.

Fact 2.2 (Fenchel-Rockafellar duality [26, Corollary 2.8.5 and Theorem 2.8.3(vi)]). Let F and
B be two real Banach spaces. Let f ∈ Γ0(F), let g ∈ Γ0(B), and let B : F → B be a bounded
linear operator. Suppose that 0 ∈ int

(
B(dom f)− dom g

)
. Then the dual problem

min
y∗∈B

f ∗(−B∗y∗) + g∗(y∗) (2.4)

admits solutions and strong duality holds, that is

inf
x∈F

f(x) + g(Bx) = −min
y∗∈B

f ∗(−B∗y∗) + g∗(y∗).

Moreover, if in addition f + g ◦B admits a minimizer, then, for every (x̄, ȳ∗) ∈ F × B∗, x̄ is
a minimizer for f + g ◦B and ȳ∗ is a solution of (2.4) iff −B∗ȳ∗ ∈ ∂f(x̄) and ȳ∗ ∈ ∂g(Bx̄).

3 General SVR in Banach spaces of features.

We start by describing the problem setting. We consider the following optimization problem

min
(w,b)∈F×R

γ

∫

X×Y

L
(
y − 〈w,Φ(x)〉 − b

)
dP (x, y) +G(w), (3.1)

where the following assumptions are made:

A1 X and Y are two nonempty sets such that Y ⊂ R. P is a probability distribution on
X ×Y , defined on some underlying σ-algebra A on X ×Y . F is a real separable reflexive
Banach space and Φ: X → F

∗ is a measurable function. The function L : R → R+ is
positive and convex, p ∈ [1,+∞[, γ ∈ R++, and G : F → ]−∞,+∞] is proper, lower
semicontinuous, and convex.

A2 (∃ (a, b) ∈ R2
+)(∀ t ∈ R) L(t) ≤ a + b|t|p.
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A3

∫

X×Y

|y|p dP (x, y) < +∞ and

∫

X×Y

‖Φ(x)‖p dP (x, y) < +∞.

In this context F and Φ are respectively the feature space and the feature map, and L is
the loss function [5, 27].1 Problem (3.1) can be considered as a continuous version of support
vector regression, for general loss L and regularizer G. Indeed, if P is chosen as a discrete
distribution, say P = (1/n)

∑n
i=1 δ(xi,yi), for some sample (xi, yi)1≤i≤n ∈ (X × Y)n, then one

obtains

min
(w,b)∈F×R

γ

n

n∑

i=1

L
(
yi − 〈w,Φ(xi)〉 − b

)
+G(w),

which is the way support vector regression is formulated in [12]. Assumption A2 corresponds
to an upper growth condition for the loss L, whereas assumption A3 includes a moment
condition for the distribution P and an integrable condition for the feature map Φ, with
respect to P — they are both standard assumptions in support vector machines [21]. In the
following we consider the Lebesgue space

Lp(P ) =

{

u : X × Y → R

∣
∣
∣ u is A-measurable and

∫

X×Y

|u(x, y)|pdP (x, y) < +∞

}

.

Problem (3.1) is a convex optimization problem of a composite form on an infinite dimensional
space. The following result first recasts the problem in a constrained form, as done in [7, 23],
then presents its dual problem, with respect to the Fenchel-Rockafellar duality, and the related
optimality conditions.

Theorem 3.1. Let assumptions A1, A2, and A3 hold. Then problem (3.1) is equivalent to






min
(w,b,e)∈F×R×Lp(P )

γ

∫

X×Y

L(e(x, y)) dP (x, y) +G(w),

subject to y − 〈w,Φ(x)〉 − b = e(x, y) for P -a.a. (x, y) ∈ X × Y

(P)

and its dual is













min
u∈Lp∗(P )

G∗

(∫

X×Y

u(x, y)Φ(x) dP (x, y)

)

+ γ

∫

X×Y

L∗

(
u(x, y)

γ

)

dP (x, y)−

∫

X×Y

y u(x, y) dP (x, y)

subject to

∫

X×Y

u dP = 0.

(D)

1Usually one requires that L is also even. In that case it is easy to see that necessarily 0 is a minimizer of L
and that L is increasing on R+. Indeed for every t ∈ R+, we have −t ≤ 0 ≤ t, and hence 0 = (1−α)(−t)+αt, for
some α ∈ [0, 1]. Then, by convexity L(0) ≤ (1−α)L(−t)+αL(t) = L(t), for L(−t) = L(t). Moreover, for every
s, t ∈ R, with 0 ≤ s ≤ t, we have s = (1− α)0 + αt, for some α ∈ [0, 1], and hence L(s) ≤ (1− α)L(0) + αL(t)
which yields L(s)− L(0) ≤ α(L(t)− L(0)) ≤ L(t)− L(0).
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Moreover, the dual problem (D) admits solutions, strong duality holds, and for every (w, b, e) ∈
F × R× Lp(P ) and every u ∈ Lp∗(P ), (w, b, e) is a solution of (P) and u is a solution of (D)
if and only if the following optimality conditions hold







w ∈ ∂G∗

(∫

X×Y

u(x, y)Φ(x) dP (x, y)

)

∫

X×Y

u dP = 0

u(x, y)

γ
∈ ∂L(e(x, y)) for P -a.a. (x, y) ∈ X × Y

y − 〈w,Φ(x)〉 − b = e(x, y) for P -a.a. (x, y) ∈ X × Y .

(3.2)

Proof. The Banach spaces Lp(P ) and Lp∗(P ) are put in duality by means of the pairing

〈·, ·〉p,p∗ : L
p(P )× Lp∗(P ) → R : (e, u) 7→

∫

X×Y

e(x, y)u(x, y) dP (x, y). (3.3)

In virtue of A3, the following linear operator

A : F×R → Lp(P ) s.t. (∀ (w, b) ∈ F×R) A(w, b) : X ×Y → R : (x, y) 7→ 〈w,Φ(x)〉+ b (3.4)

is well-defined and the function

pr2 : X × Y → R : (x, y) 7→ y,

is in Lp(P ). Then problem (3.1) can be written in the following constrained form






min
(w,b,e)∈F×R×Lp(P )

γ

∫

X×Y

L(e(x, y)) dP (x, y) +G(w),

subject to pr2 −A(w, b) = e

(3.5)

— where, in the constraint, the equality is meant to be in Lp(P ) — and hence (P) follows.
Now, define the following integral functional

RP : L
p(P ) → R : e 7→

∫

X×Y

L(e(x, y)) dP (x, y),

the linear operator

B : F × R× Lp(P ) → Lp(P ) : (w, b, e) 7→ A(w, b) + e,

and the functional

f : F × R× Lp(P ) → ]−∞,+∞] : (w, b, e) 7→ γRP (e) +G(w).

We note that the functional RP is well defined, convex, and continuous. This follows from
from the convexity and continuity of L and from the fact that, because of A1, for every
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(x, y) ∈ X × Y , L(e(x, y)) ≤ a + b|e(x, y)|p. Then, problem (3.5) can be equivalently written
as

min
(w,b,e)∈F×R×Lp(P )

f(w, b, e) + ι{−pr
2
}(−B(w, b, e)), with f(w, b, e) = γR(e) +G(w). (3.6)

This form of problem (3.1) is amenable by the Fenchel-Rockafellar duality theory. In view of
Fact 2.2 we need only to check that 0 ∈ int

(
− B(dom f) + pr2

)
. This is almost immediate.

Indeed, since dom f = domG× R× Lp(P ), we have

B(dom f) =
{
A(w, b) + e

∣
∣ (w, b) ∈ domG× R and e ∈ Lp(P )

}
= Lp(P ).

Now we compute the dual of (3.6). We have

(∀ u ∈ Lp∗(P )) (ι{−pr
2
})

∗(u) = 〈−pr2, u〉p,p∗ (3.7)

and, for every (w∗, b∗, u) ∈ F
∗× R× Lp∗(P ),

f ∗(w∗, b∗, u) = sup
(w,b,e)∈F×R×Lp(P )

〈(w, b, e), (w∗, b∗, u)〉 − f(w, b, e)

= sup
w∈F

sup
b∈R

sup
e∈Lp(P )

〈w,w∗〉 −G(w) + 〈u, e〉p,p∗ − γRP (e) + bb∗

=

{

G∗(w∗) + γR∗
P (u/γ) if b∗ = 0

+∞ if b∗ 6= 0.

