
Applied Mathematics and Computation 442 (2023) 127722

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Approximation of optimal control problems for the

Navier-Stokes equation via multilinear HJB-POD

Maurizio Falcone

a , Gerhard Kirsten b , Luca Saluzzi c , ∗

a Università di Roma La Sapienza, P. Aldo Moro, 5, Roma, 00185, Italy
b Dipartimento di Matematica, Università di Bologna, Piazza P.ta S. Donato, Bologna, 510 0 0, Italy
c Department of Mathematics, Imperial College London, South Kensington Campus, SW7 2AZ, London, United Kingdom

a r t i c l e i n f o

Keywords:

Dynamic programming

Optimal control

Tree structure

Model order reduction

a b s t r a c t

We consider the approximation of some optimal control problems for the Navier-Stokes

equation via a Dynamic Programming approach. These control problems arise in many in-

dustrial applications and are very challenging from the numerical point of view since the

semi-discretization of the dynamics corresponds to an evolutive system of ordinary differ-

ential equations in very high-dimension. The typical approach is based on the Pontryagin

maximum principle and leads to a two point boundary value problem. Here we present

a different approach based on the value function and the solution of a Bellman equation,

a challenging problem in high-dimension. We mitigate the curse of dimensionality via a

recent multilinear approximation of the dynamics coupled with a dynamic programming

scheme on a tree structure. We discuss several aspects related to the implementation of

this new approach and we present some numerical examples to illustrate the results on

classical control problems studied in the literature.

© 2022 The Author(s). Published by Elsevier Inc.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

The control of fluids is an important issue in many industrial problems, e.g. in aerospace and naval industries. The ap-

proximation of the fluid around complex geometries usually requires a very careful construction of the grid and is based

on finite elements or finite differences/volumes schemes (see e.g. Pironneau [1] , Strikwerda [2] and the references therein).

This is known to be a huge computational problem so model reduction techniques are often applied to compute the solution

[3,4] and study the physical properties of the flow varying various parameters (e.g. bifurcation phenomena as in Quarteroni

and Rozza [5] , Stabile and Rozza [6] , Pichi et al. [7]). A typical example is given by the Navier-Stokes (NS) equation for

incompressible fluids that we use here as our model problem.

These problems have been studied by many authors from the theoretical point of view analysing controllability properties

of the system via Carlemann estimates. The interested reader can find in [8,9] a comprehensive presentation of these results.

For our optimal control problems the numerical approximation of the Navier-Stokes equation is the starting point. In

fact, we want to solve a huge optimization problem where the controlled solution should minimize a cost functional, e.g. to
∗ Corresponding author.

E-mail addresses: falcone@mat.uniroma1.it (M. Falcone), gpkirsten@gmail.com (G. Kirsten), l.saluzzi@ic.ac.uk (L. Saluzzi) .

https://doi.org/10.1016/j.amc.2022.127722

0 096-30 03/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.amc.2022.127722
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2022.127722&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:falcone@mat.uniroma1.it
mailto:gpkirsten@gmail.com
mailto:l.saluzzi@ic.ac.uk
https://doi.org/10.1016/j.amc.2022.127722
http://creativecommons.org/licenses/by/4.0/

M. Falcone, G. Kirsten and L. Saluzzi Applied Mathematics and Computation 442 (2023) 127722

minimize the drag or to stay close to some reference solution. Many authors have contributed to these problems following

the pioneering work of J.L. Lions in Lions [10] and the numerical approach is mainly based on the Pontryagin Maximum

Principle (PMP) that gives a necessary condition characterizing the optimal couple trajectory/control of the problem. The

numerical solution of the PMP leads to a two point boundary value problem that is feasible in high-dimension but typically

produces open-loop controls (see Bardi and Capuzzo-Dolcetta [11]). In practice this approach can be difficult to implement

since it requires a starting guess for the optimal trajectory and for the optimal control (the co-state) that is not available, in

particular the co-state is usually hard to initialize. Furthermore, open-loop controllers are typically unstable under perturba-

tions and hence not suitable for real-time applications. The interested reader can find in the book Tröltzsch [12] and in the

lecture notes Casas [13] a general presentation of the results. We just recall that for the PMP approach two different strate-

gies have been proposed: “optimize then discretize” and “discretize then optimize”. The first is based on the discretization

of the system of optimality conditions obtained for the continuous problem whereas the second starts with the discretiza-

tion of the optimal control problem and then solves the optimality condition for the finite dimensional problem (see Hinze

et al. [14] for a general presentation of these numerical strategies).

As we said, here we follow the Dynamic Programming (DP) approach based on the characterization of the value func-

tion as the unique viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation. This approach is more interesting since

it produces a characterization of optimal controls in feedback form via the knowledge of the value function, however its

application to the control of PDEs has been very limited due to the “curse of dimensionality”. In fact, adopting the strategy

“discretize then optimize”, we need to solve the Hamilton-Jacobi-Bellman equation in high-dimension (i.e. the dimension

of the discrete state space after the semi-discretization of the continuous problem). It is known that this nonlinear partial

differential equation gives the characterization of the value function as its unique viscosity solution in many optimal con-

trol problems (see e.g. Bardi and Capuzzo-Dolcetta [11]). It is interesting to note that this problem is difficult also in low

dimension since the value function is only Lipschitz continuous also when the dynamics and the cost are assumed to be

very regular, but in low dimension several methods have been proposed ranging from finite difference methods [15] , semi-

lagrangian schemes [16] to finite volumes. Here we propose a new method for the numerical solution of control problems

of Navier-Stokes equations based on the DP approach. The novelty in the technique used is to mitigate the curse of di-

mensionality via the coupling of two recent methods: a multilinear approximation of the NS equation developed in Kirsten

and Simoncini [17] and the dynamic programming method for the finite horizon problem on a tree originally developed

for nonlinear ordinary differential equations in Alla et al. [18] obtaining also a-priori error estimates in Saluzzi et al. [19] .

The first method allows to produce a numerical solution in a very compact form via tensor notations whereas the Tree

Structure Algorithm (TSA) exploits the compact representation of the systems and can be coupled with a model reduc-

tion approach based on Proper Orthogonal Decomposition (POD). In fact the tree structure method is rather flexible, we

refer to Alla and Saluzzi [20] and Alla et al. [21] for recent developments including high-order approximation, the coupling

with model reduction techniques, problems with state constraints. To set this paper into perspective, let us also mention

that the coupling of HJB equation with POD for the approximation of optimal control problems with PDE constraints has

been proposed by Kunisch and co-authors in a series of papers [22–24] (see also Hinze and Volkwein [25]). They have an-

alyzed optimal control problems mainly for linear parabolic equation and the Burgers equation. Let us also mention that

more recently in Breiten and Kunisch [26] , Breiten et al. [27] the authors have attacked a control problems for the Navier-

Stokes system via the Lyapunov function technique. The numerical method proposed here is different since it is based

on the above mentioned building blocks allowing to mitigate the “curse of dimensionality”. Other techniques have been

introduced in the last decades in this direction, among them we mention in particular sparse grids [28] , tensor decompo-

sition techniques. Dolgov et al. [29] , Oster et al. [30] , Dolgov et al. [31] and some very recent approaches based on neural

networks [32,33] .

Our main goal here is to describe the coupling between our building blocks, explain how they can be implemented and

show our first numerical results on classical control problems for NS equations. We believe that the simulations presented

in the last section illustrate that DP is now feasible from a computational point of view also for fluids and we hope that

this can open the way to its application in real industrial applications.

The paper is organized as follows. In the second section, we will introduce some classical control problems for NS equa-

tions and recall the results available in the literature for continuous problems. Section 3 will be devoted to the presentation

of the multilinear approximation and its implementation. In Section 4 we present the TSA and the coupling with the multi-

linear approximation. In the last section we present some numerical experiments on a number of challenging test problems

studied in the literature illustrating the main features of our approach.

Notation and Tensor basics

In the present work all matrices are represented by capital bold-face letters, whereas scalars are given by standard lower-

case letters. In the context of model reduction, all matrices with a ̂ on top, represent low-dimensional quantities.

The Kronecker product of two matrices M ∈ R

m 1 ×m 2 and N ∈ R

n 1 ×n 2 is defined as

M � N =

⎛ ⎝

M 1 , 1 N · · · M 1 ,m 2
N

. . .
. . .

. . .
M m 1 , 1 N · · · M m 2 ,m 2

N

⎞ ⎠ ∈ R

m 1 n 1 ×m 2 n 2 ,
2

M. Falcone, G. Kirsten and L. Saluzzi Applied Mathematics and Computation 442 (2023) 127722

and the vec (·) operator maps the entries of a matrix, into a long vector, by stacking the columns of the matrix one after the

other. Moreover, we will often make use of the property

(M � N) vec (X) = vec (NX M

�) .

Furthermore, the matrix operation M • N, where M and N have the same size, is known as the Hadamard product, which

is an element-element multiplication of the two matrices.

2. The optimal control problem for the Navier-Stokes equation and its discretization

We introduce some optimal control problems for the Navier-Stokes equation giving also some hints on its numerical

solution via finite differences (FD). The approach we present is not limited to this FD approximation and can be extended

to other numerical methods as Finite Elements or Finite Volumes since the multilinear discretization described in the next

section applies to the semi-discrete system.

