
Decentralized task allocation for redundant multi-robot systems:
an iterative consensus approach

Lorenzo Govoni and Andrea Cristofaro

Abstract— An overactuated heterogeneous multi-robot sys-
tem is considered, this being characterized by both a redun-
dancy of the number of agents with respect to the tasks to be
performed and input redundancy for each individual agent.
We propose an algorithm that, based on local information
only, can simultaneously assign the tasks, consistently with
the different nature of each robot, and allocate the control
efforts while satisfying the constraints on the actuators. The
performances of the proposed method have been analysed by
means of a simulation study, considering different scenarios
and illustrating also the resilience of the approach with respect
to faults.

I. INTRODUCTION

Multi-robot systems (MRS) are deployed to collectively
perform tasks that a single agent may not achieve by itself.
One fundamental challenge in MRS lies in determining
which robot should execute which task to cooperatively
achieve the global goal, known as task allocation [1], [2].
This problem involves considering the different nature of
each agent and/or the constraints associated with the task
execution. Optimal task assignment policies seek to maxi-
mize overall system performance [3]. However, scalability is
a major concern in task allocation frameworks, particularly
when the assignment is managed centrally. The amount of
tasks and robots may penalize the computational efficiency
of the algorithm. Methods like the one proposed in [4], offer
a solution by employing market-based decision strategy [5],
using the consensus protocol for resolving possible conflicts
and reducing scalability issues.
Individual robots forming the MRS may possess more actu-
ators than the ones strictly needed or meeting the require-
ments of a given application [6]. This redundancy presents
an opportunity to address the so-called control allocation
problem. The backbone of the control allocation setup is
designing a control input u ∈ U to generate a desired
virtual control v = B(x, t)u jointly from the actuators at
any time t. This characteristic enables the encoding of second
objectives, typically chosen from an operational perspective,
like minimization of power consumption or fault-tolerant
criteria [7], [8].
In this paper, we extend our previous work on a fault-
tolerant task allocation framework for overactuated multi-
robot systems [9] to a fully decentralized setting, achieved
through the integration of a consensus protocol. The two
allocation architectures can be defined in terms of optimiza-
tion problems, whose requirements are independent one from

The authors are with the Department of Computer, Control and
Management Engineering, Sapienza University of Rome, Via Ar-
iosto 25, 00185 Rome, Italy. Corresponding author: L. Govoni,
govoni@diag.uniroma1.it

each other, since they work at two different control levels.
The task allocation provides the desired virtual controls
encoding the task execution performances, by means of
quadratic control barrier functions (CBFs) with cross-terms
for robots with second-order dynamics. Then, the outcomes
of the task allocation are fed to the control allocation
framework, mapping them into the actual control inputs and
taking care of the constraints on the actuators of the agents.
The consensus protocols help the robot to become aware of
the actual capabilities of all the other agents and to detect
the occurrence of possible faults in the system, thus enabling
the robots to perform a decentralized and resilient task
allocation. In conclusion, thanks to the decoupled behaviour
of the two architectures, the overall framework results in a
series of cascade schemes, one for each robot of the MRS.
The remainder of the paper is organized as follows. Section II
describes the task allocation architecture, which is then
further generalized in Section III where the cascade with
the control allocation setup is analyzed. Simulation results,
obtained using Matlab and CoppeliaSim, are reported in
Section IV, while final conclusions are given in Section V.

Notation: G = {V, E} represents an undirected graph,
where V = {v1, v2, . . . , vn} is the node set with cardinality
|V| = N , and E ⊆ V × V , is the edge set, comprising
unordered pairs of nodes. A ∈ RN×N is the adjacency
matrix, a symmetric matrix with entries aij = 1 for (vi, vj) ∈
E and aij = 0 otherwise. D ∈ RN×N is the degree matrix,
and L = D − A denotes the Laplacian matrix associated
with G.