(3.8)

Moreover, we need also to compute A∗ : Lp∗(P ) → F
∗×R and B∗ : Lp∗(P ) → F

∗×R×Lp∗(P ).
To that purpose, we note that for every (w, b, e) ∈ F × R× Lp(P ) and every u ∈ Lp∗(P ),

〈B(w, b, e), u〉p,p∗ = 〈A(w, b) + e, u〉p,p∗ = 〈(w, b), A∗u〉+ 〈e, u〉p,p∗

= 〈(w, b, e), (A∗u, u)〉

and
〈(w, b), A∗u〉 = 〈A(w, b), u〉p,p∗

=

∫

X×Y

(〈w,Φ(x)〉+ b)u(x, y) dP (x, y)

=
〈

w,

∫

X×Y

u(x, y)Φ(x) dP (x, y)
〉

+ b

∫

X×Y

u dP

=
〈

(w, b),

(∫

X×Y

u(x, y)Φ(x) dP (x, y),

∫

X×Y

u dP

)〉

,

which yields

A∗u =

(∫

X×Y

uΦdP,

∫

X×Y

u dP

)

(3.9)

and

B∗u = (A∗u, u) =

(∫

X×Y

uΦdP,

∫

X×Y

u dP, u

)

, (3.10)
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where, for brevity, we put
∫

X×Y
uΦdP =

∫

X×Y
u(x, y)Φ(x) dP (x, y). Thus, taking into account

(3.8),(3.9), and (3.10), we have that, for every u ∈ Lp∗(P ),

f ∗(B∗u) = f ∗(A∗u, u) =







G∗

(∫

X×Y

uΦdP

)

+ γR∗
P (u/γ) if

∫

X×Y

u dP = 0

+∞ otherwise.

Moreover, it follows from [18, Theorem 21(a)] that the Fenchel conjugate of RP is still an
integral operator, more precisely

(∀ u ∈ Lp(P )) R∗
P (u/γ) =

∫

X×Y

L∗(u(x, y)/γ) dP (x, y).

Therefore, recalling (3.7), the final form (D) is obtained. The corresponding optimality con-
ditions for problem (3.6) and its dual (D) are (see Fact 2.1)

B∗u ∈ ∂f(w, b, e) = ∂G(w)× {0} × γ∂R(e) and B(w, b, e) = pr2. (3.11)

Now, recalling (3.10), conditions (3.11) can be gathered together as follows







∫

X×Y

uΦdP ∈ ∂G(w)

∫

X×Y

u dP = 0

u

γ
∈ ∂R(e)

y − 〈w,Φ(x)〉 − b = e(x, y) for P -a.a. (x, y) ∈ X × Y .

(3.12)

Thus, subdifferentiating under the integral sign [18, Theorem 21(c)] and recalling (2.1), (3.2)
follows.

Remark 3.2.

(i) The form (P) resembles the way the problem of support vector machines for regression is
often formulated [23, eq. (3.51)] and the optimality conditions (3.2) are the continuous
versions of the one stated in [23, eq. (3.52)] for RKHS, differentiable loss functions, and
square norm regularizers.

(ii) If b = 0, condition
∫

X×Y
u dP = 0 in (3.2) should be omitted.

(iii) If G is strictly convex on every convex subset of dom ∂G and int(domG∗) = dom ∂G∗,
then G∗ is Gâteaux differentiable (hence ∂G∗ is single valued) on dom ∂G∗ [1, Proposi-
tion 18.9] and, if a solution w of the primal problem (P) exists, then the first of (3.2)
yields

w = ∇G∗

(∫

X×Y

uΦdP

)

, (3.13)

8



where u is any solution of the dual problem (D). This constitutes a general nonlinear
representer theorem, since the solution of problem (P) is expressed in terms of the values
of the feature map Φ. In the special case that F is a Hilbert space and G = (1/2)‖·‖2,
∇G∗ = Id and the first and third condition in (3.2) reduce to the ones obtained in [9,
Corollary 3]. When P is the discrete distribution P = (1/n)

∑n
i=1 δ(xi,yi), for some sample

(xi, yi)1≤i≤n ∈ (X × Y)n, then (3.13) becomes

w = ∇G∗

( n∑

i=1

uiΦ(xi)

)

. (3.14)

We note that in (3.13)-(3.14) the nonlinearity relies on the mapping ∇G∗ only.

The optimality conditions (3.2) in Theorem 3.1 directly yield a continuous representer
theorem in Banach space setting.

Corollary 3.3 (Continuous representer theorem). Let assumptions A1, A2, and A3 hold.
Suppose that F is strictly convex and smooth and let r ∈ ]1,+∞[. In problem (P), suppose
that G = ϕ ◦ ‖·‖, for some convex and even function ϕ : R → R+ such that argminϕ = {0}.
Then the solution w of problem (P) admits the following representation

Jr(w) =

∫

X×Y

c(x, y)Φ(x) dP (x, y), (3.15)

for some function c ∈ Lp∗(P ), where Jr : F → F
∗ is the r-duality map of F.

Proof. Let t > 0. We first note that, since 0 is the unique minimizer of ϕ and t > 0, then
0 /∈ ∂ϕ(t); moreover, for every ξ ∈ ∂ϕ(t), we have ξt ≥ ϕ(t) − ϕ(0) > 0, hence, ξ > 0. Now,
if w = 0, then (3.15) holds trivially. Suppose that w 6= 0. Then, it follows from Fact 2.1 that
when w 6= 0,

∂G(w) =
∂ϕ(‖w‖)

‖w‖r−1 Jr(w).

Therefore, it follows from the first of (3.12) that
∫

X×Y

uΦdP =
ξ

‖w‖r−1Jr(w), ξ ∈ ∂ϕ(‖w‖).

Hence, since ξ > 0,

Jr(w) =
‖w‖r−1

ξ

∫

X×Y

uΦdP

and the statement follows.

Remark 3.4. If in Corollary 3.3, r = 2 and P is a discrete measure, say P = (1/n)
∑n

i=1 δ(xi,yi),
for some sample (xi, yi)1≤i≤n ∈ (X × Y)n, then (3.15) becomes

J2(w) =
n∑

i=1

ciΦ(xi), (ci)1≤i≤n ∈ R
n, (3.16)

9



where J2 is the normalized duality map. Formula (3.16) is the way the representer theorem
is usually presented in reproducing kernel Banach spaces [10, 27, 28]. Here it is a simple
consequence of the more general Theorem 3.1 and Corollary 3.3. Moreover, we stress that
our derivation of (3.16) relies on convex analysis arguments only, while in the above cited
literature it is proved as a consequence of a representer theorem for function interpolation,
ultimately using different techniques and stronger hypotheses. We finally note that, if F is a
Hilbert space and r = 2, then J2 is the identity map of F and (3.16) becomes

w =

n∑

i=1

ciΦ(xi).

This is the classical representer theorem in Hilbert spaces [19].

Example 3.5. We consider the case of the Vapnik’s ε-insensitive loss [20, 24]. Let ε > 0 and
define

Lε : R → R+ : t 7→ max{0, |t| − ε}. (3.17)

This loss clearly satisfies A2 for every p > 1. We note that (3.17) is the distance function
from the set [−ε, ε], that is, using the notation in [13], we have Lε = d[−ε,ε]. Then, the Fenchel
conjugate of Lε is (see [13, Example 13.24(i)])

L∗
ε = σ[−ε,ε] + ι[−1,1] = ε|·|+ ι[−1,1].

Therefore, for the loss (3.17), the dual problem (D) becomes













min
u∈Lp∗(P )

G∗

(∫

X×Y

u(x, y)Φ(x) dP (x, y)

)

+ ε

∫

X×Y

|u(x, y)| dP (x, y)−

∫

X×Y

y u(x, y) dP (x, y)

subject to

∫

X×Y

u dP = 0 and |u(x, y)| ≤ γ for P -a.a. (x, y) ∈ X × Y .

This is a generalization of the dual problem that arises in classical support vector regression
when the linear ε-insensitive loss is considered [7, Proposition 6.21] and [20] — here we have
a general regularizer and a Banach feature space.