2.1. The Navier-Stokes dynamical system and its discretization

Let us assume that the physical domain is a regular bounded connected open set � in R

2 whose boundary will be

denoted by �. We denote by η(x) the exterior normal vector to a point x ∈ �. The time variable t will be taken on the

interval (0 , T) with T > 0 . The standard uncontrolled dynamics will be given by ⎧ ⎪ ⎨ ⎪ ⎩

z t − ε�z + (z · ∇) z + ∇p = f in � × (0 , T) ,
div z = 0 in � × (0 , T) ,

z = 0 on � × (0 , T) ,
z(0 , x, y) = z 0 (x, y) in �.

(1)

In the sequel we will consider as a model problem the following form for the Navier-Stokes equation ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

u t − 1
r (u xx + u yy) + uu x + v u y + p x = f in � × (0 , T) ,

v t − 1
r (v xx + v yy) + u v x + vv y + p y = f in � × (0 , T) ,

u x + v y = 0 in � × (0 , T) ,
u (t, x, y) = v (t, x, y) = 0 on � × (0 , T) ,
u (0 , x, y) = u 0 (x, y) , v (0 , x, y) = v 0 (x, y) in � × (0 , T) ,

(2)

where (x, y) are the space coordinates and we set ε = 1 /r, z = (u, v) , where u, v : � × (0 , T) → R , with � ≡ [0 , b x] × [0 , b y] ⊂
R

2 are the velocities to be determined and the normalized pressure p : � → R is a Lagrange multiplier introduced to satisfy

the incompressibility condition. The boundary condition can be chosen according to the problem we want to solve and, as

we will see in the next section, can also include some control terms (this will be the case for the boundary control problem).

As an example, we can consider the Dirichlet homogeneous boundary condition z = 0 or the no-slip boundary conditions on

each wall, that is

u (t, x, b y) = u N (x) , u (t, x, 0) = u S (x) , u (t, 0 , y) = 0 , u (t, b x , y) = 0 ,

v (t, b x , y) = v E (y) , v (t, 0 , y) = v W

(y) , v (t, x, 0) = 0 , v (t, x, b y) = 0 .

For the general results on the Navier-Stokes equation we refer to the book Temam [34] whereas for the analysis of some

stabilization problems in this framework we refer to Barbu and Triggiani [35] .

2.2. Some control problems for the Navier-Stokes equation

The control of non linear dynamical systems over a finite horizon is usually treated via direct methods based on Pon-

tryagin maximum principle that results in the numerical solution of a two point boundary value problem. This results in an

open-loop control and often requires a long work to choose the initial conditions for the state and the co-state since the

convergence is local. Moreover, the PMP just gives necessary conditions of optimality and the setting of sufficient conditions

is much more technical in this framework. As we said we are going to present a different approach for some classical control

problems that we briefly review here.

1. Distributed control in �

A first way to introduce a control term is to add a term to the equation, so we write

z t − ε�z + (z · ∇) z + ∇p +

m ∑

i =1

αi ψ i (x) = f in � × (0 , T) . (3)

In this problem the control is a measurable vector α : [0 , T) → A where A is a compact subset of R

m and the functions

ψ i are some predefined shape functions. It is possible to fix the shape function as a characteristic function 1 ω with ω ⊂ �,

obtaining a control term which will apply only on the subdomain ω.

2. A boundary control problem on � ⊂ �
0

3

M. Falcone, G. Kirsten and L. Saluzzi Applied Mathematics and Computation 442 (2023) 127722

A second way is to consider a controlled dynamics where the control appears in the boundary condition, so we take the

dynamics (1) but we modify the boundary Dirichlet condition as

z = α on �0 × (0 , T) , (4)

z = g on (� \ �0) × (0 , T) , (5)

and the control must satisfy the compatibility condition ∫
�0

α · η d�0 = 0 , (6)

and α will be our control function defined on a small subset �0 of the boundary �.

We will always denote by y (·, t;α) the unique solution of the dynamical system corresponding to the choice of the

control α. Then we are going to introduce the cost functional to complete the definition of our control problem. A general

form of the cost functional we want to minimize is

J(α) =

∫ T

0

‖ y (·, t;α) − y (·, t) ‖

2
L 2 (�) + γ ‖ α‖

2) e −λt dt + ‖ y (·, T ;α) − y (·, T) ‖

2
L 2 (�) , (7)

where the two parameters γ and λ are positive and the running cost includes the distance of the controlled solution from

a reference trajectory y plus a penalization on the control α.

In the second and third experiment presented in Section 5 y will represent the solution of the stationary problem, so the

meaning is to stabilize the problem and reach as soon possible the stationary solution.

For the boundary control problem we will use the same cost functional but y will represent the solution of the problem

where we have set a specific control α.

2.3. The finite horizon discrete optimal control problem

Let us recall for the reader’s convenience the classical Dynamic Programming approach for the finite horizon optimal

control problem for ordinary differential equations, that we use as a model problem. The system is driven by {
˙ y (s) = f (y (s) , α(s) , s) , s ∈ (t, T] ,

y (t) = x ∈ R

d ,
(8)

and we denote by y : [t, T] → R

d the solution, by α : [t, T] → R

m the control, by f : R

d × R

m × [t, T] → R

d the dynamics and

by

A = { α : [t, T] → A, measurable }
the set of admissible controls where A ⊂ R

m is a compact set. The cost functional for the finite horizon control problem is

given by

J x,t (α) :=

∫ T

t

L (y (s, α) , α(s) , s) e −λ(s −t) ds + g(y (T)) e −λ(T −t) , (9)

where L : R

d × R

m × [t, T] → R is the running cost and λ ≥ 0 is the discount factor.

The typical assumptions on the functions f, L, g are:

| f (x, a, s) | ≤ M f , | L (x, a, s) | ≤ M L , | g(x) | ≤ M g , ∀ x ∈ R

d , a ∈ A ⊂ R

m , s ∈ [t, T] , (10)

the functions f, L and g are Lipschitz-continuous with respect to the first variable

| w (x, a, s) − w (y, a, s) | ≤ L w

| x − y | , for w = f, L and ∀ x, y ∈ R

d , a ∈ A ⊂ R

m , s ∈ [t, T] , (11)

and finally the cost g is also Lipschitz-continuous:

| g(x) − g(y) | ≤ L g | x − y | , ∀ x, y ∈ R

d . (12)

Furthermore, assuming the existence of a global solution in time, all the trajectories will live in a compact set since

we have a finite time evolution. We refer to Giga et al. [36] for a complete statement on the global existence of the 2D

incompressible NS equation. In this case the boundedness assumptions (10) can be avoided and the hyphotesis (11) - (12) can

be considered locally. The goal is to find a state-feedback control law α(t) = �(y (t) , t) , in terms of the state equation y (t) ,

where � is the feedback map. To derive optimality conditions we use the well-known Dynamic Programming Principle

(DPP) due to Bellman. We first define the value function for an initial condition (x, t) ∈ R

d × [t, T] :

v (x, t) := inf
α∈A

J x,t (α) . (13)

A classical result (see Bardi and Capuzzo-Dolcetta [11] shows that under our assumptions the value function for the finite

horizon problem is the unique viscosity solution of the following Hamilton-Jacobi-Bellman equation {

−∂v
∂s

(x, s) + λv (x, s) + max
a ∈ A

{ −L (x, a, s) − ∇v (x, s) · f (x, a, s) } = 0 , for x ∈ R

d s ∈ [t, T) ,

v (x, T) = g(x) for x ∈ R

d .

(14)
4

M. Falcone, G. Kirsten and L. Saluzzi Applied Mathematics and Computation 442 (2023) 127722

Once the value function is known, by e.g. (14) , then it is possible to compute the optimal feedback control as:

α∗(t) := arg max
a ∈ A

{ −L (x, a, t) − ∇v (x, t) · f (x, a, t) } , (15)

and this is one of the most important features of the DP approach to control problems. From the numerical approximation

of the feedback we can apply (15) replacing the continue value function v by our numerical approximation and its gradient

by discrete gradients (see [16] for more details on this point).

3. Multilinear approximation of the Navier-Stokes equation

In this section we present the matrix-oriented discretization of the NS equation used to set-up the finite dimensional

optimal control problem. The technique presented here allows us to significantly speed up the numerical time integration;

see the first test presented in Section 5 . More details on the procedure presented here can be found in Kirsten [37] .

3.1. Matrix-oriented discretization and 2S-POD-DEIM for general PDEs

Consider a semilinear evolutive PDE of the form

u t = L (u) + f (u, t) , u = u (x , t) with x ∈ � ⊂ R

2 , t ∈ T , (16)

with suitable boundary conditions. We assume that the differential operator L is linear in u with separable coefficients, typ-

ically a second order operator in the space variables, while f : S × T → R is a nonlinear function, where S is an appropriate

space with u ∈ S, and T is the timespan. Under these assumptions, if L is discretized by means of a tensor basis, such as

finite differences on rectangular domains, certain finite element methods and certain spectral methods, then the physical

domain can be mapped to a reference hypercubic domain. More precisely, if we consider finite differences on a rectangular

domain, then

L = I n y � A 1 + A

�
2 � I n x ,

where A 1 ∈ R

n x ×n x and A 2 ∈ R

n y ×n y are matrices containing the coefficients for the derivatives and n x and n y are the number

of discretization nodes in the x − and y − directions respectively. As a result if we define U (t) ∈ R

n x ×n y as a matrix containing

an approximation to the solution u (t) at each discretization node, then the discrete version of (16) can be expressed in

matrix form as

˙ U (t) = A 1 U (t) + U (t) A 2 + F (U , t) . (17)

In addition to a better structural interpretation of the discrete quantities, this formulation can also lead to reduced memory

requirements and computational costs. A summary of this and related matrix-oriented procedures can be found in [38,39] .