II. CONSENSUS-BASED TASK ALLOCATION

Consider a generic linear control system in the state space
representation

ẋ = Ax+Buu

y = Cx+Du
(1)

where x ∈ Rn is the state, u ∈ Rm is the input and y ∈ Rr is
the output. In a multi-task multi-robot setting, each task tm,
with m ∈ {1, . . . , nt}, can be described by a continuously
differentiable positive definite cost Jm : Rn → R+ which
is a function of the robot state x. The work done in [6]
has proved that the execution of the task can be cast into
designing a control that minimizes Jm(x), where the state x
and the control u are coupled through a dynamics like (1).
Thanks to the extended set-based tasks formulated in [10],
it is possible to encode a large variety of tasks by means
of a set, which is to be made either forward invariant,
i.e. safe, or asymptotically stable, or both, using a suitable
control barrier function (CBF) hm(x) [11]. In particular, the

accomplishment of the task tm is translated into the inclusion
x ∈ {x ∈ Rn : hm(x) = −Jm(x) ≥ 0}. Building upon such
CBF-based setting, the formal definition of the problem to be
addressed in this paper is given in the following statement.

Problem 1: Design a task allocation framework able to
optimally assign the tasks to a team of robots according to
the different capabilities of each single agent, such that: i)
is resilient with respect to faults, e.g. changes in the robot
capabilities, and ii) the architecture is fully decentralized,
i.e., both the allocation and the fault detection must be solved
using only local information.

A. Centralized task allocation algorithm
Global task allocation specifications, along with the local

constraints that each robot must satisfy, can be encoded
through the assignment matrix α ∈ {0, 1}nt×nr [3], where
nr stands for the number of robots in the system. It is
assumed that, at any instant of time at most one element
of αm,−

1 can be non-zero, due to the fact that each robot
can be assigned, at most, to one task. The optimization-based
formulation for the task allocation is the following:

minimize
α

nr∑
i=1

(
c||Πiα−,i||2

)
(2a)

subject to 1T
nt
α−,i ≤ 1 (2b)

FαT
m,− ≥ TT

m,− (2c)

nr,m,min ≤ 1T
nr
αT
m,− ≤ nr,m,max (2d)

where all the constraints must be satisfied ∀i ∈ {1 . . . nr}
and ∀m ∈ {1 . . . nt}. The constant c ∈ R is an optimization
parameter, while nr,m,min and nr,m,max encode respectively
the minimum and maximum number of robots required by
the task tm. The matrices F and T encode the mappings that
link the capabilities each task requires with the heterogeneity
of each robot accordingly to the hypergraph like the one in
Figure 1 (see [3] for further details on the computation of
the mappings). Furthermore, in the cost function (2a), the
matrix Πi = Int

− SiS
†
i is used to penalize bad allocations

of tasks. The matrix Si denotes the specialization matrix of
robot i and its zero entries correspond to the tasks the robot i
has no specialization to perform, yielding in a non-zero cost
in (2a) through Πi. The problem (2) is solved point-wise in
time and so it can be integrated along with online updates
to the specializations and capabilities of the robots, fulfilling
item i) of Problem 1.
Once the task allocation has been achieved, the robot i
extracts the corresponding column i of the matrix α and
computes the control solving the following QP problem:

minimize
ui∈Rm,δi

||ui||2 + l||δi||2Si
(3a)

subject to Lfhm(x) + Lghm(x)ui ≥ −γ(hm(x))− δim (3b)
Θδi +Φα−,i ≤ Ψ (3c)
||δi||∞ ≤ δmax (3d)

where l ∈ R and δmax ∈ R are optimization parameters and
Θ, Φ and Ψ in (3c) are coefficient matrices that encode the

1The symbols Xi,− and X−,j refer respectively to the ith row and the
jth column of the matrix X .

prioritization of the tasks based on the assignment matrix α.
The cost function in (3a) is made of two terms. The first
concerns the norm of the control effort, making the algorithm
compatible with long-duration autonomy applications. The
second ensures the execution of the assigned task tm while
fulfilling constraint (3b). Among the nt constraints collected
in (3b), the one corresponding to tm experiences the least
relaxation, yielding in the smallest δm.
While the architecture (3) has been shown to be quite
efficient [3], [9], it relies on the presence of a central
authority in charge of allocating the tasks. Next we present a
decentralized version of the same architecture, thus avoiding
the need for a centralized task allocator.