Remark 3.6. Let us consider the case that F is a Hilbert space. Then F is isomorphic to its
dual and the pairing reduces to the inner product in F. Moreover, suppose that G = (1/2)‖·‖2,
that L = (1/2)|·|2, and that b = 0, so that in (3.2) the condition

∫

X×Y
u dP = 0 is not present.

Then it follows from the first and the third in (3.2) that

w =

∫

X×Y

uΦdP,
u

γ
= e

and hence

〈w,Φ(x)〉 =

∫

X×Y

u(x′, y′)〈Φ(x′),Φ(x)〉 dP (x′, y′).
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Thus, the last of (3.2) yields the following integral equation

(∀ (x, y) ∈ X × Y)
u(x, y)

γ
+

∫

X×Y

u(x′, y′)〈Φ(x′),Φ(x)〉 dP (x′, y′) = y.

4 Tensor-kernel representation

We present our framework. For clarity we consider separately the real and complex case. We
describe the real case with full details, whereas in the complex case we provide results with
sketched proofs only.

4.1 The real case

Let F = ℓr(K), with K a countable set and r = m/(m−1) for some even integer m ≥ 2. Thus,
we have r∗ = m. Let (φk)k∈K be a family of measurable functions from X to R such that, for
every x ∈ X , (φk(x))k∈K ∈ ℓr

∗

(K) and define the feature map as

Φ: X → ℓr
∗

(K) : x 7→ (φk(x))k∈K. (4.1)

Thus, we consider the following linear model

(
∀ (w, b) ∈ ℓr(K)× R

)
fw,b = 〈w,Φ(·)〉r,r∗ + b =

∑

k∈K

wkφk + b (pointwise), (4.2)

where 〈·, ·〉r,r∗ is the canonical pairing between ℓr(K) and ℓr
∗

(K). The space

B =

{

f : X → R

∣
∣
∣ (∃(w, b) ∈ ℓr(K)× R)(∀ x ∈ X )

(

f(x) =
∑

k∈K

wkφk(x) + b

)}

(4.3)

is a reproducing kernel Banach space with norm

(∀ f ∈ B) ‖f‖B = inf

{

‖w‖r + |b|
∣
∣
∣ (w, b) ∈ ℓr(K)× R and f =

∑

k∈K

wkφk + b (pointwise)

}

,

meaning that, with respect to that norm, the point-evaluation operators are continuous [5, 27].
We also consider the following regularization function

G(w) = ϕ(‖w‖r), (4.4)

for some convex and even function ϕ : R → R+, such that argminϕ = {0}, and we set
P = (1/n)

∑n
i=1 δ(xi,yi), for some given sample (xi, yi)1≤i≤n ∈ (X × Y)n.

In such setting the primal and dual problems of support vector regression considered in
Theorem 3.1 turn into







min
(w,b,e)∈ℓr(K)×R×Rn

γ

n

n∑

i=1

L(ei) + ϕ(‖w‖r),

subject to yi − 〈w,Φ(xi)〉r,r∗ − b = ei, for every i ∈ {1, . . . , n}

(Pn)
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and, since G∗ = ϕ∗ ◦ ‖·‖r∗ (Fact 2.1),










min
u∈Rn

ϕ∗

(∥
∥
∥
∥

1

n

n∑

i=1

uiΦ(xi)

∥
∥
∥
∥
r∗

)

+
γ

n

n∑

i=1

L∗

(
ui
γ

)

−
1

n

n∑

i=1

yiui

subject to
n∑

i=1

ui = 0.

(Dn)

Moreover, assuming that w 6= 0, Fact 2.1 and (3.2) yield the following optimality conditions2







w ∈
∂ϕ∗

(
1
n

∥
∥
∑n

i=1 uiΦ(xi)
∥
∥
r∗

)

∥
∥
∑n

i=1 uiΦ(xi)
∥
∥
r∗−1

r∗

Jr∗

( n∑

i=1

uiΦ(xi)

)

n∑

i=1

ui = 0

ui/γ ∈ ∂L(ei) for every i ∈ {1, . . . , n}

yi − 〈w,Φ(xi)〉r,r∗ − b = ei for every i ∈ {1, . . . , n}.

(4.5)

The dual problem (Dn) is a convex optimization problem and it is finite dimensional, since
it is defined on Rn. Once (Dn) is solved, expressions in (4.5) in principle allow to recover the
primal solution (w, b) and eventually to compute the estimated regression function 〈w,Φ(x)〉+b
at a generic point x of the input space X . However, if K is an infinite set, that procedure is not
feasible in practice, since it relies on the explicit knowledge of the feature map Φ, which is an
infinite dimensional object. In the following we show that, in the dual problem (Dn), we can
actually get rid of the feature map Φ and use instead a new type of kernel function evaluated
at the sample points (xi)1≤i≤n. This will ultimately provide a new and effective computational
framework for treating support vector regression in Banach spaces of type (4.3).

Remark 4.1. Consider the reproducing kernel Banach space

B =

{

f : X → R

∣
∣
∣ (∃w ∈ ℓr(K))(∀ x ∈ X )

(

f(x) =
∑

k∈K

wkφk(x)

)}

endowed with norm ‖f‖B = inf
{
‖w‖r

∣
∣ w ∈ ℓr(K) and f =

∑

k∈Kwkφk (pointwise)
}
. Let

f ∈ B and let (wk)k∈K ∈ ℓr(K) be such that f =
∑

k∈Kwkφk pointwise. Then, for every finite
subset J ⊂ K we have f −

∑

k∈Jwkφk =
∑

k∈K\Jwkφk pointwise; hence, by definition

∥
∥
∥
∥
f −

∑

k∈J

wkφk

∥
∥
∥
∥
B

≤
∥
∥(wk)k∈K\J

∥
∥
r
=

(
∑

k∈K\J

|wk|
r

)1/r

→ 0 as |J| → +∞.

2Note that G∗ = ϕ∗ ◦ ‖·‖r∗ and {0} = argminϕ = ∂ϕ∗(0). Thus, since, by (3.2), w ∈ ∂G∗(
∑n

i=1
uiΦ(xi)),

if w 6= 0, then Fact 2.1 yields
∑n

i=1
uiΦ(xi) 6= 0.
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Thus, the family (wkφk)k∈K is summable in (B, ‖·‖B) and it holds f =
∑

k∈Kwkφk in (B, ‖·‖B).
Therefore, if the family of functions (φk)k∈K is pointwise ℓr-independent, in the sense that

(∀ (wk)k∈K ∈ ℓr(K))
∑

k∈K

wkφk = 0 (pointwise) ⇒ (wk)k∈K ≡ 0, (4.6)

then (φk)k∈K is an unconditional Schauder basis of B. Indeed if
∑

k∈Kwkφk = 0 in (B, ‖·‖B),
since the evaluation operators on B are continuous, we have

∑

k∈Kwkφk = 0 pointwise, and
hence, by (4.6), (wk)k∈K ≡ 0. We finally note that when (φk)k∈K is a (unconditional) Schauder
basis of B, then B is isometrically isomorphic to ℓr(K).

We start by first providing a generalized Cauchy-Schwartz inequality for sequences which is
a consequence of a standard generalization of Hölder’s inequality [2, Corollary 2.11.5] and that
we prove for completeness. We use the following compact notation for the component-wise
product of two sequences:

(∀ a ∈ ℓr(K))(∀ b ∈ ℓr
∗

(K))
∑

k∈K

ab :=
∑

k∈K

a[k]b[k].

Proposition 4.2 (Generalized Cauchy-Schwartz inequality). Let K be a nonempty set. Let
m ∈ N and let a1, a2, . . . , am ∈ lm+ (K). Then a1a2 · · · am ∈ ℓ1+(K) and

∑

k∈K

a1a2 · · · am ≤

(
∑

k∈K

am1

)1/m(∑

k∈K

am2

)1/m

· · ·

(
∑

k∈K

amm

)1/m

.

Proof. We prove it by induction. The statement is true form = 2. Suppose that the statement
holds form ≥ 2 and let a1, a2, . . . , am, am+1 ∈ ℓm+1

+ (K). Then a
(m+1)/m
1 , a

(m+1)/m
2 , . . . , a

(m+1)/m
m ∈

ℓm+ (K) and by induction hypothesis (a1a2 · · · am)
(m+1)/m ∈ ℓ1+(K) and

∑

k∈K

(a1a2 · · ·am)
(m+1)/m ≤

(
∑

k∈K

am+1
1

)1/m(∑

k∈K

am+1
2

)1/m

· · ·

(
∑

k∈K

am+1
m

)1/m

.