Furthermore, standard numerical integration schemes, such as semi-implicit schemes and exponential integrators, can be

performed directly in matrix form to approximate the solution of (17) throughout the timespan [37,40] .

As it is well-known in the vector formulation of discretized PDEs, the discrete matrices are often very large and sparse

and require a large computational effort to solve the resulting linear systems at each time step. To this end model order

reduction techniques such as POD [3,25] and DEIM [41] have been successfully applied to reduce the complexity of solving

several linear systems throughout the timespan. In [17,42] the POD and DEIM methods have been extended so that they can

be applied directly to the matrix differential Eq. (17) , without requiring any mapping from matrices to vectors.

In short, consider a set of n s time-dependent snapshot solutions and nonlinear snapshots of (17) , given by { U

i } n s
i =1

and

{ F (U

i) } n s
i =1

respectively. The 2S-POD algorithm from [17] is applied to the set of snapshot solutions to form two tall ma-

trices U � ∈ R

n x ×k � and U r ∈ R

n y ×k r (k � , k r
 n) with orthornormal columns. The parameters k � and k r refer to the number

of selected dominant singular values such that the projection error is bounded by a prescribed tolerance tol. The span of

these columns respectively approximate the row and column space of the snapshot solutions. To this end, we approximate

the solution U (t) of (17) by U (t) ≈ U � ̂
 U (t) U

�
r =: ̃ U (t) , for t ∈ T , where ̂ U (t) ∈ R

k � ×k r satisfies the following low-dimensional

matrix ODE: {
˙ ̂ U (t) = ̂

 A 1 ̂
 U (t) + ̂

 U (t) ̂ A 2 + ̂

 F (̃ U (t) , t) , t ∈ T , ̂ U (0) =

̂ U 0 = U

�
� U 0 U r ,

(18)

where ̂ A 1 = U

�
� A 1 U r and

̂ A 2 = U

�
� A 2 U r and

̂ F (̃ U (t) , t) = U

�
� F (U � ̂

 U (t) U

�
r , t) U r . Despite the fact that ̂ F (̃ U (t) , t) is considered

a low-dimensional quantity, the calculation of it still results in a computational bottleneck, since the nonlinear function

first needs to be evaluated at all the entries of U � ̂
 U (s) U

�
r ∈ R

n x ×n y before it is projected onto the low-dimensional space. To

overcome this bottleneck we apply the 2S-DEIM method from Kirsten and Simoncini [17] .

We consider the set of nonlinear snapshots { F (U

i) } n s
i =1

and use the 2S-POD algorithm to form two tall matrices �� ∈
R

n x ×p 1 and �r ∈ R

n y ×p 2 (p i
 n) with orthornormal columns. We aim to approximate the nonlinear term by far smaller

matrices, that is F (U � ̂
 U (s) U

�
r) ≈ �� ̂

 F (t) ��
r , where ̂ F (t) ∈ R

p 1 ×p 2 is a matrix of time-dependent coefficients. This leads to a

2S-DEIM approximation of the form: ̂ F (̃ U (t) , t) ≈ �� (D

�
� ��)

−1 D

�
� F (̃

 U (t) , t) D r (�
�
r D r)

−1 ��
r , (19)
5

M. Falcone, G. Kirsten and L. Saluzzi Applied Mathematics and Computation 442 (2023) 127722

V

where D � ∈ R

n x ×p 1 and D r ∈ R

n y ×p 2 respectively contain a subset of p 1 and p 2 columns of the n x × n y identity matrix. The

indices at which these columns are selected is determined by respectively applying the Q-DEIM algorithm from [43] to the

matrices �� and �r . In the elegant case where the nonlinear function is evaluated elementwise at the indices of ˜ U (t) , the

respective interpolation indices can be selected by taking D � and D r inside the nonlinear function such that ̂ F (̃ U (t) , t) ≈ U

�
� �� (D

�
� ��)

−1 F (D

�
�

˜ U (t) D r , t)(�
�
r D r)

−1 ��
r U r (20)

can be completely evaluated in low-dimension. In the case that the nonlinear term is not evaluated elementwise, more

complex techniques may be required [41] . This situation is also encountered with the NS equation and will be discussed in

the following section.

In what follows we aim to extend these matrix-oriented discretization, integration and model reduction strategies to the

setting of the NS equation.

3.2. The NS equation in full dimension

The method considered for the time and space discretization of (2) is finite differences on a staggered grid. A discussion

of the scheme and a Matlab implementation in the vector setting can be respectively found in [44] and [45] . Here we aim

to take explicit advantage of the rectangular domain, to directly treat the equation in matrix form, both for the reduction

and integration phases of the method.

For the space discretization, we consider n x gridpoints in the x −direction and n y gridpoints in the y −direction. For the

staggered grid, the velocities u are placed on the vertical cell interfaces, v on the horizontal cell interfaces and the pressure

p in the centre of the cells. That is, the discretized quantities are given by the matrices U (t) ∈ R

(n x −1) ×n y , V (t) ∈ R

n x ×(n y −1)

and P (t) ∈ R

n x ×n y . Given ∗ ∈ { U, V } , we consider the matrices A 1 , ∗ and A 2 , ∗ with corresponding dimensions to respectively

contain the coefficients for the second derivative in the x − and y − directions and the matrices B 1 , ∗ and B 2 , ∗ that of the first

derivatives. The discrete version of (2) is then given by ⎧ ⎨ ⎩

˙ U − A 1 ,U U + UA

�
2 ,U + B

�
1 ,U P + F U (U , V , t) = 0 ,

˙ V − A 1 ,V V + VA

�
2 ,V + P B 2 ,V + F V (U , V , t) = 0 ,

B 1 ,U U + V B

�
2 ,V = 0 ,

(21)

where F U (U , V , t) = B 1 ,U U • U + U B

�
2 ,U • V and F V (U , V , t) = B 1 ,V V • U + V B

�
2 ,V • V . For the time discretization we consider a

simple semi-implicit Euler scheme, so that the viscosity terms are treated implicitly, the nonlinear terms explicitly, and the

pressure term is treated implicitly via a Chorin Projection scheme (see [46]). That is, at each time iteration the approxima-

tions U

(j+1) ≈ U (t j+1) and V

(j+1) ≈ V (t j+1) are determined by solving the Sylvester equations {
(I − �tA 1 ,U) U

(j+1) + U

(j+1) (−�tA

�
2 ,U) = U

(j) − B

�
1 ,U P

(j+1) − �tF U (U

(j) , V

(j) , t) ,

(I − �tA 1 ,V) V

(j+1) + V

(j+1) (−�tA

�
2 ,V) = V

(j) − P (j+1) B 2 ,V − �tF V (U

(j) , V

(j) , t) .
(22)

Keeping the pressure term at the next time step on the right hand side of the Sylvester equations is a slight abuse of

notation. In fact, the pressure is determined by a pressure correction to enforce the incompressibility.

More precisely, consider the implicit time discretization of the pressure, that is U

(j+1) − U

(j) = �tB

�
1 ,U

P (j+1) and V

(j+1) −

(j) = �tP (j+1) B 2 ,V . If we multiply the first equation from the left by B 1 ,U and the second from the right by B

�
2 ,V adding the

two equations together, we obtain a Sylvester equation of the form

A 1 ,U P
(j+1) + P (j+1) A

�
2 ,V = B 1 ,U U

(j) + V

(j) B

�
2 ,V , (23)

to be solved for P (j+1) . This equation is obtained by enforcing the incompressibility such that B 1 ,U U

(j+1) + V

(j+1) B

�
2 ,V = 0 .

Determining the pressure correction does not cause any problems with respect to the staggered grid, since the divergence of

the velocity lies in the cell centres, similar to the pressure. Determining the nonlinear terms is, however, more complicated.

More precisely, due to the staggered grid, the nodes of the of U and V are located at different positions so that, for

example, the product U • V is not defined. This is circumvented by means of interpolation, for which we refer to [45, sec-

tion 5] for details. To this end, following [45, section 5] to incorporate the boundary conditions in the nonlinear terms, we

define U ∈ R

(n x +1) ×n y as the matrix U padded with boundary conditions in the top and bottom rows. Similarly, V ∈ R

n x ×n y +1

is padded with boundary conditions in the first and last columns. Then, defining C ∈ R

(n x −1) ×(n x +1) as a matrix with 1 / 2 on

the main and upper diagonal as an averaging matrix, the nonlinear term, evaluated on the staggered grid, can be expressed

in fully matricial form as

F U (U , V , t) = B

�
1 ,U

(
(C � U) 2 − γ | C � U | •

(
h x

2

B

�
1 ,U U

))
+ B

�
1 ,U

(
(U C) • (C � V) − γ | (U C | •

(
h x

2

B

�
2 ,V V

))
, (24)

where h x
2 B

�
1 ,U is responsible for differencing and cofficient matrices containing a superscripted bar are merely conforming to

the dimension of U or V . A similar form can be derived for F V (U , V , t) . In this setting, γ ∈ (0 , 1) is responsible for a smooth

transition between upwinding and centered differencing, and is defined as

γ = min

(
1 . 2�t max

(
max | U i, j | , max | V i, j |

)
, 1

)
;

6

M. Falcone, G. Kirsten and L. Saluzzi Applied Mathematics and Computation 442 (2023) 127722

U

see Seibold [45 , section 5] for further details.

