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Abstract

This dissertation investigates the theory of generalization and robustness in deep
learning. Through diverse research works, the thesis provides valuable insights and
advancements towards building more reliable systems. We focus on handling noisy
labels, deriving generalization bounds for clustering, enhancing interpretability, and
characterizing the topology of the loss landscape. These findings contribute to the
broader field of deep learning, advancing the development of effective and reliable
machine learning systems. After the introduction provided in Chapter 1, in the
second chapter we tackle the challenge of noisy labels in classification by leveraging
inter-rater agreement and estimating the noise distribution, thereby improving model
performance and robustness. In the third chapter, we establish generalization bounds
for projective clustering, presenting near-optimal results for subspace clustering.
Chapter 4 introduces a novel artificial neuron that enhances interpretability while
retaining the representation power and performance of a standard neural network.
Indeed, we prove the universal approximation theorem for specialized versions of
the artificial neuron. In Chapter 5, we characterise the topological complexity
loss surfaces using Betti Numbers. Understanding the topology of loss surfaces is
crucial for studying generalization and robustness in deep learning models. The last
chapter summarizes the key findings and contributions, also mentioning possible
future directions. Collectively, this research work contributes to understanding
generalization and robustness in deep learning, advancing the field and enabling the
development of more reliable models.
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Chapter 1

Introduction

The central objective of this work is to better understand machine learning
models and enhance their reliability. Reliability, in this context, refers to dependable,
consistent, and trustworthy models. Indeed, we aim to create systems in which
efficiency and results are always consistent and accurate over time and under different
conditions. Providing theoretical guarantees to machine learning models is essential
to strengthen their trustworthiness and reliability. It not only instils confidence
in the model’s predictions but also aids in model selection and serves as a sturdy
cornerstone for the development and deployment of machine learning models.

Background
Machine Learning (ML) is focused on enabling systems to leverage data for

learning relationships between variables. Much of machine learning concerns devising
different models and algorithms to fit them (Murphy, 2012).

The “No Free Lunch” theorem emphasizes that, without prior knowledge, all
algorithms are equally bad, on average, when considering all possible problems
(Wolpert and Macready, 1997).

However, when we bring in domain-specific knowledge, we can narrow our search
for a suitable algorithm or hypothesis set. The hypothesis set is the collection of
potential candidate solutions that a machine learning algorithm considers when
solving a specific problem. It is the set of all possible maps that we restrict our
optimization algorithm to find the best-fit model for the given data. For instance,
consider a linear regression scenario where the goal is to predict housing prices (y)
based on the house size (x). The hypothesis set, F , includes all possible linear models
y = mx+b. Here, the optimization algorithm explores various combinations of slopes
(m) and intercepts (b) to find the best-fitting line that describes the relationship
between house size and price using the provided data.

In the usual scenario, we are given a set of training data S = (Z(i))m
i=1, where

Zi are drawn from an unknown distribution PZ .
Generally, the effectiveness of a solution f is evaluated using an objective function

L(f, Z) that we aim to optimize.
We denote by f∗ the function that optimizes the objective L, considering the

data distribution PZ . Additionally, we denote by fS,F the approximation of the
solution achieved through our optimization process. This approximation is based on
the constraints of using the hypothesis set F and the dataset S.

The error of the solution fS,F with respect to the optimal solution f∗ can be
bound by three different errors: the approximation error, the generalization error
and the optimization error (Berner et al., 2021).
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The approximation error tells us how good the hypothesis set is; it measures
how far the entire hypothesis class is from the target predictor f∗. Larger hypothesis
classes have lower approximation errors.

The optimization error, instead, tells us how good the function returned by
the learning algorithm is with respect to the best map in the hypothesis class. This
error is primarily influenced by the numerical algorithm used to find the model in a
hypothesis set. In classical theory, the optimization error increases monotonically as
the hypothesis class size increases (Berner et al., 2021).

Finally, the generalization error arises because we are finding the best solution
using only a given sample of points S without knowing their underlying distribution
PZ . This error tells us how well the solution found using the m size set S generalizes
to the distribution PZ . In this case, the most basic requirement one can ask for is
that as m → ∞, the generalization error goes to zero. The approximation error
decreases when enlarging the hypothesis set, but considering all possible models
prevents controlling the generalization error (Wolpert and Macready, 1997; Devroye
et al., 2013).

Generalization is a crucial concept in machine learning, as the ultimate objective
of training a machine learning model is not merely to memorize the training data
but to learn and generalize from it in a way that allows the model to perform well
on unseen data.

Generalization bounds provide a theoretical foundation for assessing the perfor-
mance and reliability of machine learning models. They offer an upper limit on the
expected error of a model when applied to unseen data.

For the classification task, we are presented with training data S = (xi, yi)m
i=1

that consist of input features xi ∈ X and corresponding labels yi ∈ Y. In this task,
the goal is to obtain the lowest probability of classification error. Consequently, in
this case, the objective function that needs to be minimized is the 0 − 1 loss. This
loss function counts how many errors a classifier makes. However, it is rarely used
in optimization procedures because it is non-differentiable and non-continuous. To
overcome this, many learning strategies use some convex surrogates of the 0 − 1 loss
function (e.g. hinge loss, squared error loss, cross-entropy).

Given a hypothesis set, a popular learning algorithm to find the best classifier in
the hypothesis set is empirical risk minimization (ERM) introduced by Vapnik in
Vapnik (1998), which minimizes the average loss on the given training data.

The objective of ERM is to find the model that, on average, produces the smallest
loss on the training data. This is done by adjusting the model’s parameters to reduce
the training data’s prediction error. Under the assumption of i.i.d data sampled from
the distribution PZ , a substantial body of literature has been dedicated to derive
generalization bounds that study the consistency of the classifier found by ERM
(Bartlett et al., 1998b, 2006; Anthony and Bartlett, 1999; Muselli and Ruffino, 2004;
Tewari and Bartlett, 2007; Biau et al., 2008a). Indeed, the consistency of classification
algorithms plays a central role and is a well-explored topic in statistical learning
theory. A consistent algorithm guarantees that taking more samples essentially
suffices to reconstruct the unknown distribution roughly. This indicates that with
enough training data, any desired level of performance can be attained. However, in
many real-world applications, due to flaws during the data collection and labeling
process, the assumption that the training data is sampled from the true feature-label
joint distribution does not hold. Indeed, in real-world scenarios, classification datasets
are often obtained through a labeling process usually done by humans. These labels
might contain errors since they combine diverse individual annotations provided by
numerous annotators who can disagree or make mistakes.
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Motivation
As reported in Song et al. (2022) the ratio of corrupted labels in some real-world

datasets is between 8.0% and 38.5%. Motivated by the presence of noisy labels in
real scenarios for classification tasks, our investigation focuses on designing a more
reliable model under such conditions.

The presence of inaccurate labels in the training dataset disrupts the assumption
of consistency earlier mentioned, violating the underlying premises and undermining
the performance guarantees provided by generalization bounds. This gap between
theory and practice raises the question of whether it is possible to learn from datasets
with noisy labels while still having performance guarantees.

Ideally, it would be desirable to design learning algorithms that are both robust to
noisy labels and for which performance guarantees can be provided.

To answer this question, in Chapter 2 we design a method to build more robust
models when multiple labels by different annotators are provided.

Providing theoretical guarantees for machine learning models addressing the
three types of errors presented earlier is a key part of building more reliable models.
Obtaining bounds for these errors, we increase the trustworthiness and effectiveness
of our models in practical applications.

Being able to say which set of functions a model can approximate provides
insights into which kind of underlying patterns in the data the model can capture.
Knowing the model’s approximation abilities aids in understanding where the model
might excel and struggle, thereby preventing unrealistic assumptions and unexpected
failures. Moreover, it helps in selecting the right model for a specific task. It ensures
that the model is appropriate for the problem at hand, increasing its reliability in
solving that particular task.

Improving optimization reduces the gap between the selected and the best possible
model in the hypothesis class, making the models more reliable and accurate.

Reducing generalization error ensures that our models consistently provide
accurate predictions in real-world applications. Indeed, generalization bounds offer
insights into the behavior of a learning algorithm as the sample size increases, helping
to understand the rate at which the error is expected to decrease with more data.
Understanding these bounds is essential for knowing how well a model can be expected
to perform in practical applications and any possible conditions.

In this research, we have focused on taking some steps in this direction in some
specific cases.

In particular, we study the generalization error in the context of clustering,
Chapter 3. These bounds describe the worst-case scenario, indicating that the
error will be within a certain range given a specific number of samples. Sometimes,
in practical experiments, better convergence results are encountered with respect
to the theoretical results. This can be attributed to several factors, such as the
characteristics of the data distribution, which may, in certain cases, exhibit more
favourable properties than the worst-case distribution. Nevertheless, it is important
to emphasize that these theoretical bounds remain valuable and insightful. Moreover,
there are instances where the decrease rate of the generalization error is similar
to that depicted by the theoretical bounds (see also the experiments reported in
Chapter 3).

Furthermore, we introduced a novel artificial neuron type designed to construct
more interpretable networks. Having an interpretable model enhances the user
trustworthiness. We also show that this type of network retains the same expressive
power as standard neural networks (i.e., it can approximate the same family of
functions) and obtains performance on par with standard neural networks.
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Finally, by characterizing the complexity of loss functions through topological
analysis, we gain insights into the structure of loss landscapes. This understanding
can be valuable in assessing the reliability of machine learning models since the
empirical loss landscape influences the gradient-descent optimization algorithms that
are typically used to find the best model fitting the data. For instance, a loss function
exhibiting numerous local minima or a complex landscape could pose convergence
and stability challenges. These issues can significantly impact the reliability of a
model, as the struggle to navigate such a landscape may yield unpredictable or
undesirable results. Therefore, the study of loss function topology becomes a valuable
tool in ensuring the robustness and overall quality of machine learning models.

1.1 Research outline and questions
This thesis focuses on building reliable and trustworthy machine learning models

by investigating generalization properties, the approximation capabilities of a speci-
fied hypothesis set, the robustness to the presence of noisy labels, and the topological
complexity of loss functions. All these directions have generated multiple fruitful
lines of work in machine learning and deep learning and continue to pose challenges
to practitioners and theoreticians. The thesis is organized into four parts that reflect
the flavour of the examples we presented earlier and the research directions followed
during my PhD.

1.1.1 Leveraging inter-rater agreement for classification in the
presence of noisy labels

Deep learning models have achieved state-of-the-art performance on various tasks,
including image classification and generation (Khan et al., 2022; Ramesh et al., 2022;
Krizhevsky et al., 2012), natural language processing (Chowdhary and Chowdhary,
2020; Khurana et al., 2023; OpenAI, 2023), and speech recognition (Prabhavalkar
et al., 2023). However, their performance depends on the quality of the training data,
prior studies have demonstrated deep learning models’ susceptibility to overfit noisy
labels when training data contains them, resulting in a degraded model performance
(Zhang et al., 2016). In a practical setting, datasets can present noise; this can occur
for various reasons: human error, the ambiguity of the task, or simply due to the
existence of multiple correct labels for a single instance. A large body of work has
been devoted to the challenge of learning with noisy labels, (Han et al., 2020; Song
et al., 2022).

Often, in practical settings, classification datasets are obtained through a labelling
process usually done by humans. In this case, labels can be noisy as they are obtained
by aggregating the individual labels assigned to the same sample by multiple and
possibly disagreeing annotators. This variability in annotation arises from differences
in interpretation, subjectivity, or human error.

The inter-rater agreement can be measured to assess the quality and reliability
of these labels by quantifying the extent to which annotators concur in their label
assignments. While we can quantify the level of disagreement among annotators,
the underlying noise distribution, which characterizes how these noisy labels are
distributed across different categories or classes, remains unknown.

In Chapter 2 we aim to answer the following research questions (RQ):

RQ1 How can inter-annotator statistics be leveraged in learning with noisy
labels? Is there a better way to aggregate labels than majority vote?
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RQ2Is it possible to learn from datasets with noisy labels while still having
performance guarantees?

Our contribution
We contributed to answering these questions in the following way

Estimation of Noise Distribution. We provide a methodology for estimating the
noise distribution to which labels in classification datasets are subject. By leveraging
inter-annotator statistics, it provides a novel way to approximate the noise transition
matrix in the context of instance-independent noise, meaning that the corruption
probability is so that p(ỹ|x, y) = p(ỹ|y). The noise transition matrix is the matrix
that describes the probability of true labels to be flipped, i.e. Tij = P(ỹ = j|y = i).

Methods for Learning from Noisy Datasets. We introduce a new method that
utilizes the estimated noise distribution to improve learning from noisy datasets.
The method takes advantage of the estimated noise distribution to improve learning.
More in particular, for each sample and each class, an estimation of the posterior
distribution of the sample’s class given the annotations provided by different an-
notators is computed. The method uses the estimated noise transition matrix to
compute the posterior distribution.

Generalization Bounds. We established generalization bounds within the empirical
risk minimization framework for a well-known noise-robust loss function introduced
in Patrini et al. (2017). This bound relies solely on quantifiable factors that can
be practically estimated, in contrast to the generalization bounds of existing noise-
tolerant training methods, which frequently hinge on unobservable variables, such
as the true noise distribution.

Experimental Validation. We concluded by providing experimental results that
illustrate the significance of the findings in practice. These experiments likely
demonstrate the efficacy of the proposed methods for estimating the noise transition
matrix and exploiting it in the learning process.

We go into more detail on this topic in Chapter 2. The work reported in that
Chapter is partly based on Bucarelli et al. (2023a).

1.1.2 On generalization bounds for clustering
Given a set of points, clustering consists in finding a partition of a point set into

clusters such that the center to which a point is assigned is as close as possible. Most
commonly, centers are points themselves, which leads to the famous k-median and k-
means objectives. One may also choose centers to be j dimensional subspaces, which
gives rise to subspace clustering. We consider learning bounds for these problems.
Generalization measures the difference between the empirical cost computed on a
set of points P (training data) and the expected cost computed on the distribution
D points are sampled from. It quantifies how well a model can adapt to new, unseen
data. More in detail, Let P be a set of n points in d dimensional unit ball, and let
k and z be positive integers. The objective of (k, z)- clustering consists of finding
a set of k centers S minimizing cost(P, S) :=

∑
p∈P

min
c∈S

∥p− c∥z. Given an unknown

distribution D supported over the d-dimensional Euclidean unit sphere on the other
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hand, we define
cost(D, C) =

∫
Bd

2

min
c∈C

∥p− c∥zP[p]dp.

We denote by

CD = argmin
C

cost(D, C) and , CP = argmin
C

cost(P,C).

RQ3 How does EP [cost(P,CP )] − cost(D, CD) behave as function of k, d, and
n for center-based clustering ?

For the subspace clustering, we define the following quantities. Let P be a set
of n points in d dimensional unit ball, and let k and j be a positive integer. The
objective of (k, j, z)-clustering consists of finding a set of k subspaces U of dimension
at most j minimizing

cost(P,U) :=
∑
p∈P

min
V ∈U

∥(I − V V T )p∥z.

Given an unknown distribution D supported over the d-dimensional Euclidean unit
ball

CD = argmin
C

∫
Bd

2

min
U∈U

∥(I − UUT )p∥z · P[p]dp and, CP = argmin
C

cost(P,C).

RQ4 How does EP [cost(P,CP )] − cost(D, CD) behave as function of k, d, j,
and n for subspace clustering ?

Our contribution
We helping to answer these questions, giving several near-optimal results. In

particular,

For center-based objectives , we show a convergence rate of Õ
(√

k/n
)
. The Õ

notation hides logarithmic terms in the function providing the upper bound. This
matches the known optimal bounds of Fefferman et al. (2016) and Bartlett et al.
(1998a) for k-means and extends it to other important objectives such as k-median.

For subspace clustering with j-dimensional subspaces, we show that a convergence
rate of Õ

(√
kj2/n

)
. These are the first provable bounds for most of these problems.

For the specific case of projective clustering, which generalizes k-means, we show a
convergence rate of Ω

(√
kj/n

)
is necessary, thereby proving that the bounds from

Fefferman et al. (2016) are essentially optimal.
We delve deeper into this subject in Chapter 3. The research presented in the

chapter is partially derived from Bucarelli et al. (2023b).

1.1.3 A new generalization of the artificial neuron to enhance the
interpretability of neural networks while preserving expressive
capabilities

Neural Networks (NNs) have become the standard in most Artificial Intelligence
(AI) applications, particularly deep neural networks. Studies in this domain have
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concentrated on enhancing the performance of NNs. However, as highlighted by
Arrieta et al. (2020), achieving higher performance levels often involves a trade-off
between model interpretability and accuracy. Recent efforts within the AI research
community have been dedicated to the emergence of explainable artificial intelligence
(XAI), a subfield focused on elucidating predictions derived from complex ML
models. XAI has rapidly advanced, offering various methodologies to interpret
AI model outputs, aiming to enhance their reliability and safety (Ghorbani et al.,
2019) (Bhatt et al., 2019)). In this context, we propose Newron (Siciliano et al.,
2022), a generalization of the McCulloch-Pitt neuron, allowing the definition of
new artificial neurons. We show how special cases of Newron may pave the way
towards interpretable, white-box neural networks. A fundamental property of neural
networks is that of universal approximation. Under certain conditions, multilayer
feed-forward neural networks can approximate any function in a given function space.
Introducing this new kind of artificial neuron, the question arises whether networks
developed from the novel neuron structure preserve this property. To explore this
topic, we investigated the universality properties of diverse network types created
with Newron. In Chapter 4, we’re trying to answer the following question:

RQ5 Is it possible to design a neural network structure that makes the whole
model interpretable without sacrificing effectiveness and expressiveness?

Our contribution
Interpret Newron-based networks. We present a method to interpret the behav-
ior of Newron-based networks. In particular, we can devise exact rules when using
the step function as activation. Also, in cases where from the network we cannot
devise exact rules (e.g., in the sigmoid and tanh-prod cases), the structure of the
neuron and the parameters allow the visualization of its behavior.

Universality. Through universal approximation theorems, we have proved that the
new structure retains the same expressive power as a standard neural network.

Performances. Experiments on real and synthetic datasets illustrate how our
framework can outperform traditional interpretable models, Decision Trees, and
Logistic Regression and achieve similar or superior performance to standard neural
networks.

The topic is further explored in Chapter 4. The content in that chapter draws in
part from Siciliano et al. (2022).

1.1.4 A topological description of loss surfaces via Betti numbers
characterization

Recent emphasis in deep learning research has centred on elucidating a suitable
description of the loss function surface of deep neural network models. This focus
aims to enhance comprehension of training methodologies using gradient descent-
based methods. Despite the inherent non-convexity of associated optimization
problems, deep neural networks are successfully trained using these methods. Prior
works have made significant efforts to characterize the spurious minima for specific
network architectures or to delineate the behavior of gradient dynamics. Our work
contributes by seeking a topological characterization of the surface of the empirical
risk of widely used loss functions in deep learning.



1.2 Thesis overview 8

RQ6 Can a topological measure effectively assess the complexity of the loss
implemented by layered neural networks?

RQ7 How do the complexity bounds of deep and shallow neural architectures
relate to the number of hidden units and the selected activation function?

Our contribution
The study paves the way toward a more comprehensive understanding of the

landscape of loss functions in deep learning models. This is done using the sum of
Betti numbers of the sublevel sets of the loss function to measure the complexity
of the empirical risk landscape. More precisely, we derived upper bounds on the
complexity of empirical risk for deep and shallow neural architectures employing the
theory of Pfaffian functions. This study illuminates the dependence of complexity on
crucial factors such as the number of hidden units, the number of training samples,
and the specific choice of activation function.

We offer a more comprehensive discussion of this work in Chapter 5. The
content covered in the chapter primarily stems from unpublished research conducted
in collaboration with Giuseppe Alessio D’Inverno, Monica Bianchini and Franco
Scarselli from the University of Siena.

1.2 Thesis overview
This thesis is organized into four parts; each can be read independently. The

structure is designed in alignment with the problems and topics mentioned earlier.
The first part, Chapter 2, focuses on mitigating the impact of noisy labels. In this
context, we introduce an innovative strategy that harnesses inter-rater agreement
and noise distribution estimation, aiming to ameliorate model performance and
robustness. The results of this chapter lean on Bucarelli et al. (2023a). In the
second part, Chapter 3), we establish nearly optimal generalization bounds for
clustering and projective clustering; this chapter is based on Bucarelli et al. (2023b).
In the third part of the thesis, Chapter 4, we introduce a novel artificial neuron
that amplifies interpretability while preserving the expressive power of standard
neural network models. We observed experimentally that models based on this
artificial neuron obtain better performance compared to popular interpretable by
design models and are on par with standard neural networks. This chapter is based
on Siciliano et al. (2022). Finally, the fourth part, Chapter 5, is devoted to studying
a characterization of the Betti numbers of the loss landscape. We derived upper
bounds on the complexity in terms of the sum of the Betti number of level sets
defined by the loss function of neural architectures. The last work is mostly based
on a project not yet published, a collaboration with Giuseppe Alessio D’Inverno,
Monica Bianchini and Franco Scarselli from the University of Siena.
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Chapter 2

Leveraging Inter-rater
Agreement for Classification in
the Presence of Noisy Labels

In recent years, artificial intelligence (AI) has witnessed remarkable advancements
across various tasks, including natural language understanding and computer vision
(He et al., 2016; Devlin et al., 2018; OpenAI, 2023; Khan et al., 2022; Ramesh
et al., 2022). Yet, these models heavily depend on the quality of their training data.
When training labels are corrupted, deep learning models can excessively adjust to
these inaccuracies, impacting their performance. However, the effectiveness of these
models is heavily reliant on the quality of the data used for training. When the
training labels are corrupted, deep learning models become susceptible to adapting
too closely to the noisy labels. This, in turn, compromises the models’s overall
performance.

The introduction of label noise in training data can be attributed to various
factors, including human errors during data labeling, inherent ambiguities in the
learning task, or multiple valid labels for a single data instance.

Multiple studies have presented learning algorithms capable of managing datasets
containing corrupted labels. These algorithms ensure satisfactory performance by
leveraging established generalization boundaries. However, these remedies do not
comprehensively resolve the issue, as they hinge on accurate knowledge of the error
rate affecting the labels. Unfortunately, this rate is frequently elusive in real-world
applications. Several endeavours (Patrini et al., 2017; Xia et al., 2019; Yao et al.,
2020) strive to tackle this challenge by introducing methodologies for estimating
this error rate. Nonetheless, some of these techniques suffer from the drawback of
relying on assumptions that are not universally applicable, such as the assumption
of anchor samples (Patrini et al., 2017). Ideally, it would be desirable to design
learning algorithms that are both robust to noisy labels, and for which performance
guarantees can be provided.

An alternative strategy, commonly employed in industry to mitigate the impact
of errors introduced by human annotators, involves labeling the same dataset
mutliple times using different raters. Subsequently, the individual labels are merged
to diminish the likelihood of erroneous labels within the dataset. Two prevalent
techniques for this purpose are majority vote and soft labeling. In such scenarios,
metrics like inter-annotator agreement (IAA) scores (examples include Cohen’s
kappa (Cohen, 1960) and Fleiss’ kappa (Fleiss et al., 1971)) furnish quantifiable
measurements that directly correspond to the presence of error probabilities within
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the labels. This approach differs primarily in that it addresses the labeling process
instead of focusing on alterations to the learning algorithm. Because the inter-
annotator agreement (IAA) is intrinsically tied to the error rate linked with human
annotators, it becomes plausible to approximate this error rate. Subsequently, this
estimation can be employed to adapt the learning algorithms, aiming to enhance
their resilience against the resultant label noise. This constitutes the primary avenue
of investigation in our study. In other words, in this Chapter, we aim to answer the
following questions:

RQ1 How can inter-annotator statistics be leveraged in learning with noisy
labels? Is there a better way to aggregate labels than majority vote?
RQ2Is it possible to learn from datasets with noisy labels while still having
performance guarantees?

The new contributions provided in this work are the following:

i) we provide a methodology to estimate the label noise distribution based on
the IAA statistics;

ii) we show how to leverage this estimate to learn from the noisy dataset;

iii) we provide generalization bounds for our methods that depend on known
quantities.

2.1 Related works

Our work is related to literature on three main topics: (i) robust loss function
design, (ii) label aggregating and (iii) noise rate estimation.

Robust loss functions Ghosh et al. (2017) and Ghosh et al. (2015) shown that
symmetric loss functions, that are functions for which the sum of the risks over all
categories is equivalent to a constant for each arbitrary example, are robust to label
noise. Examples of symmetric loss functions include the 0 − 1 loss, the Ramp Loss
and (softmax) Mean Absolute Error (MAE). In Zhang and Sabuncu (2018) authors
show that even if MAE is noise tolerant and cathegorical cross entropy (CCE) is
not, MAE can perform poorly when used to train DNN in challenging domains.
They also propose a loss function that can be seen as a generalization of MAE and
CCE. Several other loss functions that do not strictly satisfy the symmetry condition
have also been proposed to be robust against label noise when training deep neural
networks (Menon et al., 2020; Wang et al., 2019b; Feng et al., 2020).

Natarajan et al. (2013) presents two methods to modify the surrogate loss in the
presence of class-conditional random label noise. The first method introduces a new
loss that is an unbiased estimator for a given surrogate loss, and the second method
introduces a label-dependent loss. The paper provides generalization bounds for
both methods, which depend on the noise rate of the dataset and the complexity of
the hypothesis space.

Labels aggregation When constructing datasets for supervised learning, data is
often not labelled by a single annotator, rather multiple imperfect annotators are
asked to assign labels to documents. Typically, separate labels are aggregated into
one before learning models are applied (Raykar et al., 2010; Dawid and Skene, 1979).
In our work, we propose to exploit a measure of the agreement between annotators
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to explicitly calculate the noise of the dataset. Recently some works revisited the
choice of aggregating labels. In Purpura et al. (2022) authors explore how to train
LETOR models with relevance judgments distributions instead of single-valued
relevance labels. They interpret the output of a LETOR model as a probability
value or distribution and define different KL divergence-based loss functions to train
a model. The loss they proposed can be used to train any ranking model that
relies on gradient-based learning (in particular they focused on transformer-based
neural LETOR models and on the decision tree-based GBM model). However, the
authors do not directly estimate the noise rates in the annotations or study how
learning from these noisy labels affects the generalization error of the models trained
with the methods they introduce. In Wei et al. (2022) the authors analyze the
performance of both label aggregation and non-aggregation approaches in the context
of empirical risk minimization for a number of popular loss functions, including
those designed specifically for the noisy label learning problem. They conclude that
label separation is preferable to label aggregation when noise rates are high or the
number of labellers/annotations is insufficient. Peterson et al. (2019) and Uma et al.
(2020) exploit the availability of multiple human annotations to construct soft labels
and concludes that this increases performance in terms of generalization to out-of-
training-distribution test datasets and robustness to adversarial attacks. Collins
et al. (2022) focus on efficiently eliciting soft labels from individual annotators.

Noise rate estimation A number of approaches have been proposed for estimating
the noise transition matrix (i.e. the probabilities that correct labels are changed for
incorrect ones) (Patrini et al., 2017; Menon et al., 2015; Zhu et al., 2022). Usually,
these methods use a small number of anchor points (that are samples that belong to
a specific class with probability one) (Hendrycks et al., 2018). In particular, (Patrini
et al., 2017) proposed a noise estimation method based on anchor points, with the
intent to provide an ‘end-to-end’ noise-estimation-and-learning method. Due to the
lack of anchor points in real data, some works focused on a way to detect anchor
points in noisy data, (Yao et al., 2020; Xia et al., 2019). In Yao et al. (2020) the
authors propose to introduce an intermediate class to avoid directly estimating the
noisy class posterior. Zhang et al. (2021) also propose an iterative noise estimation
heuristic that aims to partly correct the error and pointed out that the methods
introduced by Patrini et al. (2017) and Yao et al. (2020) have an error in computing
anchor points, and provide conditions on the noise under which the methods work
or fail. (Xia et al., 2019) provides a solution that can infer the transition matrix
without anchor points. Indeed they use the instances with the highest class posterior
probabilities for noisy data as anchor points. Our work differs from the mentioned
work that uses anchor points because we do not need to assume the existence of
anchor points or to have a validation set to learn the noise rate and we only use
noisy data to train our model, moreover we neither aim to detect anchor points in
the noisy data. Also, most of these works do not study the generalization properties
of the proposed models, while we also address this problem and find bound that
depend on the estimated noise transition matrix.

Another approach is based on the clusterability condition, that is an example
belongs to the same true class of its nearest-neighbors representations. Zhu et al.
(2021) presented a method that relies on statistics of high-order consensuses among
the 2 nearest-neighbors noisy labels.
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2.2 Problem formulation

2.2.1 Notation
In this chapter, we follow the following notation. Matrices and sets are denoted

by upper-case and calligraphic letters, respectively. The space of d-dimensional
feature vectors is denoted by X ⊂ Rd.

We denote by C the number of classes and by ej the j-th standard canonical
vector in RC , namely the vector that has 1 in the j-th position and zero in all the
other positions. Y = {e1, . . . , eC} ⊂ {0, 1}C is the label set. Feature vectors and
labels are denoted by x and y, respectively. D is the joint distribution of the feature
vectors and labels, i.e. (x, y) ∼ D. The sampled dataset of size n is denoted by
D̂ = {(xi, yi)}n

i=1. f(x) denotes the output of the classifier f for feature vector x
and is a C dimensional vector. All vectors are column vectors.

We denote by ℓ(t, y) a generic loss function for the classification task that takes
as input C dimensional vectors t and y. In practice t will contain the prediction of
the model, and y will be the ground-truth label as a one-hot encoded vector. Namely
ℓ : [0, 1]C × Y → R.

2.2.2 Background
We consider the classification problem within the supervised learning framework,

where the ultimate goal is to minimize the ℓ -risk Rℓ,D(f) = E(x,y)∼D[ℓ(f(x), y)], for
some loss function ℓ. We denote by D the joint distribution of feature vectors x
and labels y. In practice, since the distribution is unknown instead of minimizing
Rℓ,D(f) we minimize an empirical risk over some sampled dataset D̂:

R̂
ℓ,D̂(f) = 1

n

n∑
i=1

ℓ(f(xi), yi) =E(x,y)∼D̂[ℓ(f(x), y)]. (2.1)

In this work, we assume that the true labels yi are unknown and consider two
scenarios, both of which rely on H annotators.

Scenario I
In this scenario we have access to the H labels provided by the annotators for

each sample, where yi,a refers to the label provided by the a-th annotator for the
i-th sample. For a given feature vector xi the distribution of labels provided by
annotator a is given by its noise transition matrix Ta, which is defined as follows:

(Ta)i,j := P(ya = j|y = i) (2.2)

Assumption 1. We assume that all annotators have the same noise transition
matrix (i.e. Ta = T for all a), that T is symmetric and that its diagonal elements
are larger than 0.5 (i.e. P(ya = i|y = i) > 0.5, ∀i ∈ {1, . . . C}).

Note that by definition T is right stochastic and hence also doubly stochastic. It
is also strictly diagonally dominant and therefore non-singular.

Proposition 2.2.0.1. T is positive definite.
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Proof. Since T is symmetric it follows that all eigenvalues are real. Combining the
fact that it is strictly diagonally dominant with Gershgorin’s theorem we conclude
that all eigenvalues lie in the range (0, 1] and hence T is positive definite.

Assumption 2. We assume that the annotators are conditionally independent on
the true label y:

P(ya, yb|y) = P(ya|y)P(yb|y). (2.3)

We now define the IAA matrix Mab between annotators a and b as follows:

(Mab)i,j := P(ya = i, yb = j) (2.4)

Proposition 2.2.0.2. Leveraging Assumption 2 the agreement matrix Ma,b can be
written as follows:

Ma,b = Ta
TDTb (2.5)

D : = diag{ν} (2.6)
ν : = [P(y = 1), · · · ,P(y = C)]T . (2.7)

Due to Proposition 2.2.0.1 and the fact that D is positive definite, it follows that all
matrices Ma,b are invertible.

Assumption 3. We assume that the class probabilities (and hence D) are known.

Due to Assumption 1, all annotators share the same noise transition matrix
T . Therefore Mab is independent of a and b, and from now on, we remove this
dependency in the notation(i.e. we get M = T TDT ). Furthermore, since T is
invertible and D is diagonal and positive definite, it follows that M is also positive
definite.

Note that since we have access to all the labels provided by the H annotators
for all the samples, we can obtain an estimate of M which we denote M̂ .

Assumption 4. We assume that M̂ is a consistent estimator.

For the case of two annotators, one possible consistent estimator M̂a,b that
exploits its symmetry condition is given by:

(M̂a,b)i,j =
n∑

k=1

1(ya,k=i, yb,k=j) + 1(ya,k=j, yb,k=i)
2n (2.8)

If the annotators have the same transition matrix, M will be the same for all
pairs of annotators. So we can estimate M , in the case of H ≥ 2 by averaging the
estimators M̂ab obtain by Eq. (2.8) for all possible pairs of annotators. The estimator
in this case can be written as

(M̂)i,j = 1
H(H−1)

H∑
a=1

H∑
b=1
b̸=a

n∑
h=1

1(ya,h=i, yb,h=j)
n

. (2.9)
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Scenario II
In the second scenario, for each i-th sample we are given a unique label ỹi

that is produced by aggregating the H individual labels according to some known
aggregating policy (like majority vote). In this case, since we do not have access to
the individual annotations we assume that M̂ is provided.

The probability that label yi is corrupted to some other label ỹi is given by the
aggregated noise transition matrix Γ ∈ [0, 1]C×C , where Γij := P(ỹ = j|y = i) is
the probability of the true label i being flipped into a corrupted label j and C is
the number of classes. Note that by definition Γ is a right stochastic matrix that
is determined by T , the amount of annotators H and the aggregating policy. We
will study both the case where Γ = T , and the case in which there exists a generic
Lipschitz function ϕ so that Γ−1 = ϕ(T ).

There are different policy choices to construct the dataset that lead to Γ = T .
If we decide to use only one annotator, for instance a, to build the final dataset,
namely for each sample ỹi = yi

a we have Γ = Ta. Or if annotators are homogeneous,
i.e. they have the same noise transition matrix T , and to build the final dataset we
decide to randomly select the label of one of the annotators we have that Γ = T .

Even restricting ourselves to the case of homogeneous annotators, depending on
the rule with which we build the dataset we can have a more complex relationship
between the matrix T and Γ.

We also obtain generalization bounds in the case were an estimate of the agree-
ment matrix M is not available and we only have access to a scalar representation of
the inter-annotator agreement, in particular we consider the case where the Cohen’s
κ is given.

Objective

The objective in both scenarios is to: i) use M̂ to estimate the noise transition
matrices (T and Γ); ii) leverage these estimates to be able to learn from the noisy
dataset in a more robust manner; and iii) obtain generalization bounds for the
resulting learning methods.

2.3 Main results
We divide the main contributions in three sections. In the first section we show

how to estimate the noise matrices T Next we indicate how to leverage these estimates
to learn for the datasets with noisy labels. Finally we obtain bounds,depending on
the Rademacher complexity of the class of functions, on the generalization gap for a
bounded and Lipschitz loss function

2.3.1 Estimation of the noise transition matrices
We start stating the following Lemma that allows us to write the unknown matrix

T (and its inverse), as a function of D and M .

Lemma 2.3.1. If D
1
2 commutes with T we have that:

T = UΛ
1
2UT (2.10)

T−1 = UΛ− 1
2UT (2.11)

D− 1
2MD− 1

2 = UΛUT (2.12)
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where UΛUT is the eigenvalue decomposition of D− 1
2MD− 1

2 (i.e. U is some orthog-
onal matrix and Λ is a diagonal positive definite matrix).