B. Decentralized approach

In a decentralized context, the agents of a multi-robot
system communicate through a directed graph G, assumed
here to be undirected for the sake of simplicity, so that
each robot can perform the task allocation based on local
information. Let us assume that the matrix T is known by
each robot, since it is an intrinsic property of the multitask
scenario, whereas they do not know the mapping A, from
which we obtain the mappings F and S, useful for solving
(2). For this purpose, each robot is endowed with an extra
state xfeat,i ∈ {0, 1}nf ·nr in which it stores a vector
representation of the matrix A, effectively encoding the
estimated features of the other agents, updated by following
the consensus-based procedure described in Algorithm 1.

Algorithm 1 Consensus on the mapping A

Inputs:
Adjacency matrix A
Number of robots nr and number of features nf

Vector state xfeat,i ∈ {0, 1}nf ·nr , i = {1, . . . , nr}
1: for each robot i do
2: Initialize xfeat,i with local information
3: Do the consensus on xfeat,i ▷ (4)
4: Normalize the non-zero component of xfeat,i

5: Construct mapping Ai

6: end for

Furthermore, robot redundancy renders the system robust
with respect to faults and, in a decentralized context, the
overall fault awareness must be handled using only local
information. Assuming that robots are able to perform the
detection of faults occurring on their own actuators or
features, let us define a binary vector βi ∈ {0, 1}nr for each
robot. This vector stores the faulty information within the

t1

t2

t3

c1

c2

c3

f3

f2

f1

r4

UAV1

AHkT

F

f4
UAV2

ri

Fig. 1: Heterogeneity characterization of a team of robots.
For graphical reasons, the robots that share the features f1
and f2 are represented all in one node ri, with i = 1, 2, 3, 6.

system, with the value 0 corresponding to nominal conditions
and 1 to the presence of a fault. Algorithm 2 provides a
consensus-based fault detection procedure for the multi-robot
system [12].

Algorithm 2 Consensus-based fault detection
Inputs:
Adjacency matrix A
Number of robots nr

Binary vector state βi ∈ {0, 1}nr , i = {1, . . . , nr}
1: for each robot i do
2: Initialize βi with its own information
3: Do the consensus on βi ▷ (4)
4: Normalize βi

5: if βi
j = 1 for j = {1, . . . , nr} then

6: Fault detected
7: end if
8: end for

The joint use of Algorithm 1 and Algorithm 2, along with the
task allocation procedure (2), enables the multi-robot system
to solve item ii) of Problem 1.
In conclusion, each robot composing the team has an overall
state defined as qi = [xi, xfeat,i, β

i]T , where xi ∈ R3n

is the physical state of the robot moving in R3, typically
made of position and velocity, i.e., n = 2, while xfeat,i

and βi ∈ {0, 1}nr are the additional states used for the
estimation of the global behaviour, with dynamics modelled
as decoupled single integrators and influenced by the multi-
agent behaviour. Regarding the consensus protocol, depend-
ing on the approach adopted, different considerations can be
done on the transient time. Here we present the classical
consensus protocol [13], given by:

uh =
∑
k∈Nh

ahk(zk − zh) (4)

where zh is a component of either xfeat,i or βi. A simple
and reliable heuristics is to consider the consensus achieved
after an amount of time larger than five times the time-
constant τ associated to the Laplacian matrix L, dictated by
its second smallest eigenvalue λ2. See also [12] for a similar
application.

Remark 1 (Inflation): The final consensus state z∗h is a
function of the initial states, depending on the left zero
eigenvector of the Laplacian matrix, whereas in principle
both the mapping A and the state β are binary quantities.
For the sake of consistency, a normalization procedure of
the final state value is needed, named inflation:

z∗h =

{
1 if z∗h ̸= 0

0 otherwise
(5)

Furthermore, the connectivity of G, resulting in λ2 > 0, plays
a fundamental role in the consensus performance.
Let us summarize the previous results in a formal statement
addressing decentralized task allocation.