A summary of the procedure for solving (2) on a staggered grid in fully matricial form can be found in Algorithm 1 . The

most computationally expensive step is the solution of three Sylvester equations (one at Step 3, and two at step 5) at each

timestep. However, the coefficient matrices remain constant throughout the timespan. To this end, an a-priori eigenvalue

decomposition of the six coefficient matrices can be performed so that the Sylvester equations can be solved by using only

substitution and matrix-matrix multiplication. We refer the reader to [37,38,40] for further details.

Algorithm 1 Full model Algorithm.

1: Choose the initial conditions (U (0) , V (0)) and the number of time steps n t
2: for i = 0 , . . . , n t − 1 do

3: Solve (23) for P (i +1)

4: Compute F U (U , V , t) and F V (U , V , t)

5: Solve (21)

6: end for

3.3. The 2S-POD-DEIM reduced NS equation

For the reduced model we consider the 2S-POD-DEIM model reduction procedure for systems of matrix differential equa-

tions from Kirsten [42] , Kirsten and Simoncini [47] , discussed above, to reduce (21) in a fully matricial way. To this end

we consider n s snapshots of the full dimensional solutions U i , V i and P i , i = 1 , 2 , . . . , n s , in order to construct the low di-

mensional, orthonormal basis matrices U ∗ ∈ R

(n x −1) ×k 1 , ∗ , V ∗ ∈ R

n y −1 ×k 2 , ∗ and P ∗ ∈ R

n x ×k 3 , ∗ , where ∗ = { �, r} . This leads to the

approximations

U ≈ U � ̂
 U U

�
r =: ˜ U , V ≈ V � ̂

 V V

�
r =: ̃ V and P ≈ P � ̂ P P � r =: ̃ P .

3.3.1. Solving for ̂ U

(j+1) and ̂ V (j+1)

Substituting the above approximations into (21) yields a reduced Navier-Stokes equations, where the reduced solutions ̂

j+1 and ̂ V

j+1 are determined by solving the (reduced) coupled Sylvester equations {

(I − �t ̂ A 1 ,U) ̂ U

(j+1) + ̂

 U

(j+1) (−�t ̂ A

�
2 ,U) =

̂ U

(j) − U

�
� B

�
1 ,U P � ̂

 P (j+1) P � r U r − �t ̂ F U (̃ U

(j) , ̃ V

(j) , t) ,

(I − �t ̂ A 1 ,V) ̂ V

(j+1) + ̂

 V

(j+1) (−�t ̂ A

�
2 ,V) = ̂

 V

(j) − V

�
� P � ̂ P (j+1) P � r B 2 ,V V r − �t ̂ F V (̃ U

(j) , ̃ V

(j) , t) .
(25)

Here we have used the same numerical integration scheme as for the full-dimensional equation, and all the matrices that

have a ̂ on the top are left and right projections of the original coefficient matrices onto the relevant subspaces, and hence

they are all low-dimensional. Furthermore, notice that the terms multiplying the pressure term from the left and right in

both equations are low-dimensional and time-independent, hence they can be stored offline. Consequently, the remaining

challenges lie in determining the pressure term

̂ P (j+1) and evaluating the nonlinear functions in low-dimension at each

timestep.

3.3.2. Solving for ̂ P (j+1)

The pressure correction step requires the solution of the Sylvester Eq. (23) . Inserting the approximation

˜ P j+1 into

(23) yields the low-dimensional Sylvester equation

P � � A 1 ,U P � ̂ P (j+1) + ̂

 P (j+1) P � r A

�
2 ,V P r = P � � B 1 ,U U � ̂

 U

(j) U

�
r P r + P � � V � ̂

 V

(j) V

�
r B

�
2 ,V P r . (26)

Here, U � ̂
 U

(j) U

�
r and V � ̂

 V

(j) V

�
r represent the lifted quantities padded with boundary conditions, as discussed before. As a

result, the left-hand side of this Sylvester equation consists of only small matrices, but the right hand side, on the other

hand, requires some more attention to avoid recomputing large matrices, due to the fact that the lifted quantities are padded

by boundary conditions. To this end, by taking advantage of the fact that B 1 ,U and B 2 ,V only account for the differentiation,

the first and last rows of P � and P r can be manipulated in such a way that they only act on the boundary conditions so that

the internal blocks of P � and B 1 ,U (P r and B 2 ,V) can be multiplied with U � (U r) in order to form low-dimensional matrices

that can be stored offline. A similar manipulation is done for the products between U

�
r and P r (P � � and V �) such that only

low-dimensional operations need to occur online.

3.3.3. Evaluating ̂ F U (̃ U , ̃ V , t) and ̂ F V (̃ U , ̃ V , t) with DEIM

Following the procedure in [17] , we consider n S snapshots of the nonlinear functions F U and F V to construct the low-

dimensional, orthonormal matrices �U , ∗ ∈ R

(n x −1) ×p 1 , ∗ and �V , ∗ ∈ R

(n y −1) ×p 2 , ∗ , ∗ = { �, r} used for the reduction of the non-

linear function by 2S-DEIM. If we define the orthonormal matrices D U , ∗ ∈ R

(n x −1) ×p 1 , ∗ and D V , ∗ ∈ R

(n y −1) ×p 2 , ∗ as matrices

with a subset of columns of the identity matrix, then the 2S-DEIM approximation of the nonlinear terms is given by ̂ F U (̃ U , ̃ V , t) ≈ U

�
� �U ,�

(
D

�
U ,� �U ,�

)−1
D

�
U ,� F U (̃

 U , ̃ V , t) D U ,r

(
��

U ,r D U ,r

)−1
��

U ,r U r , (27)
7

M. Falcone, G. Kirsten and L. Saluzzi Applied Mathematics and Computation 442 (2023) 127722

and similar for ̂ F V (̃ U , ̃ V , t) . The matrices U

�
� �U ,�

(
D

�
U ,�

�U ,�

)−1
and U

�
r �U ,r

(
D

�
U ,r �U ,r

)−1
are low-dimensional and can be

stored offline, however in this setting it is particularly challenging to evaluate the term D

�
U ,�

F U (̃ U , ̃ V , t) D U ,r without first

lifting and evaluating F U (̃ U , ̃ V , t) in full dimension. In what follows we briefly discuss how this is achieved. The same idea

follows for F V (̃ U , ̃ V , t) .

We want to determine (27) by using only small matrices. From (24) , it can be seen that F U consists of two terms summed

together. Therefore:

D

�
U ,� F U (̃

 U , ̃ V , t) D U ,r = D

�
U ,� F U, 1 (̃ U , ̃ V , t) D U ,r + D

�
U ,� F U, 2 (̃ U , ̃ V , t) D U ,r .

In the following result we illustrate how the first of the two terms can be evaluated in low dimension. A similar strategy

is used for the second term, but for the sake of presentation we omit the details.

Proposition 1. The term D

�
U ,�

F U, 1 (̃ U , ̃ V , t) D U ,r can be evaluated completely in low-dimension, independent of the full dimensions

n x and n y , at each time step.

Proof. From the definition of the full-dimensional nonlinear term, it can be seen that

D

�
U ,� F U, 1 (̃ U , ̃ V , t) D U ,r = D

�
U ,� B

�
1 ,U

(
(C � ˜ U) 2 − γ | C � ˜ U | •

(
h x

2

B

�
1 ,U ̃

 U

))
D U ,r .

As a result,

D

�
U ,� B

�
1 ,U

(
(C � ˜ U) 2 − γ | C � ˜ U | •

(
h x

2

B

�
1 ,U ̃

 U

))
D U ,r

= D

�
U ,� B

�
1 ,U

(
C � ˜ U • C � ˜ U

)
D U ,r − D

�
U ,� B

�
1 ,U γ | C � ˜ U | •

(
h x

2

B

�
1 ,U ̃

 U

)
D U ,r .

Once again we look at the two terms on the right-hand side separately. More precisely, considering the first term, the role

of D U ,r is to select columns after the scalar product. Therefore, it can be taken inside of the scalar product, such that

D

�
U ,� B

�
1 ,U

(
C � ˜ U • C � ˜ U

)
D U ,r = D

�
U ,� B

�
1 ,U

(
C � U � ̂

 U (t) U

�
r • C � U � ̂

 U (t) U

�
r

)
D U ,r

= D

�
U ,� B

�
1 ,U

(
C � U � ̂

 U (t) U

�
r D U ,r • C � U � ̂

 U (t) U

�
r D U ,r

)
.

The term U r D U ,r is small and can be saved offline. The role of the term D

�
U ,�

B

�
1 ,U

is to select at which rows the derivatives is

taken after the scalar product. Therefore for each row e i selected we need to compute
e i +1 −e i

h x
. This means we only need the

scalar product at rows i and i + 1 . Hence,

D

�
U ,� B

�
1 ,U

(
C � U � ̂

 U (t) U

�
r D U ,r • C � U � ̂

 U (t) U

�
r D U ,r

)
=

1

h x

(
(D

+
U ,�

) � C � U � ̂
 U (t) U

�
r D U ,r • (D

+
U ,�

) � C � U � ̂
 U (t) U

�
r D U ,r

)
− 1

h x

(
D

�
U ,� C

� U � ̂
 U (t) U

�
r D U ,r • D

�
U ,� C

� U � ̂
 U (t) U

�
r D U ,r

)
can be computed via only low-dimensional evaluations, since the only time-dependent term is ̂ U (t) and all other matrix

products result in low-dimensional coefficient matrices that can be stored offline. The matrix D

+
U ,�

contains the DEIM indices

shifted by +1 . The same idea works for the second term

D

�
U ,� B

�
1 ,U γ | C � ˜ U | •

(
h x

2

B

�
1 ,U ̃

 U

)
D U ,r ,

which can be expressed as

1

h x
γ
∣∣(D

+
U ,�

) � C � U � ̂
 U (t) U

�
r D U ,r

∣∣ •
(

h x

2

(D

+
U ,�

) � B

�
1 ,U U � ̂

 U (t) U

�
r D U ,r

)
− 1

h x
γ
∣∣D

�
U ,� C

� U � ̂
 U (t) U

�
r D U ,r

∣∣ •
(

h x

2

D

�
U ,� B

�
1 ,U U � ̂

 U (t) U

�
r D U ,r

)
.