Now, since a1a2 · · ·am ∈ ℓ
(m+1)/m
+ (K), am+1 ∈ ℓm+1

+ (K), and (m+1)/m andm+1 are conjugate
exponents, it follows from Hölder inequality that a1a2 · · · amam+1 ∈ ℓ1+(K) and

∑

k∈K

a1a2 · · · amam+1 ≤

(
∑

k∈K

(a1a2 · · · am)
(m+1)/m

)m/(m+1)(∑

k∈K

am+1
m+1

)1/(m+1)

≤

(
∑

k∈K

am+1
1

)1/m+1(∑

k∈K

am+1
2

)1/m+1

· · ·

(
∑

k∈K

am+1
m+1

)1/m+1

.

Now we are ready to define a tensor-kernel associated to the feature map (4.1) and give its
main properties.
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Proposition 4.3. In the setting (4.1) described above, the following function is well-defined

K : Xm = X × · · · × X
︸ ︷︷ ︸

m times

→ R : (x′1, . . . , x
′
m) 7→

∑

k∈K

φk(x
′
1) · · ·φk(x

′
m), (4.7)

and the following hold.

(i) For every (x′1, . . . , x
′
m) ∈ Xm, and for every permutation σ of the indexes {1, . . . , m},

K(x′σ(1) . . . x
′
σ(m)) = K(x′1, . . . x

′
m).

(ii) For every (xi)1≤i≤n ∈ X n

(∀ u ∈ R
n)

n∑

i1,...,im=1

K(xi1 , . . . , xim)ui1 . . . uim ≥ 0 .

(iii) For every (xi)1≤i≤n ∈ X n

u ∈ R
n 7→

∥
∥
∥
∥

n∑

i=1

uiΦ(xi)

∥
∥
∥
∥

r∗

r∗
=

n∑

i1,...,im=1

K(xi1 , . . . , xim)ui1 . . . uim (4.8)

is a homogeneous polynomial form of degree m on Rn.

(iv) For every x ∈ X , K(x, . . . , x) ≥ 0.

(v) For every (x′1, . . . , x
′
m) ∈ Xm

|K(x′1, . . . , x
′
m)| ≤ K(x′1, . . . , x

′
1)

1/m · · ·K(x′m, . . . , x
′
m)

1/m.

Proof. Since (φk(x
′
1))k∈K, (φk(x

′
2))k∈K, . . . (φk(x

′
m))k∈K ∈ lm(K), it follows from Proposition 4.2

that (φk(x
′
1)φk(x

′
2) · · ·φk(x

′
m))k∈K ∈ l1(K) and

∑

k∈K

|φk(x
′
1) · · ·φk(x

′
m)| ≤

(
∑

k∈K

|φk(x
′
1)|

m

)1/m

· · ·

(
∑

k∈K

|φk(x
′
m)|

m

)1/m

. (4.9)

This shows that definition (4.7) is well-posed and moreover, since m is even we can remove
the absolute values in the right hand side of (4.9) and get (v). Properties (i) and (iv) are
immediate from the definition of K. Finally, since r∗ = m is even, for every u ∈ Rn, we have

∥
∥
∥
∥

n∑

i=1

uiΦ(xi)

∥
∥
∥
∥

r∗

r∗
=

∑

k∈K

( n∑

i=1

uiφk(xi)

)m

=
∑

k∈K

n∑

i1,...,im=1

φk(xi1) · · ·φk(xim)ui1 . . . uim

=

n∑

i1,...,im=1

(
∑

k∈K

φk(xi1) · · ·φk(xim)

)

ui1 . . . uim . (4.10)

Therefore, recalling the definition of K, (ii) and (iii) follow.
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Remark 4.4. Let (xi)1≤i≤n ∈ X n. Then (K(xi1 , . . . , xim))i∈{1,...n}m defines a tensor of degree
m on Rn. Then, properties (i) and (ii) establish that the tensor is symmetric and positive
definite: they are natural generalization of the defining properties of standard positive (matrix)
kernels.

Because of Proposition 4.3(v), tensor kernels, as defined in (4.7), can be normalized as for
the matrix kernels.

Proposition 4.5 (normalized tensor kernel). Let K be defined as in (4.7) and suppose that,
for every x ∈ X , K(x, . . . , x) > 0. Define

K̃ : Xm → R,

(x′1, . . . , x
′
m) 7→

K(x′1, . . . , x
′
m)

K(x′1, . . . , x
′
1)

1/m · · ·K(x′m, . . . , x
′
m)

1/m
.

(4.11)

Then K̃ is still of type (4.7), for some family of functions (φ̃k)k∈K, φ̃k : X → R, and the
following hold.

(i) For every x ∈ X , K̃(x, . . . , x) = 1.

(ii) For every (x′1, . . . x
′
m) ∈ Xm, |K̃(x′1, . . . x

′
m)| ≤ 1.

Proof. Just note that, for every x ∈ X , ‖Φ(x)‖mm = K(x, · · · , x) > 0. Then define φ̃k(x) =
φk(x)/‖Φ(x)‖

m
m.

We present the first main result of the section, which is a direct consequence of Proposi-
tion 4.3.

Theorem 4.6. In the setting (4.1)-(4.4) described above, the dual problem (Dn) reduces to the
following finite dimensional problem










min
u∈Rn

ϕ∗

(
1

n

( n∑

i1,...,im=1

K(xi1 , . . . , xim)ui1 . . . uim

)1/r∗)

+
γ

n

n∑

i=1

L∗

(
ui
γ

)

−
1

n

n∑

i=1

yiui

subject to
n∑

i=1

ui = 0.

(4.12)

Remark 4.7.

(i) Problem (4.12) is a convex optimization problem with linear constraints.

(ii) If the tensor kernel K is explicitly computable by means of (4.7), the dual problem (4.12)
is a very finite dimensional problem, in the sense that it does not involve the feature map
anymore. This is exactly how the kernel trick works within the kernel matrix.
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Remark 4.8. The homogeneous polynomial form (4.8) can be written as follows

∑

α∈Nn

|α|=m

(
m

α

)

K(x1, . . . , x1
︸ ︷︷ ︸

α1

, . . . , . . . , xn, . . . , xn
︸ ︷︷ ︸

αn

)uα (4.13)

where, for every multi-index α = (α1, . . . , αn) ∈ Nn and for every vector u ∈ Rn, we used the
standard notation uα = uα1

1 · · ·uαn
n , |α| =

∑n
i=1 αi, and the multinomial coefficient

(
m

α

)

=

(
m

α1, . . . , αn

)

=
m!

α1! . . . αn!
. (4.14)

Indeed it follows from (4.10) and the multinomial theorem [3, Theorem 4.12] that

∥
∥
∥
∥

n∑

i=1

uiΦ(xi)

∥
∥
∥
∥

r∗

r∗
=

∑

k∈K

( n∑

i=1

uiφk(xi)

)m

=
∑

k∈K

∑

α∈Nn

|α|=m

(
m

α

)

φk(x1)
α1 . . . φk(xn)

αnuα

=
∑

α∈Nn

|α|=m

(
m

α

)(
∑

k∈K

φk(x1)
α1 . . . φk(xn)

αn

)

uα.

Thus (4.13) follows from (4.7).

Corollary 4.9. In Theorem 4.6, let ϕ = (1/r)|·|r (which gives G = (1/r)‖·‖rr). Then the dual
problem (4.12) becomes










min
u∈Rn

1

r∗nr∗

n∑

i1,...,im=1

K(xi1 , . . . , xim)ui1 . . . uim +
γ

n

n∑

i=1

L∗

(
ui
γ

)

−
1

n

n∑

i=1

yiui

subject to
n∑

i=1

ui = 0.

(4.15)

Proof. Just note that ϕ∗ = (1/r∗)|·|r
∗

and apply Theorem 4.6.