Theorem 1: Let us consider the multi-agent system
{qi}nr

i=1, communicating over an undirected and connected
graph G. The optimization problem (2), supported by Algo-
rithm 1 and Algorithm 2 with consensus law given by (4),
enables the system to perform task allocation and fault
detection in a fully decentralized fashion, thus providing a
solution to Problem 1. •

Proof: We first observe that decentralized fault detec-
tion is naturally addressed by Algorithm 2. For the case of
task allocation, decentralized execution can be achieved as
follows. First, Algorithm 1 runs until a full agreement is
reached, requiring a transient time equal to 5τ . The full
agreement condition xfeat,i = xfeat,j ∀i, j = 1, ..., nr al-
lows each robot to execute a local version of the optimization
scheme (2) using the same set of parameters, thus leading to
coinciding allocation results among all the robots.

III. PROPOSED FRAMEWORK
In this section we present the overall scheme defining

a decentralized task and control allocation for heteroge-
neous overactuated multi-robot systems, which exploits the
benefits coming from both agent redundancy and actuator
redundancy. Assume that the dynamics of each robot xi is
modelled as an overactuated double integrator of the form

ẍi = −kẋi +Biui = −kẋi + vi (6)

where vi ∈ Rn is the virtual control input, k is a damping
factor, Bi ∈ Rn×ri is the full row-rank input matrix and
ui ∈ Rri is the actual control input, with ri > n.

A. Task execution
The robots are asked to perform both constant and time-

varying regulation tasks, thus the corresponding CBF de-
pends on both position and velocity of the robot i. Due to
the dynamic structure of the model (6), we introduce a class
of time-varying CBFs with cross terms in order to have a
well-posed constraint (3b), i.e., ensuring Lgh(x, t) ̸= 0 at
time t = 0s, thus resulting in the following quadratic form

hm(x, t) = −1

2
∥[xi − xd(t) ẋi − ẋd(t)]∥2P (7)

where the symmetric matrix P = PT > 0 is positive definite
and non-diagonal. Accordingly, the constraint (3b) in the
optimization problem can be exploited as follows:

∂hm(x, t)

∂x
ẋ+

d

dt
hm(x, t) ≥ −γ(hm(x, t))− δim (8)

where

Lghm(x, t) = p12(xi − xd(t)) + p22(ẋi − ẋd(t)) (9)

with p12 and p22 being the components of the matrix P . It
is worth noticing that, even though the velocity is initialized
with a matched condition ẋi(0) = ẋd(0), the term (9) is
still different from zero since xi(0) ̸= xd(0) and the entry
p12 ̸= 0 because P is non-diagonal. In conclusion, the
fulfillment of the constraint (8), within the resolution of
the QP-problem (3), provides the virtual control vi for the
execution of the assigned task.

B. Adaptive control allocation
Bearing the static relationship vi = Biui in mind, a control

allocation problem can be formalized in terms of a quadratic
programming problem of the form [14]:

minimize
ui∈Rri

1

2
||ui||2∆i

subject to vi = Biui

(10)

where ∆i ∈ Rri×ri is a positive definite weighting matrix,
representing a desired usage of each single component defin-
ing ui. Assuming Bi to be full row-rank, then the explicit
solution of (10) reads as ui = Cvi where

C = ∆−1
i BT

i (Bi∆
−1
i BT

i)
−1 (11)

is a generalized pseudo-inverse that can be derived from
the optimality conditions of (10) using Lagrange multipliers.
In real applications, each input is subject to saturation
constraints. Referring to the actuator dynamics

u̇i = −ηiui + wi (12)

these constraints can be on the amplitude |ui| as well as on
the rate |wi|. Defining the admissible sets

Ui = {ui ∈ Rri : ui,min ≤ uij ≤ ui,max, j = 1, . . . , ri}
Wi = {wi ∈ Rri : wi,min ≤ wij ≤ wi,max, j = 1, . . . , ri}

(13)

where wi,min and wi,max are the rate bounds, we look for
control inputs satisfying (ui, wi) ∈ Ui × Wi, which yields
the extended optimization problem

minimize
ui∈Rr1

1

2
||ui||2∆i

subject to vi = Biui, (ui, wi) ∈ Ui ×Wi

(14)