Once again all coefficient matrices are low-dimensional and stored offline, so that only low-dimensional matrix multiplica-

tions are necessary to obtain the term D

�
U ,�

F U, 1 (̃ U , ̃ V , t) D U ,r . This completes the proof. �

A brief summary of the reduced model phase has been sketched in Algorithm 2 1
1 A Matlab implementation of both the full and reduced matrix solvers for the discrete NS equation can be downloaded from https://www.sites.google.

com/view/gerhard-kirsten/software-upon-acceptance-of-this-article .

8

https://www.sites.google.com/view/gerhard-kirsten/software-upon-acceptance-of-this-article

M. Falcone, G. Kirsten and L. Saluzzi Applied Mathematics and Computation 442 (2023) 127722

Algorithm 2 Reduced model Algorithm.

1: Consider the projected initial conditions (̂ U (0) , ̂ V (0)) and choose the number of time steps n t
2: for i = 0 , . . . , n t − 1 do

3: Solve (26) for ̂ P (i +1)

4: Evaluate ̂ F U (̃ U , ̃ V , t) and

̂ F V (̃ U , ̃ V , t) with DEIM

5: Solve (25) for ̂ U

(i +1) and

̂ V

(i +1)

6: end for

4. The tree structure algorithm for the NS equation

In this section we are going to couple the multilinear approximation of the Navier-Stokes equation with the Tree Struc-

ture Algorithm (TSA), an algorithm to approximate the HJB equation arising from the optimal control problem. We will first

introduce briefly the general procedure for the TSA and next we are going to present the coupling of these two techniques.

4.1. Dynamic programming on a tree structure

We introduce the essential ingredients of the DP approach based on a tree built on the discrete dynamical system. The

interested reader will find more details on the topic in Alla et al. [18] .

We consider the discrete approximation of the DP principle. Fixed the number of time steps n t and the time step �t :=
[(T − t) /n t] , the discrete DP reads {

V

n = min

a ∈ A
[�t L (x, a, t n) + e −λ�t V

n +1 (x + �t f (x, a, t n))] , n = n t − 1 , . . . , 0 ,

V

n t = g(x) , x ∈ R

d ,
(28)

where t n = t + n �t, t
N

= T , and V n := V (x, t n) . We discretize the control set A with step-size �a obtaining a discrete control

set with a finite number of controls A

�u = { a 1 , . . . , a M

} . In what follows we denote by A the discrete set to ease the notation.

Now, we start from the initial condition x and we follow the discrete dynamics employing the explicit Euler scheme and

M discrete controls a j

ζ 1
j = x + �t f (x, a j , t 0) , j = 1 , . . . , M. (29)

Therefore, denoting the root of the tree with T 0 = { x } , we get the first level of the tree T 1 = { ζ 1
1
, . . . , ζ 1

M

} . The procedure

can be iterated so that the n −th time level will be given by

T n = { ζ n −1
i

+ �t f (ζ n −1
i

, a j , t n −1) } M

j=1 i = 1 , . . . , M

n −1 ,

and the entire tree can be represented as

T := { ζ n
j } M

n

j=1 , n = 0 , . . . , n t ,

where ζ n
i

is the evolution of the dynamics at time t n using the controls { a j k } n −1
k =0

:

ζ n
i n

= ζ n −1
i n −1

+ �t f (ζ n −1
i n −1

, a j n −1
, t n −1) = x + �t

n −1 ∑

k =0

f (ζ k
i k
, a j k , t k) ,

with ζ 0 = x , i k = � i k +1

M

� and j k ≡ i k +1 mod M.

Although the TSA allows to deal with high-dimensional problems, the cardinality of tree grows exponentially in the

time steps and in the number of nodes, i.e. |T | = O (M

n t) , yielding problems in the memory allocations. For this reason we

introduce a pruning criteria based on the distance between nodes. Therefore, two nodes ζ n
i

and ζ n
j

will be merged if

‖ ζ n
i − ζ n

j ‖ ≤ ε T , with i � = j and n = 0 , . . . , n t , (30)

for a given threshold ε T > 0 . In Saluzzi et al. [19] the authors show that the threshold ε T > 0 must scale quadratically

in the time steps to ensure first order convergence. Furthermore, in Saluzzi et al. [19] the authors achieve a result on the

cardinality of the pruned tree in case of linear dynamics. It turns out that this cardinality grows quadratically in the number

of time steps and linearly in the number of discrete controls.

Once constructed the tree T , we can pass to the computation of the numerical value function V (x, t) . The TSA defines a

time dependent grid T n = { ζ n
j
} M

n

j=1
for n = 0 , . . . , n t and (14) can be approximated as follows: ⎧ ⎪ ⎨ ⎪ ⎩

V

n (ζ n
i
) = min

a ∈ A
{ e −λ�t V

n +1 (ζ n
i

+ �t f (ζ n
i
, a, t n)) + �t L (ζ n

i
, a, t n) } ,

ζ n
i

∈ T n , n = n t − 1 , . . . , 0 ,

V

n t (ζ n t
i

) = g(ζ n t
i

) , ζ n t
i

∈ T n t .

(31)

The minimization in (31) is solved by comparison on the discrete set A .
9

M. Falcone, G. Kirsten and L. Saluzzi Applied Mathematics and Computation 442 (2023) 127722

4.2. Coupling TSA and 2S-POD-DEIM

Introduced the main ingredients for the multilinear approximation of the NS equation and the TSA, in this section we are

going to show how to couple these two techniques in order to solve the optimal control problem. The procedure is divided

into two steps: an offline and an online phase.

• Offline Phase

In the offline phase we build the 2S-POD-DEIM basis and construct the reduced dynamics which will be employed in

the online phase. In this step we explore the manifold of possible evolutions of the controlled dynamics and we aim

to capture the main features of the dynamical system. We first fix a time step

̂ �t and

̂ M number of discrete controls.

Following Algorithm 1 , the tree structure is constructed in the full dimension with the fixed parameters ̂ �t and

̂ M . Since

at this stage the problem is high-dimensional, few time steps and few controls will be selected for the offline phase. At

each node of the full-dimensional tree, a snapshot of the solution at that node is used to update the 2S-POD-DEIM basis

matrices via the algorithm in [17, Section 3] ; see step in Algorithm 3 below. As soon as the basis matrices have been

Algorithm 3 Offline Phase.

1: Consider M discrete controls and n t discrete timesteps

2: for n = 0 , . . . , n t − 1 do

3: for i = 1 , . . . , M

n do

4: for k = 1 , . . . , M do

5: Consider control u k and determine U

n +1
i,k

, V

n +1
i,k

, P n +1
i,k

, F U (U

n +1
i,k

, V

n +1
i,k

, t n) and F V (U

n +1
i,k

, V

n +1
i,k

, t n) using

Algorithm 1

6: Update the relevant basis vectors in U ∗, V ∗, P ∗, �U , ∗, �V , ∗, by means of a dynamic manipulation of the leading

singular vectors of U

n +1
i,k

, V

n +1
i,k

, P n +1
i,k

, F U (U

n +1
i,k

, V

n +1
i,k

, t n) and F V (U

n +1
i,k

, V

n +1
i,k

, t n) .

7: end for

8: end for

9: end for

updated, the snapshot is discarded and a further step is taken along the tree. In short, the offline procedure consists of

the following steps:

In Algorithm 3 we consider ∗ = { �, r} and the notation Z

n +1
i,k

refers to the node constructed starting from the i -th node

at time level n with control u k . Once all tree nodes have been considered, the collected left and right singular vectors

are pruned to further reduce the dimension of each basis relative to a selected tolerance tol. Furthermore, the per-

mutation matrices D U , ∗ ∈ R

(n x −1) ×p 1 , ∗ and D V , ∗ ∈ R

(n y −1) ×p 2 , ∗ are respectively constructed using �U , ∗ ∈ R

(n x −1) ×p 1 , ∗ and

�V , ∗ ∈ R

(n y −1) ×p 2 , ∗ . Finally all matrix quantities that are not time or control dependent are computed and stored in this

phase, avoiding their recomputation in the online phase.
• Online Phase

In the online phase we solve the optimal control problem via TSA directly on the reduced model constructed in the

offline phase. Since we reduced the dimension of the system, in this step it is possible to consider more time steps

and/or more discrete controls with respect to the offline phase. First of all we construct the reduced tree following

Algorithm 2 . The nodes of the tree represent the grid for the numerical resolution of the DDP (31) . At this point we can

solve the DPP on the tree structure, obtaining the discrete value function { V n
red

(ζ n
i
) } i,n on the tree. The last part of this

phase concerns the reconstruction of the control signal and the controlled trajectory. Starting from the initial condition,

i.e. the root of the tree, we can follow the branches returning the minimum

αn
∗ := arg min

a ∈ U

{
e −λ�t V

n +1 ,�
red

(ζ n
red + �t f red (ζ

n
red , a, t n)) + �t L red (ζ

n
red , a, t n)

}
.

The computed control signal can now be plugged into the full-dimensional dynamics to obtain the sub-optimal trajectory

in the original dimension.