Remark 4.10. The first term in the objective function in (4.15) is a positive definite homoge-
neous polynomial of order m. So, if the function L∗ is smooth, which occurs when L is strictly
convex, then the dual problem (4.15) is a smooth convex optimization problem with a linear
constraint and can be approached by standard optimization techniques such as Newton-type
or gradient-type methods — in the case of square loss, the dual problem (4.15) is a polynomial
convex optimization problems and possibly more appropriate optimization methods may be
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employed. We finally specialize (4.15) to the case of ε-insensitive loss (see Example 3.5)










min
u∈Rn

1

mnm

n∑

i1,...,im=1

K(xi1 , . . . , xim)ui1 . . . uim +
ε

n

n∑

i=1

|ui| −
1

n

n∑

i=1

yiui

subject to

n∑

i=1

ui = 0 and |ui| ≤ γ for every i ∈ {1, . . . , n}.

(4.16)

This problem clearly shows similarities with the dual formulation of standard support vector
regression [20, 24].

Once a solution u ∈ Rn of the dual problem (4.12) is computed, then one can compute the
solution of the primal problem (Pn) by means of the equations in (4.5). In particular, if ϕ∗

and L∗ are differentiable, then the solution of the primal problem (Pn) is given by

w =
(ϕ∗)′( 1

n
K[u]1/r

∗

)

K[u]1/r
Jr∗

( n∑

i=1

uiΦ(xi)

)

, K[u] :=
n∑

i1,...,im=1

K(xi1 , . . . , xim)ui1 . . . uim > 0

(4.17)
and

b = y1 − 〈w,Φ(x1)〉r,r∗ − (L∗)′
(
u1
γ

)

, (4.18)

where
Jr∗ : ℓ

r∗(K) → ℓr(K) : u 7→
(
|uk|

r∗−1 sign(uk)
)

k∈N
.

Now note that r∗ = m and m− 1 is odd, therefore

Jm : ℓm(K) → ℓr(K) : u 7→ (um−1
k )k∈N

and hence (4.17) yields

(∀ k ∈ N) wk = ξ(u)

( n∑

i=1

uiφk(xi)

)m−1

, ξ(u) =
(ϕ∗)′( 1

n
K[u]1/r

∗

)

K[u]1/r
. (4.19)

Remark 4.11. It follows from the last two of (4.5) that in (4.18) any index i ∈ {1, . . . , n}
can be actually chosen to determine b. We chose i = 1.

The next issue is to evaluate the regression function corresponding to (w, b) at a general
input point, without the explicit knowledge of the feature map but relying on the tensor-kernel
K only. In the analogue case of matrix-kernels, this is what is usually called kernel trick. The
following proposition shows that the kernel trick is still viable in our more general situation
and that a tensor-kernel representation holds.
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Proposition 4.12. Under the assumptions (4.1)-(4.4), let K be defined as in (4.7). Suppose
that ϕ∗ is differentiable on R++ and that L∗ is differentiable on R. Let u ∈ Rn be a solution
of the dual problem (4.12) and set (w, b) as in (4.19)-(4.18). Then, for every x ∈ X ,

〈w,Φ(x)〉r,r∗ =
(ϕ∗)′( 1

n
K[u]1/r

∗

)

K[u]1/r

n∑

i1,...,im−1=1

K(xi1 , . . . , xim−1
, x)ui1 · · ·uim−1

b = y1 − (L∗)′
(
u1
γ

)

−
(ϕ∗)′( 1

n
K[u]1/r

∗

)

K[u]1/r

n∑

i1,...,im−1=1

K(xi1 , . . . , xim−1
, x1)ui1 · · ·uim−1

.

(4.20)

Proof. Let x ∈ X . Then, we derive from (4.19) that

〈w,Φ(x)〉r,r∗ =
∑

k∈K

wkφk(x)

= ξ(u)
∑

k∈K

( n∑

i=1

uiφk(xi)

)m−1

φk(x)

= ξ(u)
∑

k∈K

n∑

i1,...,im−1=1

φk(xi1) · · ·φk(xim−1
)φk(x)ui1 · · ·uim−1

= ξ(u)

n∑

i1,...,im−1=1

K(xi1 , . . . , xim−1
, x)ui1 · · ·uim−1

,

where we used the definition (4.7) of K.

Remark 4.13. In the case treated in Corollary 4.9, (4.20) yields the following representation
formula

〈w,Φ(x)〉r,r∗ + b =
1

nm−1

n∑

i1,...,im−1=1

(
K(xi1 , . . . , xim−1

, x)−K(xi1 , . . . , xim−1
, x1)

)
ui1 · · ·uim−1

+ y1 − (L∗)′
(
u1
γ

)

.

Moreover, if in model (4.2) we assume no offset (b = 0), then we can avoid the requirement of
the differentiability of L∗ and the representation formula becomes

〈w,Φ(x)〉r,r∗ =
1

nm−1

n∑

i1,...,im−1=1

K(xi1 , . . . , xim−1
, x)ui1 · · ·uim−1

.

Concluding we have shown that, the estimated regression function can be evaluated at
every point of the input space by means of a finite summation formula, provided that the
tensor-kernel K is explicitly available: we will show in Section 5 several significant examples
in which this occurs.
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4.2 The complex case

In this section we give the complex version of the theory developed in Section 4.1. Therefore,
we let F = ℓr(K;C), with K a countable set and r = m/(m− 1) for some even integer m ≥ 2.
Let (φk)k∈K be a family of measurable functions from X to C such that, for every x ∈ X ,
(φk(x))k∈K ∈ ℓr

∗

(K;C). The feature map is now defined as

Φ: X → ℓr
∗

(K;C) : x 7→ (φk(x))k∈K, (4.21)

which generates the model

(∀w ∈ ℓr(K;C))(∀ b ∈ C) x 7→ 〈w,Φ(x)〉r,r∗ + b =
∑

k∈K

wkφk(x) + b, (4.22)

where 〈w,w∗〉r,r∗ =
∑

k∈N wkw
∗
k is the canonical sesquilinear form between ℓr(K;C) and

ℓr
∗

(K;C). This case can be treated as a vector-valued real case by identifying complex func-
tions with R2-valued functions and the space ℓr(K;C) with ℓr(K;R2). Moreover, it is not
difficult to generalize the dual framework presented in Section 3 to the case of vector-valued
(and specifically to R2-valued) functions. Then, the (complex) feature map (4.21) defines an
underlying real vector-valued feature map on ℓr(K;R2) [5], that is

ΦR : X → L(R2, ℓr
∗

(K;R2)) ≅ ℓr
∗

(K;R2×2) : x 7→ (φR,k(x))k∈K, (4.23)

where L(R2, ℓr
∗

(K;R2)) is the spaces of linear continuous operators from R2 to ℓr
∗

(K;R2)
(which is isomorphic to ℓr

∗

(K;R2×2)) and

(∀ x ∈ X )(∀ k ∈ K) φR,k(x) =

[
Reφk(x) Imφk(x)
−Imφk(x) Reφk(x)

]

∈ R
2×2. (4.24)

This way, denoting, for every x ∈ X , by φR,k(x)
∗ the transpose of the matrix φR,k(x), we have

(∀ x ∈ X )(∀ k ∈ K)(∀wk ∈ R
2
≅ C) φR,k(x)

∗wk = wkφk(x), (4.25)

hence ΦR(x)
∗w = 〈w,Φ(x)〉r,r∗. Moreover

(∀ x ∈ X )(∀ u ∈ R
2
≅ C) ΦR(x)u = (φR,k(x)u)k∈K = (uφk(x))k∈K = uΦ(x). (4.26)

Then, problems (Pn) and (Dn) become






min
(w,b,e)∈ℓr(K;C)×C×Cn

γ

n

n∑

i=1

L(ei) + ϕ(‖w‖r),

subject to yi − 〈w,Φ(xi)〉r,r∗ − b = ei, for every i ∈ {1, . . . , n}

(Pn(C))

and 








min
u∈Cn

ϕ∗

(∥
∥
∥
∥

1

n

n∑

i=1

uiΦ(xi)

∥
∥
∥
∥
r∗

)

+
γ

n

n∑

i=1

L∗

(
ui
γ

)

−
1

n

n∑

i=1

Re(uiyi)

subject to
n∑

i=1

ui = 0,

(Dn(C))
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where, L∗ : C → R : z∗ 7→ supz∈C Re(zz∗)−L(z). Moreover, assuming that w 6= 0, the optimal-
ity conditions (4.5) still hold, where now Jr∗ : ℓ

r∗(K;C) → ℓr(K;C) : w∗ 7→ (|w∗
k|

r−1w∗
k/|w

∗
k|)k∈K,

and
(∀ e ∈ C) ∂L(e) =

{
z∗ ∈ C

∣
∣ (∀ z ∈ C) L(z) ≥ L(e) +Re

(
z∗(z − e)

)}
.