The inclusion of saturation constraints in optimization prob-
lems like (14) may lead to unfeasible solutions. Advanced
tools, such as anti-windup schemes (see for instance [15]),
generate an additional reference for the controller to prevent
unstable behaviours when the limits are exceeded. Unfortu-
nately, such schemes are not well suited for QP-based control
design. The solution of (14) involves mapping the virtual
control vi to the actual control ui, which must adapt to
possible faults while satisfying the input limitations. To this
end, [16] reformulate the control allocation problem into a
model reference adaptive control problem, whose modularity
decouples the closed loop performances from the control
allocation ones. They parametrically define the mapping and
constrain the values to evolve within a limited range using

Fault check
YES

Consensus on

the mapping A

A1

Consensus-based

anomaly detection

Update of
feature state

xfeat,1

Anr

β1

xfeat,nr

βnr

β

xfeat

Agent 1

Agent nr

NO

Ai

xfeat,i

βi

Agent i

· · ·

· · ·

QP Task

Execution

vi u∗iαi Adaptive
Control
Allocation

Robot

Dynamics

xiTask

Allocation

Ai

xfeat,i

Fault

Observer

βiβi

Agent i

Fig. 2: Control scheme of the proposed framework.

a projection algorithm. We have extended that method by
including a desired control component usage, encoded by
the matrix ∆i, adopting the Γ-projection algorithm [17,
Section 4]. This algorithm allows the parameters to evolve
towards a desired value, encoded by a suitable matrix Γ.
The unconstrained problem (10) provides the minimum error
solution, expressed through the weighted pseudo-inverse C
in (11) and, consistently, we have made the choice Γ = C.

C. Overall control scheme
We present here a third Algorithm 3, which describes the

procedure that each agent has to follow in order to achieve
the desired multi-robot system performance.

Algorithm 3 Resilient Task Allocation
Inputs:
Adjacency matrix A
Number of robots nr and number of features nf

Tasks hm,m ∈ {1, . . . , nt}
Mappings Hk, T
Parameters nr,m,min, nr,m,max, δmax, c, l

1: for each robot i do
2: Consensus on the mapping A ▷ Algorithm 1
3: Construction of the matrices F and S
4: Evaluation of the matrix α ▷ (2)
5: while true do
6: Evaluation of the control vi ▷ (3)
7: Fault check ▷ Algorithm 2
8: if there is a fault then
9: go to step 2

10: end if
11: Evaluation of the mapping for vi to ui

12: Execution of ui for completing the task
13: end while
14: end for

From the above procedure, we can see that the occurrence
of a fault, detected through the Algorithm 2, i.e., βi

j ̸= 0,
triggers a new consensus cycle on the mapping A, since
there has been a change in the robot capabilities. When a
task re-allocation is called, robots need to stop and wait
until the consensus in Algorithm 1 is achieved. To this end,
we keep the value of βi

j = 1 until the estimation of the
mapping A has been terminated, then we reset the value of
βi
j = 0. Accordingly to the heuristics adopted, in a faulty

situation we may end up in having a delay of 10τ between
the detection of the fault and the execution of the control.
The robot dynamics (6) can be enhanced and rewritten by
including this operational condition

ẍi = −kẋi + (1− βi
i)Biui (15)

and so, whenever βi
i = 1 no control is effectively executed

as the robots are idle in a situation awareness estimation
phase.

Theorem 2: Let consider a system Σ defined by a team of
heterogeneous overactuated robots modelled as (6), with the
control admissible sets
Ui = {ui ∈ Rri : ui,min ≤ uij ≤ ui,max, j = 1, . . . , ri}
Wi = {wi ∈ Rri : wi,min ≤ wij ≤ wi,max, j = 1, . . . , ri}

and a weighting matrix ∆i ∈ Rri×ri . The cascade frame-
work depicted in Figure 2, along with Algorithm 3, enables
the robots to perform a resilient task allocation based
only on local information, while simultaneously allocating
the control according to the desired usage ∆i, such that
(ui(t), u̇i(t)) ∈ Ui ×Wi. •