5. Numerical experiments

In this section we are going to test the proposed technique in different settings. In the first test we compare the perfor-

mances between the full dimension model and the low dimension one in terms of CPU time. Moreover, the vector and the

matricial cases will be compared. In the second and third tests we pass to the optimal control problem of the NS equation,

in which we are interested in reaching a particular solution target: the stationary configuration. More precisely, in the sec-

ond test the control will act on the entire domain via the use of a shape function, while in the third example the control

operates on a subdomain w located at the center of the domain. In the last example the control will operate on the bound-

aries and the reference solution will be represented by the trajectory obtained using a prefixed control. For all the numerical

tests we will fix the space domain � = [0 , 1] 2 and Reynolds number r = 100 . We consider semi-implicit methods for the

time discretization, since they are stable under stability conditions independent of the viscous term, allowing to consider
10

M. Falcone, G. Kirsten and L. Saluzzi Applied Mathematics and Computation 442 (2023) 127722

Fig. 1. Test 1: Comparison between the full vector model, the full matrix model and the 2S-POD-DEIM matrix model with tol = 10 −3 in terms of CPU time

varying the space dimension (left) and difference between the full solution and the lifted solution at final time with n = 750 (right).

larger times steps also for high Reynolds numbers (see e.g. pg.486 in [48] .) In all the tests we consider two discrete controls

(the extremes of the interval) as control set for the offline stage. We also give some indications on the efficiency of the

pruning technique via the Pruning Ratio (Ratio p) that is defined as the ratio between the cardinality of the full tree and the

cardinality of the pruned tree, i.e.

Ratio p =

(M

n t +1 − 1) / (M − 1)

|T M

| ,

where T M

is the tree constructed using M discrete controls under the pruning criteria.

5.1. Test 1: Comparison full/low dimension

In this example we investigate the efficiency of, not only discretizing the NS equation in matrix form, but also reducing

the dimension of the resulting matrix equation by 2S-POD-DEIM. To this end we consider the NS Eq. (2) , and we fix T = 20 ,

�t = 0 . 05 and the tolerance for 2S-POD-DEIM equal to 10 −3 . We consider as initial condition u 0 = v 0 ≡ 0 and the following

boundary conditions

u (t, x, y) = 1 , v (t, x, y) = 0 , (x, y) ∈ [0 , 1] × { 1 } , t ∈ (0 , T]

and homogeneous Dirichlet conditions on the other walls.

For the experimental setup we consider n = n x = n y , for n ∈ { 150 , 250 , 350 , 450 , 550 , 650 , 750 } and measure the CPU time

required to evaluate the discrete NS equation at n t =

T
�t

= 400 timesteps for the full dimensional vector model, the full

dimensional matrix model and the 2S-POD-DEIM reduced matrix model. The results for the full dimensional vector model

are obtained by running the Matlab software from [45] , whereas, for the 2S-POD-DEIM reduced model, we plot the CPU

Time required for the online simulation (Algorithm 2) only, to indicate how rapidly the reduced model can be simulated for

different parameters once the basis vectors have been constructed. The results are plotted in the left panel of Fig. 1 .

It can be deduced from the plot that solving the full dimensional discrete NS equation in matrix form as opposed to

vector form results in a good computational gain. This behaviour is typical due to the efficiency of the a-priori eigenvalue

decomposition resulting in a simple solve by substitution for the Sylvester equations at each time step; see, e.g., [37,40] . Fur-

thermore, as expected, we notice that the reduced model is several orders of magnitude faster than both full-order model,

and the nearly-constant timings for increasing n indicates that the computational cost for the reduced model is indeed com-

pletely independent of the full dimension n . For the largest of the considered dimensions (n = 750), the dimensions of the

basis matrices (given the tolerance tol = 10 −3) are

U � ∈ R

750 ×61 , U r ∈ R

750 ×58 , V � ∈ R

750 ×57 , V r ∈ R

750 ×55 , P � ∈ R

750 ×54 , P r ∈ R

750 ×52

for the linear terms, and

�U ,� ∈ R

750 ×64 , �V ,� ∈ R

750 ×59 , �U ,r ∈ R

750 ×58 , �V ,r ∈ R

750 ×59

for the nonlinear terms.

In the right panel of Fig. 1 we present the difference

err
U, ̂ U

(T) = U (T) − U � ̂
 U (T) U

�
r ,
11

M. Falcone, G. Kirsten and L. Saluzzi Applied Mathematics and Computation 442 (2023) 127722

Fig. 2. Test 2: Stationary solution (t = 20) (left), uncontrolled solution at t = 2 (central) and controlled solution at t = 2 (right) for 2S-POD and n = 201 .

Fig. 3. Test 2: Pressure difference between stationary and uncontrolled solution (left), between stationary and controlled solution (central) at the final time

and cost functional (right) for 2S-POD and n x = 201 .

which describes the error between the full order model solution and the lifted reduced one at the final time, having fixed

n = 750 . It is clear from the plot that this error has the same order as the chosen tolerance, i.e. almost 10 −3 . At the top wall

err
U, ̂ U

(T) is slightly higher due to the non-homogeneous boundary condition.

These promising results show that a very fine discretization of the NS equation can be solved in a fraction of a second

online with a small projection error of order 10 −3 .

5.2. Test 2: The problem of long time behaviour of the solution

In this test we want to reach a target solution acting on a scalar control that appears in the Navier-Stokes equation as

an additional term as in (3) . The initial condition and the boundary conditions coincide with the previous example. We

are interested in the stationary solution of the Navier-Stokes equation and it can be obtained by analyzing the long time

behaviour of the uncontrolled dynamics. In this case the stationary solution y has been fixed as the uncontrolled solution

at time t = 20 , since the solution does not present relevant changes for larger time intervals. The optimal control problem

is based on the minimization of the following cost functional

J(α) =

∫ T

0

(‖ y (·, t;α) − y (·, t) ‖

2
L 2 (�) + γ ‖ α‖

2) e −λt dt + ‖ y (·, T ;α) − y (·, T) ‖

2
L 2 (�) ,

with γ = 10 −3 . The parameters of the discrete problem are the following: �t = 0 . 1 , A = { 0 , 0 . 5 , 1 } and T = 2 . A similar

example has been studied in [49] . The geometric pruning criteria will be applied by selecting the threshold εT = �t 2 to

ensure first order convergence. We fix the gridpoints n x = n y = 201 and we apply the 2S-POD-DEIM technique with tol-

erance τ = 10 −3 . The reduction techniques provide the following basis: U � ∈ R

200 ×61 , U r ∈ R

200 ×57 , V � , V r , P � , P r ∈ R

200 ×70 ,

�U ,� , �V ,� ∈ R

200 ×62 and �U ,r , �V ,r ∈ R

200 ×52 . In Fig. 2 we display respectively the pressure field computed in the station-

ary case (left panel) and the uncontrolled (central panel) and the controlled solution (right panel) at time t = 2 . We show

the contour lines of the pressure field and the closed contour lines of the stream function. It is possible to notice visually

how the controlled dynamics looks similar to the stationary solution, while the uncontrolled is still far from the asymptotic

behaviour. The difference in the pressure field at the final time between the uncontrolled solution and ̃

 y is displayed in the

left panel of Fig. 3 , while in the central panel we show the difference between the controlled and stationary solution. We

notice that the order in latter case is ≈ 10 −4 , while in the first case is ≈ 10 −3 , demonstrating how the solution of the op-

timal control converges more rapidly to the stationary configuration. The right panel of Fig. 3 shows the comparison of the
12

M. Falcone, G. Kirsten and L. Saluzzi Applied Mathematics and Computation 442 (2023) 127722

Fig. 4. Test 2: Controlled LQR solution (left) and pressure difference between stationary and LQR solution (right) at time t = 2 .

Table 1

Test 2: Comparison between

the FOM approach and the

ROM one in terms of CPU time

for the construction of the tree

structure.

M = 2 M = 3

FOM 234 s 1.79e4 s

ROM 21 s 1738 s

cost functional in the controlled and uncontrolled setting, where we can see again the faster convergence of the controlled

dynamics to the stationary solution. In this case the application of the pruning criteria yields a cardinality of the tree equal

to 2994, whereas the cardinality of the full tree is 88573, corresponding to a pruning ratio of almost 30. In Table 1 we show

a comparison in terms of computational time between the Full Order Model (FOM) and the Reduced Order Model (ROM).

We note that the introduction of the ROM approach yields a speed-up of almost 10 in all the test cases.

Now we want to show the efficiency of the TSA considering a comparison with a commonly used tool, the Linear

Quadratic Regulator (LQR). We consider the approach presented in [50] , where the authors consider a linearization of the

NS equation and an application of a Leray projection to enforce the incompressibility constraint. Since we are dealing with

a finite horizon optimal control problem, we have to solve a Differential Riccati Equation (DRE). To retain the matrix con-

figuration of the DRE, we consider matrix generalizations of classic BDF methods (see [51,52] for further details). In order

to have a reasonable comparison to the first order scheme used in our presented methods, we consider the first order BDF

method, fixing the same time step considered for the construction of the tree structure. The results of the application of the

LQR approach are shown in Fig. 4 . We see that the final configuration of the controlled solution is visually similar to the

right panel of Fig. 2 , while we note that the pressure difference is greater than the one considered in the central panel of

Fig. 3 . The TSA represents a better approximation also in terms of total cost, since the LQR achieves a cost of 1.5e-3 while

the TSA got 1.1e-3. This demonstrates that taking into account the nonlinear terms in the NS equation we can achieve better

results.