In the following we give the result corresponding to Proposition 4.3.

Proposition 4.14. In the setting described above, suppose that m is even and set q = m/2.
Then, the following function is well-defined

K : X q × X q → C : (x′1, . . . , x
′
q; x

′′
1, . . . , x

′′
q ) 7→

∑

k∈K

φk(x
′
1) · · ·φk(x

′
q)φk(x′′1) · · ·φk(x′′q ), (4.27)

and the following hold.

(i) For every (x′1, . . . , x
′
q; x

′′
1, . . . , x

′′
q) ∈ X q ×X q, and for every permutation σ′ and σ′′ of the

indexes {1, . . . , q},

K(x′σ′(1) . . . x
′
σ′(q); x

′′
σ′′(1) . . . x

′′
σ′′(q)) = K(x′1, . . . x

′
q; x

′′
1 . . . x

′′
q ).

(ii) For every (x′; x′′) ∈ X q × X q K(x′; x′′) = K(x′′; x′);

(iii) For every (xi)1≤i≤n ∈ X n

(∀ u ∈ C
n)

n∑

i1,...,iq=1
j1,...,jq=1

K(xj1 , . . . , xjq ; xi1 , . . . , xiq)ui1 . . . uiquj1 . . . ujq ≥ 0 .

(iv) For every (xi) ≤i≤n ∈ X n

u ∈ C
n 7→

∥
∥
∥
∥

n∑

i=1

uiΦ(xi)

∥
∥
∥
∥

r∗

r∗
=

n∑

i1,...,iq=1
j1,...,jq=1

K(xj1, . . . , xjq ; xi1 , . . . , xiq)ui1 . . . uiquj1 . . . ujq

is a positive homogeneous polynomial form of degree m on Cn.

(v) For every (x′1, . . . , x
′
q) ∈ X q, K(x′1, . . . , x

′
q; x

′
1, . . . , x

′
q) ≥ 0;

(vi) For every (x′1, . . . , x
′
q; x

′′
1, . . . , x

′′
q) ∈ X q ×X q,

|K(x′1, . . . , x
′
q; x

′′
1, . . . , x

′′
q)| ≤ K(x′1, . . . , x

′
1; x

′
1, . . . , x

′
1)

1/m · · ·K(x′′q , . . . , x
′′
q ; x

′′
q , . . . , x

′′
q )

1/m.

Remark 4.15. Item (iii) states that
(
K(xi1 , . . . , xim)

)

i∈{1,...,n}m
is a positive-definite tensor

of degree m.
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As in the real case, the dual problem (Dn) reduces to

















min
u∈Cn

ϕ∗

(
1

n

( n∑

i1,...,iq=1
j1,...,jq=1

K(xj1 , . . . , xjq , xi1 , . . . , xiq)ui1 . . . uiquj1 . . . ujq

)1/r∗)

+
γ

n

n∑

i=1

L∗

(
ui
γ

)

−
1

n
Re

n∑

i=1

yiui

subject to
n∑

i=1

ui = 0

and the homogeneous polynomial form in Proposition 4.14(iv) can be written as follows

∑

α∈Nn,β∈Nn

|α|=q,|β|=q

(
q

α

)(
q

β

)

K(x1, . . . x1
︸ ︷︷ ︸

α1

, . . . . . . , xn, . . . , xn
︸ ︷︷ ︸

αn

, x1, . . . x1
︸ ︷︷ ︸

β1

, . . . . . . , xn, . . . , xn
︸ ︷︷ ︸

βn

)uα uβ. (4.28)

Finally, in the setting of Proposition 4.12, defining

K[u] =
n∑

i1,...,iq=1
j1,...,jq=1

K(xj1 , . . . , xjq , xi1 , . . . , xiq)ui1 . . . uiquj1 . . . ujq , (4.29)

for every x ∈ X , the following representation formulas hold

〈w,Φ(x)〉r,r∗ =
(ϕ∗)′( 1

n
K[u]1/r

∗

)

K[u]1/r

n∑

i1,...,iq=1
j1,...,jq−1=1

K(xj1, . . . xjq−1
, x; xi1 , . . . xiq)ui1 · · ·uiquj1 · · ·ujq−1

b = y1 − 〈w,Φ(x1)〉r,r∗ −∇L∗

(
u1
γ

)

.

(4.30)
where ∇L∗ is the (real) gradient of L∗, considered as a function from R2 to R.

Remark 4.16. In view of Proposition 4.14(iv), definitions (4.21) and (4.27) correspond to
those given in [21, Lemma 4.2] and the concept of positive definiteness stated in (iii) is a
natural generalization of the analogue notion given in [21, Definition 4.15].

5 Power series tensor-kernels

In this section we consider reproducing kernel Banach spaces of complex analytic functions
which are generated through power series. We show that, for such spaces, the corresponding
tensor kernel, defined according to (4.7), admits an explicit expression. We provide also
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representation formulas. In this section we assume, for simplicity, that ϕ = (1/r)|·|r, therefore
we address the support vector regression problem

min
(w,b)∈ℓr(K;C)×C

γ

n

n∑

i=1

L
(
yi − 〈w,Φ(xi)〉r,r∗ − b

)
+ ‖w‖rr,

for a specific choice of the feature map (4.21).
We first need to set special notation for multi-index powers of complex vectors. Let d ∈ N

with d ≥ 1. We will denote the component of a vector x ∈ Cd, by xt, with t ∈ {1, . . . , d}. For
every x ∈ Cd and every ν ∈ Nd we set

xν =

d∏

t=1

xνtt , |x| = (|x1|, . . . , |xd|), and ν! =

d∏

t=1

νt!

so that ∀ ν ∈ Nd we have |xν | =
∏d

t=1 |xt|
νt = |x|ν . Moreover, when the exponent of the vector

x ∈ Cd is an index (not a multi-index), say m ∈ N, we consider m as a constant multi-index,
that is (m, . . . ,m), so that xm means

∏d
t=1 x

m
t . Finally, we define the binary inner operation

of pointwise multiplication in Cd. For every x, x′ ∈ Cd, we set x⋆ x′ ∈ Cd, such that, for every
t ∈ {1, . . . , d}, (x ⋆ x′)t = xtx

′
t. Let m ∈ N and x ∈ Cd. We set x⋆m = x ⋆ · · · ⋆ x (m-times), so

that x⋆m ∈ Cd and, for every t ∈ {1, . . . , d}, (x⋆m)t = xmt .
Let ρ = (ρν)ν∈Nd be a multi-sequence in R+, let r = m/(m − 1) for some even integer

m ≥ 2. Let Dρ be the domain of (absolute) convergence of the power series
∑

ν∈Nd ρνz
ν , that

is the interior of the set
{
z ∈ Cd

∣
∣
∑

ν∈Nd ρν |z
ν | < +∞

}
. The set Dρ is a complete Reinhardt

domain3 and we assume that Dρ 6= {0}. Let κ : Dρ → C be the sum of the series
∑

ν∈Nd ρνz
ν ,

that is
(∀ z ∈ Dρ) κ(z) =

∑

ν∈Nd

ρνz
ν .

Clearly κ is an analytic function on Dρ. Set

D⋆1/m
ρ =

{
x ∈ C

d
∣
∣ x⋆m = (xm1 , . . . , x

m
d ) ∈ Dρ

}
,

let X ⊂ D
⋆1/m
ρ , and define the dictionary

(∀ ν ∈ N
d) φν : X → C : x 7→ ρ1/mν xν . (5.1)

Then, for every x ∈ X , since x⋆m ∈ Dρ, we have
∑

ν∈Nd

|φν(x)|
m =

∑

ν∈Nd

ρν |x
⋆m|ν < +∞,

hence (φν(x))ν∈Nd ∈ ℓm(Nd;C). Thus, we are in the framework described at the beginning of
Section 4.2. We define

Br
ρ,b(X ) =

{

f ∈ C
X

∣
∣
∣
∣
(∃ (cν)ν∈Nd ∈ ℓr(Nd;C))(∃ b ∈ C)(∀ x ∈ X )

(

f(x) =
∑

ν∈Nd

cνφν(x) + b
)}

,

3 It means that if z ∈ Dρ, then Dρ contains the polydisk {t ∈ Cd | (∀ j ∈ {1, . . . , d}) |tj | ≤ |zj |}.
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which is a reproducing kernel Banach spaces with norm

‖f‖Br
ρ,b

(X ) = inf
{

‖c‖r + |b|
∣
∣
∣ (cν)ν∈Nd ∈ ℓr(Nd;C) and f =

∑

ν∈Nd

cνρ
1/m
ν xν + b (pointwise)

}

.