IV. SIMULATIONS
A. Problem setup

The performances of our framework have been tested on
a team of seven robots, five of which are unicycles while
the other two are UAVs. The system has to perform several
tasks: t1 is the coverage of a circular region, depicted by a
red circle in the simulations, centred in the robot performing
the second task t2, tracking of a desired trajectory, and t3 is
the achievement of a desired hover position. The fulfillment
of each task requires that the robots possess a certain set
of features, hence of capabilities. The features available are
wheels (f1), a LIDAR with a limited proximity range d
(f2), a camera with a limited FOV (f3) and a set of air
propellers and a 360◦ camera (f4). The capabilities required
for performing the tasks are surveillance (c1), capacity of
following a line (c2) and the ability to fly (c3). Figure 1
reports the corresponding heterogeneity hypergraph.
We have tested the method in a faulty scenario, exploiting
both the robot redundancy and the actuator redundancy.
Faults can be of two types, either a robot may no longer
be able to perform a task (e.g. loss of a feature) or one of
the actuators of a robot may not work anymore, with the
entries of a column of the matrix B, corresponding to the
faulty input, being replaced by zeroes [7]. In our simulation
results, we have considered the classic consensus protocol (4)
since, in view of the inflation operation (5), we do not need
the exact steady-state value to be reached by the multi-agent
system, as we just care about the depletion of the transient.

B. Overactuation
Under a suitable dynamic feedback linearization, all the

robots can be modelled as (6). In particular, concerning
the UAVs, we have restricted the control variables to the
Cartesian position (x, y, z) and we have considered each
propeller as an independent actuator. The input matrices that
we have considered are the following:

Bun =

[
1 0 0.5
0 1 0.5

]
BUAV =

−1 1 1 −1
1 1 −1 −1

1/4 1/4 1/4 1/4

 (16)

The unicycles are characterized by three controls for the
(x, y) dynamics, while the UAVs are endowed with four con-
trols for the (x, y, z) dynamics. Regarding the control alloca-
tion block, the weighting matrices used for mapping properly
the virtual control onto the actual control are respectively
Wun = diag([1, 5, 100]) and WUAV = diag([1, 1, 1, 1]).
For the unicycles the extra component of the control, the
third one, is penalized more in order to avoid undesired
behaviours due to coupling effects. On the other hand, the
weights for the UAVs have been chosen uniform, since the
four propellers are all equivalent. Moreover, the unicycles
have two different types of actuators: the first and second
ones are just affected by saturation limits, while the third
actuator has only rate limits. Since the control is the solution
of a quadratic program, we have considered the following
actuator dynamics for the third component of the control u:
u̇i3 = −kprop(ui3 − u∗

i3), with i = 1, 2, 3, 4, 6, where u∗
i3 is

the third component of the output of the adaptive allocation
block and kprop > 0.

C. Task allocation parameters

For the coverage task three robots are required, while only
one robot is needed for the other two tasks. According to
the features each agent possesses, robots r2, r3 and r6 are
assigned to task t1, robot r4 is assigned to task t2, and the
UAV2 has to perform the hovering task t3. The robot r1
and the UAV1 are left unemployed and so they remain idle
at their initial positions. The regulation tasks tj , with j ∈
{1, 2, 3}, are formalized with the following CBF

hi,j(x, t) = −1

2
∥[xi − xdj(t) ẋi − ẋdj(t)]∥2P

where i ∈ {1, . . . , 7}. For task t1, xd1(t) = Gi(x, t) and
ẋ1d(t) = Ġi(x, t), with Gi(x, t) being the centroid of the
Voronoi cell that the ith robot has to cover, defined in [18].
Conversely, for task t3, the desired position is constant
xd3(t) = xhov and, therefore ẋd3(t) = 0.

D. Simulation results

During the execution of the tasks two different faults
occur. At time t1 = 80s the sixth unicycle breaks, loosing
both the features it had at the beginning, hence a new
assignment of the tasks is needed. Also robot r1 has lost
its feature f2, as it is too far from robot r4 to sense it.
Then, the second UAV switches from performing task t3 to
executing the coverage with the other two unicycles, while
the first UAV is assigned to the hovering task. Robot r1
remains unemployed for the whole simulation.
In Figure 4 we display the control profile of all the robots of
the team and the time evolution of the derivative of the third
component of the unicycle control, which is affected by rate
saturation. In Figure 3 we show the time evolution of the
states β and xfeat, where the dashed grid identifies intervals
of 5τ seconds. In both sub-figures, we can state that βi

i = 1
until the consensus on the features has been concluded, then
it is set to zero. In Figure 3b, after t1 = 80s, the fault
being locally diagnosed, the robot r6 set the corresponding
β6
6 = 1, leading to a change in the values of the β state

of the other agents. After 5τ seconds the fault occurrence
has been detected globally, triggering a new consensus on
the mapping A. On the other hand, at time t2 = 130s, the
first actuator of the third unicycle breaks, but the entity of
the fault is mild enough to keep the robot able to perform
its task, hence a new task allocation in not needed. In this
case, the fault is directly managed by the adaptive control