5.3. Test 3: Control on an internal subdomain ω ⊂ �

In this experiment our aim is to reach a target solution acting on a scalar control that appears in the Navier-Stokes

equation as an additional term concentrated on a subdomain ω ⊂ � as in (3) . We consider ω = [0 . 3 , 0 . 7] 2 , i.e. the control

will operate on a central smaller square. In this example we consider homogeneous Dirichlet boundary conditions for all

the walls and our scope is to drive the solution to the equilibrium y ≡ 0 . In this case we select a cost functional depending

only on the final cost

J(α) = ‖ y (·, T ;α) ‖

2
L 2 (�) .

We consider �t = 0 . 1 , T = 2 , A = [0 , 1] and we will vary the number of discrete controls. We consider the following

initial condition

u 0 = v 0 = sin (πx) sin (πy) , (x, y) ∈ [0 , 1] 2 .
13

M. Falcone, G. Kirsten and L. Saluzzi Applied Mathematics and Computation 442 (2023) 127722

Fig. 5. Test 3: Uncontrolled solution at t = 0 (left), t = 1 (central) and t = 2 (right) for 2S-POD and n x = 201 .

Fig. 6. Test 3: Control signal (left), controlled solution at t = 1 (central) and t = 2 (right) for 2S-POD and n x = 201 .

Table 2

Test 3: Comparison between the uncontrolled dynamics and

the controlled one with 2 and 3 discrete controls.

Cost functional Nodes Ratio p

Uncontrolled 3.60e-4

Controlled M = 2 5.44e-5 6064 345

Controlled M = 3 5.27e-5 83,273 6.2e4

Table 3

Test 3: Comparison between the FOM approach and the ROM

one in terms of CPU time for the construction of the tree

structure.

M = 2 M = 3

FOM 334 s 2.42e4 s

ROM 31 s 2538 s

In Fig. 5 we show the behaviour of the uncontrolled solution U for different times. We note that the norm of the solution

is decreasing due to the viscosity term. The aim of the corresponding optimal control problem is to accelerate this decay.

We apply the 2S-POD-DEIM approach and we construct the following basis: U � , U r , V � , V r ∈ R

200 ×68 , P � , P r ∈ R

200 ×67 ,

�U ,� , �U ,r , �V ,� , �V ,r ∈ R

200 ×70 . Fig. 6 displays the results obtained by the coupling of the TSA and 2S-POD-DEIM. The left

panel shows the control signal which presents a non-decreasing behaviour at the beginning of the time interval but starts

oscillating in the middle. The central and the right panels we report the controlled solution at the time instances t ∈ { 1 , 2 } .
We note that the maximum of the controlled solution is order 10 −3 at time t = 1 , whereas for the uncontrolled dynamics it

is stuck to 10 −1 . After t = 1 , the control stops acting and the decrease is just due to viscous term in the equation. In Table 2

we present the comparison between the uncontrolled dynamics and the controlled solution varying the number of discrete

controls. In term of the cost functional, the TSA gets almost one order of magnitude with respect to the uncontrolled case

and we see an improvement increasing the number of controls. Moreover, we report the cardinality of the tree coupled

with the pruning technique. Looking at the P-Ratio we note the pruning criteria yields to a great benefit in terms of mem-

ory storage and this improvement increases as we consider more discrete controls. In Table 3 we report the CPU times of

the FOM approach and the ROM one. The speed-up ratio between the two approaches is almost 10, as seen in Test 2.
14

M. Falcone, G. Kirsten and L. Saluzzi Applied Mathematics and Computation 442 (2023) 127722

Table 4

Test 4: Comparison between the approximations of the opti-

mal control problem varying the number of controls.

M Cost functional Nodes Ratio p

2 1.00e-6 228 9

3 9.19e-7 710 125

5 1.74-7 4541 2.7e3

Fig. 7. Test 4: Final configuration of the reference solution (left) and final configuration of the controlled solution with 5 discrete controls (right).

5.4. Test 4: Dirichlet boundary control

In the final example we deal with a boundary optimal control problem, in particular we consider a scalar control acting

on the Dirichlet boundary condition. We choose the same initial condition fixed in Test 3, T = 1 , �t = 0 . 1 complemented

with homogeneous Dirichlet boundary conditions for all the walls of the square, except for the top wall where we set the

following condition

u (t, x, α) = g(x, t, α) , (x 1 , x 2) ∈ [0 , 1] × { 1 } , t ∈ (0 , T] .

To construct our reference trajectory, we run a simulation fixing g(x, t, α) = x (1 − x) sin t and we compute the corresponding

numerical solution that we denote by { (̃ U

i , ̃ V

i , ˜ P i) } n t
i =1

. Then, we set the optimal control problem considering the control

set A = [0 , 1] and the following controlled boundary condition g(x, t, α) = x (1 − x) α(t) . In this case the aim of the control

problem is to reach the final configuration of the pressure field

˜ P n t , so we define the cost functional

J(α) = ‖ P n t (α) − ˜ P n t ‖

2 ,

where P n t (α) is the solution of the optimal control problem at final time with control α. Note that the running cost is 0 in

this example.

The number of discrete controls in this example varies in the set { 2 , 3 , 5 } and this will correspond to an increasing

number of nodes in the tree. We want to examine the efficiency of the method in terms of the its pruning capacity and its

accuracy in the approximation of the target solution.

The comparison of the performances of these three cases is reported in Table 4 . Note that the cost functional is decreas-

ing to O (10 −7) as we increase the number of controls. In this example the pruning method is rather efficient, as we can

notice by the Ratio p column. As we increase the parameter M, the value Ratio p gets one order of magnitude in each step.

In Fig. 7 we show the configuration at final time of the reference solution

˜ P n t in the left panel and the controlled solution

fixing M = 5 of the controlled solution in the right panel. Visually they look very similar, but this is also certified in the left

panel of Fig. 8 showing that the difference between the reference and the controlled solution is order O (10 −5) . This shows

that the numerical method is able to reconstruct an optimal control driving the dynamics close to the reference solution.

Finally, in the right panel of Fig. 8 the reference control and the numerical approximation are shown, where we can note

that the optimal control is trying to mimic the reference signal. Finally, in Table 5 we show the computational costs for the

computation of the tree structure in the full dimension (FOM) and in the reduced one (ROM). In this case the ratio between

the two approaches is almost 20, demonstrating the faster performances of the proposed technique.
15

M. Falcone, G. Kirsten and L. Saluzzi Applied Mathematics and Computation 442 (2023) 127722

Fig. 8. Test 4: The difference between the reference solution and the controlled solution at final time (left) and comparison between the reference control

and the computed optimal control (right).

Table 5

Test 4: Comparison between the FOM approach and the ROM

one in terms of CPU time for the construction of the tree

structure.

M = 2 M = 3

FOM 126 s 5502 s

ROM 6.4 s 277 s

6. Conclusions

In this paper we have presented our first results on the numerical approximation of optimal control problems for the

Navier-Stokes equation. The problem is discretized in space to obtain a system of ordinary differential equations, then we

set the control problem on the finite dimensional system of ordinary differential equations corresponding to that semi-

discretization. A crucial role is played by a very compact representation of the dynamical system and by a tree structure

method to solve the problem via Dynamic Programming. More precisely, we have illustrated that by taking advantage of the

rectangular domain, and a tensor-structured discretization basis, that the discrete NS equation can be written, integrated

and reduced entirely in matrix form, to dramatically reduce the computational cost of integrating the discrete NS equation.

On the other hand, the tree structure algorithm is used to counteract the curse of dimensionality arising from the optimal

control problem and the Dynamic Programming.

The combination of these two methods shows that the Dynamic Programming approach can be used also in this area

and that the synthesis of optimal feedbacks can also be obtained for these huge optimization problems. This is a good

omen for the future and we plan to investigate more in detail the convergence of feedback controls and other optimal

control problems for fluids.

Data availability

Data will be made available on request.

Acknowledgments

The first and the third authors are members of INDAM GNCS (Gruppo Nazionale di Calcolo Scientifico). This research

has been partially supported by the PRIN 2017 project “Innovative Numerical Methods for Evolutionary Partial Differential

Equations and Applications”, contract n. 2017KKJP4X.

The second and third authors would like to acknowledge and dedicate this paper to Prof. Maurizio Falcone who passed

away shortly before publication. We are forever grateful for your mentorship and guidance. May your memory live long in

the mathematical community.

References

[1] O. Pironneau, Finite Element Methods for Fluids, Wiley Chichester, 1989 .
[2] J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM, 2004 .
16

http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0001
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0002

M. Falcone, G. Kirsten and L. Saluzzi Applied Mathematics and Computation 442 (2023) 127722

[3] P. Benner, M. Ohlberger, A. Cohen, K. Willcox, Model Reduction and Approximation: Theory and Algorithms, SIAM, Philidelphia, 2017 .
[4] P. Benner, S. Gugercin, K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev 57 (4) (2015)

483–531 .
[5] A. Quarteroni, G. Rozza, Numerical solution of parametrized Navier-Stokes equations by reduced basis methods, Numer Methods Partial Differ Equ 23

(4) (2007) 923–948 .
[6] G. Stabile, G. Rozza, Finite volume POD-Galerkin stabilized reduced order methods for the parametrized incompressible Navier-Stokes equations, Com-

puters & Fluids 173 (2018) 923–948 .

[7] F. Pichi, M. Strazzullo, F. Ballarin, G. Rozza, Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier–Stokes
equations with model order reduction, ESAIM: Mathematical Modelling and Numerical Analysis 56 (4) (2022) 1361–1400 .