Proof. From Eq. (2.5) we get:

M = TDT = D
1
2TTD

1
2 → D− 1

2MD− 1
2 = T 2 (2.13)

Note that T and D
1
2MD

1
2 are positive definite (because D and M are positive

definite) and hence they have eigenvalue decompositions of the following form:

T = UT ΛTU
T
T (2.14)

D− 1
2MD− 1

2 = UM ΛMUT
M (2.15)

where Ux are orthogonal matrices and Λx are diagonal positive definite matrices. It
then follows that:

T 2 (a)= UT Λ2
TU

T
T = UM ΛMUT

M (2.16)

where in (a) we used the fact that UT is orthogonal. Since UM ΛMUT
M is an eigenvalue

decomposition of T 2 we conclude that:

T = UM Λ
1
2
MUT

M , T−1 = UM Λ− 1
2

M UT
M (2.17)

Note that we could use Lemma 2.3.1 to estimate T as follows:

T̂ = Û Λ̂
1
2
M ÛT (2.18)

where Û Λ̂M ÛT is the eigenvalue decomposition of D− 1
2 M̂D− 1

2 . However such
estimate can result in matrices that are not doubly stochastic, or diagonally dominant
due to estimation errors. A more accurate estimate of T could be obtained as
T̂ = π(Û Λ̂

1
2
M ÛT ) where π is a projection operator to the set of doubly stochastic,

positive definite matrices with diagonal elements greater than 0.5 and non-negative
entries (which is a convex set). We can obtain such projection by solving the following
optimization problem:

T̂ = π(Û Λ̂
1
2
M ÛT ) = argmin

B
||B − Û Λ̂

1
2
M ÛT ||22 (2.19)

s.t.

B = BT∑
j

Bi,j = 1 ∀i

Bi,j ≥ 0 ∀i, j
Bi,i ≥ 0.5 ∀i

Note that this optimization problem is convex because the constraints are linear
and for symmetric matrices it holds that ||T̂ − Û Λ̂

1
2
M ÛT ||22 = λmax(T̂ − Û Λ̂

1
2
M ÛT ),

which is a convex function of T̂ .
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To summarize, T can be estimated as follows. First, obtain an estimate of
M . Then obtain the eigenvalue decomposition of D− 1

2 M̂D− 1
2 = Û Λ̂ÛT (note that

this decomposition always exists because D− 1
2 M̂D− 1

2 is symmetric). Finally obtain
the estimate as: T̂ := π(Û Λ̂

1
2 ÛT ).

Note that once the estimate of T̂ is obtained, Γ̂ can be obtained since we assumed
the label aggregating policy to be known.

We are now presenting a concise overview of when the commutativity assumption
holds.

2.3.2 On the hypothesis of commutativity in Lemma 2.3.1
In the previous we found how to compute T given M and D. To find this

relationship we require that D
1
2 commutes with T . This hypothesis is satisfied when

D and T have a particular structure, namely
√
di√
dj
tij = tij ∀i and j.

That is satisfied or if di = dj or if tij = 0, namely every class so that the probability
of going from class i to class j (and vice-versa) is not zero is equiprobable.

So T has to be block diagonal, or better reducible by a permutation of the classes
to a block diagonal matrix and D has to have all equal elements on indices relatives
to the same block in T . For instance

T =


T1 0 0 0 0
0 T2 0 0 0
0 0 T3 0 0
0 0 0 . . . 0
0 0 0 0 Tj

 and D =


D1 0 0 0 0
0 D2 0 0 0
0 0 D3 0 0
0 0 0 . . . 0
0 0 0 0 Dj


with

Di =

di 0 0
0 . . . 0
0 0 di


T need not be block diagonal but must be reconducted to a block diagonal matrix

by permuting the classes, for instance in the following case, we can obtain a matrix
block diagonal by permuting classes 2 and 4

T =


t11 0 0 t14
0 t22 t23 0
0 t23 t33 0
t14 0 0 t44

 and D =


d1 0 0 0
0 d2 0 0
0 0 d2 0
0 0 0 d1


Notice that T can be rewritten as follows permuting classes 2 and 4

T =


t11 t14 0 0
t14 t44 0 0
0 0 t33 t23
0 0 t23 t22


From the technical point of view, we have noticed that solving this equation

is extremely complicated without making such assumptions. Another assumption
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we could have used, also required by Potter (1966) to solve the same problem, is
requiring that the matrix D

1
2T has diagonal Jordan decomposition. However, this

assumption is more complicated to translate at the level of the structure of the
matrices T and D.

From a practical point of view, making such an assumption means that there are
classes that annotators can confuse with one another while they never swap between
them, other classes. For example, if the problem is to classify images and the classes
are “cat”, “lynx”, “bats”, “bird”, “cougar”; we can think that the annotators have a
non-zero probability of confusing with each other the feline classes “lynx”, “cat”,
“cougar”, while they have zero probability of assigning a picture of a lynx the label
“bird”. Commutativity is guaranteed in the case of a uniform distribution over the
classes. There are many applications where we expect the distribution over the
classes to be uniform and not to have any class with a higher probability. In general,
we can fall back to an approximation of this case by reducing the samples.

Lemma 2.3.2. Let Ma,b be the agreement matrix for annotators a and b defined in
Eq. (2.4) and M̂a,b be the estimated agreement matrix defined in Eq. (2.8) and let
||.||p be the matrix norm induced by the p vector norm. For every p ∈ [1,∞] and for
every δ > 0, with probability at least 1 − δ

||Ma,b − M̂a,b||p ≤

√
C2

2n ln 2C2

δ
. (2.20)

where Pn denotes the probability according to which the n training samples are
distributed, i.e. we are assuming that the samples are independently drawn according
the probability P.

To prove Lemma 2.3.2 we need the following Propositions and Lemma.

Proposition 2.3.2.1. Let Ma,b be the agreement matrix for annotators a and
b defined in Eq. (2.4) and M̂a,b be the estimated agreement matrix defined in eq.
Eq. (2.8). For every ϵ > 0 it holds that

Pn(|(Ma,b)ij) − (M̂a,b)ij | < ϵ) ≥ 1 − 2e−2ϵ2n.

And

Pn
(
∀i, j ∈ {1, C}2 |(Ma,b)ij) − (M̂a,b)ij | < ϵ

)
≥ 1 − 2C2e−2ϵ2n.

where Pn denotes the probability according to which the n training samples are
distributed, i.e. we are assuming that the samples are independently drawn according
to the probability P.

To simplify the notation we will omit the dependency from the annotators in
the matrices: M = Ma,b and M̂ = M̂a,b Mij = P(ya = i, yb = j) and M̂ij =
1
n

∑n
h=1 1((ya)h = i, (yb)h = j).

Proof. To prove the claim we only need to apply Hoeffding’s inequality to the
random variables Xij

h = 1yah=i,=ybh=j . Indeed it holds that 0 ≤ Xij ≤ 1 and
M̂ij = 1

n

∑n
h=1X

ij
h , while E[Xij

h ] = Mij .
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Notice that the random variables Xij
1 . . . Xij

n are independent since we assume
samples to be independent with respect to each other and so it follows that
(xh, yah

, yb,h), (xk, yak
, ybk

) are independent.rf

P(|E[Xij
h ] − 1

n

n∑
h=1

Xij
h | > ϵ) ≤ 2e−2ϵ2n. (2.21)

From the previous equation, using union bounds we can obtain that

P
(
∀(i, j) ∈ {1, C}2 |E[Xij

h ] − 1
n

n∑
h=1

Xij
h | < ϵ

)
≥ 1 − 2C2e−2ϵ2n. (2.22)

Namely
P
(
∀(i, j) ∈ {1, C}2 |Mij − M̂ij | < ϵ

)
≥ 1 − 2C2e−2ϵ2n. (2.23)

Lemma 2.3.3. Let A be a matrix in RCxC so that it exists ϵ > 0 for all i, j |Aij | ≤ ϵ.
For every p ∈ [1,∞], if ||.||p denotes the matrix norm induced by the p-vector norm,

||A||p ≤ Cϵ.

Proof.
||A||p := sup

x:||x||p=1
||Ax||p

Let x be a vector of p-norm 1. (Ax)i =
∑C

j=1Aijxj

||Ax||p =
( C∑

i=1

∣∣∣ C∑
j=1

Aijxj

∣∣∣p) 1
p ≤

( C∑
i=1

( C∑
j=1

|Aijxj |
)p) 1

p ≤ ϵ
( C∑

i=1

( C∑
j=1

|xj |
)p) 1

p

Now, denoting by 1 the vector with all ones, using Hölder inequality we can obtain :

C∑
j=1

|xj | = ||1x||1 ≤ ||x||p||1|| p
p−1

= ||x||pC
p−1

p

So

||Ax||p ≤ ϵ
( C∑

i=1
||x||pCp−1

) 1
p = ϵC||x||p = ϵC

Proof Lemma 2.3.2. For the previous Lemma it holds that if all the elements of the
matrix are less or equal than ϵ, the p norm is bounded by ϵC

So we can derive that

P(||Ma,b − M̂a,b||p > ϵ) ≥ P
(
∀(i, j) ∈ {1, C}2 |Mij − M̂ij | < ϵ

C

)
≥ 1 − 2C2e−2 ϵ2

C2 n.

(2.24)
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From Lemma 2.3.2 it follows that if M̂ is estimated as in Eq. (2.9), since M̂ is
an average of M̂ab it also holds that for every p ∈ [1,∞] and for every δ > 0, with
probability at least 1 − δ

||M − M̂ ||p ≤

√
C2

2n ln 2C2

δ
. (2.25)

Theorem 2.3.4. Let T be the noise transition matrix defined as in Eq. (2.2) and T̂
its estimate (defined as in Eq. (2.19)).

With probability at least 1 − δ:

||T − T̂ ||2 ≤ C(
√
C + 1)λmax(D)
λmin(T̂ )

√
1

2n ln 2C2

δ
(2.26a)

||T−1 − T̂−1||2 ≤ 9C(
√
C + 1)λmax(D)
λmin(T̂ )2

√
1

2n ln 2C2

δ
(2.26b)

for n > C2(
√

C+1)2(ln(2C2)2

2λmin(T̂ )2 .

Proof of Theorem 2.3.4: bound error on the estimation of T
We start by introducing the following helpful remark and Lemmas.

Remark 1. We defined T̂ = argmin
B

||B − Û Λ̂
1
2
M ÛT ||22, with B that satisfies all the

constraints in Eq. (2.20). We know that the matrix T we want to approximate
satisfies all the constraints in Eq. (2.20), so by definition

||T̂ − Û Λ̂
1
2
M ÛT ||22 ≤ ||T − Û Λ̂

1
2
M ÛT ||22,

from which it follows that

||T − T̂ ||22 ≤ 2||T − Û Λ̂
1
2
M ÛT ||22

so any bound we will found for ||T − Û Λ̂
1
2
M ÛT ||22 holds also for T̂ estimated as in

Eq. (2.19) with a coefficent 2.

Lemma 2.3.5. Let A be a square, symmetric, positive definite matrix, in RC×C and
let

√
A the unique positive definite symmetric, matrix so that

√
A

√
A = A (On the

existence of this matrix, see Theorem 7.2.6 at p. 439 in Horn and Johnson (2012)).
The bounded operator F√ : S → S defined as follow F√ : A =

√
A, where we denote

by S the space of symmetric positive definite matrix, is differentiable and it hold the
following upper bound for the induced 2 norm of the derivative

||D[
√
A]||2 ≤ 1

2
√
λmin(A)

||vec(A)||2. (2.27)
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Proof. Let us consider the vector space of square matrices MC(R) with the 2 norm
and let D[

√
A] denote the operator that is the derivative of F√ in this space and

D[A] the derivative of A. From the fact that
√
A

√
A = A it follows that

D[
√
A]

√
A+

√
AD[

√
A] = D[A]. (2.28)

Eq. (2.28) is a special case of Sylvester equation, and using that
√
A is symmetric

can be rewritten as

(IC ⊗
√
A+

√
A⊗ IC)vec(D[

√
A]) = vec(D[A]). (2.29)

It follow that

vec(D[
√
A]) = (IC ⊗

√
A+

√
A⊗ IC)−1vec(D[A]) = (IC ⊗

√
A+

√
A⊗ IC)−1vec(A).

Notice that the eigenvalues of the square root of a symmetric, positive def matrix
are the square root of the eigenvalues of the original matrices. Indeed if A can be
decomposed as A = UΛUT , with U orthogonal matrix, it holds that

√
A = U

√
ΛUT .

Now the eigenvalues of
√
A⊗ IC + IC ⊗

√
A are

√
λi +

√
λj with 1 ≤ i, j ≤ C, with

λi eigenvalue of A. The minimum eigenvalue of a symmetric positive def matrix B
is the maximum eigenvalue of the inverse, indeed if B = V DV T , with V orthogonal,
B−1 = V D−1V T . So the minimum eigenvalue of

√
A⊗ IC + IC ⊗

√
A, that is the

maximum eigenvalue of (
√
A⊗ IC + IC ⊗

√
A)−1 is 2λmin(

√
A). It follows that

||(IC ⊗
√
A+

√
A⊗ IC)−1||2 =

√
λmax((IC ⊗

√
A+

√
A⊗ IC)−2)

=
√
λmin((IC ⊗

√
A+

√
A⊗ IC)2)

= λmin((IC ⊗
√
A+

√
A⊗ IC))

= 1
2
√
λmin(A)

.

So ||vec(D[
√
A])||2 ≤ 1

2
√

λmin(A)
||vec(A)||2. ||vec(A)||22 =

∑C2
k=1 a

2
k for every vecto x

of norm 1 (this implies xi < 1)

||Ax||22 =
C∑

k=1

C∑
i=1

a2
kix

2
i ≤

C∑
k=1

C∑
i=1

a2
ki = ||vec(A)||22.

It follows that the induce 2 norm of the derivative ||D[
√
A]||2 ≤ 1

2
√

λmin(A)
||vec(A)||2

Let T and T̂ be defined as in Eq. (2.17) and Eq. (2.18).
The following Lemma holds for two general double stochastic matrices.

Lemma 2.3.6. Let T and T̂ be two symmetric, stochastic matrices, it holds that :

||T − T̂ ||2 ≤
√
C||T 2 − T̂ 2||

λmin(T 2) − ||T 2 − T̂ 2||2
and ||T − T̂ ||2 ≤

√
C||T 2 − T̂ 2||

λmin(T̂ 2) − ||T 2 − T̂ 2||2
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Proof. From the previous Lemma and the mean absolute value

||
√
A−

√
B||2 ≤ ||A−B||2 sup

0≤θ≤1
||D[

√
θA+ (1 − θ)B]||2

For Weyl’s inequality

λmin(θT 2 + (1 − θ)T̂ 2) ≤ λmin(θT 2) + λmin((1 − θ)T̂ 2)
= θλmin(T 2) + (1 − θ)λmin(T̂ 2)

sup
0≤θ≤1

||D
√
θT 2 + (1 − θ)T̂ 2||2 ≤ 1

2 sup
0≤θ≤1

||vec(θT 2) + (1 − θ)T̂ 2)||2
θλmin(T 2) + (1 − θ)λmin(T̂ 2)

≤ 1
2 sup

0≤θ≤1

θ||vec(T 2)||2 + (1 − θ)||vec(T̂ 2)||2
θλmin(T 2) + (1 − θ)λmin(T̂ 2)

≤ 1
2 sup

0≤θ≤1

||vec(T 2)||2 + ||vec(T̂ 2)||2
θλmin(T 2) + (1 − θ)λmin(T̂ 2)

≤ sup
0≤θ≤1

√
C

θλmin(T 2) + (1 − θ)λmin(T̂ 2)

In the last inequality we used that T and T̂ and doubly stochastic, meaning that∑C
i=1 T

2
ij ≤ (

∑C
i=1 Tij)2 = 1. So ||vec(T )||2 =

(∑C
i=1

∑C
j=1 T

2
ij

) 1
2 ≤

√
C. Moreover

deriving 1
θλmin(T 2)+(1−θ)λmin(T̂ 2)

with respect to θ we find that

sup
0≤θ≤1

1
θλmin(T 2) + (1 − θ)λmin(T̂ 2)

=


1

λmin(T 2) if λmin(T 2) < λmin(T̂ 2)
1

λmin(T̂ 2)
if λmin(T 2) > λmin(T̂ 2)

sup
0≤θ≤1

1
θλmin(T 2) + (1 − θ)λmin(T̂ 2)

= 1
min(λmin(T̂ 2), λmin(T 2))

.

Now,

min(a, b) =
{
a = b− |b− a| if a < b

b if b ≤ a
(2.30)

We notice that for symmetric matrices ||A||2 =
√
λmax(A)2 =

√
(λmax(A))2 =

|λmax(A)|. So we can Since T 2 − T̂ 2 is symmetric: ||T 2 − T̂ 2||2 = |λmax(T 2 − T̂ 2)|.
It follows that

min(λmin(T̂ 2), λmin(T 2)) ≥ λmin(T 2) − |λmin(T 2) − λmin(T̂ 2)|
≥ λmin(T 2) − |λmin(T 2) − λmin(T̂ 2)|
≥ λmin(T 2) − |λmin(T 2 − T̂ 2)|
≥ λmin(T 2) − |λmax(T 2 − T̂ 2)|
= λmin(T 2) − ||T 2 − T̂ 2||2.

(2.31)

In the previous equations, we use that

|λmin(T 2) − λmin(T̂ 2)| ≤ |λmax(T 2 − T̂ 2)|
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. We now prove that it is true. Suppose without loss of generality that

λmin(T 2) > λmin(T̂ 2)

. If it is the case

λmin(T 2) − λmin(T̂ 2) = λmin(T 2) + λmax(−T̂ 2) ≤ λmax(T 2 − T̂ 2) ≤ |λmax(T 2 − T̂ 2)|

, where we used Weyl’s inequality.
If the λmin(T 2) > λmin(T̂ 2) following the same path we obtain

λmin(T̂ 2) − λmin(T 2)| ≤ |λmax(T̂ 2 − T )|.

it follow that λmin(T 2) − λmin(T̂ 2) < ||T 2 − T̂ 2||2

Proof Theorem Theorem 2.3.4. From Lemma 2.3.6 we know that

||T − T̂ ||2 ≤
√
C||T 2 − T̂ 2||

λmin(T 2) − ||T 2 − T̂ 2||2
(2.32)

Now, in general
√
Cx

b− x
< ϵ iif x < b

ϵ√
C + ϵ

.

It follows that

P(||T − T̂ ||2 < ϵ) = P
(

||T 2 − T̂ 2||2 < λmin(T 2) ϵ√
C + ϵ

)
or

P
(
||T − T̂ ||2 < ϵ

)
= P

(
||T 2 − T̂ 2||2 < λmin(T̂ 2) ϵ√

C + ϵ

)
≥ P

(
||T 2 − T̂ 2||2 <

λmin(T̂ 2)√
C + 1

ϵ
)

Since we can assume ϵ ≤ 1 (if n > C2(
√

C+1)2(ln(2C2)2

2λmin(T̂ )2 . Notice that we are

interested in convergence properties of T̂ , so we are interested in founding these
bounds for small ϵ.

Now T 2 − T̂ 2 = D1/2(M − M̂)D1/2 .
So ||T 2 − T̂ 2||2 ≤ ||M − M̂ ||2||D1/2||22 = ||M − M̂ ||2||D||2 = ||M − M̂ ||2λmax(D).

As a consequence :

P(||T − T̂ ||2 < ϵ) ≥ P
(

||M − M̂ ||2λmax(D) < λmin(T̂ 2)√
C + 1

ϵ

)

= P
(

||M − M̂ ||2 <
λmin(T̂ 2)

(
√
C + 1)λmax(D)

ϵ

)

≥ 1 − 2C2e
− ϵ2

C2(
√

C+1)2
λmin(T̂ 2)

2

λmax(D)2 n
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For the inverse:
T−1 − T̂−1 = T−1(T̂ − T )T̂−1

So,

||T−1 − T̂−1||2 ≤ ||T−1||2||T̂ − T ||2||T̂−1||2 = 1
λmin(T )λmin(T̂ )

||T̂ − T ||2

Following what we did for the κ in

1
λmin(T )λmin(T̂ )

≤ 1
min(λmin(T 2), λmin(T̂ 2))

≤ 1
λmin(T̂ 2) − |λmin(T 2) − λmin(T̂ 2)|

Than for Eq. (2.31)

1
λmin(T )λmin(T̂ )

≤ 1
λmin(T̂ 2) − ||T 2 − T̂ 2||2

So
||T−1 − T̂−1||2 ≤ ||T − T̂ ||2

λmin(T̂ 2) − ||T 2 − T̂ 2||2
≤ ||T − T̂ ||2
λmin(T̂ 2) − 2||T − T̂ ||2

Where we used that

||T 2 − T̂ 2||2 ≤ ||T (T − T̂ ) + (T − T̂ )T̂ ||2 ≤ 2||T − T̂ ||2

because T and T̂ doubly stochastic.
So

P
(
||T−1 − T̂−1||2 ≤ ϵ

)
≥ P

(
||T − T̂ ||2 ≤ ϵ

λmin(T̂ )
1 + 2ϵ

)

≥ P
(

||T − T̂ ||2 ≤ ϵ

3λmin(T̂ )
)

≥ 1 − 2C2e
− ϵ2

9C2(
√

C+1)2
λmin(T̂ 2)

4

λmax(D)2 n

From the previous theorem we can notice that the error in estimation of T decays
as 1√

n
as a function of n.

2.3.3 Learning from noisy labels
In this section, we show how to leverage the estimates of the error rates to train

the models.



2.3 Main results 24

Posterior distribution of true labels as soft-labels
It is noteworthy that if we have access to the labels provided by all annotators,

the posterior probabilities of the true labels can be calculated leveraging T and
Bayes’ Theorem as follows:

P(yi = c|y1,i, . . . , yH,i)︸ ︷︷ ︸
:=pc,i

∝ νc

H∏
h=1

P(yh,i|yi = c)︸ ︷︷ ︸
=Tc,yh,i

(2.33)

we recall that νc = P(yi = c) and that the conditional probabilities on the r.h.s. are
given by T . In our case, we can use our noisy transition estimates to estimate the
posterior probabilities of the true labels, and afterwards, we can use these posteriors
to train the classifier.

Lemma 2.3.7. For infinite annotators, the posterior distribution over every sample
calculated using the true T converges to the Dirac delta distribution centred on the
true label almost surely (i.e. limH→∞ pc,i

a.s.= 1(yi = c)).

Lemma 2.3.8. Let us consider a vector x = (x1, . . . , xn) s.t.
∑n

i=1 xi = 1 and
xi > 0 for all i, and a vector a = (a1, . . . , an) s.t ai > 0 for i = 1, . . . , n. Let
ψa(x) =

∏n
j=1 x

aj

j , it holds that

argmax
(xi,...,xn):

∑
i

xi=1
ψa(x) = (a1, . . . , an)

Proof. Let us consider ϕa(x) = logψa(x) =
∑n

i=1 ai log(xi). Recalling that xn =
1 − sumn−1

i=1 xi

∇ϕ(x) =



a1
x1

− an

1−
∑n−1

i=1 xi
a2
x1

− an

1−
∑n−1

i=1 xi

...
a1

xn−1
− an

1−
∑n−1

i=1 xi


∇ϕ(x) ≥ 0 ⇐⇒ ai(1 −

n−1∑
i=1

xi) − anxi ≥ 0 fori = 1, . . . , n− 1

Namely, the maximum is reached for x that solves the following linear system has
to be solved: 

a1 + an a1 . . . a1
a2 a2 + an . . . a2

... . . .
an−1 . . . an−1 + an



x1
x2
...

xn−1

 =


a1
a2
...

an−1


We have that

A :=


a1 + an a1 . . . a1
a2 a2 + an . . . a2

... . . .
an−1 . . . an−1 + an

 =


1
1
...
1

 ·
[
a1, a2, . . . , an−1

]
+ anIn−1
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A can be written as the sum of a rank-1 matrix and an times the identity. It
holds that is

∑n−1
i=1 ai + an ≠ 0 then A is invertible so rank(A) = n − 1 (Sherman

and Morrison, 1949). The non-homogeneous system also has one unique solution.
We know that xi = ai is a solution, so it’s the unique solution.

Proof of Lemma 2.3.7.

pc,i =
µc
∏H

h=1 Tc,yh,i∑C
j=1 µj

∏H
h=1 Tj,yh,i

(2.34)

H∏
h=1

Tc,yh,i
=

C∏
j=1

T
Ni,j

c,j (2.35)

where Ni,j is the amount of annotators that labeled sample i as class j. Note that
as a consequence of the strong law of large numbers for the conditional random
variables that are independent with the same conditional distribution we have that
the following equation is true almost surely:

lim
H→∞

Ni,j

H
= lim

H→∞

∑H
a=1 1{ya,i=j}

H
= E[1{ya,i=j}|y = j] = Tyi,j (2.36)

Combining we get:

lim
H→∞

pc,i = lim
H→∞

µc
∏C

j=1 T
Ni,j

c,j∑C
k=1 µk

∏C
j=1 T

Ni,j

k,j

(2.37)

= lim
H→∞

µc

(∏C
j=1 T

Tyi,j

c,j

)H

∑C
k=1 µk

(∏C
j=1 T

Tyi,j

k,j

)H
(2.38)

= lim
H→∞

1

1 +
∑C

k=1
k ̸=c

µk
µc

(∏C
j=1

(
Tk,j

Tc,j

)Tyi,j
)H

(2.39)

(a)= 1(yi = c) (2.40)

where in (a) we used the fact that due to the assumption that T is strictly dominant,
then the term

∏C
j=1 T

Tyi,j

k,j is maximized when k = yi and this term is strictly
larger than all the other ones, see Lemma 2.3.8. Indeed, if there exists k s.t.∏C

j=1

(
Tk,j

Tc,j

)Tyi,j
> 1 than limH→infty pc,i = 0 because the denominator goes to ∞.

So the only case for not having is that
∏C

j=1

(
Tk,j

Tc,j

)Tyi,j ≤ 1 for all k. Suppose
we know that the maximum of the function

∏C
j=1(xi)ai is reached for xi = ai ∀i =

1, . . . , C than we’re done.
Indeed, we have that

∏C
j=1

(
Tk,j

Tc,j

)Tyi,j
> 1 , if and only if

∏C
j=1 (Tk,j)Tyi,j >∏C

j=1 (Tc,j)Tyi,j since we’re considering all k, for k = 1, . . . , C, k ̸= c. If yi ̸= c it
means that yi is one of the values k can assume and since that one is the max, it
means that for sure it will be greater than

∏C
j=1 (Tc,j)Tyi,j .

Otherwise, if yi = c it means that
∏C

j=1 (Tc,j)Tyi,j >
∏C

j=1 (Tk,j)Tyi,j so all
elements are less than 1 and the limit goes to 1.



2.3 Main results 26

We can use the posterior distributions as soft-labels defining the following loss
for the i-th sample:

ℓ(f(xi), y1,i, . . . , yH,i) = ℓ(f(xi), p̄i) (2.41)

where p̄i = [p1,i, · · · , pC,i]T . Or we can use the posterior distributions to weight the
loss function at the i-th sample evaluated at each of the possible labels:

ℓ(f(xi), y1,i, . . . , yH,i) =
C∑

c=1
pc,iℓ(f(xi), ec) (2.42)

where ec is the vector in RC with 1 in the c-th position. Notice that for categorical
cross-entropy loss, the two functions defined above correspond, but in general, they
define two different loss functions.

Note that these soft labels are different from the ones obtained by averaging the
annotator’s labels as is done in Wei et al. (2022). The method using the posteriors
exploits the T matrix and thus more information than the simple mean of the
values of the losses among annotators. We, therefore, expect this to yield better
results than the aggregation using the mean proposed in Wei et al. (2022). These
considerations are supported by the empirical results we obtained on synthetic
datasets (see Sec. 2.5).

Robust loss functions
Another way to leverage the estimate of T is to use robust loss functions, like

the forward and backward loss functions presented in Natarajan et al. (2013) and
Patrini et al. (2017). Let ℓ(t, y) be a generic loss function for the classification task,
with a little abuse of notation we define ℓ(t) = [ℓ(t, e1), . . . , ℓ(t, eC)]T . The backward
and forward loss functions are defined in Eq. (2.43a) and Eq. (2.43b), respectively.

lb(t, y) = (Γ̂−1ℓ(t))y (2.43a)
lf (t, y) = (ℓ(Γ̂T t))y (2.43b)

To explain the notation in Eq. (2.43a) we are first doing the dot product between
the matrix Γ−1 and the vector ℓ(t) and then the dot product of the resulting vector
with y. These losses leverage aggregated labels and therefore different aggregating
techniques can be used, like majority vote. Another possible aggregating technique
that leverages the posterior probabilities is to assume that the true label is the one
that corresponds to the class that has the highest posterior probability.

2.3.4 Generalizations gap bounds
In this section, we derive generalization gap bounds for the backward loss that

depends on the noise transition matrix estimated in Eq. (2.19). Since we are only
addressing the problem for the backward loss, from now on we will denotethe
backward loss by l.

Remark 2. If ℓ(t, y) is Lipschitz with constant L, the loss function l(t, y) is Lipschitz
with Lipschitz constant ||Γ−1||2L.
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We will prove the following theorem in the case of Γ = T . We emphasize that
all the results apply also when Γ−1 = ϕ(T−1) and that the function that associate
Γ−1 and T−1 ,ϕ is Lipschitz with respect to the norm p, i.e. there exists a Lipschitz
constant Lϕ,p s.t. ||ϕ(T−1) − ϕ(T̂−1)||p ≤ Lϕ,p||T−1 − T̂−1||p. The only difference is
that in the bound we will have a factor Lϕ,p.

It has been proved, first in Natarajan et al. (2013) (Lemma 1) for the binary
classification task and then in general for the multi-class case in Patrini et al. (2017)
(Theorem 1) that l(t, y) is an unbiased estimator for ℓ, i.e.

Eỹ|y[l(t, ỹ)] = ℓ(t, y).

Lemma 2.3.9. Let ℓ be a bounded loss function, so that the image of ℓ is in [0, µ],
and s.t. ℓ is Lipschitz in the first argument with Lipschitz constant L. Let R̂l(f)
be the empirical risk for the loss l and let Rl,D be the risk for a loss l under the
distribution D, with l unbiased estimator for the loss ℓ. We denote by l̂ the backward
loss obtained using T̂ .

sup
f∈F

|R̂l̂(f) −Rl,D(f)| ≤
[
Lλmin(T̂ 2) + µλmin(D)

λmin(T̂ )2

√
1
n

ln
(4C
δ

)]
Rn(F)g(C).

with g(C) = 6C2(
√
C + 1)

Proof. For every f we have

|R̂l̂(f) −Rl,D(f)| ≤ |R̂l̂(f) − R̂l(f)| + |R̂l(f) −Rl,D(f)|.

So using union bounds and by the classic results on Rademacher complex-
ity bounds (Mohri et al., 2012), and by the Lipschitz composition property of
Rademacher averages, Theorem 7 in Meir and Zhang (2003) it follows that

Pn
(

sup
f∈F

|R̂l̂(f) −Rl,D(f)| ≤ L||T−1||2Rn(F) + ϵ

2
)

≥ Pn
(

sup
f∈F

|R̂l̂(f) − R̂l(f)| + sup
f∈F

|R̂l(f) −Rl,D(f)| ≤ L||T−1||2Rn(F) + ϵ

2
)

≥ 1 − Pn
(

sup
f∈F

|R̂l̂(f) − R̂l(f)| > ϵ

4
)

− Pn
(

sup
f∈F

|R̂l(f) −Rl,D(f)| ≤ L||T−1||2Rn(F) + ϵ

4
)

≥ 1 − Pn
(

sup
f∈F

|R̂l̂(f) − R̂l(f)| > ϵ

4
)

− 2e− n
2

(
ϵ

4µ

)2
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Now,

Pn
(

sup
f∈F

|R̂l̂(f) −Rl,D(f)| ≤ L||T̂−1||2Rn(F) + ϵ
)

= Pn
(

sup
f∈F

|R̂l̂(f) −Rl,D(f)| ≤ L||T−1||2Rn(F) + (||T̂−1||2 − ||T−1||2)Rn(F) + ϵ
)

≥ 1 − Pn

(
{sup

f∈F
|R̂l̂(f) −Rl,D(f)| ≤ L||T−1||2Rn(F) + ϵ

2}

∩ {(||T̂−1||2 − ||T−1||2)Rn(F) ≤ ϵ

2}
)

≥ 1 − Pn
(

sup
f∈F

|R̂l̂(f) −Rl,D(f)| ≤ L||T−1||2Rn(F) + ϵ

2
)

− Pn
(
(||T̂−1||2 − ||T−1||2)Rn(F) ≤ ϵ

2
)

≥ 1 − 2e− n
2

(
ϵ

4µ

)2

− Pn
(
(||T̂−1 − T−1||2) ≤ ϵ

2Rn(F)
)

− Pn
(

sup
f∈F

|R̂l̂(f) − R̂l(f)| > ϵ

4
)

≥ 1 − 2e− n
2

(
ϵ

4µ

)2

− 2C2e
− ϵ2

4Rn(F)29C2(
√

C+1)2
λmin(T̂ 2)

4

λmax(D)2 n − 2C2e
− ϵ2

4µ29C2(
√

C+1)2
λmin(T̂ 2)

4

λmax(D)2 n

≥ 1 − 2e− n
2

(
ϵ

4µ

)2

− 4C2e
− 1

max(Rn(F),µ)2
ϵ2

36C2(
√

C+1)2
λmin(T̂ 2)

4

λmax(D)2 n

≥ 1 − 4e
−
[

min
(

1
8 ,2 ln(C) 1

9Rn(F)2C2
λmin(T̂ 2)

4

(
√

C+1)2
λmax(D)2

)]
ϵ2

4µ2 n

≥ 1 − 4Ce
−
(

1
9Rn(F)2C2

λmin(T̂ 2)
4

(
√

C+1)2
λmax(D)2

)
ϵ2

2µ2 n

So with probability at least 1 − δ

sup
f∈F

|R̂l̂(f) −Rl,D(f)| ≤
[
2Lλmin(T̂ 2) + µλmin(D)

λmin(T̂ )2

√
1
n

ln
(4C
δ

)]
Rn(F)g(C).

with g(C) = 6C2(
√
C + 1)

Theorem 2.3.10. Let l be an unbiased estimator for ℓ defined as in Eq. (2.43a),
Denoting f̂ = argmin

f
(R̂l̂(f)). It holds that

Rℓ,D(f̂) − min
f∈F

Rℓ,D(f) ≤
[
2Lλmin(T̂ 2) + µλmin(D)

λmin(T̂ )2

√
1
n

ln
(4C
δ

)]
Rn(F)g(C)

with g(C) = 6C2(
√
C + 1)

In order to prove the previous theorem we need the following Proposition.

Proposition 2.3.10.1. Let ℓ(t, y) be any bounded loss function and let l(t, y) be the
backward loss function defined in Eq. (2.43a).
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We define l̂(t, y) as the loss obtained using Γ̂−1 := T̂−1. If µ is the constant that
bounded the loss ℓ , i.e. sup(t,y)∈[0,1]C×Y ℓ(t, y) ≤ µ. For every ϵ

P(|l(t, y) − l̂(t, y)| ≥ ϵ) ≤ 2C2e
−2 ϵ2

C2µ2Lϕ,p
n

(2.44)

Proof of Proposition 2.3.10.1. Using Cauchy–Schwarz inequality and the fact that
ℓ is bounded by µ and that we obtain:

|l(t, y) − l̂(t, y)| = |(T−1 · ℓ(t) − T̂−1 · ℓ(t))y|
= |[(T−1 − T̂−1)ℓ(t)] · ey|
≤ ||(T−1 − T̂−1)ℓ(t)||2||ey||2
≤ ||T−1 − T̂−1||2||ℓ(t)||2
≤ µ||T−1 − T̂−1||2

So

P
(
|l(t, y) − l̂(t, y)| ≤ ϵ

)
≥ 1 − 2C2e

− ϵ2
µ29C2(

√
C+1)2

λmin(T̂ 2)
4

λmax(D)2 n

Proof of Theorem 2.3.10 . By the unbiasedness of l we have that Rℓ,D(f̂) = Rl,D(f̂).
Moreover since f̂ = argmin

f
(R̂l̂(f)) we have R̂l̂(f̂) ≤ R̂l̂(g) ∀g ∈ F .