0 1 2 3 4 5

t [s]

-6

-4

-2

0
Norm error estimation mapping A

Robot1

Robot2

Robot3

Robot4

Robot5

Robot6

Robot7

0 1 2 3 4 5

t [s]

0

0.5

1
Fault Detection

(a) Initial consensus on the
mapping A

75 80 85 90

t [s]

-6

-4

-2

0

2

Norm error estimation mapping A

75 80 85 90

t [s]

0

0.5
Fault Detection

(b) New consensus on the map-
ping A after a fault

Fig. 3: Consensus protocol.

allocation block that reconfigures the mapping from v to
u by avoiding the use of the faulty component. Figure 4c
reports the control profile of the third unicycle, highlighting
the change in the allocation policy. Furthermore, a video
showing the simulation results in CoppeliaSim is available
at [19].

V. CONCLUSIONS

In this paper we have proposed a decentralized framework
able to assign several tasks to a heterogeneous overactuated
multi-robot system, while dealing with actuator limitations
proper of each single agent. The framework results in a cas-
cade of quadratic programs that each single agent can solve
easily and independently of the others, ensuring scalability
and decentralization. A consensus protocol has been included
for both the acknowledgment of the feature mapping and
for the detection of anomalies affecting in the system. We
have tested the robustness of the method with respect to
faults, modelled either as a complete change in the robot

0 50 100 150 200

t [s]

-0.5

0

0.5

1

1.5

u
 [
m

/s
2
]

u
1

u
2

u
3

us
1

us
2

us
3

(a) Control Robot 1

0 50 100 150 200

t [s]

-0.5

0

0.5

1

1.5

u
 [
m

/s
2
]

u
1

u
2

u
3

us
1

us
2

us
3

(b) Control Robot 2

0 50 100 150 200

t [s]

-0.5

0

0.5

1

1.5

u
 [
m

/s
2
]

u
1

u
2

u
3

us
1

us
2

us
3

(c) Control Robot 3

0 50 100 150 200

t [s]

-1

0

1

2

3

u
 [
m

/s
2
]

u
1

u
2

u
3

us
1

us
2

us
3

(d) Control Robot 4

0 50 100 150 200

t [s]

0

5

10

15

20

u
 [

m
/s

2
]

u
1

u
2

u
3

u
4

us
1

us
2

us
3

us
4

(e) Control UAV 1

0 50 100 150 200

t [s]

-0.5

0

0.5

1

1.5

u
 [
m

/s
2
]

u
1

u
2

u
3

us
1

us
2

us
3

(f) Control Robot 6

0 50 100 150 200

t [s]

0

2

4

6

8

10

12

u
 [

m
/s

2
]

u
1

u
2

u
3

u
4

us
1

us
2

us
3

us
4

(g) Control UAV 2

0 100 200

t [s]

-0.2

0

0.2
Robot 1

0 100 200

t [s]

-0.2

0

0.2
Robot 2

0 100 200

t [s]

-0.2

0

0.2
Robot 3

0 100 200

t [s]

-0.2

-0.1

0

0.1

0.2
Robot 4

0 100 200

t [s]

-0.2

-0.1

0

0.1

0.2
Robot 6

(h) Derivative of ui3

Fig. 4: Control profile: at t1 = 80s the 6th unicycle breaks
and at t2 = 130s the first actuator of the 3rd unicycle breaks.

capabilities or as a malfunction of one of the actuators,
showing that the team of robots successfully executed all the
tasks assigned, adapting itself to the changes. Future works
will be devoted to dealing with a more general architecture
for nested and cumulative tasks, as well as assessing the
robustness of the decentralized architecture to potential in-
formation loss during agent communications. Moreover, it is
worth investigating the extension of the framework to more
complex, possibly nonlinear, agent dynamics.