[8] A. Fursikov, O. Imanuvilov, Controllability of Evolution Equations, Seul University Press, 1996 .
[9] J.-P. Puel, Controllability of Navier-Stokes equations, in: Optimization with PDE constraints, Springer, 2014, pp. 379–402 .

[10] J. Lions, Contrôle Optimal des Systemes Gouverné par des Equations aux Dérivées Partialles Dunod, Paris, 1969 English translation, 1971.
[11] M. Bardi, I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton- Jacobi-Bellman Equations, Birkhäuser, 1997 .

[12] F. Tröltzsch, Optimal control of Partial Differential Equations - Theory methods and applications, American Mathematical Society, 2010 .
[13] E. Casas, Optimal control of PDE theory and numerical analysis, PhD Thesis. Optimization and Control. (2006) .

[14] M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications, Springer, 2009 .

[15] J. Sethian, Level set methods and fast marching methods, Mathematical Modelling: Theory and Applications, Cambridge University Press, 1999 .
[16] M. Falcone, R. Ferretti, Semi-Lagrangian Methods for Linear and Hamilton-Jacobi Equations, SIAM, 2014 .

[17] G. Kirsten, V. Simoncini, A matrix-oriented POD-DEIM algorithm applied to nonlinear differential matrix equations, 2020. ArXiv 2006.13289.
[18] A. Alla, M. Falcone, L. Saluzzi, An efficient DP algorithm on a tree-structure for finite horizon optimal control problems, SIAM J. Sci. Comput. 41 (4)

(2019) 2384–2406 .
[19] L. Saluzzi, A. Alla, M. Falcone, Error estimates for a tree structure algorithm solving finite horizon control problem, ESAIM: Control, Optimisation and

Calculus of Variations 28 (2022) 69, doi: 10.1051/cocv/2022067 .

[20] A. Alla, L. Saluzzi, A HJB-POD approach for the control of nonlinear PDEs on a tree structure, Appl Numer Math. 155 (2020) 192–207 .
[21] A. Alla, M. Falcone, L. Saluzzi, A tree structure algorithm for optimal control problems with state constraints, Rendiconti di Matematica e delle sue

Applicazioni 41 (2020) 193–221 .
[22] K. Kunisch, S. Volkwein, L. Xie, HJB-POD based feedback design for the optimal control of evolution problems, SIAM J. on Applied Dynamical Systems

4 (2004) 701–722 .
[23] K. Kunisch, L. Xie, POD-based feedback control of Burgers equation by solving the evolutionary HJB equation, Computers and Mathematics with

Applications 49 (2005) 1113–1126 .

[24] K. Kunisch, S. Volkwein, Optimal snapshot location for computing POD basis functions, ESAIM: Mathematical Modelling and Numerical Analysis 44 (3)
(2010) 509–529 .

[25] M. Hinze, S. Volkwein, Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control,
in: Dimension reduction of Large-Scale systems, Springer, 2005, pp. 261–306 .

[26] T. Breiten, K. Kunisch, Feedback stabilization of the threedimensional Navier-Stokes equations using generalized Lyapunov equations, Discrete and
Continuous Dynamical Systems 40 (7) (2020) 4197–4229 .

[27] T. Breiten, K. Kunisch, L. Pfeiffer, Feedback stabilization of the two-dimensional Navier-Stokes equations by value function approximation, Applied

Mathematics & Optimization 80 (3) (2019) 599–641 .
[28] J. Garcke, A. Kröner, Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids, J Sci Comput 70 (1) (2016) 1–28 .

[29] S. Dolgov, D. Kalise, K.K. Kunisch, Tensor decomposition methods for high-dimensional Hamilton–Jacobi–Bellman equations, SIAM Journal on Scientific
Computing 43 (3) (2021) A1625–A1650 .

[30] M. Oster, L. Sallandt, R. Schneider, Approximating optimal feedback controllers of finite horizon control problems using hierarchical tensor formats,
SIAM Journal on Scientific Computing 44 (3) (2022) B746–B770 .

[31] S. Dolgov, D. Kalise, L. Saluzzi, Data-driven tensor train gradient cross approximation for Hamilton-Jacobi-Bellman equations, arXiv preprint

arXiv:2205.05109 (2022) .
[32] S. Mowlavi, S. Nabi, Optimal control of PDEs using physics-informed neural networks (PINNs), in: APS Division of Fluid Dynamics Meeting Abstracts,

2021, pp. H23–005 .
[33] N. Margenberg, D. Hartmann, C. Lessig, T. Richter, A neural network multigrid solver for the Navier-Stokes equations, J Comput Phys 460 (9999) (2022)

110983 .
[34] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, American Mathematical Society, USA, 2001 .

[35] V. Barbu, R. Triggiani, Internal Stabilization of Navier-Stokes equations with finite dimensional controllers, Indiana University Mathematical Journal 53

(2004) 1443–1494 .
[36] Y. Giga, S. Matsui, O. Sawada, Global existence of two-dimensional Navier-Stokes flow with nondecaying initial velocity, J. Math. Fluid Mech. 3 (3)

(2001) 302–315 .
[37] G. Kirsten, Order reduction of semilinear differential matrix and tensor equations, Alma Mater Studiorum Università di Bologna, 2021 Ph.D. thesis .

[38] V. Simoncini, Computational methods for linear matrix equations, SIAM Rev 58 (3) (2016) 377–441 .
[39] D. Palitta, V. Simoncini, Matrix-equation-based strategies for convection–diffusion equations, BIT Numerical Mathematics 56 (2) (2016) 751–776 .

[40] M.C. D’Autilia, I. Sgura, V. Simoncini, Matrix-oriented discretization methods for reaction–diffusion PDEs: comparisons and applications, Computers &
Mathematics with Applications 79 (7) (2020) 2067–2085 .

[41] S. Chaturantabut, D.C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput. 32 (5) (2010) 2737–2764 .

[42] G. Kirsten, Multilinear POD-DEIM model reduction for 2D and 3D semilinear systems of differential equations, Journal of Computational Dynamics 9
(2) (2022) 159–183 .

[43] Z. Drma ̌c, S. Gugercin, A new selection operator for the discrete empirical interpolation method—improved a priori error bound and extensions, SIAM
J. Sci. Comput. 38 (2) (2016) A631–A648 .

[44] G. Strang, Computational science and engineering, Wellesley-Cambridge Press, 2007 .
[45] B. Seibold, A compact and fast matlab code solving the incompressible navier-Stokes equations on rectangular domains, Massachusetts In-stitute of

Technology, 2008 . https://www.math.mit.edu/ ∼gs/cse/codes/mit18086 _ navierstokes.pdf

[46] A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math Comput 22 (104) (1968) 745–762 .
[47] G. Kirsten, V. Simoncini, Order reduction methods for solving large-scale differential matrix Riccati equations, SIAM J. Sci. Comput. 42 (4) (2020)

A2182–A2205 .
[48] A. Quarteroni, Numerical models for differential problems, volume 2, Springer, 2009 .

[49] A. Alla, M. Hinze, HJB-POD feedback control for Navier-Stokes equations, in: European Consortium for Mathematics in Industry, Springer, 2014,
pp. 861–868 .

[50] E. Bänsch, P. Benner, J. Saak, H.K. Weichelt, Riccati-based boundary feedback stabilization of incompressible navier-stokes flow, SIAM Journal on Scien-

tific Computing 37 (2) (2015) A832–A858 .
[51] L. Dieci, Numerical integration of the differential Riccati equation and some related issues, SIAM J Numer Anal 29 (3) (1992) 781–815 .

[52] H. Mena, Numerical solution of differential Riccati equations arising in optimal control problems for parabolic partial differential equations, Ph. D.
thesis, Escuela Politecnica Nacional (2007) .
17

http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0003
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0004
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0005
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0006
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0007
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0008
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0009
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0011
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0012
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0013
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0014
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0015
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0016
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0018
https://doi.org/10.1051/cocv/2022067
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0020
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0021
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0022
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0023
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0024
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0025
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0026
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0027
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0028
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0029
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0030
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0031
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0032
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0033
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0034
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0035
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0036
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0037
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0038
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0039
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0040
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0041
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0042
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0043
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0044
https://www.math.mit.edu/~gs/cse/codes/mit18086_navierstokes.pdf
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0046
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0047
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0048
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0049
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0050
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0051
http://refhub.elsevier.com/S0096-3003(22)00790-1/sbref0052

	Approximation of optimal control problems for the Navier-Stokes equation via multilinear HJB-POD
	1 Introduction
	Notation and Tensor basics

	2 The optimal control problem for the Navier-Stokes equation and its discretization
	2.1 The Navier-Stokes dynamical system and its discretization
	2.2 Some control problems for the Navier-Stokes equation
	2.3 The finite horizon discrete optimal control problem

	3 Multilinear approximation of the Navier-Stokes equation
	3.1 Matrix-oriented discretization and 2S-POD-DEIM for general PDEs
	3.2 The NS equation in full dimension
	3.3 The 2S-POD-DEIM reduced NS equation
	3.3.1 Solving for and
	3.3.2 Solving for
	3.3.3 Evaluating and with DEIM

	4 The tree structure algorithm for the NS equation
	4.1 Dynamic programming on a tree structure
	4.2 Coupling TSA and 2S-POD-DEIM

	5 Numerical experiments
	5.1 Test 1: Comparison full/low dimension
	5.2 Test 2: The problem of long time behaviour of the solution
	5.3 Test 3: Control on an internal subdomain
	5.4 Test 4: Dirichlet boundary control

	6 Conclusions
	Acknowledgments
	References