Let f∗ be so that minf∈F Rℓ,D(f) = Rℓ,D(f∗). It follows that

Rℓ,D(f̂) − min
f∈F

Rℓ,D(f) = Rl,D(f̂) − min
f∈F

Rl,D(f)

= Rl,D(f̂) − R̂l,D(f̂) + R̂l,D(f̂) −Rℓ,D(f∗)
≥ Rl,D(f̂) − R̂l̂,D(f̂) − (Rℓ,D(f∗) − R̂l̂,D(f∗))

≥ 2 max
f∈F

|Rℓ,D(f) − R̂l̂,D(f)|

We observe that in all the previous theorems, the bounds found are always
decreasing as one over the square root of the number of samples. The above theorem
gives us a performance bound for the classifier found minimizing the backward loss
l, i.e. the unbiased estimator of the loss ℓ on the noisy dataset. The bounds found
depend on, the Rademacher complexity of the function space and the Lipschitz
constant of the loss function.The importance of these bounds lies in the fact that
they allow us to obtain performance bounds for a model trained with noisy data that
depends on values that we can estimate from the noisy dataset. In particular, there
is no dependence on the true noise transition matrix of the annotators, as in other
work (Natarajan et al., 2013) which is instead a quantity that cannot be known a
priori having access only to the training data. More in detail the bound depends
on the estimate noise transition matrix, the number of classes in the dataset, the
Rademacher complexity and the Lipschitz constant, which we can take as known a
priori and on the distribution of ground truth, which in many cases it makes sense
to assume uniform.
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2.4 Cohen’s kappa. Symmetric noise and symmetric
ground truth distribution

We can also consider the case where an estimate of the IAA matrix M is not
available and we only have access to a scalar representation of the inter-annotator
agreement like Cohen’s κ. Cohen’s κ coefficient measures the agreement between
two raters who each classify n items into C mutually exclusive categories.

We define the agreement among raters a and b as po: po =
∑C

c=1 P(ya = c∩yb = c)
Cohen and others (Cohen, 1960) suggest comparing the actual agreement (po) with
the “chance agreement” that could be obtained if the labels assigned by the two
annotators were independent (we will denote this quantity by pe).

pe =
C∑

c=1
P(ya = c)P(yb = c) (2.45)

Cohen’s κ coefficient is defined as the difference between the true agreement and the
“chance agreement” normalized by the maximum value this difference can reach

κ := po − pe

1 − pe
, (2.46)

If the raters are in complete agreement then κ = 1. If there is no agreement among
the raters other than what would be expected by chance (i.e. po = pe) κ = 0. It
can also take negative values. A negative κ indicates an agreement worse than
that expected by chance. This can be interpreted as no agreement at all between
annotators. In our work, we assume that the two raters are a corrupted version of
an observable “clean” (ground truth) label. In this setting, the label assigned by
annotator a to an item and the respective uncorrupted label are not independent
random variables. We found that in this setting the κ coefficient can take only
non-negative values.

In the case of symmetric noise and symmetric ground truth distribution, we need
to estimate just one parameter and hence the matrix T has to be parameterized by
a single parameter that can be estimated.

One particular example is the case where the noise is uniform among classes.
Under these hypotheses, T is a matrix with all values 1 − p on the diagonal and p

C−1
off the diagonal.

Lemma 2.4.1 (Relationship between p and κ). In the case of classification with
uniform noise for two homogeneous annotators with noise rate p, i.e if a is one
annotator, P(ya = i|y = j) = p if i ̸= j. If the distribution of the ground-truth labels
is uniform, it holds that:

p = (1 − C−1)(1 −
√
κ) (2.47)

with κ the Cohen’s kappa coefficient of the two annotators.
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Proof.

po = P(ya = yB) =
C∑

k,h=1
P(yA = k, yB = k|y = h)P(y = h)

=
C∑

k,h=1
P(yA = k|y = h)P(yB = k|y = h)νh =

C∑
k,h=1

T 2
h,kνh

=
C∑

h=1
(1 − p)2ch +

C∑
h=1

( p

C − 1
)2

(C − 1)ch = (1 − p)2 + p2

C − 1

Now

P(yB = k) =
C∑

h=1
P(yB = k|y = h)P(y = h) =

C∑
h=1

Thkνh = (Tν)k

In the previous equation, we used that T is symmetric.

pe =
C∑

k=1
P(yA = k)P(yB = k) =

C∑
k=1

P(yA = k)P(yB = k) = cTT 2c

= 2 p

C − 1 − Cp2

(C − 1)2 +
(
1 − Cp

C − 1
)2
νT ν

(2.48)

If the distribution of the true label y is symmetric the probability vector ν =
( 1

C , . . . ,
1
C ) So νT ν = 1

C and so

κ = C2p2 − 2C(C − 1)p+ (C − 1)2

(C − 1)2 (2.49)

From which it follows that

p = (1 − C−1)(1 −
√
κ) (2.50)

If T is assumed to be of the form described above (with all diagonal elements
equal to 1 − p and all off-diagonal entries equal), it has one eigenvalue equal to 1 and
all the rest are equal to 1 − pC(C − 1)−1 (this follows from the fact that in this case
T can be written as a weighted summation of the identity and a rank-one matrix).
Hence using Eq. (2.47) we get that λmin(T ) =

√
κ. The bounds from Theorem

2.3.10 holds replacing λmin(T ) with
√
κ. This allows us to obtain a bound for the

generalization gap of a classifier trained with backward loss even in the case where a
single statistic on the agreement between annotators is provided.

2.5 Experimental results
We performed experiments to validate the effectiveness of the method we propose

for estimating T̂ by studying the error in the estimation as a function of the
number of samples. We also performed experiments to show how the estimated T



2.5 Experimental results 32

can be leveraged to train classifiers in the presence of noise labels. In particular,
we performed experiments for a classification task on a synthetic dataset and on
the CIFAR10-N dataset, comparing the performance of a classifier trained using
labels obtained by some baseline aggregation method with the performance of a
classifier trained using the distribution of posteriors obtained from the estimation of
T (Eq. (2.33)) as soft-labels.

Estimation of T With these experiments, we aim to validate the theoretical results
of Sec. 2.3.1. The results were obtained from a synthetic, generated dataset in which
we generate the classes predicted by the annotators according to various T matrices.
For each annotator, we produce their prediction according to the matrix T . We run
experiments for the number of annotators H = 10, 7, 3, 2. For experiments with 2, 3
and 7 annotators, we generate T as all possible symmetric, stochastic and diagonally
dominant matrices with [0.1, 0.2, 0.3, 0.4, 0.5] out of the diagonal and [0.6, 0.8, 1.0] on
the diagonal. Classes are uniformly distributed. For experiments with 10 annotators,
we generate the matrices T as all possible (admissible) combinations that have
[0, 0.2, 0.4] out of the diagonal and [0.6, 0.8, 1.0] on the diagonal. In this case, we
both include uniform distribution of the true labels among the 4 classes and all the
distributions so that the four classes can be partitioned into two groups of indices so
that classes in the same group have the same probability. Namely, if the distributions
on the classes are given by = [d1, d2, d3, d4], admissible distributions are the ones for
which there are two subsets if indices I and J so that I ∪ J = {0, 1, 2, 3, 4} and for
all i, k ∈ I : di = dk. The probability of the classes takes value in [0.1, 0.2, 0.3, 0.4].
This means that, for instance, we will find the distribution [0.3, 0.3, 0.3, 0.1] or
the distribution [0.4, 0.1, 0.1.0.4] but not [0.3, 0.2, 0.1, 0.4]. Results for 2, 3 and 7
annotators were obtained by averaging over 3 runs. Results for 10 annotators were
obtained by averaging over 10 runs. The error that appears on axis y in the plots is
the difference in norm 2 of the true matrix T and the estimated matrix T̂ , obtained
as explained in Sec. 2.3.1.

We recall that if the minimum eigenvalue is 1, the matrix T is the identity,
and thus, the annotators always predict the exact class. The smaller the minimum
eigenvalue, the noisier the dataset will be. In Fig. 2.3 as well as in Fig. 2.2, we
can observe that the error in the estimation decreases as 1√

n
with n number of

samples, which is in agreement with the bound provided in Theorem 2.3.4. The
results with respect to the minimum eigenvectors and with respect to the maximum
diagonal value are consistent with each other and very similar. We also observed
that, as expected, the estimation becomes more accurate as the number of annotators
increases.

We can notice in Fig. 2.2 that the estimation becomes more precise as the number
of annotators increases.

With Fig. 2.3 we wanted to see if datasets with a higher noise level have higher
approximation errors than less noisy datasets. The plots show a minor trend: the
estimation error also decreases as the noise decreases. The trend is not particularly
noticeable perhaps due to a large number of annotators.

We recall that if the minimum eigenvalue is 1 or the maximum value of the
diagonals is 1, the matrix T is the identity, and thus, the annotators always predict
the exact class.

The smaller the minimum eigenvalue or the maximum value on the diagonal, the
noisier the dataset will be.
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Figure 2.1. Error in the estimation of T for 4 classes and 10 annotators. The plots are
obtained by averaging different admissible matrices T (see Sec. 2.3.2) and averaged over
matrices that have the same minimum eigenvalues rounded to the first decimal.

Classification task with synthetic data We consider a classification task with a
synthetic dataset. The features are generated uniformly in [0, 1]2. The assignment of
labels (y) is done by following the label distribution established for each experiment,
separating the space with lines parallel to the bisector of the first and third quadrants
(specifically, x2 = x1). See Fig. 2.4 for an example. Our dataset comprises 10000
samples.

For each dataset, annotations are generated according to the noise transition
matrix T . Various combinations of T are tested that respect the assumptions of
symmetry, stochasticity and diagonally dominance, as well as being commutative
with D (more details can be found in 2.3.2). The number of annotators is variable
in the set {3, 5}.

Losses We use categorical cross entropy as loss function. We use both hard labels
and soft labels to train the models.

To train the models with hard labels an aggregation method is needed to obtain
one final label from the annotators. We consider random and majority votes. In
random aggregation, the final label is randomly picked from the labels of the
annotators. In the majority vote the final label is the one with the most amount of
votes (the mode), if the mode is not unique, we randomly choose one of the most
voted classes. As soft labels, we consider the relative frequency among annotators
and the posterior distribution according to Eq. (2.33). In the case of frequency
for each sample we average the one-hot encoded annotations. Notice that random,
majority vote and frequency soft labels do not leverage the estimate of T while
the posterior does. In Fig. 2.5 we report the results for 4 classes with distribution
(0.4, 0.1, 0.4, 0.1) and 3 annotators. In more detail, Fig. 2.6 show the results of
the different aggregation methods, for different amounts of noise, when using a
neural network without hidden layer (i.e. a Logistic Regression) trained with Cross
Entropy Loss. When noise is absent, we check that, as expected, the results are
all identical. In the presence of noise (0.6 and 0.8), we notice in general that the
random aggregation is the worst. The others are equivalent, except for the posterior
(ours) which obtains slightly higher results. Average, on the other hand, obtains
a slightly lower value with minimum diagonal value of T equal to 0.8. However,
attention must be drawn to the fact that the y-scale of the graph is very narrow
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(a) 2 classes 2 annotators (b) 3 classes 2 annotators

(c) 4 classes 2 annotators (d) 4 classes 7 annotators

Figure 2.2. Error in the Estimation of T . The error is ||T − T̂ ||2. We aggregated the
matrices with the same minimum eigenvalue rounded at the first decimal.
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(a) 4 classes 7 annotators (b) 4 classes 10 annotators

Figure 2.3. The plots show the trend of the error estimation as the minimum eigenvalue
increases

Figure 2.4. Synthetic data for 4 classes with distribution (0.4,0.1,0.4,0.1)

and that in the case of 4 classes with a dataset constructed as in Fig. 2.4, a linear
classifier is not able to reach perfect accuracy.

We use accuracy with respect to a clean dataset as a performance metric.
Referring to Fig. 2.5 and the other figures of this section. The minimum value

on the diagonal of the matrix T denotes the annotators’ probability of assigning the
correct label for the class in which the noise is maximum. As expected, random
aggregation is the lowest performing method, and for all noise rates soft label
methods perform better than methods using hard labels.

Fig. 2.6 shows the accuracy for the case of 4 classes and a NN with no hidden
layer and 5 annotators. We can notice that even when the number of hidden neurons
is insufficient to obtain perfect accuracy. Hence, the classifier is not the best possible;
our approach for a high-noise dataset performs better.

The posteriors distribution is computed using the estimated T .
In conclusion, our results on this dataset show that using the posteriors distri-

bution, as soft labels, allows for better performance than using the average of the
labels assigned by annotators and then using majority vote or random aggregation.
Our method is shown to be more robust to the noise and is also the one with less
variance in the results. This confirms our hypotheses that by leveraging the matrix
T̂ better classification accuracy can be achieved.

Experiments on CIFAR10-N The CIFAR10-N dataset1 contains CIFAR-10 train
images with noisy labels annotated by humans using Amazon Mechanical Turk. Each

1http://www.noisylabels.com

http://www.noisylabels.com
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Figure 2.5. Comparison between the performance of Cross Entropy Loss using majority
vote, random aggregation method or the posteriors (posterior) and relative frequency
(average) as soft labels.On the y-axis the accuracy on a clean dataset and on the x-axis
the values of the minimum on the diagonal of T . Small values of the minimum diagonal
value mean a noisy dataset, while the minimum is 1 in the noise-free case. The results are
obtained for 3 annotators and 4 classes, by averaging on different admissible matrices T
(see Sec. 2.3.2) that have the same minimum diagonal values rounded to the first decimal.
The error bands show the maximum and minimum performance for each method.

Figure 2.6. 5 annotators, 4 classes, no hidden layer.

Figure 2.7

image is labelled by three independent annotators. Table 2.1 shows the accuracy
achieved using the different aggregation methods. For this experiment, we used
Resnet34 (Khetan et al., 2017) with and without pre-training. In both cases, our
approach of aggregation achieves the best performance. Note that in this dataset
there are no guarantees that the assumptions we made on T are satisfied, however,
the method is still applicable with positive results.
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Aggregation Method Pretrained Not-Pretrained
random 0.718 ± 0.035 0.579 ± 0.023

majority vote 0.740 ± 0.017 0.590 ± 0.006
average 0.762 ± 0.012 0.637 ± 0.016

posteriors (ours) 0.794 ± 0.005 0.652 ± 0.014
Table 2.1. Test Accuracy on CIFAR10-N with Resnet34

2.6 Concluding remarks
We have addressed the problem of learning from noisy labels in the case where

the dataset is labelled by annotators that occasionally make mistakes. We have
introduced a methodology to estimate the noise transition matrix T of the annotators
given the IAA. We further showed different techniques to leverage this estimate to
learn from the noisy dataset in a robust manner. We have shown theoretically that
the methods we introduce are sound. We supported our methodology with some
experiments that confirm our estimation of the noise transition matrix is valid and
that this can be leveraged in the learning process to obtain better performance.

Limitations The main limitation of our current approach to estimating T is that
it only considers the case where T is symmetric and D assumed to be known and
commutes with T . Extending the results to the case where T might not be symmetric
and different among annotators is one possible future research direction.
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Chapter 3

On Generalization Bounds for
Clustering

Among the central questions in machine learning is, given a sample of n points
P drawn from some unknown but fixed distribution D, how well does a classifier
trained on P generalize to D? The probably most popular way to formalize this
question is, given a loss function L and optimal solutions SP and SD for sample P
and distribution D, respectively, how the empirical excess risk L(D,SP ) − L(D,SD)
decreases as a function of n. This work focuses on loss functions associated with the
clustering problem. Popular examples include (k, z) clustering, which asks for a set
of k centers S ⊂ Rd minimizing the cost

∑
p∈P mins∈S ∥p− s∥z

2 and more generally,
(k, j, z) subspace clustering which asks for a set of k subspaces U := {U1, U2, . . . Uk}
minimizing

∑
p∈P minUi∈U ∥(I − UiU

T
i )p∥z

2.
In this chapter our goal is to address the following questions:

RQ3 How does the excess risk behave as function of k, d, and n for center-based
clustering ?
RQ4 And how does the excess risk behave as function of k, d, j, and n for
subspace clustering ?

Special cases include (k, 1) clustering, known as k-median, (k, 2) clustering known
as k-means and (k, j, 2) clustering known as projective clustering. Generally, there
seems to be an interest in varying z, as letting z tend towards 1 tends to result in
outlier-robust clusterings. The problem is less widely explored for z > 2, although it
still has numerous applications. For example, centralised moments with respect to
the three and four norms are skewness and kurtosis, respectively, and are extensively
employed in statistics. Fitting a mixture model with respect to skewness minimizes
asymmetry around the target center. Higher powers enable us to put a greater
emphasis on outliers in a more tractable manner, see for example Cohen-Addad
et al. (2021), as z → ∞ tends to suffer heavily from the curse of dimensionality
(Agarwal et al., 2004; Ding, 2020). Despite a huge interest and a substantial amount
of research, so far optimal risk bounds Õ

(√
k/n

)
1 for the k-means problem have

been established, see the seminal paper by Fefferman et al. (2016) for the upper
bound and Bartlett et al. (1998c) for nearly matching lower bounds. For general
(k, z)-clustering problems, the best known results prove a risk bound of O

(√
kd/n

)
1Õ hides logarithmic terms, i.e. we consider O

(√
k/n · polylog(k, n)

)
= Õ

(√
k/n
)

.
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(Bartlett et al., 1998c). For (k, j, 2) clustering, the best known bounds of Õ
(√

kj/n

)
are due to Fefferman et al. (2016). Thus, the following question naturally arises:

Is it possible to obtain optimal generalization bounds for all (k, j, z)-clustering
objectives?

We answer this question in the affirmative whenever j and z are constant.
Specifically, we show

• The excess risk bound for (k, z)-clustering when given n independent samples
from an unknown fixed distribution D is bounded by Õ

(√
k/n

)
, matching

the lower bound of Bartlett et al. (1998c).

• The excess risk bound for (k, j, z)-clustering when given n independent samples
from an unknown fixed distribution D is bounded by Õ

(√
kj2/n

)
.

• There exists a distribution such that the excess risk for the (k, j, 2)-clustering
problem is at least Ω

(√
kj/n

)
, matching the upper bound of Fefferman et al.

(2016) up to polylog factors.

3.0.1 Related work
The most basic question one could answer is if the empirical estimation performed

on P is consistent, i.e. as n → ∞, whether the excess risk tends to 0. This was
shown in a series of works by Pollard (Pollard, 1981, 1982b), see also Abaya and
Wise (1984). Subsequent work then analyzed the convergence rate of the risk. The
first works in this direction proved convergence rates of the order Õ(1/

√
n) without

giving dependencies on other parameters (Chou, 1994; Pollard, 1982a). Linder et al.
(1994) gave an upper bound of O(d3/2√k/n). Linder (2000) improved the upper
bound to O(d

√
k/n). Bartlett et al. (1998a) showed an upper bound O(

√
kd/n) and

gave a lower bound of Ω(
√
k1−4/d/n). Motivated by applications of clustering for

high dimensional kernel spaces (Bach and Jordan, 2005; Calandriello and Rosasco,
2018; Chitta et al., 2011, 2012; Dhillon et al., 2004; Fefferman et al., 2016; Liu et al.,
2020, 2019; Oglic and Gärtner, 2017; Rudi and Rosasco, 2016; Wang et al., 2019a;
Yin et al., 2020; Zhang and Liao, 2019), research subsequently turned its efforts
towards minimizing the dependency on the dimension. Biau et al. (2008b) presented
an upper bound of O(k/

√
n), see also the work by Clémençcon (Clémençcon, 2011).

Fefferman et al. (2016) gave a matching upper bound of the order O(
√
k/n), which

was later recovered by using techniques from Foster and Rakhlin Foster and Rakhlin
(2019) and Liu (Liu, 2021). Further improvements require additional assumptions of
the distribution D, see Antos et al. (2005); Levrard (2015). For subspace clustering,
there have only been results published for the case z = 2 (Fefferman et al., 2016;
Lauer, 2020; Shawe-Taylor et al., 2005), for which the state of the art provides a
Õ
(√

kj/n

)
risk bound due to Fefferman et al. (2016). A highly related line of research

originated with the study of coresets for compression. For Euclidean (k, z) clustering,
coresets with space bounds of Õ (k/ε2+z) have been established (Cohen-Addad et al.,
2021b, 2022a), which roughly corresponds to a error rate of Õ

(
2+z
√

k/n

)
as a function

of the size of the compression. For the specific case of k-median and k-means,
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coresets with space bounds of Õ
(

k(2z+2)/(z+2)/ε2
)

are known (Cohen-Addad et al.,

2022b), which corresponds to a error rate of Õ
(√

k(2z+2)/(z+2)/n

)
. Both results are

optimal for certain ranges of ε and k (Huang et al., 2022) and while these bounds
are worse than what we hope to achieve for generalization, many of the techniques
such as terminal embeddings are relevant for both fields. For (k, j, z) clustering,
coresets are only known to exist under certain assumptions, where the provable size
is Õ

(
exp(k, j, ε−1)

)
(Feldman and Langberg, 2011; Feldman et al., 2020).

3.0.2 Notation

We use ∥x∥p := p
√∑

|xi|p to denote the ℓp norm of a vector x. For p → ∞, we
define the limiting norm ∥x∥∞ = max xi. Further, we refer to the d-dimensional unit
Euclidean ball by Bd

2 , i.e. x ∈ Bd
2 is a vector in Rd and ∥x∥2 :=

√∑d
i=1 x

2
i ≤ 1. Let

U be a d× j orthogonal matrix, i.e., with columns that are pairwise orthogonal and
have unit Euclidean norm. We say that UUT is the projection matrix associated
with U . Let z be a positive integer. Given any set S of k points in Bd

2 we denote
the (k, z)-clustering cost for a point set P with respect to solution S as

cost(P,S) :=
∑
p∈P

min
s∈S

∥p− s∥z
2.

Special cases include k-means (z = 2) and k-median (z = 1). Similarly, given a
collection U of k orthogonal matrices of rank at most j, we denote the (k, j, z)-
clustering cost of a point set P as

cost(P,U) :=
∑
p∈P

min
U∈U

∥(I − UUT )p∥z
2.

The specific case (k, j, 2) is often known as projective clustering in literature. The
cost vector vS,P ∈ R|P |, respectively vU ,P ∈ R|P | has entries vS

p = mins∈S ∥p− s∥z
2,

respectively vU
p = minU∈U ∥(I − UUT )p∥z

2 for p ∈ P . We will omit P from vS,P and
vU ,P , if P is clear from context. The overall cost is ∥vS∥1 =

∑
p∈P mins∈S ∥p− s∥z

2
and ∥vU∥1 =

∑
p∈P minU∈U ∥(I − UUT )p∥z

2. The set of all cost vectors is denoted
by V .

Let D be an unknown but fixed distribution on Bd
2 with probability density func-

tion P. For any solution S, respectively U , we define cost(D,S) :=
∫

p∈Bd
2

mins∈S ∥p−
s∥z·P[p]dp andOPT := minS cost(D,S) and respectively cost(D,U) :=

∫
p∈Bd

2
minU∈U ∥(I−

UUT )p∥z · P[p]dp and OPT := minU cost(D,U). Let P be a set of n points sampled
independently from D. We denote the cost of the empirical risk minimizer on P by
OPTP := 1

n minS ∥vS∥1, and respectively, OPTP := 1
n minU ∥vU∥1. The excess risk

of P with respect to a set of cost vectors is denoted by

E|P |(V ) := EP [OPTP ] −OPT.

Finally, we use the notion of a net. Let (V, dist) be a metric space, N (V, dist, ε)
is an ε-net of the set of vectors V , if for all v ∈ V ∃ v′ ∈ N (V, dist, ε) such that
dist(v, v′) ≤ ε. We will particularly focus on nets for cost vectors induced by (k, z)-
clustering and (k, j, z)-clustering defined as follows, prior work has proposed similar
nets for coresets and sublinear algorithms for (k, z) clustering (Cohen-Addad et al.,
2021a).
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Definition 3.0.1 (Clustering Nets). A set Nε of |P |-dimensional vectors is an
ε-clustering net if for every cost vector v obtained from a solution S or U , there
exists a vector v′ ∈ Nε with ∥v′ − v∥∞ ≤ ε

3.1 Outline and technical contribution
for each section, we decided to first state the theorem and present an overview of

the theory and then provide the the full proofs in the following subsection. In this
section, we endeavour to present a complete and accessible overview of the key ideas
behind the theorems. Let P be a set of n points sampled independently from some
unknown but fixed distribution D. To show that the excessive risk with respect to
clustering objectives is in Õ(f(n)) for some function f , it is sufficient to show two
things. First, that for the optimal solution UOPT, the clustering cost estimated using
P is close to the true cost. Second, any solution that is more expensive than UOPT
does not become too cheap when evaluated on P . Both conditions are satisfied if for
any solution U ∣∣∣∣ 1ncost(P,U) − cost(D,U)

∣∣∣∣ ∈ O(f(n)).

Showing EP

∣∣∣ 1
ncost(P,UOPT) − cost(D,UOPT)

∣∣∣ ∈ O(
√

1/n) is typically a straight-
forward application of concentration bounds such as Chernoff’s bound. In fact, these
concentration bounds show something even stronger. Given t solutions U1, . . .Ut, we
have

EP sup
Ui

∣∣∣∣ 1ncost(P,Ui) − cost(D,Ui)
∣∣∣∣ ∈ O

(√
log t/n

)
. (3.1)

What remains is to bound the number of solutions t.

Clustering nets and dimension reduction for center based clustering
Unfortunately, the total number of expensive clusterings in Euclidean space is
infinite, making a straightforward application of 3.1 useless. Nets as per Definition
3.0.1 are now typically used to reduce the infinite number of solutions to a finite
number. Specifically, one has to show that by preserving the costs of all solutions
in the net, the cost of any other solution is also preserved. Using basic techniques
from high dimensional computational geometry, it is readily possible to prove that
a ε-net for (k, j, z) clustering of size exp(k · j · d · log ε−1) exists, where d is the
dimension of the ambient space. Plugging this into Equation 3.1 and setting ε−1 = n

then yields a generalization bound of the order O
(√

kjd log n/n

)
. Unfortunately, this

leads to a dependency on d, which is suboptimal. To improve the upper bounds,
we take inspiration from coreset research. For (k, z)-clustering, a number of works
have investigated dimension reduction techniques known as terminal embeddings,
see Becchetti et al. (2019); Huang et al. (2021). Given a set of points P ∈ Rd, a
terminal embedding f : Rd → Rm guarantees ∥p − q∥2 = (1 ± ε) · ∥f(p) − f(q)∥2
for any p ∈ P and q ∈ Rd. Terminal embeddings are very closely related to the
Johnson-Lindenstrauss lemma, but more powerful in key regard: only one of the
points is required to be in P . The added guarantee extended to arbitrary q ∈ Rd

due to terminal embeddings allows us to capture all possible solutions. There are
also even simpler proofs for k-mean that avoid this machinery entirely, see Fefferman
et al. (2016); Foster and Rakhlin (2019); Liu (2021). Unfortunately, these arguments
are heavily reliant on properties of inner products and are difficult to extend to
other values of z. The terminal embedding technique may be readily adapted to



3.1 Outline and technical contribution 42

(k, z)-clustering, though some care in the analysis must be made to avoid the worse
dependencies on the sample size necessitated for the corset guarantee, described as
follows.

Improving the union bound via chaining: To illustrate the chaining technique,
consider the simple application of the union bound for a terminal embedding with
target dimension m = Θ(ε−2 logn), see the main result of Narayanan and Nelson
(2019). Replacing the dependency on d with an appropriately chosen parameters
and plugging the resulting net Nε of size exp(kε−2) yields a generalization bound of
O
(

4
√

k log n/n

)
for (k, z) clustering. We improve on this using a chaining analysis, see

Cohen-Addad et al. (2021b, 2022a) for its application to coresets for (k, z) clustering
and Fefferman et al. (2016) for (k, j, 2) clusterings. Specifically, we use a nested
sequence of nets N1/2, N1/4, N1/8, . . . , N2−2 log n . Note that for every solution S, we
may now write cost(p,S) for any p ∈ P as a telescoping sum

cost(p,S) =
∞∑

h=0
cost(p,S2−(h+1)) − cost(p,S2−h)

with ,S2−h ∈ Nh and cost(p,S1) being set to 0. We use this as follows. Suppose
for some solution S, we have solutions S2−h ∈ N2−h and S2−(h+1) ∈ N2−(h+1) . Then
|cost(p,S2−h) − cost(p,S2−(h+1))| ≤ O(2−h) |cost(p,S2−h) − cost(p,S)| for all p ∈ P .
Instead of applying the union bound for a small set of solutions, we apply the
union bound along every pair of solutions appearing in the telescoping sum. Using
arguments similar to Equation 3.1, we then obtain

EP sup
S2−h ×S2−(h+1)

∈Nh×Nh+1

∣∣∣∣ 1ncost(P,S2−h) − 1
n

cost(P,S2−(h+1))
∣∣∣∣

= 2−h · Õ

√ log(|Nh| · |Nh+1|)
n

 = 2−h · Õ

√k · 22h · polylog(k/2h)
n

 ∈ Õ

√k

n


This is the desired risk bound for (k, z) clustering. To complete the argument in

a rigorous fashion, we must now merely combine the decomposition of cost(P,S) into
the telescoping sum with the learning rate that we just derived. Indeed, this already
provides a simple way of obtaining a bound on the risk of the order Õ

(√
k/n

)
, which

turns out to be optimal. In summary, to apply the chaining technique successfully,
we require two properties: (i) the dependency on ε in the net size can be at most
exp(Õ(ε−2)), as the increase in net size is then met with a corresponding decrease
between successive estimates along the chain and (ii) the nets have to preserve the
cost up to an additive ε for every sample point p. The second property is captured
by Definition 3.0.1. Both properties impose restrictions on the dimension reductions
that can be successfully integrated into the chaining analysis.

Dimension reduction for projective clustering: It turns out that extending
this analysis (k, j, z) clustering is a major obstacle. While the chaining method itself
uses no particular properties of (k, z) clustering, the terminal embeddings needed to
obtain nets cannot be applied to subspaces. Indeed, terminal embeddings by the
very nature of their guarantee, cannot be linear2, and hence a linear structure such

2Consider an embedding matrix S ∈ Rd×m. Clearly, there exists some vector x ∈ Rd that is in
the kernel of S whenever m < d, hence for any vector p, ∥p − (x + p)∥2 cannot be preserved.
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as a subspace will not be preserved. At this stage, there are a number of initially
promising candidates that can provide alternative dimension reduction methods.
For example, the classic Johnson-Lindenstrauss lemma can be realized via a random
embedding matrix and, moreover, preserves subspaces, see for example Sarlós (2006);
Clarkson and Woodruff (2009); Cohen et al. (2015). Unfortunately, as remarked by
Huang et al. (2021), there is an inherent difficulty in applying Johnson-Lindenstrauss
type embeddings even for (k, z) clustering coresets and the same arguments also
apply for generalization bounds.

An alternative dimension reduction method based on principal component anal-
ysis was initially proposed by Feldman et al. (2020) for (k, j, 2), see also Cohen et al.
(2015) and most notably Sohler and Woodruff (2018) for a different variant that
applies to arbitrary (k, j, z) objectives. For (k, j, 2) clustering, it states that a dimen-
sion reduction on the first O(D/ε) principal components preserves the projective
cost of all subspaces of dimension D. Since (k, j, 2) clustering is a special case of a
k · j dimensional projection, it implies that O(kj/ε) dimensions are sufficient. Given
that these dimension reductions are based on PCA-type methods, they are linear
and therefore seem promising initially. Unfortunately, this technique has serious
drawbacks. It does not satisfy the requirements for Definition 3.0.1, only preserving
the cost on aggregate rather then per individual point, and thus cannot be combined
with the chaining technique. Without the chaining technique, the best bound one
can hope for is of the order Õ

(
3
√
k2j2/n

)
, which falls short of what we are aiming

for.
Another important technique used to quantify optimal solutions of (k, j, z) clus-

tering initially proposed by Shyamalkumar and Varadarajan (2007) and subsequently
explored by Feldman et al. (2010); Deshpande and Varadarajan (2007) and has
frequently seen use in coreset literature (Feldman and Langberg, 2011; Huang et al.,
2021). Succinctly, it states that a (1 + ε) approximate solution to the (1, j, z) clus-
tering problem of a point set P is contained in a subspace spanned by Õ(j2/ε) input
points of P . While this result improves over PCA for large values of k, applying it
only yields a learning rate of the order O( 3

√
kj3/n). It turns out that this technique

has the exact same limitations as PCA, namely that costs per point are not preserved,
and thus only offers a different tradeoff in parameters.

Our new insight: Given the state of the art, designing a dimension reduction
technique that would enable the application of the chaining technique might seem
hopeless, and indeed, we were not able to prove such. The key insight that allows
us to bypass these bottlenecks is to find a dimension reduction that applies not
to all solutions U , but only to a certain subset of them. Indeed, we show that
for any point set P contained in the unit ball and any subspace U of dimension
j, there exists a subspace S spanned by O(j/ε2) points of P such that for every
point p: |cost(p,U) − cost(pS ,US)| ≤ ε. This is similar to the guarantee provided
by Shyamalkumar and Varadarajan (2007) but stronger in that it (i) applies to
arbitrary subspaces, which is required for the chaining analysis, and (ii) applies to
each point of P individually, rather than for the entire point set P on aggregate.
We then augment the chaining analysis by applying a union bound over all

( |P |
j/ε2

)
possible dimension reductions, thereby capturing all solutions U . We are unaware
of any previously successful attempts at integrating multiple dimension reductions
within a chaining analysis and believe that the technique may be of independent
interest.
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3.2 Useful results from learning theory
Our goal is to bound the rate with which the empirical risk decreases for

clustering problems. For a fixed set of n points P and a set of functions F : P → R,
we define the Rademacher complexity (Radn) and the Gaussian complexity (Gn)
wrt F respectively as

Radn(F ) = 1
n

· Er sup
f∈F

∑
p∈P

f(p) · rp Gn(F ) = 1
n

· Eg sup
f∈F

∑
p∈P

f(p) · gp

where rp are independent random variables following the Rademacher distribution,
whereas gp are independent Gaussian random variables. In our case, we can think of f
as being associated to a solution S (respectively a solution U) and f(p) = cost(p,S) =
mins∈S ∥p − s∥z

2 (respectively f(p) = cost(p,U) = minU∈U ∥(I − UUT )p∥z
2). Since

we associate every f with a cost vector vS , we will use Radn(F ) and Radn(V ) as
well as Gn(F ) and Gn(V ) interchangeably. The following theorem is due to Bartlett
and Mendelson (Bartlett and Mendelson, 2002).

Theorem 3.2.1 (Simplified variant of Theorem 8 of Bartlett and Mendelson (2002)).
Consider a loss function L : A → [0, 1]. Let F be a class of functions mapping from
X to A and let (Xi)n

i=1 be independent samples from D. Then, for any integer n
and any δ > 0, with probability at least 1 − δ over samples of length n, denoting by
Ên the empirical risk, every f ∈ F satisfies

EL(f(X)) ≤ ÊnL(f(X)) +Radn(F ) +

√
8 ln 2/δ
n

.

Thus, in order to bound the excess risk, Theorem 3.2.1 shows that it is sufficient
to bound the Rademacher complexity. It is well known (see, for example, B.3 of
Rudra and Wootters (2014)) that Radn(V ) ≤

√
2πGn(V ). Thus we can alternatively

bound the Gaussian complexity, which is sometimes more convenient. Note that if
V is the set of all cost vectors, clustering nets are mere N (V, ∥.∥∞, ε). Using these
nets, we can bound the Rademacher and Gaussian complexity. Indeed the following
lemma holds.