Suppose now that b = 0 and that, for every ν ∈ Nd, ρν > 0. Then, defining the weights
(ην)ν∈Nd = (ρ

−r/m
ν )ν∈Nd and the corresponding weighted ℓr space

ℓrη(N
d;C) =

{

(aν)ν∈Nd ∈ C
Nd

∣
∣
∣

∑

ν∈Nd

1

ρ
r/m
ν

|aν |
r < +∞

}

,

we can express the space Br
ρ,0(X ) in the form of a weighted Hardy-like space [17, 25]

Br
ρ,0(X ) =

{

f ∈ C
X

∣
∣
∣
∣
(∃ (aν)ν∈Nd ∈ ℓrη(N

d;C))(∀ x ∈ X )
(

f(x) =
∑

ν∈Nd

aνx
ν
)}

.

Moreover, for every (x′1, . . . , x
′
q, x

′′
1, . . . , x

′′
q ) ∈ X q × X q,

K(x′1, . . . , x
′
q; x

′′
1, . . . , x

′′
q ) =

∑

ν∈Nd

ρνx
′ν
1 · · ·x′νq x

′′ν
1 · · ·x′′νq = κ(x′1 ⋆ · · · ⋆ x

′
q ⋆ x

′′
1 ⋆ · · · ⋆ x

′′
q ). (5.2)

Remark 5.1. Suppose that ρν > 0, for every ν ∈ Nd. Then
∑

ν∈Nd cνρ
1/m
ν xν = 0 (pointwise)

implies cνρ
1/m
ν = 0, for every ν ∈ Nd and hence cν = 0, for every ν ∈ Nd. Thus, in virtue of

Remark 4.1 this yields that (φν)ν∈Nd is an unconditional Schauder basis of Br
ρ,0(X ) and that

Br
ρ,0(X ) is isometric to ℓr(Nd;C).

Proposition 5.2. Under the notation and assumption above, suppose that X is a compact
subset of D

⋆1/m
ρ and that, for every ν ∈ Nd, ρν > 0. Then Br

ρ,b(X ) is dense in C (X ;C), the
space of continuous functions on X endowed with the uniform norm.

Proof. It is enough to note that Br
ρ,b(X ) contains the set

A = span
{
φν

∣
∣ ν ∈ N

}
=

{
∑

ν∈I

cνx
ν
∣
∣
∣ I ⊂ N

d and I finite (cν)ν∈I ∈ C
I

}

which is the algebra of polynomials on X in d variables with complex coefficients. Thus the
statement is a consequence of the Stone-Weierstrass theorem.

In the sequence we also assume that the offset b is zero. Because of (5.2), the representation
given in (4.28) yields the following homogenous polynomial form

u ∈ C
n 7→

∥
∥
∥
∥

n∑

i=1

uiΦ(xi)

∥
∥
∥
∥

r∗

r∗
=

∑

α∈Nn,β∈Nn

|α|=q,|β|=q

(
q

α

)(
q

β

)

κ(x⋆β1

1 ⋆· · ·⋆x⋆βn

n ⋆x⋆α1

1 ⋆· · ·⋆x⋆αn

n )uαuβ, (5.3)
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where (xi)1≤i≤n ∈ X n is the training set and, according to the convention established at the
beginning of the section, x⋆αi

i = (xαi

i,1, . . . , x
αi

i,d). Moreover, in this case, recalling (4.30) and
(5.2), for every x ∈ X , we have

〈w,Φ(x)〉r,r∗ =
1

nm−1

n∑

i1,...,iq=1
j1,...,jq−1=1

κ(xj1 ⋆ · · · ⋆ xjq−1
⋆ x ⋆ xi1 ⋆ · · · ⋆xiq)ui1 · · ·uiquj1 · · ·ujq−1

. (5.4)

We now treat two special cases of power series tensor-kernels. Let (γk)k∈N ∈ RN
+ and

suppose that the power series
∑

k∈N γkζ
k (ζ ∈ C) has radius of convergence Rγ > 0 (Rγ =

1/ lim supk γ
1/k
k > 0). We denote by D(Rγ) = {ζ ∈ C | |ζ | < Rγ} and by ψ : D(Rγ) → R

respectively the disk of convergence and the sum of the power series
∑

k∈N γkζ
k.

Case 1. We set

(∀ ν ∈ N
d) ρν = γ|ν|

(
|ν|

ν

)

= γ|ν|
|ν|!

ν1! · · · νd!
. (5.5)

Then, the domain of absolute convergence of the series
∑

ν∈Nd ρνz
ν is the strip

Dρ =

{

z ∈ C
d
∣
∣
∣

∣
∣
∣
∣

d∑

t=1

zt

∣
∣
∣
∣
< Rγ

}

and, it follows from the multinomial theorem [3, Theorem 4.12] that, for every z ∈ Dρ,

κ(z) =
∑

ν∈Nd

ρνz
ν =

∑

k∈N

γk
∑

ν∈Nd

|ν|=k

k!

ν1! · · ·νd!
zν =

∑

k∈N

γk

( d∑

t=1

zt

)k

= ψ

( d∑

t=1

zt

)

. (5.6)

Note also that D
⋆1/m
ρ = {z ∈ Cd | ‖z‖mm < Rγ}. Thus, it follows from (5.2) that

K(x′1, . . . , x
′
q; x

′′
1, . . . , x

′′
q ) = κ(x′1 ⋆ · · ·x

′
q ⋆ x

′′
1 ⋆ · · ·x

′′
q )

= ψ

( d∑

t=1

x′1,t · · ·x
′
q,tx

′′
1,t · · ·x

′′
q,t

)

, (5.7)

for every (x′1, . . . , x
′
q, x

′′
1, . . . , x

′′
q ) ∈ X q × X q. For q = 1, the right hand side of (5.7)

reduces to
K(x′, x′′) = ψ(〈x′ | x′′〉) =

∑

k∈N

γk〈x
′ | x′′〉

k
,

where 〈· | ·〉 is the Euclidean scalar product in Rd. These kind of kernels have been also
called Taylor kernels in [21]. Thus, in virtue of (5.7), (5.3) takes the form

u ∈ C
n 7→

∥
∥
∥
∥

n∑

i=1

uiΦ(xi)

∥
∥
∥
∥

r∗

r∗
=

∑

α∈Nn,β∈Nn

|α|=q,|β|=q

(
q

α

)(
q

β

)

ψ

( d∑

t=1

xα1

1,t · · ·x
αn

n,tx
β1

1,t · · ·x
βn

n,t

)

uαuβ

=
∑

α∈Nn,β∈Nn

|α|=q,|β|=q

(
q

α

)(
q

β

)

ψ

( d∑

t=1

(x·,t)
α(x·,t)

β

)

uαuβ,
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where we put, for every t ∈ {1, . . . , d}, x·,t = (x1,t, . . . xn,t) ∈ Cn.4 The representation
formula (5.4) turns to

〈w,Φ(x)〉r,r∗ =
1

nm−1

n∑

i1,...,iq=1
j1,...,jq−1=1

ψ

( d∑

t=1

xi1,t · · ·xiq,txj1,t · · ·xjq−1,txt

)

ui1 · · ·uiquj1 · · ·ujq−1
.

Case 2. We set

(∀ ν ∈ N
d) ρν =

d∏

t=1

γνt. (5.8)

Then the domain of absolute convergence of the series
∑

ν∈Nd ρνz
ν is

Dρ =

{

z ∈ C
d
∣
∣
∣ (∀ t ∈ {1, . . . , d}) |zt| < Rγ

}

and

(∀ z ∈ Dρ) κ(z) =
∑

ν∈Nd

ρνz
ν =

∑

ν∈Nd

d∏

t=1

γνjz
νt
t =

d∏

t=1

∑

k∈N

γkz
k
t =

d∏

t=1

ψ(zt).