REFERENCES

[1] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” Int. J. Robot. Res., vol. 23,
no. 9, pp. 939–954, 2004.

[2] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation:
A review of the state-of-the-art,” Coop. robots and sensor networks,
pp. 31–51, 2015.

[3] G. Notomista, S. Mayya, Y. Emam, C. Kroninger, A. Bohannon,
S. Hutchinson, and M. Egerstedt, “A resilient and energy-aware task
allocation framework for heterogeneous multirobot systems,” IEEE
Trans. Robot., vol. 38, no. 1, pp. 159–179, 2021.

[4] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Trans. Robot., vol. 25, no. 4,
pp. 912–926, 2009.

[5] W. E. Walsh and M. P. Wellman, “A market protocol for decentralized
task allocation,” in Proc. Int. Conf. on Multi Agent Systems. IEEE,
1998, pp. 325–332.

[6] M. Egerstedt, J. N. Pauli, G. Notomista, and S. Hutchinson, “Robot
ecology: Constraint-based control design for long duration autonomy,”
Annual Reviews in Control, vol. 46, pp. 1–7, 2018.

[7] A. Cristofaro and T. A. Johansen, “Fault tolerant control allocation
using unknown input observers,” Automatica, vol. 50, no. 7, pp. 1891–
1897, 2014.

[8] ——, “Fault-tolerant control allocation with actuator dynamics: finite-
time control reconfiguration,” in 53rd IEEE Conf. Decis. Control.
IEEE, 2014, pp. 4971–4976.

[9] L. Govoni and A. Cristofaro, “A fault-tolerant task allocation frame-
work for overactuated multi-robot systems,” in IEEE 9th Int. Conf.
Control Decis. Inf. Technol., 2023, pp. 287–292.

[10] G. Notomista and M. Egerstedt, “Constraint-driven coordinated control
of multi-robot systems,” in Proc. Amer. Control Conf. IEEE, 2019,
pp. 1990–1996.

[11] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th Eur. Control Conf. IEEE, 2019, pp. 3420–3431.

[12] A. Cristofaro, G. Giunta, and P. R. Giordano, “Fault-tolerant formation
control of passive multi-agent systems using energy tanks,” IEEE Syst.
Control Lett., vol. 6, pp. 2551–2556, 2022.

[13] R. O. Saber and R. M. Murray, “Consensus protocols for networks
of dynamic agents,” in Proc. Amer. Control Conf. IEEE, 2003, pp.
951–956.

[14] T. A. Johansen and T. I. Fossen, “Control allocation—a survey,”
Automatica, vol. 49, no. 5, pp. 1087–1103, 2013.

[15] T. A. Lima, S. Tarbouriech, F. G. Nogueira, and B. C. Torrico, “Co-
design of dynamic allocation functions and anti-windup,” IEEE Syst.
Control Lett., vol. 5, no. 6, pp. 2198–2203, 2020.

[16] S. S. Tohidi, Y. Yildiz, and I. Kolmanovsky, “Adaptive control al-
location for over-actuated systems with actuator saturation,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 5492–5497, 2017.

[17] E. Lavretsky and T. E. Gibson, “Projection operator in adaptive
systems,” arXiv ePrint arXiv:1112.4232, 2011.

[18] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Trans. Robot. Autom., vol. 20, no. 2,
pp. 243–255, 2004.

[19] L. Govoni and A. Cristofaro. Decentralized task allocation for
redundant multi-robot systems: an iterative consensus approach.
[Online]. Available: https://youtu.be/9v35xHyCyQk

https://youtu.be/9v35xHyCyQk

	INTRODUCTION
	CONSENSUS-BASED TASK ALLOCATION
	Centralized task allocation algorithm
	Decentralized approach

	PROPOSED FRAMEWORK
	Task execution
	Adaptive control allocation
	Overall control scheme

	SIMULATIONS
	Problem setup
	Overactuation
	Task allocation parameters
	Simulation results

	CONCLUSIONS
	References