Lemma 3.2.2. Let D be a distribution over Bd
2 and let P a set of n points sampled

from D. Suppose that for a set of n-dimensional vector V , we have an absolute
constants C, γ > 0 such that

log |N (V, ∥.∥∞, ε)| ∈ O(ε−2 logγ(nε−1)C). (3.2)

Then

Gn(V ) ∈ O

√C logγ+2 n

n

 .
Proof of Lemma 3.2.2

In this section, we include the proof of Lemma 3.2.2 and some preliminary facts
that will be useful for the proof.

Let r be a Rademacher vector, i.e. every entry ri is sampled independently
uniformly from {−1, 1}. Further, we say that g is a Gaussian vector if every entry
gi is a standard Gaussian with mean 0 and variance 1. We have the following useful
properties of Gaussians.
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Fact 3.2.2.1 (Appendix B.1 by Rudra and Wootters (2014)). Let g1, . . . gn be
Gaussians with means µi and variances σ2

i .

• If σ2
i ≤ σ2 for all i, then E[maxgi |gi|] ≤ 2σ

√
2 logn.

• If the Gaussians are independent, then
∑n

i=1 aigi is Gaussian distributed with
mean

∑n
i=1 aiµi and variance

∑n
i=1 a

2
iσ

2
i .

• If the gi are independent standard Gaussians with mean 0 and variance 1, then
Y :=

∑n
i=1 g

2
i is Chi-squared distributed with mean E[

√
Y ] ∈ O(

√
n).

Another result we need is the following

Lemma 3.2.3 (Lemma 5.2 of Vershynin (2012)). |N (Bd
2 , ∥.∥2, ε)| ≤ (1 + 2/ε)d.

We are now ready to prove the Lemma 3.2.2. The proof of Lemma is similar to
arguments used to prove Dudley’s theorem.

Proof Lemma 3.2.2. For ease of notation, we use solutions S induced by points, but
the proof carries over without any modifications other than changing the notation
to collections of subspaces U .

Consider an arbitrary cost vector vS . We write vS as a telescoping sum

vS :=
∞∑

h=0
vh+1,S − vh,S

where v0 = 0 and vi,S is a vector from N (V, ∥.∥∞, 2−i) approximating vS . Observe
that

∥vh+1,S − vh,S∥∞ ≤ ∥vh+1,S − vS + vS − vh,S∥∞ ≤ 2 · 2−h (3.3)
due to the triangle inequality. Thus we have

n ·Gn(V ) = EP,g

[
sup

S
(vS)T g

]
= EP,g

[
sup

S

∞∑
h=0

(vh+1,S − vh,S)T g

]

≤ EP,g

∞∑
h=0

[
sup

S
(vh+1,S − vh,S)T g

]

= EP,g

∞∑
h=0

 sup
vh+1,S ,vh,S∈

N (V,∥.∥∞,2−(h+1))×N (V,∥.∥∞,2−h)

(vh+1,S − vh,S)T g



= EP,g

log n∑
h=0

 sup
vh+1,S ,vh,S∈

N (V,∥.∥∞,2−(h+1))×N (V,∥.∥∞,2−h)

(vh+1,S − vh,S)T g



+EP,g

∞∑
h=log n

 sup
vh+1,S ,vh,S∈

N (V,∥.∥∞,2−(h+1))×N (V,∥.∥∞,2−h)

(vh+1,S − vh,S)T g


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= EP,g

log n∑
h=0

 sup
vh+1,S ,vh,S∈

N (V,∥.∥∞,2−(h+1))×N (V,∥.∥∞,2−h)

(vh+1,S − vh,S)T g

 (3.4)

+EP,g

[
sup

S
(vS − vlog n,S)T g

]
(3.5)

We bound the terms 3.4 and 3.5 differently, starting with the latter.
For every S

(vS − vlog n,S)T g ≤ ∥vS − vlog n,S∥2 · E[∥g∥2],

due to the Cauchy Schwarz inequality. Further,

∥vS − vlog n,S∥2 ≤
√
n · ∥vS − vlog n,S∥∞ ≤

√
n · 2− log n =

√
1
n
,

which, combined with the third item in Fact 3.2.2.1 yields

EP,g

[
sup

S
(vS − vlog n,S)T g

]
∈ O

(√
1
n

·
√
n

)
= O(1). (3.6)

We now consider the term 3.4. Due to the second item of Fact 3.2.2.1, (vh+1,S −
vh,S)T g is Gaussian distributed with mean 0 and variance

n∑
i=1

(vh+1,S − vh,S)2
i ≤ 4n · 2−2h.

Thus, we have, using the first item in Fact 3.2.2.1

EP,g

log n∑
h=0

 sup
vh+1,S ,vh,S∈

N (V,∥.∥∞,2−(h+1))×N (V,∥.∥∞,2−h)

(vh+1,S − vh,S)T g


≤

log n∑
h=0

√
32n · 2−2h log

∣∣N (V, ∥.∥∞, 2−(h+1)) × N (V, ∥.∥∞, 2−h)
∣∣

Now using equation (3.2) we obtain that,

32n · 2−2h log
∣∣∣N (V, ∥.∥∞, 2−(h+1)) × N (V, ∥∥̇∞, 2−h)

∣∣∣ ∈ O(n · logγ n)

So we have that
log n∑
h=0

√
32n · 2−2h log

∣∣N (V, ∥.∥∞, 2−(h+1)) × N (V, ∥.∥∞, 2−h)
∣∣ ∈ O(

√
n · logγ+2 n)

(3.7)

Adding the bounds (3.7) and (3.6) for Terms (3.5) and (3.4), respectively yields the
claim.
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Finally, we will frequently use the following triangle inequality extended to
powers.

Lemma 3.2.4 (Triangle Inequality for Powers (Lemma A.1 of Makarychev et al.
(2019))). Let a, b, c be an arbitrary set of points in a metric space with distance
function d and let z be a positive integer. Then for any ε > 0

d(a, b)z ≤ (1 + ε)z−1d(a, c)z +
(1 + ε

ε

)z−1
d(b, c)z

|d(a, b)z − d(a, c)z| ≤ ε · d(a, c)z +
(2z + ε

ε

)z−1
d(b, c)z.

The specific types of nets used in our study and the size bounds for those nets
will be the key to obtaining the desired upper bounds and will be detailed in the
next section.

3.3 Generalization bounds for center-based clustering
and subspace clustering

We start by giving our generalization bounds for center based clustering and
subspace clustering problems. For subspace clustering problems, we first state the
result for general (k, j, z) clustering. An improvement for the special case z = 2 will
be given later.

Theorem 3.3.1. Let D be a distribution over Bd
2 and let P be a set of n points

sampled from D. For any set of k points S ⊂ Bd
2 , we denote by vS the n-dimensional

cost vector of P in solution S with respect to the (k, z)-clustering objective. Moreover
we denote by vU the n-dimensional cost vector of P in solution U with respect to
the (k, j, z)-clustering objective. Let Vz be the union of all cost vectors of P for the
center-based clustering and Vj,z the union of all cost vectors for subspace clustering.
Then with probability at least 1 − δ

En(Vz) ∈ O

√k · log4 n

n
+

√
log 1/δ
n

 (3.8)

En(Vj,z) ∈ O

(√
k · j2 · log jn · log3n

n
+

√
log 1/δ
n

)
. (3.9)

Following Theorem 3.2.1, it is sufficient to bound the Rademacher complexity in
order to bound the excess risk. The Rademacher complexity is, up to lower order
terms, equal to the Gaussian complexity, which, following Lemma 3.2.2 may be
bounded by obtaining small nets with respect to the ∥.∥∞ norm. We believe that
the results on the bounds of the nets, may be of independent interest and we’ll state
these results in the following Lemma.

Lemma 3.3.2. Let D be a distribution over Bd
2 and let P a set of n points sampled

from D, let Vz be defined as in Theorem 3.3.1 let Vj,z be defined as in Theorem 3.3.1.
Then

|N (Vz, ∥.∥∞, ε)| ≤ exp(O(1)z3 · k · ε−2 logn · (log(z) + log(ε−1))) (3.10)
|N (Vj,z, ∥.∥∞, ε)| ≤ exp(O(1)(3z)z+2 · k · j · ε−2(logn+ j log(jε−1)) log ε−1).

(3.11)
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Combining Lemma 3.3.2 with Lemma 3.2.2 now yields the immediate bound on
the Rademacher and Gaussian complexity. Following the discussion from Section
3.1, we use terminal embeddings to prove the part of Lemma 3.3.2 pertaining to
(k, z) clustering, see Sec. 3.3.1. Unfortunately, the terminal embedding technique is
not admissible for obtaining nets for subspace clustering as clarified in Section 3.1.
Thus, we use an entirely different approach. We show the existence of a collection
of dimension reducing maps with subspace preserving properties. Fortunately, the
number of dimension reducing maps is small. Our desired net sizes then follow
by enumerating over all of these dimension reducing maps, and for the candidate
solutions covered by each such dimension reducing map, we can find an efficient net.
First, we introduce a slightly different, but closely related notion to (1, j, z)-nets.

Definition 3.3.3 (Projective Nets). Let P ⊂ Bd
2 be a set of points, and let z be a

positive integer. For a d× j matrix S with columns that have at most unit norm and
any point p ∈ P , define the projective cost as costproj(p, S) = ∥ST p∥2. Let V be the
set of all projective cost vectors induced by such matrix S. We call a N (V, ∥.∥∞, ε)
a (ε, j)-projective net of P .

On a high level, the proof largely relies on the following decomposition. Let
U be a candidate subspace and let Π be a projection matrix used to approximate
∥(I − UUT )p∥z

2 We have

∥(I − UUT)p∥2 = ∥Πp∥2︸ ︷︷ ︸
(1)

− ∥UT Πp∥2︸ ︷︷ ︸
(2)

+ ∥(I − Π)p∥2︸ ︷︷ ︸
(3)

− ∥UUT(I − Π)p∥2︸ ︷︷ ︸
(4)

+ 2pT ΠUUT(I − Π)p︸ ︷︷ ︸
(5)

(3.12)

Here, we wish to select Π such that ∥UT (I − Π)p∥2 is small for all p ∈ P . Note
that this implies that the terms 2pT ΠUUT (I − Π)p and ∥UUT (I − Π)p∥2 are small.
For the term (2), we merely have to show that projective nets exist. If the number
of Π is small, we can further construct good nets for the terms (1) and (3) . We
start by giving a bound for the projective nets. Our first Lemma 3.3.4 shows that if
the points lie in a sufficiently low-dimensional space, such a net can be obtained by
constructing a net N (Bd

2 , ∥.∥2, ε
′) for a sufficiently small ε′.

Lemma 3.3.4. Let P ⊂ Bd
2 be a set of points and let z be a positive integer. Then

there exists an (ε, j)-projective net of size |N (V, ∥.∥∞, ε)| ≤ exp(O(1)·d·j ·log(jε−1)).

To reduce the dependency on the dimension, we now use the following lemma.
Essentially, it shows that in order to retain the properties of U , we can find a
projection matrix Π of rank at most O(jε−2).

Lemma 3.3.5. Let P ⊆ Bd
2 . For any orthogonal matrix U ∈ Rj×d, there exists

M ⊆ P , with |M | ∈ O(j · ε−2), such that ∀p ∈ P, ∥UT (I − ΠM )p∥ ≤ ε · ∥(I − ΠM )p∥.

We now use this lemma as follows. We can efficiently enumerate over all candidate
Π. This immediately gives us 0-nets for the terms (1) and (3). For each Π, we then
apply Lemma 3.3.4, which gives us a net for term (2). Finally, by choice of Π, we
can show that terms (4) and (5) are negligible.
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3.3.1 Proofs for center-based clustering

Lemma 3.3.6. Let P ⊂ Bd
2 be a set of points. Let V be the set of all cost vectors

of P for (k, z)-clustering. Then there exists an ε-clustering net of size

|N (V, ∥.∥∞, ε)| ≤ exp(O(1) · z · k · d · log(zε−1)).

Proof. We start by proving the bound for k = 1. Suppose we are given a net
N (Bd

2 , ∥.∥2, δ), for a δ to be determined later. Consider a candidate solution {s}
with cost vector v{s} ∈ V . Let s′ be the point in ∈ N (Bd

2 , ∥.∥2, δ) of such that
∥s− s′∥ ≤ δ, if s′ is not unique any one will be sufficient. Let vS′ be the cost vector
of S ′. The number of distinct solutions S ′ are |N (Bd

2 , ∥.∥2, δ)| = exp(O(1) ·d · log δ−1)
due to Lemma 3.2.3.

What is left to show is that all solutions constructed in this way satisfy the
guarantee of N (V, ∥.∥∞, δ), for an appropriately chosen δ. We have for any p ∈ P
and any non-negative integer z due to Lemma 3.2.4

∣∣∥p− s∥z − ∥p− s′∥z
∣∣ ≤ α · ∥p− s∥z +

(2z + α

α

)z−1
∥s− s′∥z

≤ α · ∥p− s∥z + (3z)z
(
δ

α

)z−1
· δ

We set α = 1
2·2z ε and δ = α · 1

2(3z)z ε = 1
4(6z)z ε

2. Then the term above is upper
bounded by at most ε as ∥p− s∥ ≤ 2. Now since |∥p− s∥z − ∥p− s′∥z| ≤ ε for all
s ∈ Bd

2 also implies |mins∈S ∥p− s∥z − mins′∈S′ ∥p− s′∥z| ≤ ε, we have proven our
desired approximation.

To conclude, observe that by our choice of δ, the overall net N has size at most
exp(O(1) · z · d · log(zε−1)).

To extend this proof to k-centers, observe that any solution consisting of k centers
can be obtained by selecting k points from Bd

2 , rather than one. This raises the net
size of the single cluster case by a power of k.

We now show that Lemma 3.3.6 combined with terminal embeddings yields the
desired net.

Lemma (Equation 3.10 in Lemma 3.3.2). Let D be a distribution over Bd
2 and let

P a set of n points sampled from D and let V be defined as in Theorem 3.8. Then

|N (V, ∥.∥∞, ε)| ≤ exp(O(1)z3 · k · ε−2 logn · (log(z) + log(ε−1))).

Proof. Let f : Rd → Rm be a terminal embedding, that is f is such that m ∈
O(z2 · ε−2 log |P |)3 and for all p ∈ P and q ∈ Rd

∥p− q∥z = (1 ± ε)∥f(p) − f(q)∥z,

as given by Narayanan and Nelson (2019). Therefore, for any candidate solution S,
we also have

cost(p,S) = (1 ± 2ε)cost(f(p), f(S)).
In other words, the set of cost vectors in the image of f is the desired O(ε)-
net for the true set of cost vectors. Hence an ε-net for the cost vectors induced

3The dependency on z is easily derived via a straightforward application of Lemma 3.2.4.
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by solutions in the image of f is also an O(ε)-net for the set of cost vectors.
We thus may apply Lemma 3.3.6 for all cost vectors induced by solutions in the
image of f . After rescaling ε by constant factors, the overall net size is therefore
exp(O(1)z3 · k · ε−2 logn · (log(z) + log(ε−1)))

3.3.2 Proofs for subspace clustering
In this section, we provide full proofs for Section 3.3 relative to subspace cluster-

ing.
We start with a few basic lemmas that will be useful in the calculations later.
We further require the following bounds that will prove useful in the calculations

later.

Lemma 3.3.7. Let a, b be numbers in [0, 2] and let ε > 0. Suppose a2 = b2 ± ε · b.
Then

|a− b| ≤ ε.

Moreover, for any non-negative integer z, we have

|az − bz| ≤ 2 · (3z)z · ε.

Proof. For the first part of the lemma, we observe

|a2 − b2| = |a− b| · (a+ b) ≤ ε · b

which implies

|a− b| ≤ ε.

For the second part, Lemma 3.2.4 implies

|az − bz| ≤ ε · max(a, b)z +
(2z + ε

ε

)z−1
· |a − b|z ≤ ε · 2z +

(3z + ε

ε

)z−1
· εz ≤

2(3z)zε.

This lemma now immediately implies the following corollary by rescaling ε.

Corollary 3.3.7.1. Let a, b be numbers in [0, 2] and let ε > 0. Suppose a2 =
b2 ± 1

4·(3z)z max(ε · b, ε2). Then for any non-negative integer z, we have

|az − bz| ≤ ε.

We now show that for any candidate subspace U we can find a subspace repre-
senting it that is spanned by only a few vectors in P .

Lemma (Lemma 3.3.5). Let P ⊆ Bd
2 . For any orthogonal matrix U ∈ Rj×d, there

exists M ⊆ P , with |M | = O(j · ε−2), such that

∀p ∈ P, ∥UT (I − ΠM )p∥ ≤ ε · ∥(I − ΠM )p∥. (3.13)

Proof. Initially, let M = ∅. We add points to M in rounds and denote by Mt the
set after t rounds. Furthermore, let Πt be the projection matrix onto the subspace
spanned by Mt at round t. If there is a p ∈ P in round t such that

∥UT (I − Πt)p∥ > ε∥(I − Πt)p∥ (3.14)
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then we let Mt+1 = Mt ∪ {p}. Our goal is to show that after T ∈ O(jε−2) many
rounds, we have ∥UT (I−ΠT )p∥ ≤ ε·∥(I−ΠT )p∥. We show this by proving inductively

∥UT Πt∥2
F ≥ ε2 · t.

For the base case t = 0, this is trivially true. Thus suppose we add a point p in
iteration t + 1. Reformulating Equation 3.14, we have ∥UT (I−Πt)p∥

∥(I−Πt)p∥ > ε. By the
Pythagorean theorem, we therefore have

∥UT Πt+1∥2
F = ∥UT Πt∥2

F + ∥UT (I − Πt)p∥2

∥(I − Πt)p∥2 ≥ ε2 · t+ ε2 ≥ ε2 · (t+ 1).

Now since Πt is a projection and since U has j orthonormal columns j ≥ ||UT ||2F ≥
||UT Πt||2F . If T ≥ ε−2j we obtain ||UT ΠT ||2F ≥ j. This implies that U is contained
in the space spanned by MT . Conversely, U must also be orthogonal to the kernel
of MT that is U(I − ΠT ) = 0. Therefore after at most ε−2j rounds, we have
∥UT (I − ΠT )p∥ ≤ ε · ∥(I − Πt)p∥.

Lemma (Lemma 3.3.4). Let P ⊂ Bd
2 be a set of points and let z be a positive

integer. Then there exists an (ε, j)-projective net of size

|N (V, ∥.∥∞, ε)| ≤ exp(O(1) · d · j · log(jε−1)).

Proof. Let N be an ε/j-net of the Euclidean unit ball, i.e. N = N (Bd
2 , ∥.∥2, ε/j)

due to Lemma 3.2.3. Let N = ⊗j
i=1N be the set of j−subsets of of N . We claim

that for every S, there exists an S′ ∈ N such that

∥ST p∥2 = ∥S′T p∥2 ± ε.

Note that this implies the claim as |N | ∈
((

1 + 2j
ε

)d
)j

= exp(O(1) ·d · j · log(jε−1)).

Define S′T
i to be the vector in N closest to the ith row of ST , i.e. ∥ST

i −S′T
i ∥2 ≤

ε/j. We have ∥S′T − S∥2 ≤
∑j

i=1 ∥S′T
i − ST

i ∥2 ≤ ε. Therefore

∥ST p∥2 = ∥(ST − S′T )p+ S′T p∥2

≤ ∥(ST − S′T )p∥2 + ∥S′T p∥2

≤ ∥S′T p∥2 + ∥ST − S′T ∥2∥p∥2

≤ ∥S′T p∥2 + ε.

The bound ∥ST p∥2 ≥ ∥S′T p∥2 − ε is proven analogously.

We can now conclude with the proof of Equation 3.11 in Lemma 3.3.2.

Lemma ( Equation 3.11 in Lemma 3.3.2). Let D be a distribution over Bd
2 and

let P a set of n points sampled from D and let Vj,z be defined as in Theorem 3.3.1.
Then

|N (Vj,z, ∥.∥∞, ε)| ≤ exp(O(1)(3z)z+2 · k · ε−2(logn+ j log(jε−1)) log ε−1).
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Proof. Let α, β > 0 be sufficiently small parameters depending on ε that will
determined later. We first describe a construction for nets for a single subspace of
rank at most j, before composing to k subspaces.

We start by describing the composition of the nets. For every subset M ⊆ P ,
with |M | ∈ O(jα−2), we let ΠM denote an orthogonal projection matrix of the
span of M . Note that this implies rank(ΠM ) = O(jα−2). Further, let N(ΠM ) :=
N (Brank(ΠM )

2 , ∥.∥2, β) be a (β, j)-projective net of the point set ∪p∈M {ΠMp} of
size at most exp(O(1) · rank(ΠM ) · log(jβ−1)) given by Lemma 3.3.4. Finally, let
N := ∪MN(ΠM ).

We consider an arbitrary orthogonal matrix U ∈ Rj×d. Denote by MU the subset
of points and by ΠU the projection matrix given by Lemma 3.3.5, using α as the
precision variable. We claim that for every U , there exists an U ′ ∈ N such that for
all p ∈ P∣∣∣∣(∥ΠUp∥2

2 − ∥U ′T ΠUp∥2
2 + ∥(I − ΠU )p∥2

2

)z/2
− ∥(I − UUT )p∥z

∣∣∣∣ ∈ O(α+ β).

In other words, by enumerating over all (β, j)-projective nets, we obtain an O(α+β)-
subspace clustering net for (1, j, z)-clustering. The desired error of ε then follows by
choosing α and β accordingly. For U , we construct U ′ as follows. Let D =

√
ΠU , i.e.

DDT = ΠU . Further, let V = UTD, notice that V has at most j rows that have at
most unit norm. Hence, there exists a U ′ ∈ N such that∣∣∥UΠUp∥2 − ∥U ′ΠUp∥2

∣∣ ≤ ε

that is a (β, j)-projective net.
We then obtain

∥ΠUp∥2
2 − ∥U ′T ΠUp∥2

2 + ∥(I − ΠU )p∥2
2

= ∥ΠUp∥2
2 − ∥UT ΠUp∥2

2 ± β + ∥(I − ΠU )p∥2
2

= ∥ΠUp∥2
2 − ∥UUT ΠUp∥2

2 ± β + ∥(I − ΠU )p∥2
2

= ∥(I − UUT )ΠUp∥2
2 + ∥(I − ΠU )p∥2

2 ± β

(Eq.3.12) = ∥(I − UUT )p∥2
2 ± β − ∥UT (I − ΠU )p∥2 − 2pT ΠUUU

T (I − ΠU )T p

(Lem.3.3.5) = ∥(I − UUT )p∥2
2 ± α2 · ∥(I − UUT )p∥2 ± 2α · ∥(I − UUT )p∥ ± β

Setting α2 = β = 1
64(3z)z ε

2, we then have due to Corollary 3.3.7.1

∣∣∣∣∣∣∥ΠUp∥2
2 − ∥U ′T ΠUp∥2

2 + ∥(I − ΠU )p∥2
2

∣∣∣z − ∥(I − UUT )p∥z
∣∣∣ ≤ ε. (3.15)

To extend this from a single j-dimensional subspace to a solution U given by
the intersection of k j-dimensional subspaces, we define cost vectors vS′ obtained
from N = ⊗k

i=1N as follows. For each U ∈ U let U ′ be constructed as above and let
U ′ be the union of the thus constructed U ′. Then, with a slight abuse of notation,
letting ΠU ′ correspond to the subspace used to obtain U ′, we define

vU ′
p := min

U ′∈U ′

∣∣∣∥(I − ΠU ′)p∥2 + ∥ΠU ′p∥2 − ∥U ′ΠU ′p∥2∥
∣∣∣z/2

.

Let U be the subspace to which p is assigned U and let U ′ be the center in U ′ used to
approximate U and let U∗′ = argminU ′∈U ′

∣∣∥(I − Π′
U )p∥2 + ∥ΠU ′p∥2 − ∥U ′Π′

Up∥2∥
∣∣z/2
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and let U∗ ∈ U be the center approximated by U∗′. Then applying Equation 3.15,
we have

∥(I − UUT )p∥z

≤ ∥(I − U∗U∗T p∥z

≤
∣∣∣∥(I − ΠU∗′)p∥2 + ∥ΠU∗′p∥2 − ∥U∗′ΠU∗′p∥2

∣∣∣z/2
+ ε

≤
∣∣∣∥(I − ΠU ′)p∥2 + ∥ΠU ′p∥2 − ∥U ′ΠU ′p∥2

∣∣∣z/2
+ ε

Thus, the cost vectors obtained from N are a (k, j, z)-clustering net, i.e.∣∣∣vS′
p − vS

p

∣∣∣ :=
∣∣∣∣min
s′∈S′

∥Πs′p− [s′, 0]∥z − min
s∈S

∥p− s∥z

∣∣∣∣ ≤ ε.

What remains is to bound the size of the clustering net. Here we first observe that
size of the clustering net is equal to |N | = |N |k. For |N |, we have

( |P |
O(α−2 log α−1)

)
≤

nO(jα−2 log α−1) many choices of N(Π). In turn, the size of each N(Π) is bounded by
(β/j)−O(j2α−2) due to Lemma 3.3.4. Thus the overall size of N is

exp
(
k · j ·O(α−2 logα−1(logn+ j log β/j))

)
= exp(O(1)(3z)z+2 · k · j · ε−2(logn+ j log(jε−1)) log ε−1)

as desired.

Proofs of Theorem 3.4.1 (Section 3.4)
The proof of the theorem is a straightforward application of Theorem 3.2.1 with

the following Lemma

Lemma 3.3.8. Let D be a distribution over Bd
2 , let P a set of n points sampled

from D, and let V be defined as in Theorem 3.4.1. Then for any γ > 0

Radn(Vj,2) ∈ O

(√
kj

n
log3+γ

(
n

j

))
.

Proof. We use the following result due to Foster and Rakhlin (2019).
Theorem 3.3.9 (ℓ∞ contraction inequality (Theorem 1 by Foster and Rakhlin
(2019))). Let F ⊆ X → Rk, and let ϕ : Rk → R be L-Lipschitz with respect to the ℓ∞
norm, i.e. ∥ϕ(X) − ϕ(X ′)∥∞ ≤ L · ∥X −X ′∥∞ for all X,X ′ ∈ Rk. For any γ > 0,
there exists a constant C > 0 such that if |ϕt(f(x))| ∨ ∥f(x)∥∞ ≤ β, then

Radn(ϕ ◦ F ) ≤ C · L
√
K · max

i
Radn(F |i) · log3/2+γ

(
βn

maxiRn(F |i)

)
.

We use this theorem as follows. Our functions are associated with candidate
solutions U , that is ϕ(f) = minU∈U ∥(I − UUT )p∥2

2. In other words, f maps a point
p to the k-dimensional vector, where fi(p) = ∥(I − UiU

T
i )p∥2

2 and ϕ selects the
minimum value among all ∥I − UiU

T
i )p∥2

2.
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Thus, we require three more steps. First, we have to bound the Lipschitz constant
of the minimum operator. Second, we have to give a bound on β. Third and last,
we have to give a bound on the Rademacher complexity

Radn(V ) = 1
n

· Er sup
U

∑
p∈P

∥(I − UUT )p∥2
2rp. (3.16)

The Lipschitz constant of the minimum operator with respect to the ℓ∞ norm
can be readily shown to be 1 as for any two vectors x, y with mini yi = yj

min
i
xi − min

i
yi = min

i
xi − yj ≤ xj − yj ≤ |xj − yj | ≤ ∥x− y∥∞.

Since U is an orthogonal matrices and p ∈ Bd
2 , we have ∥(I − UUT )p∥2

2 ≤ 1 and
thus β is bounded by 1.

Thus, we only require a bound on Equation 3.16. For this, we use a result by
Lauer (2020). Since the result is embedded in the proof of another result, we restate
it here for the convenience of the reader.
Lemma 3.3.10 (Compare the proof Theorem 3 of Lauer (2020)). Let P be an set
of n points in Bd

2 and let U be the set of all orthogonal matrices of rank at most j.
For every U ∈ U , define fU (p) = ∥(I −UUT )p∥2

2 and let F be the set of all functions
fU (p) Then.

Radn(F ) := 1
n

· Er sup
U∈U

∑
p∈P

∥(I − UUT )p∥2
2 · rp ∈ O

√ j

n

 .
Proof. We have

Radn(F ) = Er sup
U

∑
p∈P

∥(I − UUT )p∥2
2rp = Er

∑
p∈P

∥p∥2rp + Er sup
U

∑
p∈P

∥UT p∥2
2rp.

We observe that the term Er
∑

p∈P ∥p∥2rp is 0. Thus, we focus on the second term.
We have

Er sup
U

∑
p∈P

∥UT p∥2
2 · rp = Er sup

U

∑
p∈P

pTUUT p · rp = Er sup
U

∑
p∈P

trace(pTUUT p) · rp

= Er sup
U

∑
p∈P

trace(UUT ppT ) · rp

= Er sup
U
trace

UUT
∑
p∈P

(
rp · ppT

)
≤ Er sup

U
∥U∥F

∥∥∥∥∥∥
∑
p∈P

rp · ppT

∥∥∥∥∥∥
F

.

We have ∥U∥F ≤
√
j, so we focus on

∥∥∥∑p∈P rp · ppT
∥∥∥

F
. Here, we have∥∥∥∥∥∥

∑
p∈P

rp · ppT

∥∥∥∥∥∥
2

F

= trace

∑
p∈P

rp · ppT

∑
p∈P

rp · ppT


=

∑
p∈P

∑
q∈P

rp · rq · trace
(
ppT qqT

)
=
∑
p∈P

∑
q∈P

rp · rq · (pT q)2.
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This implies

n ·Radn(F ) = Er sup
U

∑
p∈P

∥UT p∥2
2rp ≤ Er sup

U
∥U∥F

∥∥∥∥∥∥
∑
p∈P

rp · ppT

∥∥∥∥∥∥
F

≤
√
j · Er

√∑
p∈P

∑
q∈P

rp · rq · (pT q)2

(Jensen’s inequality) ≤
√
j ·
√
Er

∑
p∈P

∑
q∈P

rp · rq · (pT q)2

=
√
j ·
√∑

p∈P

(pT p)2 ≤
√
j ·
√∑

p∈P

1 =
√
nj.

Solving the above for Radn(F ) concludes the proof.

We can now conclude the proof. Combining the bounds on L and β with Lemma
3.3.10 and Theorem 3.3.9, we have

Radn(Vj,2) ∈ O

√
k ·

√
j

n
· log2 (n)


as desired.

3.4 Tight generalization gounds for projective clustering

For the specific case of (k, j, 2) clustering, also known as projective clustering,
we obtain an even better dependency on j. A similar bound can likely also be
derived using the seminal work of Fefferman et al. (2016), though the dependencies
on logn and log 1/δ are slightly weaker. The proof uses the main result by Foster
and Rakhlin (2019), itself heavily inspired by Fefferman et al. (2016), and arguments
related to bounding the Rademacher complexity of linear function classes. Crucially,
it avoids the issue of obtaining an explicit dimension reduction entirely, but the
approach cannot be extended to general (k, j, z) clustering.

Theorem 3.4.1. Let D be a distribution over Bd
2 and let P a set of n points sampled

from D. For any set U of k orthogonal matrices of rank at most j, we denote by vU

the n-dimensional cost vector of P in solution U with respect to the (k, j, 2)-clustering
objective, i.e. vU

p = minU∈U ∥(I − UUT )p∥2. Let Vj,2 be the union of all cost vectors
of P . Then with probability at least 1 − δ for any γ > 0

En(Vj,2) ∈ O

√kj

n
· log3+γ

(
n

j

)
+

√
log 1/δ
n

 .
Finally, we also show that the bounds from Theorem 3.4.1 and Fefferman et al.

(2016) are essentially optimal.

Theorem 3.4.2. There exists a distribution D supported on Bd
2 such that En(Vj,2) ∈

Ω
(√

(kj)/n
)
.
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The rough idea is to define a distribution D supported on the nodes of a 2kj-
dimensional simplex with some points having more probability mass and some points
having smaller mass. Using the tightness of Chernoff bounds, we may then show
that the probability of fitting a subspace clustering to a good fraction of the lower
mass points is always sufficiently large.

3.4.1 Proofs for the lower bound
Finally, we also show that the bound given in Theorem 3.4.1 is optimal, up to

polylog factors.

Theorem (3.4.2). There exists a distribution D supported on Bd
2 such that E(Vj,2) ∈

Ω
(√

kj
n

)
.

Proof. We first describe the hard instance distribution D. We assume that we are
given d = 2kj dimensions. Let ei be the standard unit vector along dimension i with
i ∈ {1, . . . d}. Let p, ε ∈ [0, 1] be a parameters, where ε is sufficiently small. We set
the densities for a point q as follows.

P[q] =


p if q = ei, i ∈ {1, . . . , k · j}
p− ε · p if q = ei, i ∈ {kj + 1, . . . , d}
0 otherwise

(3.17)

We choose p such that integral over densities is 1, i.e. kj · p+ kj · (p− εp) = 1. It is
straightforward to verify that for ε sufficiently small, p ∈ ( 1

kj ,
2
kj ). We denote the

points {e1, . . . ekj} by G for “good” and the points {ekj+1, . . . ed} by B for “bad”.
We now characterize the properties of the optimal solution as well as suboptimal

solutions.
Lemma 3.4.3. Let D be the distribution described above in Equation (3.17). Then
for any optimal solution U = {U1, . . . Uk}, we have ei ∈ Ut for i ∈ {1, . . . , kj} and
some t and OPT = kj · p · (1 − ε).

Proof. We transform the instance into a d×d diagonal matrix D where Di,i =
√
P[ei].

So D is a d× d diagonal matrix with diagonal entries equal to √
p for the first k · j

elements and
√
p− ε · p for elements from k · j + 1 to d. Now consider any partition

of the points into clusters Ct with the corresponding subspace Ut for (t ∈ {1, . . . , k}
). The optimal solution for Ut is simply the right singular vector of the submatrix of
D corresponding to points in Ct, which by the construction of D is the j points with
the largest weight. This means that each cluster can remove at most

∑j
i=1 1 = j from

the cost, so k clusters can remove at most
∑k

i=1 j from the cost. This imples that
the cost of the clustering is lower bounded by

∑d
i=1D

2
i,i −

∑kj
i=1D

2
i,i =

∑d
i=kj+1D

2
i,i.

Conversely, the solution U has exactly this cost, which implies that it must be
optimal.

Using Lemma 3.4.3, we now have to, given n independent samples from D.
Control the probability that the sample P will (falsely) put a higher weight on some
of the points in B than the points in G. Let Bex denote the set of misclassified
points in B and let POPT denote the optimum computed on the sample P . We have

E[cost(D, POPT)] = kj · p · (1 − ε) + p · ε · |Bex|.
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and hence an expected excess risk bound of

E[cost(D, POPT)] − OPT = p · ε · E[Bex].

By linearity of expectation, we have E[|Bex|] = kj · P[ekj+1 ∈ Bex]. Thus,
E[cost(D, POPT)] − OPT ∈ Θ(1)ε · P[ekj+1 ∈ Bex]. Define Glow to be the set of
points from G that are have an empirical density of at most p. Let êkj+1 denote the
empirical density of ekj+1. We now claim that

P[ekj ∈ Bex] ≥ P[êkj+1 > p ∧ ekj+1 ∈ Bex]
= P[ekj+1 ∈ Bex|êkj+1 > p] · P[êkj+1 > p] ≥ 1/2 · P[êkj+1 > p]

The first inequality follows because we are considering a subset of the possible
events, the second inequality follows because the expected number of points with an
empirical estimated density greater than p is negatively correlated with the empirical
density êkj+1 of the point ekj . Specifically, conditioned on êkj+1 > p, the median
density of any point ei ∈ G is at most 1

n · p(̇n − p · n) = p · (1 − p) < p. Thus,
the (marginal) expected density of any other point is below p and therefore the
probability that ekj+1 will be in Bex is at least 1/2.

Thus, what remains to be shown is a bound on P[ekj > p]. Here, we use the
tightness of the Chernoff bound (see Lemma 4 of Klein and Young (2015)).
Lemma 3.4.4 (Tightness of the Chernoff Bound). Let X be the average of n
independent, 0/1 random variables. For any ε ∈ (0, 1/2] and µ ∈ (0, 1/2], assuming
ε2µn ≥ 3 if each random variable is 1 with probability at least µ, then

P[X > (1 + ε)p] > exp(−9ε2µn).