In this case D
⋆1/m
ρ = {z ∈ Cd | (∀ t ∈ {1, . . . , d})|zt| < R

1/m
γ } and (5.2) becomes,

K(x′1, . . . , x
′
q; x

′′
1, . . . , x

′′
q ) = κ(x′1 ⋆ · · ·x

′
q ⋆ x

′′
1 ⋆ · · ·x

′′
q )

=
d∏

t=1

ψ

(

x′1,t · · ·x
′
q,tx

′′
1,t · · ·x

′′
q,t

)

, (5.9)

for every (x′1, . . . , x
′
q, x

′′
1, . . . , x

′′
q) ∈ X q × X q. Thus, as done before, relying on (5.9) we

can obtain the corresponding expression for the homogeneous polynomial form (5.3)

u ∈ C
n 7→

∥
∥
∥
∥

n∑

i=1

uiΦ(xi)

∥
∥
∥
∥

r∗

r∗
=

∑

α∈Nn,β∈Nn

|α|=q,|β|=q

(
q

α

)(
q

β

) d∏

t=1

ψ
(
xα1

1,t · · ·x
αn

n,tx
β1

1,t · · ·x
βn

n,t

)
uαuβ

(5.10)
and the representation formula (5.4),

〈w,Φ(x)〉r,r∗ =
1

nm−1

n∑

i1,...,iq=1
j1,...,jq−1=1

d∏

t=1

ψ(xj1,t · · ·xjq−1,txtxi1,t · · ·xiq ,t)ui1 · · ·uiquj1 · · ·ujq−1
.

(5.11)

4 If we consider the matrix of the data X = (xi,t)1≤i≤n
1≤t≤d

∈ Cn×d, having the training set (xi)1≤i≤n as rows,

the vectors x·,t are the columns of X.
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Example 5.3. We list significant examples of power series tensor kernels and for each one we
provide the corresponding representation formulas.

(i) In (5.8) set (γk)k∈N ≡ 1, hence (ρν)ν∈Nd ≡ 1 too. Then Rγ = 1 and ψ(ζ) = 1/(1 − ζ).
Therefore, relying on (5.9), we obtain the tensor-Szegö kernel

K(x′1, . . . , x
′
q; x

′′
1, . . . , x

′′
q) =

1
∏d

t=1(1− x′1,t · · ·x
′
q,tx

′′
1,t · · ·x

′′
q,t)

.

This kernel generates a reproducing kernel Banach space of multi-variable analytic func-
tions [17, 25]

Br
ρ,0(X ) =

{

f ∈ C
X

∣
∣
∣
∣
(∃ (cν)ν∈Nd ∈ ℓr(Nd;C))(∀ x ∈ X )

(

f(x) =
∑

ν∈Nd

cνx
ν
)}

with norm ‖f‖Br
ρ,b

(X ) = ‖c‖r, where (cν)ν∈Nd ∈ ℓr(Nd;C) is such that f =
∑

ν∈Nd cνx
ν

(pointwise). This space reduces to the Hardy space when r = 2. Moreover, (5.10) yields
the following homogenous polynomial form

u ∈ C
n 7→

∥
∥
∥
∥

n∑

i=1

uiΦ(xi)

∥
∥
∥
∥

r∗

r∗
=

∑

α∈Nn,β∈Nn

|α|=q,|β|=q

(
q

α

)(
q

β

)
uαuβ

∏d
t=1(1− (x·,t)α(x·,t)β)

.

Finally, in view of (5.11), we have the following tensor-kernel representation

〈w,Φ(x)〉r,r∗ =
1

nm−1

n∑

i1,...,iq=1
j1,...,jq−1=1

ui1 · · ·uiquj1 · · ·ujq−1

∏d
t=1(1− xj1,t · · ·xjq−1,txt, xi1,t · · ·xiq ,t)

.

(ii) Set (γk)k∈N ≡ ((k + 1)/π)k∈N in (5.8). Then Rγ = 1 and ψ(ζ) = 1/(π(1− ζ)2). We then
obtain the following Taylor type tensor kernel

K(x′1, . . . , x
′
q; x

′′
1, . . . , x

′′
q) =

1

πd
∏d

t=1 (1− x′1,t · · ·x
′
q,tx

′′
1,t · · ·x

′′
q,t)

2 .

This kernel gives rise to a reproducing kernel Banach space of analytic functions which
reduces to the Bergman space when m = 2. Proceeding as in the previous point, the
expression of the corresponding homogeneous polynomial form and the representation
formula can be obtained.

(iii) Let (γk)k∈N =
(
1/k!

)

k∈N
in (5.8). Then Rγ = +∞ and ψ(ζ) = eζ . Hence, by (5.9),

K(x′1, . . . , x
′
q; x

′′
1, . . . , x

′′
q) =

d∏

t=1

ex
′

1,t···x
′

q,tx
′′

1,t···x
′′

q,t ,
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which is the tensor-exponential kernel and the form (5.10) becomes

u ∈ C
n 7→

∥
∥
∥
∥

n∑

i=1

uiΦ(xi)

∥
∥
∥
∥

r∗

r∗
=

∑

α∈Nn,β∈Nn

|α|=q,|β|=q

(
q

α

)(
q

β

)

e
∑d

j=1
(x·,j)

α(x·,j)
β

uαuβ.

The corresponding tensor representation is

〈w,Φ(x)〉r,r∗ =
1

nm−1

n∑

i1,...,iq=1
j1,...,jq−1=1

d∏

t=1

exi1,t
···xiq−1,t

xt,xj1,t···xjq,t .

(iv) Let α > 0, set

(∀ k ∈ N) γk =

(
−α

k

)

(−1)k =

k∏

i=1

α + i− 1

i
> 0,

and define (ρν)ν∈Nd according to (5.5). Then Rγ = 1 and ψ(z) = (1 − ζ)−α and formula
(5.7) yields the following tensorial version of the binomial kernel [21]

K(x′1, . . . , x
′
q; x

′′
1, . . . , x

′′
q ) =

1
(

1−
∑d

t=1 x
′
1,t · · ·x

′
q,tx

′′
1,t · · ·x

′′
q,t

)α .

(v) Let s ∈ N, set

(∀ k ∈ N) γk =







(
s

k

)

if k ≤ s

0 if k > s,

and define (ρν)ν∈Nd according to (5.5). Then Rγ = +∞ and ψ(ζ) = (1 + ζ)s. This way,
by (5.7), we have

K(x′1, . . . , x
′
q; x

′′
1, . . . , x

′′
q ) =

(

1 +

d∑

t=1

x′1,t · · ·x
′
q,tx

′′
1,t · · ·x

′′
q,t

)s

,

which is the polynomial tensor-kernel of order s. By (5.5) we have that ρν > 0 if |ν| ≤ s
and ρν = 0 if |ν| > s. Therefore, recalling (5.1), we have that

Br
ρ,0(X ) =

{

f ∈ C
X

∣
∣
∣
∣
(∃ (cν)ν∈Nd ∈ ℓr(Nd;C))(∀ x ∈ X )

(

f(x) =
∑

ν∈Nd

cνφν(x)
)}

,

is the space of polynomials in d variables with coefficients in C of degree up to s.
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6 Conclusion

In this work we first provided a complete duality theory for support vector regression in Banach
function spaces with general regularizers. Then, we specialized the analysis to reproducing
kernel Banach spaces that admit a representation in terms of a (countable) dictionary of
functions with ℓr-summable coefficients and regularization terms of type ϕ(‖·‖r), being r =
m/(m−1) andm an even integer. In this context we showed that the problem of support vector
regression can be explicitly solved through the introduction of a new type of kernel of tensorial
type (with degree m) which completely encodes the finite dimensional dual problem as well
as the representation of the corresponding infinite dimensional primal solution (the regression
function). This can provide a new and effective computational framework for solving support
vector regression in Banach space setting. We finally study a whole class of reproducing kernel
Banach spaces of analytic functions to which the theory applies and show significant examples
which can become useful in applications.
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