Thus, sampling n elements, we have

P [ekj > p] = P
[
ekj − (1 − ε)p > ε

1 − ε
· (1 − ε) · p

]
> exp

(
−9 ε2

(1 − ε)2 (1 − ε)pn
)

∈ Ω(1) exp
(

− ε2

kj
n

)
.

If we require E[cost(D, POPT)] − OPT = ε · c for a sufficiently small absolute
constant c, we also require P [ekj > p] = c′ and hence

√
kj
n ≤ ε · c′′ for a sufficiently

small absolute constants c′ and c′′. Letting ε → 0 then shows that the excess risk
can asymptotically decrease no faster than Ω

(√
kj
n

)
.

3.5 Experiments
Theoretical guarantees are often notoriously conservative compared to what is

seen in practice. In this section, we present empirical findings detailing whether the
risk bounds from the previous sections are also the risk bounds one can expect when
dealing with real datasets. Generally, two properties can determine the risk decrease.
First, the clusters may be well separated (Angelidakis et al., 2017; Cohen-Addad and
Schwiegelshohn, 2017). Indeed, making assumptions to this end, there is also some
theoretical evidence that a rate of O(k/n) is possible (Antos et al., 2005; Levrard,
2015). The other, somewhat related explanation is that if the ground truth consists of
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k′ < k clusters (Bhattacharyya et al., 2022; Ostrovsky et al., 2012), the dependency
on k will point more towards the smaller, true number of clusters. We run the
experiments both for center based clustering, as well as subspace clustering. While
the focus of the work is arguably more on subspace clustering, the experiments are
important in both cases. Although both problems are hard to optimize exactly, center
based clustering is significantly more tractable and thus may lend better insight
into practical learning rates. For example, we have an abundance of approximation
algorithms for (k, z) clustering (Arthur and Vassilvitskii, 2007; Mettu and Plaxton,
2004) whereas, even in the case of (k, 1, z) clustering in two dimensions (Kumar
et al., 2000) it is not possible to find any finite approximation in polynomial time.

Datasets We use four publicly available real-world datasets: Mushroom (Schlimmer,
1987), Skin-Nonskin (Bhatt and Dhall, 2012), MNIST (Lecun et al., 1998), and
Covtype (Blackard, 1998). Mushroom comprises of 112 categorical features of the
appearance of mushrooms with class labels corresponding to poisonous or edible.
MNIST contains 28x28 pixel images of handwritten digits. Skin_Nonskin are RGB
values given as 3 numerical features used to predict if a pixel is skin or not. Lastly,
Covtype consists of a mix of categorical and numerical features used to predict
seven different cover types of forests. Each dataset was normalized by the diameter,
ensuring that all points lie in Bd

2 .

Table 3.1. Datasets used for the experiments

Dataset Points Dim Labels
Mushrooms 8,124 112 2
MNIST 60,000 784 10
Skin_Nonskin 245,057 3 2
Covtype 581,012 54 7

Problem parameters and algorithms For both center based clustering as well
as subspace clustering, we focus on the powers z ∈ {1, 2, 3, 4}. z = 2 is arguably
the most popular and also the most tractable variant. z = 1 is the objective with
the least susceptibility to outliers. Finally, we consider the cases z = 3, due to it
minimizing asymmetry and z = 4 as a tractable alternative to the coverage objective
z → ∞. The excess risk is evaluated for k ∈ {10, 20, 30, 50} for both center based
and subspace clustering. Expectation maximization (EM) type algorithms are used
for both center-based and subspace clustering. Given a solution S we first assign
every point to its closest center and subsequently recompute the center. For the case
z = 2, we do this analytically and in this case the EM algorithm is more commonly
known as Llyod’s method (Lloyd, 1982). For the cases, z ∈ {1, 3, 4}, the new center
is obtained via gradient descent. The initial centers are chosen via Dz sampling, i.e.
sampling centers proportionate to the zth power of the distance between a point
and its closest center (for z = 2 this is the k-means++ algorithm by Arthur and
Vassilvitskii (2007)).

For subspace clustering, we consider j ∈ {1, 2, 5} to demonstrate the effects of
the subspace dimension on convergence rate, taking computational expenses into
consideration. Since there are no known tractable algorithms for these problems
with guarantees, we initialize a solution U = {U1, . . . , Uk} by sampling k orthogonal
matrices of rank j, where the subspace for each matrix is determined via the volume
sampling technique (Deshpande and Varadarajan, 2007). Subsequently, we run
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Figure 3.1. Excess risk for line clustering on Covtyp. Shaded areas show max-min intervals.

the EM algorithm. As before, the expectation step consists of finding the closest
subspace for every point. For z = 2, the maximization step consists of finding the j
principal component vectors of the data matrix induced by each cluster. For the
other values of z, it is NP-hard even approximate the maximization step (Clarkson
and Woodruff, 2015), so we use gradient descent to find a local optimum. Due to
the fact that Skin_nonskin only has 3 features, we only evaluate the excess risk
for j ∈ {1, 2}. Due to a large computational dependency on dimension, we do not
evaluate subspaces on the MNIST dataset.

We wrote all of the code using Python 3 and utilized the Pytorch library for
implementations using gradient descent. Specifically, we employed the AdamW
optimizer to find the closest center with a learning rate set to 0.01. All experiments
were conducted on a machine equipped with a single NVIDIA RTX 2080 GPU.

Experimental setup and results To estimate the optimal cost OPT for the two
objective functions, we run the corresponding appropriate algorithms mentioned
above ten times on the entire dataset P and use the minimal objective value as
an estimate for OPT . We obtain a sample Si of size n by sampling uniformly at
random and estimate the optimal cost for that sample, OPTi. We repeat this 5
times. The empirical excess risk is calculated as En = 1

|P |
∑5

i=1
cost(P,OP Ti)

5 −OPT.

The excess risk for center-based clustering is evaluated on exponential-sized subset
sizes n ∈ {26, 27, . . . , 212}.

We fit a line of the form c · kq1
nq2 where c, q1, q2 are the optimizeable parameters.

Let yi be the excess risk in run i. Let ki and ni be the values of k and n in run i and
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let r be the total number of times the excess risk was evaluated for each combination
of algorithm and dataset. We use gradient descent on the following loss to optimize
the parameters LSE =

∑r
i=1

(
yi − c · kq1

nq2

)2
.

The results in Figure 3.1 show that the excess risk for subspace clustering
decreases quicker for higher values of z, and we see a similar pattern for center-based
clustering. The best-fit lines shown in Tables 3.2 and 3.3 indicate that the empirical
excess risk values decrease slightly quicker than predicated by theory. The expected
values are q1 = q2 = 0.5 and we observe q1, q2 around 0.44, 0.52 respectively. For
k this indicates a slightly favorable dependency in practice. For q2, we consider
the difference to the theoretical bound of 0.5 negligible. The choice of z does
not seem to have a significant impact on either finding. For subspace clustering,
the dependency on k is a bit more pronounced and increases slightly towards the
theoretical guarantees.

Contrary to hopes that margin or stability conditions might occur on practical
datasets, the results indicate that the theoretical guarantees of the learning rate are
near-optimal even in practice. Moreover, the rates were not particularly affected by
either the choice of z or by the dimension j when analyzing subspace clustering.

Figure 3.2. Excess risk for center-based clustering on the Covertype dataset. The shaded
areas indicate the maximal and minimal deviation for the respective sample sizes.

3.6 Conclusion and open problems
In this work, we presented several new generalization bounds for clustering

objectives such as k-median and subspace clustering. When the centers are points
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Figure 3.3. Excess risk for center-based clustering on the Mushroom dataset. The shaded
areas indicate the maximal and minimal deviation for the respective sample sizes.

Table 3.2. Best fit lines on Covtype and Mushroom (left to right)

z c q1 q2

1 3 · 10−2 0.44 0.54
2 4 · 10−3 0.42 0.52
3 6 · 10−4 0.44 0.51
4 1 · 10−4 0.44 0.51

z c q1 q2

1 1 ·10−1 0.48 0.51
2 8 ·10−2 0.48 0.51
3 4 ·10−2 0.49 0.50
4 3 ·10−2 0.49 0.50

or constant dimensional subspaces, our upper bounds are optimal up to logarithmic
terms. For projective clustering, we give a lower bound showing that the results
obtained by Fefferman et al. (2016) are nearly optimal. A key novel technique was
using an ensemble of dimension reduction methods with very strong guarantees.

An immediate open question is to which degree ensembles of dimension reductions
can improve learning rates over a single dimension reduction. Is it possible to find
natural problems where there is a separation between the embeddability and the
learnablity of a class of problems, or given the ensemble, is it always possible to
find a single dimension reduction with the guarantees of the ensemble? Another
open question is motivated by the recent treatment of clustering through the lens
of computational social choice (Chierichetti et al., 2017). Using current techniques
from coresets (Braverman et al., 2022) and learning theory (Foster and Rakhlin,
2019), it seems difficult to improve over the learning rate of O

(√
k2/n

)
for the fair

clustering problem specifically. It it possible to match the bounds for unconstrained
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Figure 3.4. Excess risk for center-based clustering on the Skin_Nonskin dataset. The
shaded areas indicate the maximal and minimal deviation for the respective sample sizes.

Table 3.3. Best fit lines on Skin_NonSkin and MNIST (left to right)

z c q1 q2

1 2 · 10−2 0.49 0.50
2 3 · 10−3 0.47 0.52
3 8 · 10−4 0.46 0.53
4 2 · 10−4 0.46 0.53

z c q1 q2

1 1 · 10−1 0.49 0.51
3 5 · 10−2 0.50 0.50
4 3 · 10−2 0.50 0.50
2 8 · 10−02 0.50 0.50

clustering?
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Figure 3.5. Excess risk for center-based clustering on the MNIST dataset. The shaded
areas indicate the maximal and minimal deviation for the respective sample sizes.

Table 3.4. Best fit line for subspace clustering on Covtype and Mushroom (left to right)

j z c q1 q2

1 1 0.1 0.45 0.54
1 2 2 · 10−2 0.48 0.51
1 3 3 · 10−4 0.46 0.53
1 4 4 · 10−5 0.46 0.52
2 1 8 · 10−2 0.48 0.51
2 2 2 · 10−3 0.47 0.51
2 3 4 · 10−5 0.46 0.53
2 4 2 · 10−6 0.46 0.52
5 1 8 · 10−3 0.48 0.51
5 2 5 · 10−5 0.46 0.53
5 3 4 · 10−7 0.47 0.52
5 4 3 · 10−9 0.47 0.51

j z c q1 q2

1 1 1 · 10−1 0.48 0.51
1 2 1 · 10−1 0.48 0.51
1 5 1 · 10−1 0.49 0.49
2 1 7 · 10−2 0.48 0.51
2 2 6 · 10−2 0.50 0.49
2 5 6 · 10−2 0.49 0.48
3 1 4 · 10−2 0.49 0.50
3 2 3 · 10−2 0.49 0.50
3 5 3 · 10−2 0.49 0.49
4 1 2 · 10−2 0.49 0.50
4 2 2 · 10−2 0.49 0.50
4 5 1 · 10−2 0.48 0.50
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Figure 3.6. Excess risk for subspace clustering on the Mushroom dataset. The shaded
areas indicate min/max values

Table 3.5. Best fit line for subspace clustering on Skin-Nonskin

j z c q1 q2

1 1 1 · 10−2 0.48 0.50
1 2 3 · 10−3 0.45 0.53
2 1 2 · 10−3 0.46 0.53
2 2 2 · 10−4 0.46 0.53
3 1 4 · 10−4 0.46 0.53
3 2 2 · 10−5 0.46 0.53
4 1 9 · 10−5 0.46 0.53
4 2 3 · 10−6 0.46 0.53
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Figure 3.7. Excess risk for subspace clustering on the Skin_Nonskin dataset. The shaded
areas indicate min/max values
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Chapter 4

Newron: A New Generalization
of the Artificial Neuron to
Enhance the Interpretability of
Neural Networks while
Preserving Expressive
Capabilities

Neural Networks (NNs) have now become the de facto standard in most Artificial
Intelligence (AI) applications. The world of Machine Learning has moved towards
Deep Learning, i.e., a class of NN models that exploit the use of multiple layers in
the network to obtain the highest performance.

Research in this field has focused on methods to increase the performance of NNs,
in particular on which activation functions (Apicella et al., 2021) or optimization
method (Sun et al., 2019) would be best. Higher performances come at a price:
Arrieta et al. (2020) show that there is a trade-off between interpretability and
accuracy of models. Explainable Artificial Intelligence (XAI) is a rapidly growing
research area producing methods to interpret the output of AI models in order to
improve their robustness and safety (see e.g. Ghorbani et al. (2019) and Bhatt et al.
(2019)). Deep Neural Networks (DNNs) offer the highest performance at the price
of the lowest possible interpretability. It is an open challenge to attain such high
performance without giving up on model interpretability.

The simplest solution would be to use a less complex model that is natively
interpretable, e.g., decision trees or linear models, but those models are usually less
effective than NNs. We ask the following question:

RQ5 Is it possible to design a novel neural network structure that makes the
whole model interpretable without sacrificing effectiveness and expressiveness?

NNs are black-box models: we can only observe their input and output values
with no clear understanding of how those two values are correlated according to
the model’s parameters. Although a single neuron in the NN performs a relatively
simple linear combination of the inputs, there is no clear and straightforward link
between the parameters estimated during the training and the functioning of the
network, mainly because of the stacking of multiple layers and non-linearities.
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In this work, we propose a generalization of the standard neuron used in neural
networks that can also represent new configurations of the artificial neuron. Thus, we
discuss a specific example that allows us to interpret the functioning of the network
itself. Like the standard neuron, ours can also be used to stack multiple layers in
sequence, i.e. to generate DNNs.

We focus our efforts on tabular data since we investigate how Newron works
only in the case of fully connected NNs. It is more straightforward to produce
human-readable rules for this kind of data. We also remark that our goal is not to
improve the performance of NNs, but rather to create interpretable versions of NNs
that perform as well as other interpretable models (e.g., linear/logistic regression,
decision trees, etc.) and similarly to standard NNs, when trained on the same data.

4.0.1 Motivating example

... ...

Figure 4.1. An example of a network for the MONK-2 dataset. xi are the inputs, y is the
output. The red and blue rectangles represent the plot of functions, with input range
on the x-axis and output on the y-axis. The green rectangles contain the aggregation
function. The numbers in bold represent the thresholds for the step functions.

Consider a simple dataset: MONK’s1. Each sample consists of 6 attributes,
which take integer values between 1 and 4 and a class label determined by a decision
rule based on the 6 attributes. For example, in MONK-2, the rule that defines the
class for each sample is the following: “exactly two” out of the six attributes are
equal to 1.

It is impossible to intuitively recover rules from the parameter setting from a
traditional, fully connected NN.

We shall see in the following that our main idea is that of inverting the activation
and aggregation. In Newron the nonlinearity directly operates on the input of the
neuron. The nonlinearity acts as a thresholding function to the input, making it
directly interpretable as a (fuzzy) logical rule by inspecting its parameters. Consider
the following network, represented in Figure 4.1: 2 hidden layers, the first with 1
neuron, the second with 2 neurons, and 1 output neuron. The xi’s are the inputs of
the model, y is the output.

We present the form of a typical architecture composed by Newron in Figure
4.1. We show how we can interpret the parameters obtained from a trained network.
The rectangles represent the plot of a function that divides the input domain into
two intervals, separated by the number below the rectangle, taking values 1 and 0.

The functions that process the input give output 1 only if the input is less than
1.1, given that inputs are integers and assume values only in {1, 2, 3, 4}, this means
“if xi = 1”. The sum of the output of all these functions, depicted in the green
rectangle, then represents the degree of soundness of those rules are.

1https://archive.ics.uci.edu/ml/datasets/MONK%27s+Problems
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The second layer has two neurons: the first outputs 1 if it receives an input
greater than 1.9, i.e. if at least 2 of the rules xi = 1 are valid, while the second
outputs 1 if it receives an input less than 2.1, i.e. if 2 or less of the rules xi = 1 are
valid. Notice that the two neurons are activated simultaneously only if xi = 1 is
true for exactly two attributes.

In the last layer, functions in the blue rectangles receive values in {0, 1} and do
not operate any transformation, keeping the activation rules unchanged. The sum
of the outputs of these functions is then passed to the function in the red rectangle.
This function outputs 1 only if the input is greater than 1.9. Since the sum is limited
in 0, 1, 2, this happens only when it receives 2 as input, which occurs only if the two
central neurons are activated. As we have seen, this only applies if exactly 2 of the
rules xi = 1 are valid.

So we can conclude that the network gives output 1 just if “exactly two” of
{x1 = 1, x2 = 1, x3 = 1, x4 = 1, x5 = 1, x6 = 1} are true.

4.0.2 Contributions
The main contributions of this work are the following:

• We propose Newron, a generalization of the McCulloch-Pitt neuron allowing
the definition of new artificial neurons. We show how special cases of Newron
may pave the way towards interpretable, white-box neural networks.

• We prove the universal approximation theorem for three specializations of
Newron, demonstrating that the new model does not lose any representation
power in those cases.

• We experiment on several tabular datasets showing that Newron allows
learning accurate Deep Neural models, beating interpretable by design models
such as Decision Trees and Logistic Regression.

4.1 Related work

Rosenblatt (1958) introduced the single artificial neuron: the Perceptron. The
Perceptron resembles the functioning of the human/biological neuron, where the
signal passing through the neuron depends on the intensity of the received signal, the
strength of the synapses, and the receiving neuron’s threshold. In the same way, the
Perceptron makes a linear combination of the inputs received and is only activated
if the result exceeds a certain threshold. Over the years, various improvements
to neural networks have been proposed: Recurrent Units, Convolutional Layers,
and Graph Neural Networks, but for Fully Connected NNs, research efforts have
mainly focused on finding more efficient activation functions (Apicella et al., 2021).
Two works that have focused on modifying the internal structure of the neuron
are those of Kulkarni and Venayagamoorthy (2009), and Fan et al. (2018). In
the former, a neuron is introduced that performs both a sum and a product of
the inputs in parallel, applies a possibly different activation function for the two
results, and then sums the two outcomes. Despite promising results, given the use
of fewer parameters, better performance, and reduced training time compared to
standard MLPs and RNNs, the proposed neuron, rather than being a generalization,
is a kind of union between two standard neurons, one of which uses the product,
instead of sum, as aggregation function. In the second paper, starting from the
notion that the traditional neuron performs a first-order Taylor approximation, the
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authors propose a neuron using a second-order Taylor approximation. Although
this improves the capacity of a single neuron, the authors do not demonstrate any
gains in terms of training time or convergence. Indeed, this can be considered a
particular case of the higher-order neural units (HONUs) (see, e.g., Gupta et al.
(2013)), i.e., a type of neurons that, by increasing the degree of the polynomial
computed within them, try to capture the higher-order correlation between the input
patterns. Recent works that focus on interpretation at neuron level (Dalvi et al.,
2019a,b; Heo et al., 2019; Nam et al., 2020) often concentrate on extracting the most
relevant neurons for a given task, but mostly deal with Recurrent or Convolutional
neural networks. Although not designing an alternative version of the neuron, Yang
et al. (2018) proposes an alternative neural network structure, based on a Binning
Layer, which divides the single input features into several bins, and a Kronecker
Product Layer, which takes into account all the possible combinations between
bins. The parameters estimated during training can be interpreted to translate the
network into a decision tree through a clever design of the equations defining the
network. Although interpretable, the main issue in this work is its scalability. The
Kronecker Product Layer has an exponential complexity that makes training time
unfeasible when the number of features grows.

4.2 The Newron structure
A neuron, in the classical and more general case, is represented by the equation

y = f (b+
∑n

i=1wixi).

... ...

Figure 4.2. Structure of the standard artificial neuron. wi and b are respectively weights
and bias. f is the activation function. xi’s are the inputs and y is the output.

b is called the bias, wi are the weights, and xis are the inputs. f represents the
activation function of the neuron. Usually, we use the sigmoid, hyperbolic tangent,
or ReLU functions.

We first generalize the above equation, introducing Newron as follows:

y = f (Gn
i=1 (hi(xi))) (4.1)

Each input is first passed through a function hi, which we will call processing
function, where the dependence on i indicates different parameters for each input.
G, instead, represents a generic aggregation function.

Using Newron notation, the standard artificial neuron would consist of the
following: hi(xi) = wixi, G =

∑
, and f(z) = f∗(z + b).

G does not have any parameters, while b parametrizes the activation function.



4.2 The Newron structure 70

... ...

Figure 4.3. Structure of Newron, the generalized artificial neuron. The blue rectangles
represent the processing function sections, the green rectangles contain the aggregation
function, and the red rectangles represent the activation part. Same colors are also used
in Figure 4.2

4.2.1 Inverted Artificial Neuron (IAN)
We present 3 novel structures characterized by an inversion of the aggregation

and activation functions. We name this architectural pattern: Inverted Artificial
Neuron (IAN). In all the cases we consider the sum as the aggregation function and
do not use any activation function: G =

∑
, and f(z) = z.

Heaviside IAN

The first case we consider uses a unit step function as activation. This function,
also called the Heaviside function, is expressed by the following equation:

H(x) =
{

1 x ≥ 0
0 x < 0 (4.2)

According to (4.1) we can define the processing function as follows:

hi(xi) = H(wi(xi − bi)) =
{
H(wi) xi ≥ bi

1 −H(wi) xi < bi
(4.3)

where wi and bi are trainable parameters.

Sigmoid IAN

We cannot train the Heaviside function using gradient descent, and it represents
a decision rule that in some cases is too restrictive and not “fuzzy” enough to deal
with constraints that are not clear-cut.

A natural evolution of the unit step function is therefore the sigmoid function
σ(x) = 1

1+e−x . This function ranges in the interval (0, 1), is constrained by a pair of
horizontal asymptotes, is monotonic and has exactly one inflection point.

The sigmoid function can be used as a processing function with the following
parameters: hi(xi) = σ(wi(xi − bi)).

Product of hyperbolic tangents IAN

Another option we consider as a processing function is the multiplication of
hyperbolic tangent (tanh). For simplicity, we will use the term “tanh-prod”.
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The tanh function tanh(x) = e2x−1
e2x+1 is on its own very similar to the sigmoid. An

interesting architecture is that using M tanh simultaneously. Each tanh applies its
own weights, on each individual input.

While the sigmoid is monotonic with only one inflection point, roughly dividing
the input space into two sections, the multiplication of tanh, by being not monotonic,
allows us to divide the input space into several intervals. The multiplication would
remain in (−1, 1), but can be easily rescaled to (0, 1).

We can therefore write the processing function in the case of the tanh multipli-
cation as follows:

hi(xi) =

(∏M
m=1 tanh(wim(xi − bim))

)
+ 1

2 (4.4)

Note how, in this case, the weights depend on both the input i and the m-th
function. Such a neuron will therefore have M times more parameters than the
Heaviside and sigmoid cases.

Output layer
The output layer would produce values ranging in the interval (0, N) ({0, 1, ..., N}

for the Heaviside case), where N represents the number of neurons in the penultimate
layer. This is because the last neuron makes the sum of N processing functions
restricted in the interval (0, 1) ({0, 1} for the Heaviside case). To allow the last
layer to have a wider output range and thus make our network able to reproduce a
wider range of functions, we modify the last layer processing function h∗

i as follows:
h∗

i (xi) = αihi(xi),
where αi are trainable parameters.
In the same way, as for a traditional neural network, it is important, in the output

layer, to choose an adequate activation function. We need, indeed, to match the
range of the output of the network and the range of the target variable. In particular,
in the case of output in (0, 1), we use a sigmoid centered in b∗: f∗(z) = σ(z − b∗)

In the case of a classification problem with more than 2 classes, a softmax
function (s(zj) = ezj∑

l
ezl

) is used to output probabilities.

Note(s)
The writing w(x− b) is theoretically identical to that w∗x+ b∗, where simply

w∗ = w and b∗ = −bw. This notation allows us to interpret the weights directly.
From b, we already know the inflection point of the sigmoid; while looking at w, we
immediately understand its direction.

4.3 Interpretability

Arrieta et al. (2020) presented a well-structured overview of concepts and defini-
tions in the context of Explainable Artificial Intelligence (XAI).

They make a distinction among the various terms that are mistakenly used as
synonyms for interpretability. According to them:

• Interpretability: is seen as a passive feature of the model and represents the
ability of a human to understand the underlying functioning of a decision model,
focusing more on the cause-effect relationship between input and output.
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• Transparency: very similar to interpretability, as it represents the ability of
a model to have a certain degree of interpretability. There are three categories
of transparency, representing the domains in which a model is interpretable.
Simulatable models can be emulated even by a human. Decomposable models
must be explainable in their individual parts. For algorithmically transparent
models, the user can understand the entire process followed by an algorithm to
generate the model parameters and how the model produces an output from
the input.

• Explainability: can be seen as an active feature of a model, encompassing
all actions that can detail the inner workings of a model. The explanation
represents a kind of interface between a human and the model and must at the
same time represent well the functioning of the model and be understandable
by humans.

In this chapter, we show decomposable models that, in some cases, are also
algorithmically transparent.

4.3.1 Heaviside
The interpretability of an architecture composed of Heaviside IANs has to be

analyzed by discussing its four main sections separately.

First layer - Processing function
A single processing function h(x) = H(w(x−b)) divides the space of each variable

x in two half-lines starting from b, one of which has a value of 1 and one of which
has a value of 0, depending on the sign of w.

Aggregation
Using sum as the aggregation function, the output takes values in {0, 1, ..., n};

where 0 corresponds to a deactivation for each input, and n represents an activation
for all inputs, and the intermediate integer values {1, 2, ...k, ..., n − 1} represent
activation for k of inputs.

y =
n∑

i=1
h∗

i =


n h∗

i = 1 ∀i ∈ {1, ..., n}
k h∗

i = 1 i ∈ S ⊆ {1, ..., n}, |S| = k

0 h∗
i = 0 ∀i ∈ {1, ..., n}

(4.5)

where we simplified the notation using h∗
i = hi (xi).

2+ Layer - Processing function
Let us define an M -of-N rule as true if at least M of the N rules of a given set

are true.
The Heavisides of the layers after the first one receive values in {0, 1, ..., n}, where

n represents the number of inputs of the previous layer. In the case where 0 ≤ b ≤ n
and w > 0, the Heaviside will output 1 only if the input received is greater than or
equal to b, therefore only if at least ⌈b⌉ of the rules Ri of the previous layer are true,
which corresponds to a rule of the type ⌈b⌉ − of − {R1, R2, ..., Rn}. In the opposite
case, where 0 ≤ b ≤ n and w < 0, Heaviside will output 1 only if the input received
is less than or equal to b, so only if no more than ⌊b⌋ of the rules of the previous
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layer are true. This too can be translated to an M -of-N rule, inverting all rules Rj

and setting M as ⌈n− bi⌉: ⌈n− bi⌉ − of − {¬R1,¬R2, ...,¬Rn}.

Last layer - Aggregation
In the last layer we have to account for the α factors used to weigh the contribution

of each input:

y =
n∑

i=1
αihi(xi) =

n∑
i=1

αiH(wi(xi − bi)) (4.6)

We have an activation rule for each of the n Heavisides forcing us to calculate all
the 2n possible cases. The contribution of each input is exactly αi. So, the output
corresponds to the sum of the αi’s for each subset of inputs considered.

4.3.2 Sigmoid
In the case of sigmoid IAN, bi represents the inflection point of the function,

while the sign of wi tells us in which direction the sigmoid is oriented; if positive,
it is monotonically increasing from 0 to 1, while if negative, it is monotonically
decreasing from 1 to 0. The value of wi indicates how fast it transitions from 0 to 1,
and if it tends to infinity, the sigmoid tends to the unit step function.

Sigmoid interpretation
The sigmoid can be interpreted as a fuzzy rule of the type xi > bi if wi > 0 or

xi < bi if wi < 0, where the absolute value of wi indicates how sharp the rule is. The
case wi = 0 will always give value 0.5, so that the input does not have any influence
on the output.

If wi is very large, the sigmoid tends to the unit step function. If, on the other
hand, wi takes values for which the sigmoid in the domain of xi resembles a linear
function, what we can say is that there is a direct linear relationship (or inverse if
wi < 0) with the input.

The fuzzy rule can be approximated by its stricter version xi > bi, interpreting
fall under the methodology seen for Heaviside. However, this would result in an
approximation of the operation of the network.

It is more challenging to devise clear decision rules when we add more layers.
Imagine, as an example, a second layer with this processing function:

h(y) = σ(w∗(y − b∗)) (4.7)
where y is the aggregation performed in the previous layer of the outputs of its

processing functions, its value roughly indicates how many of the inputs are active.
In the second layer, consider as an example a value of w∗ > 0. To have an activation,
this means that we might need k inputs greater than or equal to b∗/k. Although
this does not deterministically indicate how many inputs we need to be true, we
know how the output changes when one of the inputs changes.

The last case to consider takes into account the maximum and minimum values
that the sigmoid assumes in the domain of x. If they are close to each other,
that happens when w is very small, the function is close to a constant bearing no
connection with the input.
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4.3.3 Product of hyperbolic tangents
The multiplication of tanh has more expressive power, being able to represent

both what is represented with the sigmoid, as well as intervals and quadratic relations.

tanh-prod Interpretation
In this case, it is not possible to devise as quickly as in the previous case decision

rules. Indeed, it is still possible to observe the trend of the function and draw some
conclusions. When the product of the two tanh resembles a sigmoid, we can follow
the interpretation of the sigmoid case. In other cases, areas with quadratic relations
can occur, i.e., bells whose peak indicates a more robust activation or deactivation
for specific values.

4.3.4 Summary of Interpretation
The advantage of this method lies in the fact that it is possible to analyze each

input separately in each neuron, thus easily graph each processing function. Then,
based on the shape taken by the processing function, we can understand how the
input affects the output of a neuron.

The Heaviside is the most interpretable of our models, allowing a direct generation
of decision rules.

Sigmoid and tanh-prod cases depend on the parameter w. When it is close to
0, the activation is constant regardless of the input. When w is large enough, the
processing function is approximately a piecewise constant function taking only values
0 and 1.

In all the other cases, the processing function approximates a linear or bell-shaped
function. Even if we can not derive exact decision rules directly from the model, in
these cases, we can infer a linear or quadratic relation between input and output.

Each layer aggregates the interpretations of the previous layers. For example, the
processing function of a second layer neuron gives a precise activation when its input
is greater than a certain threshold, i.e., the bias b of the processing function. The
output of the neuron of the first layer must exceed this threshold, and this happens
if its processing functions give in output values whose sum exceeds this threshold.

A separate case is the last layer, where the α parameters weigh each of the
interpretations generated up to the last layer.

We can interpret a traditional individual neuron as a linear regressor. However,
when we add more layers, they cannot be interpreted. Our structure, instead,
remains interpretable even as the number of layers increases.

4.4 Universality
A fundamental property of neural networks is that of universal approximation.

Under certain conditions, multilayer feed-forward neural networks can approximate
any function in a given function space. In Cybenko (1989) it is proved that a neural
network with a hidden layer and using a continuous sigmoidal activation function is
dense in C(In), i.e., the space of continuous functions in the unit hypercube in Rn.
(Hornik et al., 1989) generalized to the larger class of all sigmoidal functions.

To make the statement of theorems clearer we recall that the structure of a
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IAN models Interpretable models Non-interpretable models
Dataset Heaviside sigmoid tanh-prod LR DT GBDT NN
adult 80.2 (±0.06) 82.6 (±0.05) 82.3 (±0.06) 76.2 (±0.07) 81.5 (±0.06) 87.5 (±0.05) 83.1 (±0.06)
australian 86.5 (±0.51) 87.0 (±0.5) 88.7 (±0.4) 88.7 (±0.4) 87.0 (±0.41) 90.2 (±0.47) 88.0 (±0.4)
b-c-w 98.9 (±0.16) 98.9 (±0.16) 98.9 (±0.16) 97.8 (±0.23) 97.7 (±0.23) 98.3 (±0.21) 98.9 (±0.17)
car 95.1 (±0.2) 95.9 (±0.21) 100.0 (±0.0) 51.4 (±0.45) 98.5 (±0.11) 100.0 (±0.0) 99.8 (±0.04)
cleveland 65.6 (±1.02) 60.1 (±1.1) 62.9 (±1.13) 60.8 (±1.13) 53.6 (±1.19) 61.5 (±1.01) 65.6 (±1.01)
crx 86.2 (±0.51) 85.4 (±0.58) 86.5 (±0.5) 84.6 (±0.45) 88.0 (±0.42) 82.9 (±0.58) 87.7 (±0.44)
diabetes 73.3 (±0.56) 72.7 (±0.68) 76.1 (±0.61) 75.6 (±0.6) 74.1 (±0.63) 75.1 (±0.64) 74.2 (±0.65)
german 78.2 (±0.53) 77.0 (±0.53) 75.5 (±0.52) 75.1 (±0.52) 68.3 (±0.57) 76.6 (±0.55) 76.7 (±0.54)
glass 77.0 (±1.17) 81.6 (±1.04) 85.6 (±1.02) 72.1 (±1.08) 72.7 (±1.19) 87.3 (±0.9) 82.5 (±0.91)
haberman 76.9 (±0.94) 76.1 (±0.92) 77.2 (±0.88) 73.0 (±1.05) 64.4 (±1.08) 72.5 (±1.09) 76.1 (±0.92)
heart 88.7 (±0.67) 86.3 (±0.85) 82.7 (±0.8) 82.4 (±0.95) 81.4 (±1.02) 81.7 (±0.98) 82.9 (±0.95)
hepatitis 84.7 (±1.26) 85.1 (±1.23) 82.5 (±1.16) 79.1 (±1.45) 79.1 (±1.33) 81.7 (±1.32) 82.4 (±1.13)
image 93.0 (±0.11) 94.0 (±0.1) 94.4 (±0.09) 90.4 (±0.12) 90.6 (±0.12) 95.8 (±0.08) 92.6 (±0.11)
ionosphere 94.4 (±0.48) 96.7 (±0.34) 96.5 (±0.37) 92.0 (±0.51) 94.5 (±0.45) 95.4 (±0.37) 96.7 (±0.34)
iris 100.0 (±0.0) 100.0 (±0.0) 100.0 (±0.0) 100.0 (±0.0) 97.3 (±0.52) 97.3 (±0.52) 100.0 (±0.0)
monks-1 94.4 (±0.21) 100.0 (±0.0) 100.0 (±0.0) 66.0 (±0.46) 90.6 (±0.27) 100.0 (±0.0) 100.0 (±0.0)
monks-2 100.0 (±0.0) 100.0 (±0.0) 100.0 (±0.0) 54.5 (±0.45) 82.7 (±0.33) 94.2 (±0.21) 87.6 (±0.27)
monks-3 97.1 (±0.15) 97.1 (±0.15) 97.1 (±0.15) 81.2 (±0.31) 97.2 (±0.16) 96.2 (±0.16) 90.3 (±0.25)
sonar 93.3 (±0.74) 96.8 (±0.48) 95.2 (±0.53) 89.5 (±0.75) 83.4 (±0.98) 88.1 (±0.9) 89.4 (±0.87)
bisector 98.9 (±0.13) 99.3 (±0.09) 99.3 (±0.09) 100.0 (±0.0) 97.7 (±0.18) 98.3 (±0.16) 100.0 (±0.0)
xor 100.0 (±0.0) 100.0 (±0.0) 99.2 (±0.11) 53.2 (±0.65) 99.2 (±0.12) 100.0 (±0.0) 100.0 (±0.0)
parabola 98.8 (±0.15) 100.0 (±0.0) 99.6 (±0.07) 77.8 (±0.52) 97.6 (±0.18) 97.7 (±0.17) 100.0 (±0.0)
circle 96.8 (±0.22) 99.3 (±0.1) 99.6 (±0.07) 52.4 (±0.67) 98.8 (±0.13) 97.6 (±0.2) 99.2 (±0.11)

Table 4.1. Datasets accuracy (± 95th percentile standard error) results of the best perform-
ing model. In bold we indicate the best performing model amongst the interpretable
ones. If GBDT or NN exceeds this accuracy, the corresponding result is underlined.

two-layer network with IAN neurons and a generic processing function h is

ψ(x) =
N∑

j=1
αjhj(

n∑
i=1

hij(xi)) (4.8)

where αj ∈ R ∀j ∈ {1, ..., N}.
When the processing function is the Heaviside function we proved that the

network can approximate any continuous function on unit hypercube, In, Lebesgue
measurable functions on In and functions in Lp(A,µ) for 1 ≤ p < ∞, with µ being a
Radon measure and A ∈ B(Rn) a Borel set. More precisely, the following theorems
hold; we first state all the theorems and later prove each of them.
Theorem 4.4.1. When the processing function is the Heaviside function the finite
sums of the form (4.8) are dense in Lp(A,µ) for 1 ≤ p < ∞, for any A ∈ B(Rn) -
B denote the Borel σ–algebra - and µ Radon measure on (A,B(A)).
Theorem 4.4.2. When the processing function is the Heaviside function, the finite
sums of the form (4.8) are dense in the space of Lebesgue measurable functions on
In w.r.t the convergence in measure.
Theorem 4.4.3. Given g ∈ C(In) and given ϵ > 0 there is a sum ψ(x) of the form
(4.8) with Heaviside as processing function such that

|ψ(x) − g(x)| < ϵ ∀x ∈ In.

When the processing function is the sigmoid function or tanh-prod, we proved
that the finite sums of the form (4.8) are dense in C(In).
Theorem 4.4.4. When the processing function is a continuous sigmoidal function
the finite sums of the form (4.8) are dense in C(In).
Theorem 4.4.5. Let ψ(x) be the family of networks defined by the equation (4.8)
when the processing function is given by (4.4). This family of functions is dense in
C(In).
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Universality Theorems for Heaviside IAN

Theorem 4.4.6. The finite sums of the form

ψ(x) =
N∑

j=1
αjH(wj

n∑
i=1

H(wij(xi − bij)) − bj) (4.9)

with N ∈ N and wij , wj , αj , bij , bj ∈ R are dense in Lp(A,µ) for 1 ≤ p < ∞, for any
A ∈ B(Rn) (B denote the Borel σ–algebra) and µ a Radon measure on (A,B(A)).

In other words given, g ∈ Lp(A,µ) and ϵ > 0 there is a sum ψ(x) of the above
form for which

||ψ − g||pp =
∫
Rn

|ψ(x) − g(x)|pdµ(x) < ϵ.

To prove that a neural network defined as in equation (4.9) is a universal
approximator in Lp, for 1 ≤ p < ∞ we exploit that step functions are dense in Lp

and that our network can generate step functions.

Proposition 4.4.6.1. Let R be the set of the rectangles in Rn of the form

R =
n∏

k=1
[ak, bk) ak, bk ∈ R, ak < bk

We denote by F the vector space on R generated by 1R, R ∈ R i.e.

F =
{ m∑

i=1
αi1Ri

∣∣∣m ∈ N, αi ∈ R, Ri ∈ R
}

(4.10)

If A ∈ B(Rn), then the set

F|A =
{ m∑

i=1
αi1Ri∩A

∣∣∣m ∈ N, αi ∈ R, Ri ∈ R
}

(4.11)

F|A is dense in Lp(A,µ) for 1 ≤ p < ∞, with µ a Radon measure on (A,B(A)).

Proof. See chapter 3, Lp Spaces , in Cannarsa and D’Aprile (2015).

Lemma 4.4.7. Given ρ(x) ∈ F , with F defined as in equation (4.10), there exists
a finite sum ψ(x) of the form (4.9) such that ρ(x) = ψ(x) ∀x ∈ Rn.

Proof. To prove that a neural network described as in equation (4.9) can generate
step functions we proceed in two steps. First, we show how we can obtain the
indicator functions of orthants from the first layer of the network. Then we show
how, starting from these, we can obtain the step functions.

An orthant is the analogue in n-dimensional Euclidean space of a quadrant in
R2 or an octant in R3. We denote by translated orthant an orthant with origin in a
point different from the origin of the Euclidean space O. Let A be a point in the
n-dimensional Euclidean space, and let us consider the intersection of n mutually
orthogonal half-spaces intersecting in A. By independent selections of half-space
signs with respect to A (i.e. to the right or left of A) 2n orthants are formed.

Now we shall see how to obtain translated orthant with origin in in a point A of
coordinates (a1, a2, ..., an) from the first layer of the network i.e.

∑n
i=1H(wi(xi −bi)).

For this purpose we can take wi = 1 ∀i ∈ {1, ..., n}.
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The output of
∑n

i=1H(xi − bi) ∈ {0, ..., n} and depends on how many of the n
Heaviside functions are activated. We obtain the translated orthant with origin in
A by choosing bi = ai ∀i ∈ {1, ..., n}. In fact,

H(xi − ai) =
{

0 if xi < ai

1 if xi ≥ ai.

The i-th Heaviside is active in the half-space xi ≥ ai delimited by the hyperplane
xi = ai that is orthogonal to the i-th axis. Therefore, the Euclidian space Rn is
divided in 2n regions according to which value the function

∑n
i=1H(xi − ai) takes

in each region. See Figure 4.4 for an example in R2.
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Figure 4.4. Partition of R2, according to output of the function H(x1 − a1) +H(x2 − a2).
A is a point of coordinates (a1, a2).

There is only one region in which the output of the sum is n, which corresponds
to the orthant in which the condition xi ≥ ai ∀i = 1, ..., n holds. We denote it as
positive othant (the red colored orthant in the example shown in Figure 4.4).

Going back to equation (4.9), let us now consider the Heaviside function applied
after the sum. As before, we can choose wj = 1. If we take bj > n− 1, the value of
the output is 0 for each of the 2n orthants except for the positive orthant. This way,
we get the indicator function of the positive orthant.

The indicator function of a rectangle in R can be obtained as a linear combination
of the indicator function of the positive orthants centered in the vertices of the
rectangle. See Figure 4.5 for an example of the procedure in R2.

In general, the procedure involves considering a linear combination of indicator
functions of positive orthants centered in the vertices of the rectangle in such a way
that opposite values are assigned to the orthants corresponding to adjacent vertices.

For example, suppose we want to obtain the indicator function of the right-
closed left-open square [0, 1)2 in R2 (see the illustration in Figure 4.5). Denoting
by 1(xP ,yP )⌞ the indicator function of the positive orthant centered in the point of
coordinates (xP , yP ), we can write:

1[0,1)2 = 1(0,0)⌞ − 1(1,0)⌞ − 1(0,1)⌞ + 1(1,1)⌞.

Now suppose we want the linear combination of the indicator functions of K
rectangles with coefficents α1, ...αK . With suitably chosen coefficients the indicator
function of a rectangle can be written as

2n∑
l=1

(−1)lH(wjl

n∑
i=1

H(wij(xi − bij)) − bjl)
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x

y

(0, 0) (1, 0)

(0, 1) (1, 1)

1 1 − 1

1 − 1 1 − 1 − 1 + 1

Figure 4.5. How to obtain the indicator function on the square [0, 1)2 from the linear
combination of four indicator functions of positive orthants centered in the vertices
of [0, 1)2. 1[0,1)2 = 1(0,0)⌞ − 1(1,0)⌞ − 1(0,1)⌞ + 1(1,1)⌞. The numbers in the orthants
shows the sum of the indicator functions that are active in that orthant. For instance if
x = (x1, x2) belongs to the blue part of the plane, i.e. it is true that 0 < x1 < 1 and
x2 > 1, we have that 1(0,0)⌞(x)−1(1,0)⌞(x)−1(0,1)⌞(x)+1(1,1)⌞(x) = 1−0−1+0 = 1−1.

that replacing H(wjl
∑n

i=1H(wij(xi − bij)) − bjl) by Hl, to abbreviate the notation
becomes

2n∑
l=1

(−1)lHl.

The linear combination of the indicator functions of K rectangles with coefficents
α1, ...αK can be derived as

K∑
k=1

αk

2n∑
l=1

(−1)lHlk. (4.12)

The summation (4.12) can be written as a single sum, defining a sequence βj =
(−1)jαm with m = ⌈ j

2n ⌉ for j = 1, ..., 2nK. Thus (4.12) becomes

N=2nK∑
j=1

βjHj

that is an equation of form (4.9). We have therefore shown that for every step
function ρ in F there are N ∈ N and αj , wij , bij , bj , wj ∈ R such that the sum in
equation (4.9) is equal to ρ.

Proof of Theorem 4.4.6. The theorem follows immediately from Lemma 4.4.7 and
Proposition 4.4.6.1.

Remark 3. In Lemma 4.4.7 we proved that a network defined as in equation (4.9)
can represent functions belonging to set F defined as in equation (4.10). Note that
if the input is a set A we can obtain functions belonging to set F|A. For instance,
suppose x ∈ [0, 1]n, we can obtain indicator functions of other kinds of sets. If we
choose wij = 1 and bij < 0 ∀i, j and if we choose the weights of the second layer
so that they don’t operate any transformation, we can obtain the indicator function
of [0, 1]n. By a suitable choice of parameters, (4.9) may also become the indicator
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functions of any hyperplane xi = 0 or xi = 1 for i ∈ {1, .., n}. Furthermore we can
obtain any rectangle of dimension n− 1 that belongs to an hyperplane of the form
xi = 1 or xi = 0.

We have proven in Lemma 4.4.7 that a network formulated as in equation (4.9)
can represent step functions. By this property and by Proposition 4.4.8.1 we shall
show that it can approximate Lebesgue measurable functions on any finite space,
for example the unit n-dimensional cube [0, 1]n.

We denote by In the closed n-dimensional cube [0, 1]n. We denote by Mn the
set of measurable functions with respect to Lebesgue measure m, on In, with the
metric dm defined as follows. Let be f, g ∈ Mn,

dm(f, g) = inf{ϵ > 0 : m{x : |f(x) − g(x)| > ϵ} < ϵ}

We remark that dm-convergence is equivalent to convergence in measure (see
Lemma 2.1 in Hornik et al. (1989)).

Theorem 4.4.8. The finite sums of the form (4.9) with N ∈ N and wij , wj , αj , bij , bj ∈
R are dm-dense in Mn. Mn is the set of Lebesgue measurable functions on In .

This means that, given g measurable with respect to the Lebesgue measure m
on In, and given an ϵ > 0, there is a sum ψ of the form (4.9) such that dm(ψ, g) < ϵ.

Proposition 4.4.8.1. Suppose f is measurable on Rn. Then there exists a sequence
of step functions {ρk}∞

k=1 that converges pointwise to f(x) for almost every x.

Proof. See Theorem 4.3 p. 32 in Stein and Shakarchi (2005).

Proof of Theorem 4.4.8. Given any measurable function, by Proposition 4.4.8.1
there exists a sequence of step functions that converge to it pointwise. By Lemma
4.4.7 we have that equation (4.9) can generate step functions. Now m(In) = 1 and
for a finite measure space pointwise convergence implies convergence in measure,
this concludes the prof.

Remark 4. Notice that for Theorem 4.4.8 we don’t need the fact that In, is a closed
set. The proof only requires that the domain is a bounded set (so that its Lebesgue
measure is finite). The compactness of In will be necessary for the next theorem.

We notice furthermore that if the function we want to approximate is in Lp we
can obtain the convergence in measure from Theorem 4.4.6. Indeed from Chebyshev’s
inequality it follows that convergence in Lp implies convergence in measure.

Theorem 4.4.9. Given g ∈ C(In) and given ϵ > 0 there is a sum ψ(x) of the form
(4.9) such that

|ψ(x) − g(x)| < ϵ ∀x ∈ In.

Proof. Let g be a continuous function from In to R, by the compactness of In follows
that g is also uniformly continuous (see Theorem 4.19 p. 91 in Rudin (1976)). In
other words, for any ϵ > 0, there exists δ > 0 such that for every x, x′ ∈ [0, 1]n such
that ||x − x′||∞ < δ it is true that |g(x) − g(x′)| < ϵ. To prove the statement of
Theorem 4.4.9, let ϵ > 0 be given, and let δ > 0 be chosen according to the definition
of uniform continuity.

As we have already seen in Lemma 4.4.7 the neural network described in (4.9)
can generate step functions with support on right-open left-closed n-dimensional
rectangles and on (n− 1)-dimensional rectangles that belongs to an hyperplane of
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equation xi = 0 or xi = 1 for some i ∈ {1, ..., n} as seen in Remark 3. There exists a
partition of [0, 1]n, (R1, ..., RN ), consisting of right-open left-closed n-dimensional
rectangles and of (n− 1)-dimensional rectangles that belongs to an hyperplane of
equation xi = 0 or xi = 1 for some i ∈ {1, ..., n}, such that all side lengths are no
greater than δ. An example of a set of rectangles with this property is the set of
right-open left-closed cubes of side length 1

m̃ , m̃ > ⌈1
δ ⌉ with the (n− 1)-dimensional

rectangles with the same side length which we need to cover all the boundary of
[0, 1]n not covered by the right-open left-closed rectangles.

Suppose that for all j ∈ {1, ..., N} we choose xj ∈ Rj , and we set αj = g(xj).
If x ∈ [0, 1]n there is j so that x ∈ Rj , hence x satisfies ||x − xj ||∞ ≤ δ, and
consequentially |g(x) − g(xj)| ≤ ϵ. Therefore the step function h =

∑N
j=1 αj1Rj

satisfies

sup
x∈In

|h(x) − g(x)| =

= sup
j∈{1,...,N}

sup
x∈Rj

|h(x) − g(x)| =

= sup
j∈{1,...,N}

sup
x∈Rj

|αj − g(x)| ≤ ϵ

Universality Theorem for Sigmoid IAN

Definition 4.4.10. A function σ : R → [0, 1] is called sigmoidal if

lim
x→−∞

σ(x) = 0, lim
x→+∞

σ(x) = 1

Theorem 4.4.11. Let σ be a continuous sigmoidal function. Then the finite sums
of the form:

ψ(x) =
N∑

j=1
αjσ(wj(

n∑
i=1

σ(wij(xi − bij)) − bj)) (4.13)

with wij , αj , bij , bj , wj ∈ R and N ∈ N are dense in C(In).

In other words, given a g ∈ C(In) and given ϵ > 0 there is a sum ψ(x) of the
form (4.13) such that

|ψ(x) − g(x)| < ϵ ∀x ∈ In.

Proof. Since σ is a continuous function, it follows that the set U of functions of the
form (4.13) with αj , wij , bij , wj , bj ∈ R and N ∈ N is a linear subspace of C(In). We
claim that the closure of U is all of C(In).

Assume that U is not dense in C(In), let S be the closure of U , S ̸= C(In). By
the Hahn-Banach theorem (see p. 104 of Rudin (1987) ) there is a bounded linear
functional on C(In), call it L, with the property that L ̸= 0 but L(S) = L(U) = 0.

By the Riesz Representation Theorem (see p. 40 of Rudin (1987)), the bounded
linear functional L, is of the form

L(f) =
∫

In

f(x)dµ

for some signed regular Borel measures µ such that µ(K) < ∞ for every compact
set K ⊂ In (i.e. µ is a Radon measure). Hence,
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∫
In

h(x)dµ = 0, ∀h ∈ U. (4.14)

We shall prove that (4.14) implies µ = 0, which contradicts the hypothesis L ̸= 0.
Using the definition of U , equation (4.14) can also be written as

N∑
j=1

αj

∫
In

σ(wj(
n∑

i=1
σ(wij(xi − bij)) − bj))dµ = 0,

for any choice of αj , wij , wj , bij , bj ∈ R and N ∈ N.
Note that for any w, x, b ∈ R we have that the continuous functions

σλ(w(x− b)) = σ(λw(x− b) + ϕ)

converge pointwise to the unit step function as λ goes to infinity, i.e.

lim
λ→∞

σλ(w(x− b)) = γ(w(x− b))

with

γ(y) =


1 if y > 0
σ(ϕ) if y = 0
0 if y < 0

By hypothesis is true that for all λ1, λ2 in R∫
In

σλ2(wj(
n∑

i=1
σλ1(wij(xi − bij)) − bj))dµ = 0.

It follows that for all λ2:

lim
λ1→∞

∫
In

σλ2(wj(
n∑

i=1
σλ1(wij(xi − bij)) − bj))dµ = 0.

Now applying the Dominated Convergence Theorem (see Theorem 11.32 p 321
of Rudin (1976)) and the fact that σ is continuous:∫

In

lim
λ1→∞

σλ2(wj(
n∑

i=1
σλ1(wij(xi − bij)) − bj))dµ =

∫
In

σλ2(wj(
n∑

i=1
γ(wij(xi − bij)) − bj))dµ.

Again, by Dominated Convergence Theorem we have:

lim
λ2→∞

∫
In

σλ2(wj(
n∑

i=1
γ(wij(xi − bij)) − bj))dµ =

∫
In

γ(wj(
n∑

i=1
γ(wij(xi − bij)) − bj)))dµ.

Hence we have obtained that ∀αj , wij , bij , wj , bj ∈ R and ∀N ∈ N∫
In

N∑
j=1

αjγ(wj(
n∑

i=1
γ(wij(xi − bij)) − bj))dµ = 0.
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The function γ is very similar to the Heaviside function H, the only difference
is that H(0) = 1 while γ(0) = σ(ϕ). Let Ri denote an open rectangle, ∂aRi its left
boundary (i.e. the boundary of a left-closed right-open rectangle) and ∂bRi its right
boundary (i.e. the boundary of a right-closed left-open rectangle). Repeating the
construction seen in Lemma 4.4.7 to obtain rectangles, with the difference that here
γ takes value σ(ϕ) on the boundaries, we get that

σ(ϕ)µ(∂aRi) + (1 − σ(ϕ))µ(∂bRi) + µ(Ri) = 0

for every open rectangle Ri. Taking ϕ → ∞, implies

µ(∂aRi) + µ(Ri) = 0 ∀ open rectangle Ri.

Every open subset A of In, can be written as a countable union of disjoint partly
open cubes (see Theorem 1.11 p.8 of Wheeden and Zygmund (2015)). Thus, from
the fact that the measure is σ-additive we have that for every open subset A of In,
µ(A) = 0. Furthermore µ(In) = 0. To obtain In from

N∑
j=1

αjγ(wj(
n∑

i=1
γ(wij(xi − bij)) − bj))

it is sufficient to choose the parameters so that wij(xi − bij) > 0 ∀xi ∈ [0, 1] and so
that wj , bj maintains the condition on the input.

Hence, µ(AC) = µ(In) − µ(A) = 0. It follows that for all compact set K of In,
µ(K) = 0.

From the regularity of the measure, it follows that µ is the null measure.

Universality Theorem for Product of hyperbolic tangents IAN

Theorem 4.4.12. The finite sums of the form

ψ(x) =
N∑

j=1

αj

2

Mj∏
l=1

tanh(wjl(zj(x) − bjl)) + 1


zj(x) =

n∑
i=1

1
2

[
mi∏

k=1
tanh(wijk(xi − bijk)) + 1

] (4.15)

with wjl, wijk, αj , bjl, bijk ∈ R and Mj , N,mi ∈ N, are dense in C(In).
In other words given g ∈ C(In) and given ϵ > 0 there is a sum ψ(x) defined as

above such that
|ψ(x) − g(x)| < ϵ ∀x ∈ In.

Since tanh is a continuous function, it follows that the family of functions defined
by equation (4.15) is a linear subspace of C(In). To prove that it is dense in C(In)
we will use the same argument we used for the continuous sigmoidal functions.

This is, called U the set of functions of the form (4.15), we assume that U is
not dense in C(In). Thus, by the Hahn-Banach theorem there exists a not null
bounded linear functional on C(In) with the property that it is zero on the closure
of U . By the Riesz Representation Theorem, the bounded linear functional can be
represented by a Radon measures. Then using the definition of U we will see that
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this measure must be the zero measure, hence the functional associated with it is
null contradicting the hypothesis.

We define

hλ(x) = 1
2

[
m∏

k=1
tanh(λ(wk(x− bk)) + ϕ) + 1

]
. (4.16)

To proceed with the proof as in the case of the proof for continuous sigmoidal
functions, we need only to understand to what converges the function

ψλ2,λ1(x) =
N∑

j=1

αj

2 hjλ2

(
n∑

i=1
hiλ1(x)

)
(4.17)

when λ1 and λ2 tend to infinity, and hiλ indicates the processing function related
to input i.

Once we have shown that for some choice of the parameters they converge
pointwise to step function we can use the same argument we used in the proof of
Theorem 4.4.11.

The first step is therefore to study the limit of equation (4.17). Let us focus of
the multiplication of tanh in the first layer, given by equation (4.16).

The pointwise limit of hλ(x) for λ → ∞ depends on the sign of the limit of the
product of tanh, that in turn depends on the sign of wk(x− bk) for k ∈ {1, ...,m}.

Remark 5. We remark that for x ∈ [0, 1], from the limit of equation (4.16) we can
obtain the indicator functions of set of the form x > b or x < b for any b ∈ R. We
just have to choose the parameters in such a way that only one of the tanh in the
multiplication is relevant. Let us define Z = {k ∈ {1, ...,m} : wk(x− bk) > 0 ∀x ∈
[0, 1]}. If |Z| = m − 1, i.e. there is only one i ∈ {1, ...,m} so that its weight are
significant it holds that

lim
λ→∞

hλ(x) = υ(x) =


1 if wi(x− bi) > 0
σ(2ϕ) if wi(x− bi) = 0
0 if wi(x− bi) < 0

taking into account that σ(2ϕ) = 1
2 (tanh(ϕ) + 1).

Proof of Theorem 4.4.12. Considering Remark 5, the proof of Theorem 4.4.12 is
analogous to that of Theorem 4.4.11.

4.5 Experiments

4.5.1 Datasets
We selected a collection of datasets from the UCI Machine Learning Repository.

We only consider classification models in our experiments. However, it is straightfor-
ward to apply Newron architectures to regression problems. The description of the
datasets is available at the UCI Machine Learning Repository website or the Kaggle
website.

We also used 4 synthetic datasets of our creation, composed of 1000 samples
with 2 variables generated as random uniforms between −1 and 1 and an equation
dividing the space into 2 classes. The 4 equations used are bisector, xor, parabola,
and circle.
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19 out of 23 datasets are publicly available, either on the UCI Machine Learning
Repository website or on the Kaggle website. Here we present a full list of the datasets
used, correlated with their shortened and full-length name, and the corresponding
webpage where the description and data can be found.

Short name Full-length name Webpage
adult Adult <UCI_MLR_URL>/adult
australian Statlog (Australian Credit Approval) <UCI_MLR_URL>/statlog+(australian+credit+approval)
b-c-w Breast Cancer Wisconsin <UCI_MLR_URL>/Breast+Cancer+Wisconsin+(Diagnostic)
car Car Evaluation <UCI_MLR_URL>/car+evaluation
cleveland Heart Disease <UCI_MLR_URL>/heart+disease
crx Credit Approval <UCI_MLR_URL>/credit+approval
diabetes Diabetes https://www.kaggle.com/uciml/pima-indians-diabetes-database
german Statlog (German Credit Data) <UCI_MLR_URL>/statlog+(german+credit+data)
glass Glass Identification <UCI_MLR_URL>/glass+identification
haberman Haberman’s Survival <UCI_MLR_URL>/haberman%27s+survival
heart Statlog (Heart) <UCI_MLR_URL>/statlog+(heart)
hepatitis Hepatitis <UCI_MLR_URL>/hepatitis
image Statlog (Image Segmentation) <UCI_MLR_URL>/Statlog+(Image+Segmentation)
ionosphere Ionosphere <UCI_MLR_URL>/ionosphere
iris Iris <UCI_MLR_URL>/iris
monks-1 MONK’s Problems <UCI_MLR_URL>/MONK%27s+Problems
monks-2 MONK’s Problems <UCI_MLR_URL>/MONK%27s+Problems
monks-3 MONK’s Problems <UCI_MLR_URL>/MONK%27s+Problems
sonar Connectionist Bench <UCI_MLR_URL>/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)

Table 4.2. Publicly available datasets, with the short name used in in our work, their
full-length name and the webpage where data and description can be found. The
UCI_MLR_URL is the following: https://archive.ics.uci.edu/ml/datasets/

The 4 synthetic datasets of our own creation are composed of 1000 samples
with 2 variables generated as random uniforms between −1 and 1 and an equation
dividing the space into 2 classes. The 4 equations used are:

• bisector: x1 > x2

• xor: x1 > 0 ∧ x2 > 0

• parabola: x2 < 2x2
1 − 1

2

• circle x2
1 + x2

2 <
1
2

These datasets are also represented in Figure 4.6.

4.5.2 Methods
We run a hyperparameter search to optimize the IAN neural network structure,

i.e., depth and number of neurons per layer, for each dataset. We started our search
by trying a single neuron, followed by a shallow network and then continued through
various DNN configurations. We tested IAN with all three different processing
functions. In the tanh-prod case, we set M = 2.

Concerning the training of traditional neural networks, we tested the same
structures used for Newron, i.e., the same number of layers and neurons. Finally,
we also ran a hyperparameter search to find the best combinations in the case of
Logistic Regression (LR), Decision Trees (DT), and Gradient Boosting Decision
Trees (GBDT).

4.5.3 Results
Table 4.1 presents on each row the datasets used while on the columns the various

models. Each cell contains the 95% confidence interval for the accuracy of the model
that obtains the best performance.



4.5 Experiments 85

(a) Bisector (b) XOR

(c) Parabola (d) Circle

Figure 4.6. The synthetically generated datasets we used to assess the soundness of our
methodology.

Results obtained with the new IAN neurons are better than those obtained by
DTs and LRs (interpretable) models. Moreover, IAN’s results are on par, sometimes
better than, results of traditional NNs and GBDT classifiers. These last two methods,
though, are not transparent.

Amongst the Heaviside, sigmoid, and tanh-prod cases, we can see that the first
one obtains the worst results. The reason may be that it is more challenging to
train, despite being the most interpretable among the three cases. tanh-prod instead
performs slightly better than sigmoid, being more flexible. Sigmoid, being more
straightforward to interpret than tanh-prod, could be a good choice at the expense
of a slight decrease in accuracy that remains, however, similar to that of a traditional
neural network.

4.5.4 Experimental settings
All code was written in Python Programing Language. In particular, the following

libraries were used for the algorithms: tensorflow for neural networks, scikit-learn
for Logistic Regression, Decision Trees and Gradient Boosting Decision Trees.

A small exploration was made to determine the best structure of the neural
network for each dataset. We used a breadth-first search algorithm defined as follows.
We started with a network with just one neuron, we trained it and evaluated its
performance. At each step, we can double the number of neurons in each layer except
the output one or increase the depth of the network by adding a layer with one
neuron. For each new configuration, we build a new structure based on it, initialize
it and train it. If the difference between the accuracy achieved by the new structure
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and that of the previous step is lower than 1%, then a patience parameter is reduced
by 1. The patience parameter is initialized as 5 and is passed down from a parent
node to its spawned children, so that each node has its own instance of it. When
patience reach 0, that configuration will not spawn new ones.

Before the neural network initialization, a random seed was set in order to
reproduce the same results. As for the initialization of IAN, the weights w are
initialised using the glorot uniform. For the biases b of the first layer a uniform
between the minimum and the maximum of each feature was used, while for the
following layers a uniform between the minimum and the maximum possible output
from the neurons of the previous layer was used.

For the network training, Adam with a learning rate equal to 0.1 was used as
optimization algorithm. The loss used is the binary or categorical crossentropy,
depending on the number of classes in the dataset. In the calculation of the loss, the
weight of each class is also taken into account, which is inversely proportional to the
number of samples of that class in the training set. The maximum number of epochs
for training has been fixed at 10000. To stop the training, an early stopping method
was used based on the loss calculated on the train. The patience of early stopping is
250 epochs, with the variation that in these epochs the loss must decrease by at least
0.01. Not using a validation dataset may have led to overfitting of some structures,
so in future work we may evaluate the performance when using early stopping based
on a validation loss. The batch size was fixed at 128 and the training was performed
on CPU or GPU depending on which was faster considering the amount of data.
The Heaviside was trained as if its derivative was the same as the sigmoid.

For Decision Trees (DT) and Gradient Boosting Decision Trees (GBDT), an opti-
misation of the hyperparameters was carried out, in particular for min_samples_split
(between 2 and 40) and min_samples_leaf (between 1 and 20). For GBDT, 1000
estimators were used, while for DT the class_weight parameter was set. For the
rest of the parameters, we kept the default values of the python sklearn library.

4.5.5 Examples
Circle dataset example

In order to first validate our ideas, we show what we obtained by applying a
single neuron using multiplication of 2 tanh in the case of our custom dataset circle.

In Figure 4.7 we can see how the multiplication of tanh has converged to two bells
centred in 0, while α1 and α2 have gone to 30. According to the IANinterpretation
method, values below 30 correspond to an activation function output of 0, while
it is 1 for values above 38. In the middle range, the prediction is more uncertain.
Combining this data with the previous prediction, we can conclude that we need
the sum of the two values output by the two processing functions to be greater than
38 to have a prediction of class 1. Therefore, if one of the two inputs is 0 (output
30), it is enough for the other to be between −0.65 and 0.65 (output greater than 8).
Otherwise, we may need an output of at least 19 from both outputs, corresponding
to input values between −0.5 and 0.5, i.e., the area covered by the circle.

Heart dataset - Heaviside IAN

The Statlog Heart dataset is composed of 270 samples and 13 variables of medical
relevance. The dependent variable is whether or not the patient suffers from heart
disease. In Figure 4.8 you can find the network based on Heaviside IAN trained on
the heart dataset. Only the inputs with a relevant contribution to the output are
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Figure 4.7. tanh-prod Neural Network trained on the circle dataset. The figure follows
the color convention used for Newron in Figure 4.3. x1 and x2 are the inputs of the
network and y is the output. The processing and activation functions are plotted with
input on the x-axis and output on the y-axis. Coordinates of the inflection points are
indicated above the plots.

shown. From now on, we will indicate with Rk,j,i the rule related to the processing
function corresponding to the i-th input, of the j-th neuron, of the k-th layer. From
the first neuron of the first layer we can easily retrieve the following rules: R1,1,1 =
x1 ≤ 54.29, R1,1,3 = x3 ≤ 3.44, R1,1,4 = x4 ≤ 123.99, R1,1,5 = x5 ≥ 369, 01, R1,1,9 =
x9 ≤ 0.48, R1,1,10 = x10 ≤ 1.22, R1,1,11 = x11 ≤ 1.44, R1,1,12 = x12 ≤ 0.52, R1,1,13 =
x13 ≤ 6.26. The second neuron of the first layer is not shown for lack of space,
but its obtained rules are R1,2,2 = x2 ≥ 0.79, R1,2,3 = x3 ≥ 3.59, R1,2,4 = x4 ≥
99.95, R1,2,5 = x5 ≥ 253.97, R1,2,8 = x8 ≤ 97.48, R1,2,9 = x9 ≤ 0.04, R1,2,10 = x10 ≥
2.56, R1,2,11 = x11 ≥ 1.53, R1,2,12 = x12 ≥ 0.52, R1,2,13 = x13 ≥ 5.47. Moreover,
input x7 gives always 1, so this must be taken into consideration in the next layer.

Moving on to the second layer, we can see in the first neuron that the second input
is irrelevant, since the Heaviside is constant. The first processing function activates
if it receives an input that is greater or equal to 2.99. Given that the input can only
be an integer, we need at least 3 of the rules obtained for the first neuron of the first
layer to be true: R2,1,1 = 3 − of − {R1,1,i}. Following the same line of reasoning, in
the second neuron of the second layer we see that we get R2,2,1 = 5 − of − {¬R1,1,i}
and R2,2,2 = 5 − of − {R1,2,i} (5 and not 6 because of x7 processing function).

In the last layer, the first processing function has an activation of around 2.5 if
it receives an input that’s less than 1.17. This can happen only if R2,1,1 does not
activate, so we can say: R3,1,1 = ¬R2,1,1 = 7−of −{¬R1,1,i}. The second processing
function gives a value of around −2.5 only if it gets an input less than 0.99, so only if
the second neuron of the second layer does not activate. This means that R2,2,1 and
R2,2,2 must be both false at the same time, so we get R3,1,2 = ¬R2,2,1 ∧ ¬R2,2,2 =
5 − of − {R1,1,i} ∧ 6 − of − {¬R1,2,i}. Now there are 4 cases for the sum, i.e. the
combinations of the 2 activations: {0 + 0, 2.5 + 0, 0 − 2.5, 2.5 − 2.5} = {−2.5, 0, 2.5}.
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Figure 4.8. The Heaviside IAN Network trained on the heart dataset. The Figure follows
the color convention used for Newron.

Given that both have around the same value for the α parameter, the set is reduced
to two cases. Looking at the processing function, we can see that is increasing with
respect to the input, so since α1 is positive, we can say that rule R3,1,1 is correlated to
class 1, while rule R3,1,2, having a negative α2, has an opposite correlation. Looking
at its values, we can see that for both 0 and 2.5 inputs, the activation function gives
an output greater than 0.5. If we consider this as a threshold, we can say that only
for an input of −2.5 we get class 0 as prediction. This happens only if R3,1,2 is true
and R3,1,1 is false. Summarizing we get R0 = R3,1,2 ∧ ¬R3,1,1 = 5 − of − {R1,1,i} ∧
6 − of − {¬R1,2,i} ∧ 3 − of − {R1,1,i} = 5 − of − {R1,1,i} ∧ 6 − of − {¬R1,2,i}, so
that we can say “if R0 then predicted class is 0, otherwise is 1”.

Although we are not competent to analyse the above results from a medical
perspective, it is interesting to note for example that the variables x1 and x4,
representing age and resting blood pressure respectively, are positively correlated
with the presence of a heart problem.
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Figure 4.9. The sigmoid IAN Network trained on the xor dataset. The Figure follows the
color convention used for Newron.

Xor - sigmoid IAN

Our custom xor dataset divides the 2D plane in quadrants, with the opposites
having the same label.

The network based on sigmoid IAN trained on xor dataset is represented in
Figure 4.9. As we can see, all the processing functions of the first layer converged
to nearly the same shape: a steep inverted sigmoid centered in 0. Therefore, we
can say the rules obtained are R1,1,1 = R1,2,1 = x1 ≤ 0 and R1,1,2 = R1,2,2 = x2 ≤ 0.
In the last layer, the first processing function has a value of about −15 for inputs
in [0, 1], then it starts growing slowly to reach almost 0 for an input of 2. This
tells us that it doesn’t have an activation if both rules of the first neuron are true,
so if x1 ≤ 0 ∧ x2 ≤ 0. On the other hand, the second processing function has no
activation if its input greater than 1, that happens for example if we have a clear
activation from at least one of the inputs in the second neuron of the first layer. So
looking at it the opposite way, we need both those rules to be false (x1 > 0 ∧ x2 > 0)
to have an activation of 12.5. The activation function is increasing with respect to
the input, and to get a clear class 1 prediction, we need the input to be at least
−5. Considering if the processing functions could give only {−15, 0} and {12.5, 0}
values, just in the case we got −15 from the first one and 0 from the second one ot
would give us a clear class 0 prediction. This happens only if ¬(x1 ≤ 0 ∧ x2 ≤ 0) =
x1 > 0 ∨ x2 > 0 and ¬(x1 > 0 ∧ x2 > 0) = x1 ≤ 0 ∨ x2 ≤ 0, that can be summarised
(x1 > 0 ∨ x2 > 0) ∧ (x1 ≤ 0 ∨ x2 ≤ 0) = (x1 > 0 ∧ x2 ≤ 0) ∧ (x1 ≤ 0 ∨ x2 > 0). Since
this rule describes the opposite to xor, for class 1 we get the exclusive or logical
operation.
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6.72 7.04

Figure 4.10. The tanh-prod IAN Network trained on the iris dataset. The Figure follows
the color convention used for Newron.

Iris dataset - hyperbolic tangents IAN

A dataset widely used as a benchmark in the field of machine learning is the Iris
dataset. This contains 150 samples, divided into 3 classes (setosa, versicolor and
virginica) each representing a type of plant, while the 4 attributes represent in order
sepal length and width and petal length and width.

In Figure 4.10 you can see the final composition of the network generated with
the tanh-prod2 IAN neuron.

Considering the first neuron of the first layer, we see that it generates the
following fuzzy rules: R1,1,2 = x2 > 3.08 (sepal width), R1,1,3 = x3 < 5.14 (petal
length) and R1,1,4 = x4 < 1.74 (petal width). For the first attribute (sepal length)
it does not generate a clear rule, but forms a bell shape, reaching a maximum of
0.5. This tells us that x1 is less relevant than the other attributes, since, unlike the
other processing functions, it does not reach 1. The second neuron has an inverse
linear activation for the first attribute, starting at 0.7 and reaching almost 0. The
second attribute also has a peculiar activation, with an inverse bell around 2.8 and
a minimum value of 0.4. The third and fourth attributes have clearer activations,
such as R1,2,3 = x3 < 2.51 and R1,2,4 = x4 < 1.45.

The fact that petal length and width are the ones with the clearest activations
and with those specific thresholds are in line with what has previously been identified
on the Iris dataset by other algorithms.
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We denote by yk,j the output of the j-th neuron of the k-th layer. Moving on to the
second layer, the first neuron generates the rules “if y1,1 < 1.83” and “if y1,2 < 2.66”,
while the second one generates “if y2,1 > 2.08” and “if y2,2 > 2.22”. Combined with
what we know about the previous layer, we can deduce the following: y1,1 is less than
1.83 only if the sum of the input activation functions is less than 1.83, which only
happens if no more than one of the last three rules is activated (0 + 1 + 0 < 1.83),
while the first one, even taking its maximum value, is discriminative only when the
input of one of the other rules is close to the decision threshold (0.5+1+0+0 < 1.83,
while 0.5 + 1 + 0.5 + 0 > 1.83). For y1,2 < 2.66, there are more cases. We can
divide the second processing function of the second neuron of the first layer in two
intervals: one for which x2 < 3.2 and the other when x2 ≥ 3.2. In the first interval,
the processing function gives a value that is less than 0.66, greater in the second one.
With this, we can say that y1,2 < 2.66 even if R1,2,3 and R1,2,4 activates, if x2 < 3.2
and x1 is near its maximum.

In the second neuron of the second layer, the first processing function is nearly
the exact opposite to that of the other neuron; we need at least two of R1,1,2, R1,1,3
or R1,1,4 to be true, while R1,1,1 still doesn’t have much effect. The second processing
function gives us y1,2 > 2.22. Considering that the minimum for the processing
function related to x2 is 0.4, we may need both rules R1,2,3 and R1,2,4 to be true to
exceed the threshold, or just one of them active and x1 to take on a low value and
x2 to be a high value.

For the last layer, remember that in this case since there are more than 2 classes,
a softmax function is used to calculate the output probability, hence the arrows in
the figure that join the layers of the last layer.

For the first output neuron, in order to obtain a clear activation, we need the
first input to be less than 0.46 and the second greater than 1.42. This is because the
αi are 3 and −8, and the output activation function starts to have an activation for
values greater than −2. This means that the first neuron of the second layer should
hardly activate at all, while the other should activate almost completely. Considering
the thresholds for y1,1 and y1,2, we need the first to be greater than 2.08 and the
other to be greater than 2.66. So R3,1,1 = 2 − of − {x2 > 3.08, x3 < 5.14, x4 < 1.74}.
For R3,1,2 is more tricky to get a clear decision rule, but we can say that we may
need both R1,2,3 and R1,2,4 to be true and x2 ≥ 3.2. If x2 < 3.2, we need x1 to not
be near its maximum value. If just one of those two rules is true, we need x2 < 3.2
and x1 near 4, or x2 > 3.2 but with a (nearly) direct correlation with x1, such that
the more x1 increases, the same does x2.

In the second output neuron, the second processing function is negligible, while
the first one forms a bell shape between 1 and 2. This means that it basically
captures when y2,1 has a value of approximately 1.5, so when the decision is not
clear. This is what gives this neuron maximum activation.

In the third and last output layer, since the first processing function has a
negative α parameter and the activation function is increasing with respect to the
input, we want it to output 0, and this requires maximum activation for the first
neuron of the second layer. Regarding the second processing function, we want it to
output 8, so we need nearly no activation from the second neuron of the second layer.
So we need the first neuron of the first layer to output a value lower than 1.83 and
the second neuron to output a value lower than 2.22. This means that no more than
one rule R1,1,i needs to be active and at most two rules of R1,2,i need to be true.

We can conclude by saying that both neurons of the first layer are positively
correlated with class 1, while they are negatively correlated with class 3. This means
that low values of x3 and x4, or high values of x2 increase the probability of a sample
to belong to class 1, while x1 has almost no effect. For class 2, what we can say is
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that it correlates with a non-maximum activation of both neurons of the first layer,
meaning that it captures those cases in which the prediction of one of the other
classes is uncertain.

4.5.6 Current limitations
The extraction of proper rules from the network can be harrowing; in the

Heaviside case, they might be too long in the sigmoid and tanh-prod cases because
their simplicity depends on the final value parameters. Nevertheless, methods of
regularization during training or additional Rule Extraction methods may help to
simplify interpretability. We defer the study of regularization to future works.

Also, we have not compared Newron against state-of-the-art Deep Learning
models for tabular data, as our main goal was to show that our formulation was more
suitable than traditional neurons compared to “traditional” interpretable models.
Comparisons with more advanced solutions for tabular data will be the subject of
future work.

4.6 Conclusions and Future Work
We have introduced the concept of a generalized neuron and proposed three

different specializations, along with the corresponding method to interpret the
behavior of the network. Also, in cases where from the network we cannot devise exact
rules (e.g., in the sigmoid and tanh-prod cases), the structure of the neuron and the
parameters allow the visualization of its behavior. Indeed, for every input, we apply
the nonlinearity operation before the aggregation reducing it to a one-dimensional
space allowing the analysis of each input separately. Through universal approximation
theorems, we have proved that the new structure retains the same expressive power
as a standard neural network. In future studies we will investigate more in detail the
expressiveness of IAN based models with respect to the number of layers or neurons
in arbitrarily deep but width-limited networks and arbitrarily wide but depth-limited
networks. Experiments conducted on both real and synthetic datasets illustrate
how our framework can outperform traditional interpretable models, Decision Trees,
and Logistic Regression, and achieve similar or superior performance to standard
neural networks. In the future, we will investigate the influence of hyper-parameters
(network depth, number of neurons, processing functions) and initialization on
the model quality. Also, we will refine the analysis of the tanh-prod case as the
number of tanh increases. In addition, we will investigate IAN with additional
processing functions, such as ReLU and SeLU. Finally, we will extend this method to
other neural models, such as Recurrent, Convolutional and Graph Neural Networks.
Although we have not yet defined exactly how to extend to the other cases, the
general idea remains the same: avoid linear combinations, instead apply a function
to each input and then aggregate the results. Since CNNs are in fact a special case
of Fully-connected NNs with certain weights fixed and/or shared, our neuron would
already be applicable to images, but the interpretation for this case will require
more investigation.
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Chapter 5

A topological description of loss
surfaces via Betti Numbers
characterization

In recent years, the pursuit for the theoretical foundations of Machine Learning
(ML) and Deep Learning (DL) models has gained more and more attention as the
research community decided to delve into the reasons why these models can achieve
outstanding performance in different application fields (Koren et al., 2009; Scarselli
et al., 2008; Krizhevsky et al., 2017; Devlin et al., 2018; Radford et al., 2018). On
the one hand, as the automated decisions provided by these algorithms can have
a relevant impact on people’s lives, their behaviour has to be aligned with the
values and principles of individuals and society. This demands designing automated
methods we can trust, fulfilling the requirements of fairness, robustness, privacy,
and explainability (Oneto et al., 2022). On the other hand, a wide range of tools
arose from different areas have been taken into account to give proper explanations
to the behaviour of ML and DL models according to different mathematical aspects,
such as the gradient descent dynamics (Maennel et al., 2018) (Williams et al., 2019)
(Goodfellow et al., 2014), the role of the activation functions (Ramachandran et al.,
2017), the importance of the number of layers (Bianchini and Scarselli, 2014). From
the theoretical point of view, the characterization of the loss function to be minimized
is crucial, as the whole training efficiency relies on its shape, which in turn depends
on the network architecture. Several works have already dealt with the analysis of
the surface of the loss function, identifying conditions for the presence (or absence)
of spurious valleys in a theoretical (Venturi et al., 2018) or empirical-driven way
(Safran and Shamir, 2018), pointing out the role of saddle points in slowing down
the learning (Dauphin et al., 2014), and giving hints on the topological structure of
the loss for networks with different activation functions (Freeman and Bruna, 2016;
Nguyen and Hein, 2017).

Our contribution fits into the latter line of research, as we give a characterization
of the complexity of loss functions by a topology argumentation. More precisely,
given a layered neural network N and a loss function LN computed on some train
data, we will measure the complexity of LN by the topological complexity of the set
SN = {θ|LN (θ) ≤ c}. Such an approach is natural, since SN , observed at each level
c, provides the form of the loss function: for example, if LN has k isolated minima,
then SN has k disconnected regions for some small c.

In the chapter, we will provide a bound on the sum of Betti numbers (Bredon,
2013) of the set SN . In algebraic topology, Betti numbers distinguish spaces with
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different topological properties. More precisely, for any subset S ⊂ Rn, there exist
n Betti numbers bi(S), 0 ≤ i ≤ n − 1, Intuitively, the first Betti number b0(S)
is the number of connected components of the set S, which in the case S = SN
correspond to the number of basins of attraction of the loss function. The i-th Betti
number bi(S) counts the number of (i+ 1)-dimensional holes in S, which measures
the tortuosity of the error function on a given level.

The upper bound is derived for feedforward neural networks with different
numbers of layers, number of neurons per layer, and number of training samples.
Moreover, we consider networks with skip connections, such as ResNet, and MSE
loss functions with or without a regularization. Finally, we treat networks with
Pfaffian activation functions. The class of Pfaffian maps is wide and includes most
of the functions, such a large subset of the functions with continuous derivatives
commonly used in engineering and computer science applications, such as hyperbolic
tangent, logistic sigmoid and polynomials and their composition 1. Actually, most
of the elementary functions are Pfaffian, e.g., the exponential and the trigonometric
functions, which is a wide class. The concept of Pfaffian functions was initially
introduced by Khovanskii (Khovanskii, 1991) and Gabrielov and Vorobjov formulated
this concept of Pfaffian complexity or format in their work Gabrielov and Vorobjov
(1995). We will define these concepts formally later in the Preliminaries section.

It is worth mentioning that this work takes inspiration from Bianchini and
Scarselli (2014), where a similar topological argumentation has been used to study
the complexity of the functions implemented by a neural network, showing that deep
networks can implement more complex functions than shallow ones using the same
number of parameters. Thus, intuitively, while the results in Bianchini and Scarselli
(2014) are about the network function, namely what a network can do, the results in
this paper are about the error function, namely how hard the optimization problem
is.

Our main contributions are summarized as follows:
• we derive the Pfaffian format of common loss function, i.e. the Mean Square

Error (MSE) loss function and the Binary Cross-Entropy (BCE) loss function
with respect to the training of feedforward perceptron networks; the Pfaffian
format is computed with respect to the weights, and involves the knowledge of
the Pfaffian format of Pfaffian activation function;

• consequently, bounds on the complexity of said loss functions are found in
terms of Betti numbers characterization; multiple bounds are described inde-
pendently in terms of the different parameters of the problem (i.e. number of
layers, number of neurons per layer, size of the training dataset, total number
of learnable parameters in the network). Specifically, we show (coherently
with the literature and common knowledge) that the complexity of the loss
function increases super-exponentially with the number of layers or neurons
per layer, and exponentially with the number of training samples. Moreover,
considerations around the possible implementation of regularizers or different
architectures are drawn to give a wider perspective.

The chapter is organized as follows. In Section 5.1, we briefly review the literature
on the characterization of the loss surface and topological tools used to evaluate the

1For sake of simplicity, we do not consider networks with ReLU activation functions, which are
not Pfaffian. The results of this work can also be extended to ReLU and, more generally, piece-wise
polynomials, using a measure of complexity based on the number of disconnected components of
the set SN . For example, such an argument has been used to estimate the Vapnick Chernovenkis
dimension of feedforward neural networks (Bartlett et al., 1998b). However, the estimation requires
a different technique and a duplication of our theorems, which we prefer to skip here for simplicity.
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computational power and generalization ability of feedforward networks. In Section
5.2, some notations and preliminary definitions are introduced, while in Section 5.3,
the main results proposed in this work are presented. To ensure easy text reading,
which allows for capturing the main contents, all proofs are collected in Section 5.4.
Finally, a discussion of the theoretical outcomes of our study and some conclusions
are reported in Sections 5.5 respectively.

5.1 Related work
The characterization of the loss landscape has gained more and more attention

in the last few years; attempts to provide a satisfying description have been made
through several approaches. In Choromanska et al. (2015a,b), the spin-glass theory
is exploited to quantify, in probability, the presence of local minima and saddle
points. Unfortunately, the connection between the loss function of neural networks
and the Hamiltonian of the spherical spin-glass models relies on several possibly
unrealistic assumptions. Yet, the empirical evidence suggests that it may also exist
under mild conditions. In Dauphin et al. (2014), a method that can rapidly escape
high dimensional saddle points, unlike gradient descent and quasi-Newton methods,
is proposed. Based on results from statistical physics, random matrix theory, neural
network theory, and empirical evidence, it is argued that the major difficulty in using
local optimization methods originates from the proliferation of saddle points instead
of local minima, especially in high dimensional problems of practical interest. Saddle
points are surrounded by plateaus that can dramatically slow down the learning
process. In Venturi et al. (2019), the topological property of the loss function defined
as presence or absence of spurious valleys ( defined as connected components of
the sub-level sets that do not contain a global minima) is addressed for one-hidden
layer neural networks, providing the following contributions: 1) the Empirical Risk
Minimization loss for any continuous activation function and the expected value loss
with polynomial activations do not exhibit spurious valleys as long as the network
is sufficiently over-parametrised. 2)For non-polynomial non-negative activations,
among which ReLU networks are included, for any hidden width, there exists a
data distribution which yields spurious valleys with positive measure, whose value is
arbitrarily far from the one of the global.

Based on a computer-driven empirical proof, similar results are also shown in
Safran and Shamir (2018).

In Freeman and Bruna (2019), the loss surface is studied in terms of level sets,
and it is shown that the landscape of the loss functions of deep networks with linear
activation functions is significantly different from that exploiting half-rectified ones:

in the former case, the level set can have disconnected components. The level
sets are connected without nonlinearities, whereas the level set can be disconnected.
Finally, a comprehensive research survey focused on analysing the loss landscape
can be found in Berner et al. (2021).

In algebraic topology, Betti numbers are used to distinguish spaces with different
topological properties. Betti numbers have been exploited to give a topological
description of the complexity of he function implemented by neural networks with
Pfaffian activation functions and to describe their generalization capabilities. More
specifically, in Karpinski and Macintyre (1997), by such a technique, bounds on
the VC dimension of feedforward neural networks are provided; this work has been
later extended to Recurrent and Graph Neural Networks (Scarselli et al., 2018).
In Bianchini and Scarselli (2014), bounds on the sum of Betti numbers are provided
to describe the complexity of the map implemented by feedforward networks with
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Pfaffian activation functions. In Naitzat et al. (2022), the relative efficacy of ReLUs
over traditional sigmoidal activations is justified based on the different speeds with
which they change the topology of a data set representing two classes of objects in a
binary classification problem. Specifically, they examine how the topology of the
dataset’s manifold changes as it moves through the layers of a well-trained neural
network. This dataset is viewed as a combination of two components: the first
component represents the manifold of elements from the first class, and the second
component encompasses the elements from the second class. This investigation is
done considering a well-trained neural network, i.e., one with perfect accuracy on its
training set and a near-zero generalization error. A ReLU-activated neural network
(neither a homeomorphism nor Pfaffian) can sharply reduce Betti numbers of the
two components, but not a sigmoidal-activated one (which is a homomorphism).
Reducing the Betti numbers means that the neural network simplify the structure
of the dataset by reducing the number of connected components, holes, or voids
within the data’s manifold. This reduction suggests that the network is effectively
simplifying or transforming the dataset’s topology, making it more amenable for
analysis and classification. Finally, their research suggests that when dealing with
higher topological complexity data (meaning the data has more intricate or complex
shapes and relationships), we need neural networks with greater depth (more layers)
to adequately capture and understand these complexities.

5.2 Preliminaries
In this section, we introduce the notation, basic concepts, and definitions, which

will be functional to the subsequent description of the main results. In the following,
we’ll deal exclusively with feedforward perceptron neural networks, whose definition
is introduced as follows.

Feedforward neural networks — Let θ = {W̃ 1, b1, . . . , W̃L, bL} be the set of the
trainable network parameters, where W̃ l ∈ Rnl×nl−1 , bl ∈ Rnl×1 and l = 1, . . . , L
identifies each layer, n0, . . . , nL ∈ N denote the number of neurons per layer. In the
following without loss of generality, we assume that the network has a single output,
i.e., nL = 1. Notice that the last assumption is not necessary to demonstrate the
Pfaffian nature of the loss function. However, its inclusion significantly simplifies the
subsequent calculations involved in the analysis. The total number of parameters is

ñ =
L∑

l=1
nlnl−1.

Let x ∈ Rn0 be the input to the neural network. The function implemented by
the layered network is fθ(x) : Rn0 → R, where fθ(x) = g(W̃Lσ(W̃L−1 · · ·σ(W̃ 1x+
b1)) · · ·+ bL−1)+ bL), σ is the hidden layer activation function and g is the activation
function of the output neuron.

To simplify the notation, we will aggregate the weights and bias from the same
layer into a single matrix, the augmented weight matrix W l = [bl, W̃ l]; moreover, we
will denote by zl the output of the l-th layer and by al the neuron activations at the
same layer. Thus, we have

z0 =
[
1
x

]
, al = W lzl−1, zl =

[ 1
σ(al)

]
, for 1 ≤ l ≤ L ,

and fθ(x) = g(aL).
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Loss functions — Let D = (xi, yi)m
i=1 be a set of training data, with xi ∈ Rn0 and

yi ∈ R. Let L be a generic loss to be minimised over the parameters θ. The empirical
risk of loss (or cost) function is defined as the average of the per-sample contributions,
where each sample contribution measures the error between the network output and
the target value for that sample.

L(θ,D) = 1
m

m∑
i=1

loss(fθ(xi), yi),

being yi the target for the i-the pattern xi. In this work, we will study the topological
complexity of the landscape of the Mean Square Error (MSE) and Binary Cross-
Entropy (BCE) loss functions, which are defined as

LMSE(θ,D) = 1
m

m∑
i=1

(yi − fθ(xi))2,

LBCE(θ,D) =
m∑

i=1
−yi log(fθ(xi)) − (1 − yi) log(1 − fθ(xi)).

In the following we will remove the dependency on the dataset D in the notation of
empirical risk. Our focus will center solely on its reliance on the network parameters
θ. Indeed we want to study the topological complexity of the sublevel set of the
empirical risk as a function of the parameters of the netwrok, considering the dataset
samples as fixed. Unless specified otherwise, the notation L(θ) in the following will
represent the empirical risk corresponding to the loss function L applied to a dataset
containing m pairs (xi, yi)

In general, we consider the targets to be real numbers. However, for classification
problems where the Binary Cross-Entropy (BCE) loss is used, each target yi is either
0 or 1.

Moreover, we consider a regularized form for the objective function that can be
expressed as

L̃(θ) = L(θ) + λΩ(θ),
where Ω(θ) is a regularization term, for instance, if Ω(θ) = 1

2∥w∥2
2.

Pfaffian Functions — Pfaffian functions (Khovanskii, 1991) are analytic func-
tions satisfying triangular systems of first-order partial differential equations with
polynomial coefficients.

For this kind of functions an analogous of the Bézout theorem holds. The classical
Bézout theorem states that the number of complex solutions of a set of k polynomial
equations in k unknowns can be estimated in terms of their degrees (it equals the
product of the degrees).

For a wide class of real transcendental equations (including all real algebraic
ones) the number of solutions of a set of k such equations in k real unknowns if finite
and can be explicitly estimated in terms of the “ complexity” of the equations which
leads to the version of Bézout theorem for Pfaffian curves and Pfaffian manifold
(Khovanskii, 1991).

The class of Pfaffian functions includes a wide variety of known functions, e.g.
the elementary functions, including exponential, logarithm, tangent, and their
combinations
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(Gabrielov and Vorobjov, 2004). Interestingly, many common activation functions
used in neural networks, such as the sigmoid function and hyperbolic tangent, can
be classified as Pfaffian functions. Intuitively, a function is Pfaffian if its derivatives
can be defined in terms of polynomials of the original function and/or a chain of
other Pfaffian functions. Formally, we can state the following definition.
Definition 5.2.1. A Pfaffian chain of order ℓ ≥ 0 and degree α ≥ 1, in an open
domain U ⊆ Rn, is a sequence of real analytic functions f1, f2, . . . , fℓ, defined on U ,
satisfying the differential equations

∂fi

∂xj
(x) = Pij(x, f1(x), . . . , fi(x)),

for 1 ≤ i, j ≤ ℓ and x = (x1, . . . , xn) ∈ U . Here the Pij(x, y1, . . . , yi) are polynomials
in the n+ i variables x1, . . . , xn, y1, . . . , yi of degrees not exceeding α.
Definition 5.2.2. Let (f1, . . . , fℓ) be a Pfaffian chain of length ℓ and degree α, and
let U be its domain. A function f defined on U is called a Pfaffian function of degree
β in the chain (f1, . . . , fℓ) if there exists a polynomial P in n+ ℓ variables, of degree
at most β, such that f(x) = P (x, f1(x), . . . , fℓ(x)), ∀x ∈ U . The triple (α, β, ℓ) is
called the format of f .

First, the polynomial Pij itself may explicitly depend on x. Second, even if Pij

doesn’t directly depend on x, it can still depend on x indirectly through the function
f1(x). We say that the polynomial Pij depends directly on x if occurrences of x are
not of the type fi(x). For example, consider the function f(x) = arctan(x). It is a
Pfaffian function belonging to case 2, as it can be represented by the chain (f1, f2),
where f2(x) = arctan(x) and f1(x) = (1+x2)−1. In this case, ∂f2

∂x = P1(x, f1) = f1(x),
and ∂f1

∂x = P2(x, f1) = xf1(x)2. This explicit dependence on x in the polynomial
P2 classifies it under case 2. On the other hand, the tanh function is a Pfaffian
function falling under case 1. It can be represented by the chain containing only
f1(x) = tanh(x), and ∂f1(x)

∂x = P1(x) = 1 − f1(x)2. In this case, there is no explicit
dependence on x in the polynomial P1. This distinction will be crucial to assess the
right computations in the statement of Theorem 5.3.1.

Let us now introduce the notion of Pfaffian variety and semi-Pfaffian variety.
Definition 5.2.3. The set V ⊂ U is a Pfaffian variety if there are Pfaffian functions
p1, . . . , pr in the chain (f1, . . . , fℓ) such that V = {x ∈ U : p1(x) = · · · = pr(x) = 0}.
Definition 5.2.4. A basic semi-Pfaffian set S on the variety V is a subset of V
defined by a set of sign conditions (inequalities or equalities) based on the Pfaffian
functions p1, . . . ps in the chain (f, . . . , fℓ) such that S = {x ∈ V : p1(x)ε10 & · · · &
ps(x)εs0}, where ε1, . . . , εs are any comparison operator among {<;>; ≤,≥; =}.

As outlined in the introduction, our focus in this work is directed towards
exploring the complexity of the topological space defined by the sublevel set of the
empirical risk related to the loss function L: S = {θ : L(θ) ≤ c}. This set represents
the collection of parameter values θ for which the empirical risk of the loss function
is less than or equal to a constant c. When the empirical risk of the loss function is
a Pfaffian function with respect to the parameter of the network, this set is exactly
a Pfaffian semi-variety.

Level curves or basins of attractions can often be described in terms of Pfaffian
varieties, whose complexity can be measured through the characterization of its
Betti numbers (Bianchini and Scarselli, 2014) or counting directly the number of
connected components (Gabrielov and Vorobjov, 2004).
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Betti Numbers — Betti numbers are topological objects that can describe the
complexity of topological spaces. More formally, the i-th Betti number of a space X
is defined as the rank of the (finitely generated) i-th singular homology group of X.
Roughly speaking, it counts the number of i-th dimensional holes of a space X 2 and
captures a topological notion of complexity that can be used to compare subspaces of
Rd. The reader can refer to algebraic topology textbooks for a more comprehensive
introduction to homology (Bredon, 2013; Hatcher, 2002). Informally, Betti numbers
quantify the number of “holes” of various dimensions in a topological space. Each
Betti number, bi represents the number of i-dimensional ’independent’ holes or cycles
that cannot be continuously deformed into each other. For instance The zeroth
Betti number, b0, counts the number of connected components in the space. The
first Betti number, b1, counts the number of independent loops or one-dimensional
holes. Higher Betti numbers, such as b2, b3, and so on, count holes of increasing
dimensionality. To give some examples, 1. Circle (1-dimensional): A circle has one
connected component ( b0 = 1) and one dimension hole or circle (b1 = 1).

On the contrary, the unit sphere {x ∈ R3 : ||x||2 = 1}, has one connected
component (b0 = 1) and no holes (b1 = 0) but has one two-dimensional cavity
(b2 = 1) . A torus, like a doughnut, has one connected component (b0 = 1) and two
independent holes (b1 = 2) and one two-dimensional cavity (b2 = 1).

This distinction can be understood visually: a sphere is a solid shape with no
internal holes, while a torus has a hole in its center and an additional loop around
the hole.

When applied to the context of a loss function, Betti numbers can offer insights
into the complexity of its optimization landscape, such as the presence of multiple
local minima and regions of attraction. Betti numbers provide a tool to analyze the
configuration of critical points and distinct regions in the optimization landscape

The following result connects the theory of Pfaffian functions and Betti numbers;
in particular, it gives a bound on the Betti numbers for varieties defined by equations,
including Pfaffian functions.

Theorem 5.2.5 (Sum of the Betti numbers for a Pfaffian variety (Zell, 1999)). Let
S be a compact semi-Pfaffian variety in U ⊂ Rñ, given on a compact Pfaffian variety
V , of dimension n′, defined by s sign conditions of Pfaffian functions.

B(S) ∈ sn′2(ℓ(ℓ−1))/2O((ñβ + min(ñ, ℓ)α)ñ+ℓ). (5.1)

In this work, the theorem is applied on the Pfaffian variety SN = {θ ∈
U, s.t. L(θ) ≤ c}, determined by the unique sign condition L(θ) ≤ c, for a threshold c.
This way, we will obtain a bound on the sum of the Betti numbers of SN . Therefore,
we must demonstrate that the loss function is a Pfaffian function and compute its
format. This goal can be achieved by writing the loss derivates regarding the network
parameters and a Pfaffian chain.

In the following, we will use the chain rule of Backpropagation for such a purpose.
The constraints on the compactness of U and V can be removed without affecting

the bounds as shown in Zell (2003). We will consider U = Rn as the parameters’
domain. Moreover, given that the semi-pfaffian variety is defined by one sign
condition, s = 1.

2A i-th dimensional hole is a i-dimensional cycle that is not a boundary of a (i + 1)-dimensional
manifold.



5.3 Main results 100

5.3 Main results
This section presents our theoretical analysis of the loss landscape topology. We

start proving that, given a Pfaffian activation function σ of format (ασ, βσ, ℓσ), the
MSE loss function and BCE loss function computed over feedforward neural networks
are also Pfaffian functions; their format is provided with an explicit dependency on
the format of σ, on the number of layers and the number of neurons per layer.

Theorem 5.3.1 (MSE Loss). Let σ : R → R be a function for which exists a Pfaffian
chain (σ1, . . . , σℓ) and ℓσ + 1 polynomials Q and Pi, 1 ≤ i ≤ ℓσ of degree βσ and ασ

, respectively s.t. σ is Pfaffian with format (ασ, βσ, ℓσ).
Moreover, let g : R → R be a function for which there exists a Pfaffian chain

(g1, . . . , gℓg ) and ℓg + 1 polynomials, Qg and P i
g, 1 ≤ i ≤ ℓg of degree βg and αg,

respectively, s.t. g is Pfaffian with format (αg, βg, ℓg):
Let f(θ, x) be the function implemented by a neural network with parameters

θ ∈ Rñ, input x ∈ Rn0, L layers and activation function σ for all layers except the
last. The last layer can either have an activation function g or be linear.

Then, the MSE Loss function is Pfaffian with format(
(degree(σ′) + 1)(L− 2) + degree(σ′), 2(βσ + 1), mℓσ

L−1∑
k=1

nk

)
when the last layer is linear. Here,

degree(σ′) =
{
βσ + ασ − 1 case 1
βσ + ασ − 1 + ασ(βσ + 1) case 2

where case 1 refers to the case where P i
σ(a, σ1(a), . . . , σℓσ (a)) don’t depend ex-

plicitly on a, namely occurrences of a appear that are not of the type σi(a); case 2
refers to the case where they depend on it. Moreover, we assume that the polynomials
P i

g(a, g1(a), . . . , gℓg (a)) don’t depend explicitly on a .
The format of the chain becomes(
(degree(σ′) + 1)(L− 2) + degree(σ′) + degree(g′) + 1, 2βg,m(ℓσ

L−1∑
k=1

nk + ℓg)
)
.

if the non-linearity g is applied also to the last layer.

For the BCE Loss function, we only explore the case where the last layer contains
a non-linearity, namely fθ(x) = g(aL) since BCE loss is commonly used in binary
classification problems where the output is a probability of the input belonging to one
of two classes. In such problems, the last layer of the model typically uses a sigmoidal
activation function to ensure that the output is between 0 and 1, representing the
probability of the input being in class 1.

Theorem 5.3.2 (BCE Loss). Let the hypothesis of Theorem 5.3.1 hold. If the
activation function g is also used to the last layer, the BCE Loss function is Pfaffian
with the format

(
(L− 2)(degree(σ′) + 1) + degree(σ′) + degree(g′) + 3, 1,m(ℓσ

L−1∑
k=1

nk + ℓg + 4)
)
.
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In case the last activation function is the sigmoid function, the BCE Loss function
has a format

(
(L− 2)(degree(σ′) + 1) + degree(σ′) + 3, 1,m(ℓσ

L−1∑
k=1

nk + 1) + 1
)
.

Theorems 5.3.1 and 5.3.2 hold in general for any Pfaffian activation function
and any sequence layer widths (n0, n1, . . . , nL). In the following, we specialize the
results to the case when the activation function is either a sigmoid or a hyperbolic
tangent. Moreover, for the sake of simplicity, We assume that all the hidden layers
have the same width h.
Corollary 5.3.2.1. Let us consider a feedforward perceptron network where all
hidden layers have the same width h. The activation function can be either the
hyperbolic tangent (tanh) or the sigmoid function (logsig), and the loss function is
the Mean Squared Error. The last activation is assumed to be the sigmoid function.
In this setting, the following holds

• when the last layer of the network is linear, the Pfaffian format of the loss
function is given by

(3(L− 2), 4, m (L− 1)h) ;

• when the last layer is non-linear, the Pfaffian format of the loss function is

(3(L− 2) + 5, 2, m(h(L− 1) + 1))

We can state an analogous result for the BCE loss function.
Corollary 5.3.2.2. For a feedforward perceptron network with all the hidden layers
have the same width h and trained using BCE loss function and a non-linear last
layer, the following hold:

• if the non-linearity used is the sigmoid function, the Pfaffian format of the loss
function is

(3(L− 2) + 5, 1, m ((L− 1)h+ 1) + 1)

• if the non-linearity used is tanh(x), the Pfaffian format of the loss function is

(3(L− 2) + 7, 1, m((L− 1)h+ 5)).

We now state the main results of our work.
The presented theorem investigates the dependence of the sum of Betti numbers

associated with the semi-Pfaffian variety SN , which represents the parameter set
where the loss is non-negative, on factors such as the number of samples, network
width, and network depth. Using Corollaries 5.3.2.1 and 5.3.2.2 we can derive the
bounds on the Betti numbers of the Pfaffian semi-variety for both MSE and BCE
loss function.
Theorem 5.3.3. Let us consider a deep feedforward perceptron network N with
L ≥ 3 layers of width h. The activation function can be either the hyperbolic tangent
or the sigmoid function; the loss is either the MSE or the BCE function, and the
last layer is either linear (only for MSE) or nonlinear. Moreover, let us denote by S
the semi-Pfaffian variety given by the set of parameters where the loss function is
non- negative,

i.e. S = SN = {θ|L(θ) ≥ c} for a threshold c ∈ R+. Then, and by B(S) the sum
of the Betti numbers B(S) of is bounded as follows.
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• With respect to the number of samples m, fixing h and L as constants,| we
have that B(S) ∈ rO(m2), where r is a constant greater than 2.

• With respect to h, we have B(S) ∈ O(h2)O(h2).

• Finally, with respect to L, B(S) ∈ 2O(L2)O(L2)O(L) holds.

On the other hand, in the case of a shallow network with one hidden layer, i.e.,
L = 2, the following results hold.

• With respect to m the bound is the same we obtained for deep networks, B(S) ∈
cO(m2).

• With respect to h, we have B(S) ∈ O(h)O(h).

It is worth emphasizing that the bounds concerning h and L offer insights into
the relationship between the topological complexity of the loss landscape and the
total number of parameters ñ. Specifically, in both cases, as ñ varies, we explore
the effect of changing the network width by treating h as a variable while keeping
L fixed. Conversely, by treating L as a variable while keeping the width fixed, we
investigate the impact of altering the network depth.

A first major remark from Theorem 5.3.3 is that the upper bound on the Betti
numbers associated to the loss function is only exponential in the number of samples
m, while it is superexponential in the number of neurons h or in the number of
layers L. Intuitively, the take-home message is that the topological complexity of
the loss function is less conditioned by the number of samples than by the number
of parameters.

As it may not appear surprising, Theorem 5.3.3 also suggests that the complexity
of the loss landscape with respect to deep networks increases with the number of
neurons h at a much faster pace than the one with respect to the shallow networks,
going from a dependence of the type O(h2)O(h2) to a dependence of the type O(h)O(h).
Such a difference in behavior is coherent with results present in literature (Li et al.,
2018), where it is proven that, when networks become sufficiently deep, neural loss
landscapes quickly transition from being nearly convex to highly chaotic.

5.4 Complete proofs

5.4.1 Making derivatives explicit using backpropagation

Let L(θ) = 1
m

∑m
i=1 loss(fθ(xi), yi) be a generic loss. We aim to determine the

gradient for a given input-output pair (xi, yi), with respect to the weight variables
wl

jk (connecting the j-th neuron of layer l−1, with the k-th neuron of layer l), which
are elements of the augmented weight matrix W l. The gradient components ∂L

∂wl
jk

can be calculated through the chain rule. The Backpropagation algorithm provides
an efficient method of spreading the error contribution back through the layers for
updating weights.

Let us define δl
k = ∂L

∂al
k

, for l = 1, . . . , L, as the derivative of the cost function
with respect to the activation al

k of the k-th neuron of layer l. Then

∂L
∂wl

i,j

= δl
jz

l−1
i ,
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which represents a polynomial function in δl
j , z

l−1
i , so that all δl

j , zl−1
i and their

derivatives belong to the Pfaffian chain describing L. Moreover, by the chain rule
we have that

δl
j = ∂L

∂al
j

=
nl+1∑
k=0

∂L
∂al+1

k

∂al+1
k

∂al
j

=
nl+1∑
k=0

δl+1
k

∂al+1
k

∂al
j

=
nl+1∑
k=0

δl+1
k wl+1

k,j σ
′(al

j),

which means that δl
j is polynomial in all nl+1, δl+1

i and σ′(al
j), so that we have also

to include all δl+1
j and all σ′(al

j) and their derivatives in the Pfaffian chain.
Summing up, fixing an input xi, yi and proceeding backward through the layers,

we can derive that
∂L
∂wl

i,j

= poly(δL
1 , . . . , δ

L
nL
, σ′(aL

1 ), . . . , σ′(aL
nL

), . . . ,

σ′(al+1
1 ), . . . , σ′(al+1

nl+1), σ′(al
j), σ(al−1

i )).
(5.2)

Remark 6. Notice that if σ is Pfaffian. It follows that the derivative σ′ is polynomial
in the factor of the chain, and the degree of the polynomial is at most ασ, while the
degree of σ in its chain is βσ.

Consequently, being ∂L
∂wl

i,j

= δl
jz

l−1
i , we have:

∂L
∂wl

i,j

= poly(δL
1 , . . . , δ

L
nL
, σ1(aL

1 ), . . . , σℓσ (aL
1 ), . . . , σ1(aL

nL
),

. . . , σℓσ (aL
nL

), . . . , σ1(al+1
1 ), . . . , σℓσ (al+1

1 ), . . . , σ1(al+1
nl+1),

. . . , σℓσ (al+1
nl+1), . . . , σ1(al

j), . . . , σℓσ (al
j), σ1(al−1

i ), . . . , σℓσ (al−1
i )).

(5.3)

5.4.2 Proof of Theorems 5.3.1 and 5.3.2
Preliminaries

We want to prove that the MSE loss function and the BCE loss functions are
Pfaffian functions with respect to the parameters of the network, in the hypothesis
that the non-linearities σ and g are Pfaffian. To do so, we need to find a Pfaffian
chain so that the loss function can be written as a polynomial in that chain, and we
need to compute the degree of this polynomial in the parameters and the maximum
degree of the derivatives of the functions in the chain with respect to the parameters
of the network.

Notice that in this particular case of the MSE,

lossMSE(f(xi), yi) = 1
2(f(θ, xi) − yi)2.

meaning that if f is a Pfaffian function of a given format (αf , βf , ℓf ), the loss is a
Pfaffian function with respect to the same chain with format (αf , 2βf , ℓf ).

In the case of the BCE loss function,

lossBCE(f(xi), yi) = −yi log(fθ(xi)) − (1 − yi) log(1 − fθ(xi)).

always assuming that f is a Pfaffian function of a given format (degree(f ′)−1, βf , ℓf )
we can consider two possible chains. The first one is the chain in which we add to
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the chain of f the functions log(fθ(xi)) and log(1 − fθ(xi)) and their derivatives
meaning that the format of the chain becomes (max{degree(f ′) + 2, αf }, 1, ℓf + 4),
where degree(f ′) is the degree of f ′ as polynomial in the chain, we will specify which
chain in the various cases. In case we have a sigmoid as the final activation function,
we could consider a different chain in which we include the loss in the chain; in this
case, to obtain a pfaffian chain we also need to include the function the sigmoid of
f , σ(f(x)) so the format becomes (degree(f ′) + 2, 1, ℓf + 2).

To determine the degree of f ′ we will need to compute the degree of σ′, this will
be useful for all the different cases considered, so we’re doing it in this section.

If yi = σi(a):

dσ(a)
da

∣∣∣∣
a=al

h

= dQ(y1, . . . , yℓ)
da

∣∣∣∣
a=al

h

=
( ℓ∑

s=1

∂Q(y1, . . . , yℓ)
∂ys

Pu(a, y1, . . . , yu)
)∣∣∣∣ 1 ≤ u ≤ ℓ

yu = σu(al
h)

a = al
h

∂Q(y1,...,yℓ)
∂ys

has degree βσ−1 and Pu(a, y1, . . . , yu) has degree ασ in σ1(a), . . . , σℓ(a).

In conclusion dσ(a)
da

∣∣∣∣
a=al

h

is a polynomial of degree βσ + ασ − 1 if, ∀i, Pi does not

depend directly on a, and it is βσ + ασ − 1 + ασ(βσ + 1) in the general case.
Indeed if Pi depends on a, we have that P (al

h, σ1(al
h), . . . , al

h) has degree ασ(βσ +
1), since the degree of al

h is βσ + 1 in the Pfaffian chain. Notice that al
h = W lσ(al−1)

and σ(al−1) has degree βσ.
Summarizing :

degree(σ′) =
{
βσ + ασ − 1 case 1
βσ + ασ − 1 + ασ(βσ + 1)case 2 (5.4)

Where case 1 refers to the case where P i
σ(a, σ1(a), . . . , σℓσ (a)) don’t depend explicitly

a and case 2 where they depend on it.

MSE loss function

In our hypothesis nL = 1, so δL, aL and fθ(x) are scalars. Depending on whether
the last layer is linear or the non-linearity g is applied we have that

fθ(x) =
{
aL

g(aL).

Linear last layer In the case of linear activation, given that aL = WLσ(aL−1) and
that σ is Pfaffian with respect to the chain σ1, . . . , σℓσ we obtain that fθ(x) = aL is
polynomial in the functions following chain

(((σk(aj
i ))k=1,...ℓσ )i=1,...,nj )j=1,...,L−1

The degree of the Pfaffian function f in this chain is βf = βσ + 1 ; the maximum
degree of the derivatives depends on the degree of σ′ in (5.4) and is given by the chain
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rule, the worst case is given by deriving of the term of the vector σ(aL−1) with respect
to one of the weights of the first layer. In this case, applying thee chain rule and going
backward layer by layer, we obtain that every step, we multiply the weight of one layer
and the σ′ it follows that the degree of ∂σ(aL−1)

∂w1
i,j

is (degree(σ′)+1)(L−2)+degree(σ′)
Taken in account what said in Section 5.4.2, we obtain that for a single input

point, x, we obtained that the MSE loss with linear activation for the last layer is
Pfaffian with respect to the following chain of length ℓσ

∑L−1
k=1 nk:

(((σk(aj
i ))k=1,...ℓσ )i=1,...,nj )j=1,...,L−1 (5.5)

The order of the chain is given, going from the inner cycle to the outer cycle
Considering that we have to consider all the input points, the length of the chain

becomes mℓσ
∑L−1

k=1 nk. The format of the chain of the MSE loss function is therefore

((degree(σ′) + 1)(L− 2) + degree(σ′), 2(βσ + 1), mℓσ
L−1∑
k=1

nk) (5.6)

Non linear last layer with non linearity g In this case, we need to add to the
chain described in Equation (5.5) the terms (gk(aL))k=1,...,ℓg . The final chain will
be:

[(((σk(aj
i ))k=1,...ℓσ )i=1,...,nj )j=1,...,L−1, (gk(aL))k=1,...,ℓg ] (5.7)

The degree of the function f in this chain is given by βg, the maximum degree of
the derivatives is the degree of ∂g(aL)

∂w1
i,j

and is (degree(σ′) + 1)(L− 2) + degree(σ′) +
degree(g′) + 1.

Using the argument we used before for σ′, we have that the degree of g′(a) is
βg +αg − 1 if, ∀i, P i

g does not depend directly on a, and it is βg +αg − 1 +αg(βg + 1)
in the general case.

degree(g′) =
{
βg + αg − 1 case 1
βg + αg − 1 + αg(βg + 1) case 2 (5.8)

Summarizing the format of the chain in the case of non-linear activation for the
last layer is

((degree(σ′) + 1)(L− 2) + degree(σ′) + degree(g′) + 1, 2βg,m(ℓσ
L−1∑
k=1

nk + ℓg)) (5.9)

5.4.3 BCE loss function
Non-linear activation g different from the sigmoid function In this case, the
Pfaffian chain for the loss function will be the chain described in 5.7 to which we add
the following terms 1

g(aL) , log(g(aL)), 1
1−g(aL) , log(1 − g(aL)). The length of the chain

will be
∑L−1

k=1 nk +ℓg +4. The degree of the loss function with respect to this chain is
1 and the maximum degree of the derivatives is given by the degree of the following
derivative ∂1/g(aL)

∂w1
i,j

that is (L− 2)(degreeσ′ + 1) + degree(σ′) + degree(g′) + 3.
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It follows that the format of the chain for the BC loss function with sigmoid
activation for the last layer is

((L− 2)(degree(σ′) + 1) + degree(σ′) + degree(g′) + 3, 1,m(ℓσ
L−1∑
k=1

nk + ℓg + 4))

Non-linear activation g is the sigmoid function In this case, we want to include
the loss in the chain and use the trick of backpropagation introduced in section 5.4.2
to be sure that its derivatives are polynomial in the chain. Eq 5.2 shows that the
derivative of the loss with respect to the parameters is poly in δL

i and in the terms
of the chain (5.7), in this case with g equal to the sigmoid function.

If we consider only a single sample x and the output of the network fθ(x) = g(aL).
We have that

∂lossBCE(y, fθ(x))
∂aL

= g′(aL) 1
g(aL)(1 − g(aL))(yi − fθ(x))

=
m∑

i=1

g′(aL)
g(aL)(1 − g(aL))(yi − g(aL)).

(5.10)

If the non-linearity g is the sigmoid function
(
g(x) = 1

1+e−x

)
, the term g′(aL)

g(aL)(1−g(aL))
becomes 1 and we don’t need to deal with it and the degree of δL is the degree
of g(aL), that is βg that for the sigmoid function is 1. We recall indeed that the
sigmoid function is Pfaffian with format (2, 1, 1).

It follows that the format of the chain for the BC loss function with sigmoid
activation for the last layer is

((L− 2)(degree(σ′) + 1) + degree(σ′) + degree(g′) + 1, 1,m(ℓσ
L−1∑
k=1

nk + 1) + 1)

The last +1 in the length is given by the fact that we’re also adding the loss
function computed on the input dataset to the chain. Moreover, we can compute
degree(g′) that is this case is 2, notice that this is smaller than the worst case
proposed in (5.8) that would be equal to 4.

The final format of the chain will be

((L− 2)(degree(σ′) + 1) + degree(σ′) + 3, 1,m(ℓσ
L−1∑
k=1

nk + 1) + 1)

5.4.4 Proof of Corollary 5.3.2.1
Proof. It is enough to remark that the format of the hyperbolic tangent and the
sigmoid function is (ασ, βσ, ℓσ) = (2, 1, 1). Substituting these values in Theorem
5.3.1 leads straightforwardly to the statement.

5.4.5 Proof of Corollary 5.3.2.2
Proof. The result for the hyperbolic tangent activation function can be obtained
by applying Theorem 5.3.2 with its corresponding format of (2, 1, 1). On the other
hand, for the sigmoid function, we have that σ′(x) = σ(x)(1 − σ(x)). This allows us
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to obtain a linear dependency on σ(x) in the derivative of the BCE loss function.
Indeed,

∂L(f)
∂θ

= − ∂

∂θ
(y log(σ(f(θ))) + (1 − y) log(1 − σ(f(θ))))

= −[ y

σ(f(θ))σ
′(f(θ))∂f(θ)

∂θ
− 1 − y

1 − σ(f(θ))σ
′(f(θ))∂f(θ)

∂θ
]

= −y(1 − σ(f(θ)))∂f(θ)
∂θ

+ (1 − y)σ(f(θ))∂f(θ)
∂θ

= (σ(f(θ)) − y)∂f(θ)
∂θ

5.4.6 Proof of Theorem 5.3.3

Proof. We can use Theorem 5.2.5 with U = Rñ, with ñ = h(n0 + 1) + h(h+ 1)(L−
2) +h+ 1 = h2(L− 2) +h(n0 +L) + 1 the total number of parameters of the network.

In this case the term sn′ in Equation (5.1) can be ignored, since s = 1.

Bounds for MSE loss function: deep case For L ≥ 3:

• if the last layer has a linear activation, we have that

B(S) ∈ 2[m(L−1)h(m(L−1)h−1)]/2O(f(n0, h, L,m)h2(L−2)+h(L+n0+m(L−1))+1)
(5.11)

with f(n0, h, L,m) = 4[h2(L− 2) + h(L+ n0) + 1] + 3(L− 2) · min(h2(L− 2) +
h(L+ n0) + 1,m(L− 1)h)
If m >> h it becomes

B(S) ∈ 2(m(L−1)h(m(L−1)h−1))/2×

O

(
4
[
h2(L− 2) + h(L+ n0) + 1

]

+ 3(L− 2)
[
h2(L− 2) + h(L+ n0) + 1

])h2(L−2)+h(L+n0+m(L−1))+1

If h >> m, and we consider L and m as constant it becomes

B(S) ∈ 2(m(L−1)h(m(L−1)h))/2×

O
(
4[h2(L− 2) + h(L+ n0) + 1]

×3(L− 2)hm(L− 1))h2(L−2)+h(L+n0+m(L−1))+1 .

It is important to note that the overparametrized regime falls within this
scenario.
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• if the last layer has a nonlinear activation we have that:

B(S) ∈ 2[(m(h(L−1)+1))(m(h(L−1)+1)+1)]/2

×O (g(n0, h, L,m))h2(L−2)+h(L+n0+m(L−1))+2 (5.12)

with g(n0, h, L,m) = 2[h2(L− 2) +h(L+n0) + 1] + (3(L− 2) + 5) · min(h2(L−
2) + h(L+ n0) + 1,m(h(L− 1) + 1)
If m >> h it becomes

B(S) ∈ 2
[(m(h(L−1)+1))(m(h(L−1)+1)+1)]

2 ×

O

(
2
[
h2(L− 2) + h(L+ n0) + 1

]

+
(
3(L− 2) + 5

)(
h2(L− 2) + h(L+ n0) + 1

))h2(L−2)+h(L+n0+m(L−1))+2

If h >> m, and we consider L and m as constant it becomes

B(S) ∈ 2[(m(h(L−1)+1))(m(h(L−1)+1)+1)]/2

×O
(
2
[
h2(L− 2) + h(L+ n0) + 1

]
+
(
3(L− 2) + 5

)
m(h(L− 1) + 1)

)h2(L−2)+h(L+n0+m(L−1))+2

In both cases we can see that, as a function of the number of samples m,
fixing h and L as constants, we have that B(S) ∈ cO(m2), where c is a constant
greater than 2. As a function of h, considering the others variables as constants
B(S) ∈ O(h2)O(h2). Eventually, as a function of L, considering m and h as constants,
B(S) ∈ 2O(L2)O(L2)O(L).

Bounds for MSE loss function: shallow case In the case in which L = 2, all
the terms in which L− 2 occurs vanish. Therefore,

• if the last layer has a linear activation, equation 5.11 simplifies in the following
way:

B(S) ∈ 2[mh(mh−1)]/2O([4h(2 + n0) + 4]h(2+n0+m)+1)

• if the last layer has a nonlinear activation, since the number of samples is
usually larger that the input dimension, min(h(2+n0)+1, 2mh) = h(2+n0)+1.
This simplify equation 5.12 in the following way:

B(S) ∈ 2[2mh(2mh−1)]/2O([9h(2 + n0) + 9]h(2+n0+2m)+1)

As a function of m the results is the some we obtained for deep networks, B(S) ∈
cO(m2). Conversely, as a function of h, the dependency change and we obtain
B(S) ∈ O(h)O(h).
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Bounds for BCE loss function: deep case For L ≥ 3:

• if the last layer has a a sigmoid activation function we have that

B(S) ∈2[(m((L−1)h+1)+1)(m((L−1)h+1))]/2

×O
(
g(n0, h,m,L)h(m(L−1)+n0+2+(h+1)(L−2))+m+2

) (5.13)

with g(n0, h,m,L) = h2(L− 2) + h(n0 + L) + 1 + [3(L− 2) + 5] min(h2(L−
2) + h(n0 + L) + 1, [m((L− 1)h+ 1) + 1])
If m >> h g(n0, h,m,L) becomes

g(n0, h,m,L) = h2(L−2)+h(n0+L)+1+[3(L−2)+5](h2(L−2)+h(n0+L)+1)

On the other side, if h >> m and we consider m and L as constant, we have
that

g(n0, h,m,L) = h2(L−2)+h(n0 +L)+1+[3(L−2)+5][m((L−1)h+1)+1].

Bounds for BCE loss function: shallow case For L = 2:

• if the last layer has a non-linear activation function we have that

B(S) ∈ 2[(m(h+1)+1)(m(h+1))]/2O(g(n0, h,m)h(m+n0+2)+m+2) (5.14)

with g(n0, h,m) = h(n0 + 2) + 1 + 5 min(h(n0 + 2) + 1,m(h+ 1) + 1)
If m >> h g(n0, h,m,L) becomes

g(n0, h,m) = h(n0 + 2) + 1 + 5(h(n0 + 2) + 1).

On the other side, if h >> m and we consider m and L as constant, we have
that

g(n0, h,m,L) = h(n0 + 2) + 1 + 5[m(h+ 1) + 1].

Resulting in asymptotic bounds equal to those derived previously for the MSE
loss with non-linear activation. The same holds with similar computations in case
the last activation function is the hyperbolic tangent.

We remark that for the BCE loss, our focus is primarily on studying the case
where the last layer of the neural network has a non-linear activation function since
it is commonly used for binary classification tasks.

5.4.7 Residual connections
Without loss of generality, we can consider the case in which we utilize skip

connections that provide the previous layer’s output, through summation, as an
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additional input to the subsequent layer. In this case, denoting by zi the output of
the i-th layer, if we consider the case, we have that

z1 = σ(W 1x)
z2 = σ(W 2z1) + z1

z3 = σ(W 3z2) + z2
...
zl = σ(W lzl−1) + zl−1
...

If we want to obtain the derivative of zl with respect to a parameter of the
network wk = W k

i with k < l and i ∈ {1, . . . , nk}, we have that

∂zl

∂wk
= W lσ′(W lzl−1)∂zl − 1

∂wk
+ ∂zl − 1

∂wk
(5.15)

We observe that the derivative ∂zl−1
∂wk appears twice in the equation. However,

due to the multiplication with other terms in the first term, it only affects the degree
of the polynomial in the first term of the sum. Therefore, we can disregard the
second term in the equation when interested in computing the format of the Pfaffian
chain. This reasoning can be extended to all layers, demonstrating that the degrees
of the derivatives will remain unchanged, just as we computed for simple feedforward
perceptron neural networks. Similarly, the length of the chain remains unaltered.
In this case as well, the functions to be included in the chain are the outputs of
the layers, which are exactly the same in number as those in feedforward networks,
albeit with different forms.

5.4.8 Regularization terms and residual connections
The role of regularization

Remark 7. (ℓ2 regularization) One could be interested in seeing how our analysis
is influenced with the introduction of regularization terms. We can face this new
scenario in case we add an ℓ2 regularization term, being the ℓ2 regularization term
Ω(θ) =

∑
i

∥W̄i∥2 polynomial in the parameters θ. This term only affects the term β

of the format of the Pfaffian function L̄(θ) = L(θ) + λΩ(θ), as it affects the degree
of the polynomial with respect to the weights, adding a monomial term of degree 2
; nevertheless, the bound on the Betti numbers is not affected by it. This can be
easily derived from the computations in Section 5.4 for the proof of Theorem 5.3.3.
The ℓ2 regularization doesn’t promote sparsity (which is instead promoted by the
ℓ1 regularization) (Hastie et al., 2009), but it affects the magnitude of the weights.
This could suggest that the regularization term may just provide a scaling of the
loss function, and therefore, all local minima may still be present; nevertheless, it
is possible that our theoretical bounds may not be able to catch the influence of the
regularization term in the loss landscape.

Residual Connections
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Skip connections or residual connections, are widely employed in neural networks
to alleviate the vanishing gradient problem and enhance information flow across
layers. his architectural design was popularized by the ResNet model (He et al.,
2016) and has since been adopted in various network architectures.

Remark 8. Introducing a residual term at each layer in a neural network, thus
creating a Residual Neural Network (ResNet), does not impact the bounds provided
in our analysis. It does not affect the number of functions required in the chain or
the maximum degree of the polynomials. The addition of skip connections combines
the output of a previous layer with that of a subsequent layer through summation.
Regarding our analysis, the essential factors, such as the degree of polynomials and
the length of the Pfaffian chain, remain the same. The only change lies in the
specific terms included within the chain. See section 5.4.7 in Section 5.4 for more
details. Consequently, it implies that utilizing a ResNet rather than a conventional
feedforward neural network does not alter the topology of the loss function or its
optimization process. Instead, the primary advantage lies in enhancing the network’s
expressive capacity.

Skip connections allow gradients to flow more easily during backpropagation, fa-
cilitating the training of deeper networks. It has been observed that skip connections
promote flat minimizers and prevent the transition to chaotic behavior (Li et al.,
2018). Our current theoretical framework is limited in capturing the reduced complex-
ity of the loss landscape induced by skip connections. Specifically, our theory provides
an upper bound on the number of minima, lacking a lower bound, which implies
that our estimate may exceed the actual value. Moreover, the analysis in Li et al.
(2018) focuses solely on the minima, while our proposed bound encompasses the sum
of all non-zero Betti numbers. Finally, it is worth observing that the optimisation
algorithms do not explore the whole space but only a part where the complexity of
the function might be lower. Therefore, regularisation and skip connections could be
mechanisms for which only submanifolds are actually explored by the optimisation
algorithm, and such a behaviour could not be captured by what the global bound
suggests.

5.5 Conclusions
Our investigation determined that when employing a Pfaffian non-linearity,

both the MSE and BCE loss functions can be represented as Pfaffian functions.
Subsequently, we analyzed the respective Pfaffian chains obtained in each case.
Specifically, we examined the differences in the complexity and performance of the
Pfaffian chains resulting from the use of the two loss functions.

When studying the complexity of the loss landscape, a superexponential de-
pendency on the network parameters has been found; interestingly, a qualitative
difference can be highlighted between the shallow and the deep case as we focus on
the impact of the number of neurons h. Indeed, as the number of layers increases,
the superexponential dependency involves a term h2, and not h anymore. This result
is aligned with the general intuition and previous works in literature (Bianchini and
Scarselli, 2014). In any case, the asymptotic analyses show that the sum of Betti
numbers has exponential dependences on the square of the number of samples m.

It’s worth underlying the characterization of the topological complexity we
derived for loss functions with an additional ℓ2 term; from our analysis point of
view, it seems that the presence of a regularization term is not implied in the design
of the loss landscape, pointing out to a different role of the regularization itself
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in the network training, e.g. the optimization process. Nevertheless, being those
boundaries not tight, space for a deeper analysis is not left out.

Bounds provided by the sum of Betti numbers are not tight; our analysis suggests
a qualitative interpretation more than a quantitative one. Obtaining a bound on
the number of connected components b0(S) rather than B(S) would give a more
accurate characterization of the topology of the loss landscape; this is a perspective
to be considered for future works.
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Chapter 6

Conclusions

In this dissertation, we have investigated generalization and robustness in ma-
chine learning through diverse research works, providing valuable insights and
advancements towards building more reliable systems.

In this final chapter of the thesis, we revisit the research questions from the first
chapter, state our main findings and identify directions for future work.

6.1 Leveraging inter-rater agreement for classification
in the presence of noisy labels

In Chapter 2 we aimed to answer the following questions:

RQ1 How can inter-annotator statistics be leveraged in learning with noisy
labels? Is there a better way to aggregate labels than majority vote?
RQ2Is it possible to learn from datasets with noisy labels while still having
performance guarantees?

6.1.1 Main findings
We answered the first question affirmatively by finding a way to exploit the

inter-annotator statistics to estimate the noise rate in the dataset. We also show
that using soft labels based on the posterior distribution of the class of a sample
given all the annotations for that sample is more beneficial than majority vote
aggregation. We also partially answer affirmatively to the second question, proving
generalization bounds in the case of a specific noise-resistant loss function. In the
following paragraphs, we show our findings in more detail.

Estimation of Noise Distribution. We can estimate the noise distribution by
computing an inter-annotator agreement matrix that measures the agreement be-
tween two annotators on the dataset. The inter-annotator agreement matrix between
two annotators is a C × C matrix, where C is the number of classes. Its formal
definition is (Mab)i,j := P(ya = i, yb = j) where a and b are the two annotators.
From an empirical estimation of this matrix and of the distribution of the classes,
considered to be known, we can compute an estimation of the noise transition
matrices, which is also a matrix of the size C × C. The noise transition matrix
represents the probabilities of altering true labels within a dataset. It outlines the
probability of a true label being changed to another. Specifically, the matrix entry
Tij describes the probability that a true label i is corrupted and observed as label j.



6.1 Leveraging inter-rater agreement for classification in the presence of noisy
labels 114

The approach we derived is valid in the case of instance-independent noise, where
the probability of label corruption is independent of the input of the sample but
depends only on its class. We proved the consistency of the estimator of the noise
transition matrix and provide bounds on the estimation error.

Methods for Learning from Noisy Datasets. Once an estimator for the noise
transition matrix is obtained, it can be exploited to define a robust loss function. In
particular, leveraging the Bayes theorem from an estimation of the noise transition
matrix, we derived the posterior distributions of the class of a sample given all the
annotations for that sample. We also noticed that the posterior distribution for
every sample calculated using the true noise transition matrix converges to the Dirac
delta distribution centred on the true label almost surely. We proposed the usage
of the posterior so computed as soft labels that can be used during training in the
cross-entropy loss. The method utilizes the estimated noise distribution to improve
learning from noisy datasets.

Generalization Bounds. We showed that alternatively, the estimated matrix
can be used in two noise-robust loss functions introduced by Patrini et al. (2017),
precisely the backward and forward loss. For some particular aggregation methods
of the annotations provided by the multiple annotators, we obtained generalization
bounds of the excess risk. The derived bounds rely on the Rademacher complexity
of the function space and the Lipschitz constant of the loss function. These bounds
are significant as they provide performance estimates for a model trained on noisy
data, utilizing values estimable from the noisy dataset. Unlike other approaches,
our method doesn’t hinge on the true noise transition matrix of annotators, which
is typically inaccessible from training data. More specifically, these bounds are
contingent on the estimated noise transition matrix, the number of classes, the
Rademacher complexity, and the Lipschitz constant, all of which can be assumed
known beforehand. Additionally, the bounds consider the ground truth distribution,
often assumed to be uniform in various scenarios.

Experimental Validation. We conducted experiments to validate the effectiveness
of our proposed method for estimating the noise transition matrix by assessing
estimation errors concerning the number of samples. Additionally, we explored the
usage of the estimated posteriors as soft labels. The experiments encompassed a
classification task on a synthetic dataset and CIFAR10-N dataset, a real dataset
containing multiple noisy annotations. Our findings indicate that employing the
posterior distribution as soft labels leads to improved performance compared to using
average labels from annotators through majority or random aggregation methods.
Our method demonstrated increased resilience to noise and displayed reduced variance
in results. This supports our hypothesis that leveraging the estimation of the noise
transition matrix contributes to enhanced classification accuracy.

6.1.2 Future directions
This work represents a significant step in addressing the challenge of learning

from datasets with noisy labels due to not adversarial annotator errors. Looking
ahead, the potential for future research lies in extending our approach beyond
the constraints of symmetry for the noise transition matrix that we require in
our theorems and the assumption of knowing the distribution of the classes in
the dataset, aiming to explore scenarios where noise transition matrix may not
be symmetric and may differ among annotators. Furthermore, our next step is
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to extend the utility of this method across a spectrum of distinct domains and
applications. One possibility entails the domain of medical diagnostics, wherein
annotations are sourced directly from medical professionals. In this context, applying
our methodology can enhance diagnostic accuracy when multiple annotations can
be obtained. Additionally, another promising domain involves ranking and learning
to rank when each training instance is labeled by multiple annotators.

6.2 On generalization bounds for clustering
In Chapter 3 we investigated the following questions:

RQ3 How does the excess risk behave as function of k, d, and n for center-based
(k, z) clustering ?
RQ4 How does the excess risk behave as function of k, d, j, and n for subspace
(k, j, z) clustering ?

6.2.1 Main findings
We addressed the questions, presenting nearly optimal results. Specifically, we

derived bounds for the excess risk for the various clustering settings. For the (k, z)-
clustering, utilizing n independent samples from an unknown fixed distribution D,
we established the bound at Õ

(√
k/n

)
. This bound aligns precisely with the lower

boundary as determined by Bartlett et al. (1998c).
Similarly, our exploration of (k, j, z)-clustering derived an excess risk bound at

Õ

(√
kj2/n

)
, using the same set of independent samples from the distribution.

Moreover, our analysis unveiled the existence of a distribution demonstrating
an excess risk of at least Ω

(√
kj/n

)
for the (k, j, 2)-clustering problem. This finding

closely corresponds to the upper boundary established by Fefferman et al. (2016),
accounting for polylog factors.

In both settings, we pursued the same route to establish the upper bounds. These
bounds are derived by constraining the excess risk through a uniform bound of the
difference between the empirical cost and the cost related to the distribution for any
provided solution. The uniform bound can be, in turn, bounded by the Gaussian
complexity of the cost vectors. Employing the chaining techniques alongside the
concepts of ε-net enabled us to estimate the Gaussian complexity of the cost vectors.

However, a dependence on the dimension where the points originally lived
persisted. To overcome this in center-based clustering, we leaned on terminal
embeddings. Conversely, for subspace clustering, terminal embeddings are an
infeasible solution as they aren’t linear and do not preserve subspaces. Consequently,
we established the existence of a collection of dimension reducing maps so that each
subspace is preserved by at least one embedding within the collection. Technically,
this contribution stands as one of our primary focal points.

We also presented a lower bound specific to projective clustering, confirming the
near-optimality of the results derived by Fefferman et al. (2016).

Experimental Validation. Moreover, we substantiate our theoretical bounds with
empirical experiments conducted on real datasets. The empirical results affirm that
the practical learning rates align closely with the theoretical guarantees, implying
near-optimality even in real-world applications. This outcome defies the anticipation
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that practical experiments might deviate from the bounds established for worst-
case scenarios. In particular, the distribution of examples could potentially have
properties that allow for a better convergence rate. Moreover, we noticed that the
rates were not particularly affected by either the choice of z or by the dimension j
when analyzing subspace clustering.

6.2.2 Future directions
Examples of open problems that we would like to study concern clustering

problems with clustering size constraints. For instance, one could consider a fair
clustering problem where the clusters are asked to have a balanced composition
between classes (Schmidt et al., 2019; Bandyapadhyay et al., 2020). In this case,
what kind of rates can be obtained? Can we still utilize the same techniques?
Notably, the constraints on cluster compositions for individual centers disrupt the
independence in point assignments to these centers. This scenario necessitates
alternative methodologies to address the interdependence of these assignments.
Another open problem concerns obtaining better bounds when some favourable
conditions for clustering hold for the points’ distribution. For instance, conditions on
the margin separating the clusters. In this case, can we improve the upper bounds?
And under which exact conditions?

6.3 A new generalization of the artificial neuron to en-
hance the interpretability of neural networks while
preserving expressive capabilities

Chapter 4 investigated the following question:

RQ5 Is it possible to design a neural network structure that makes the whole
model interpretable without sacrificing effectiveness and expressiveness?

To the first question, we answered partially yes. Or better, in Chapter 4, we
presented a new artificial neuron based on the inversion between the operation of
the sum and the application of the non-linearity. To simplify, we could describe the
structure of the new neuron as follows: each dimension of the input vector (a scalar
number) is first shifted or translated by a factor b, the bias and then the shifted
value is scaled by a factor w (the weight). Subsequently, a non-linearity is applied.
Finally, an aggregation operation is applied to all the output of the input feature to
aggregate them. Performing operations in this order makes it possible that when the
Heaviside function is used as non-linearity, we can derive exact rules to determine
the impact of the original features on the final prediction. When the non-linearity is
a continuous function, such as a sigmoid or product of hyperbolic tangent, the rules
we can derive are “fuzzy”.

Universality. In terms of their ability to represent and process information, networks
using this new artificial neuron possess the same expressive capacity as conventional
neural networks. More specifically, when the processing function is the Heaviside
function we proved that the network could approximate any continuous function
on the unit hypercube, In, Lebesgue measurable functions on In and functions in
Lp(A,µ) for 1 ≤ p < ∞, with µ being a Radon measure and A ∈ B(Rn) a Borel set.
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Performances. In conclusion, our experiments with synthetic and real data have
shown that our method is better than popular interpretable by design methods
like Decision Trees and Logistic Regression, and it can do as well as the regular
types of neural networks and Gradient Boosted Decision Trees, which instead lack
transparency in their operations.

Among the Heaviside, sigmoid, and tanh-prod cases, the Heaviside case yields
the least favorable outcomes. This could be attributed to its greater complexity
in training, despite being the most interpretable among the three. Conversely, the
tanh-prod case displays marginally superior performance compared to the sigmoid,
offering increased flexibility.

6.3.1 Future directions
In future work, we’ll look more closely at how the new neuron-based models

work when we change the number of layers, the number of neurons per layer, and
the processing functions used. Also, we will check how different initializations of
these models can affect the performances.

Moreover, we’ll try to generalize this structure to other types of networks, like
Recurrent, Convolutional and Graph Neural Networks.

6.4 A topological description of loss surfaces via Betti
numbers characterization

Chapter 5 considered the following questions:

RQ6 Can a topological measure effectively assess the complexity of the loss
implemented by layered neural networks?

RQ7 How do the complexity bounds of deep and shallow neural architectures
relate to the number of hidden units and the selected activation function?

Our investigation determined that when employing a Pfaffian function as ac-
tivation function of the neural network, both the MSE and BCE loss functions
can be represented as Pfaffian functions. Subsequently, the theory developed for
Pfaffian functions in Zell (2003, 1999) allowed us to obtain a bound of the sum of
Betti numbers of the sublevel set of the empirical risk of the loss. The sum of Betti
numbers, in general, can be seen as a measure of the topological complexity of a
space. The Betti numbers characterize the shape or structure of topological spaces.
The sum of these numbers, taken across various dimensions, offers a comprehensive
view of the overall topological complexity. A higher sum of Betti numbers indicates
a more complex and rich topological structure, reflecting more intricate features like
a higher number of connected components, holes, or higher-dimensional cavities.

Specifically, we examined the differences in the complexity of the Pfaffian function
resulting from using the two loss functions.

We noticed that the bounds in this work on the sum of Betti numbers of the
sublevel set of the empirical risk are not tight; our analysis suggested a qualitative
interpretation more than a quantitative one. The ideal scenario would be obtaining
a bound on the number of connected components of the sublevel set b0(S) rather
than B(S), which would give a more accurate characterization of the topology of
the loss landscape for the purpose of gradient descent based algorithms; this is a
perspective to be considered for future works.
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When we look at how complex the loss landscape is, we obtain a superexponential
dependency of the bound on the network parameters. Particularly, a qualitative
difference can be highlighted between the shallow and the deep case as we focus
on the impact of the number of hidden neurons h per layer. For shallow networks,
the superexponential dependency involves a term h, while for deep networks, it now
involves terms of the type h2. This result is aligned with the general intuition and
previous works in literature (Bianchini and Scarselli, 2014).

Both for deep and shallow networks and all loss fucntions, the asymptotic analyses
showed that the sum of Betti numbers of the sublevel set of the empirical loss has
exponential dependences on the square of the number of samples m.

6.4.1 Future directions
Future research can focus on refining the characterization of the loss landscape’s

topology by obtaining more precise bounds on the number of connected components
of the sublevel set or the level set of the empirical risk. This finer characterization
could significantly enhance the understanding of the topological properties for
optimizing gradient-descent-based algorithms.

Closing Remarks
In conclusion, this thesis aimed to obtain more reliable machine learning models.
Initially, we focused on enhancing the reliability of models when trained on noisy

data. Real-world data often comes with imperfect labeling, driving our focus to
create robust learning algorithms for noisy labels. In particular, the method we
introduced is suitable in scenarios where multiple labels are provided by different
annotators.

Furthermore, we focused on obtaining nearly optimal bounds for the excess risk
of clustering objectives, driven by the need to improve how we can rely on the chosen
model when the model is asked to perform on data not seen during training. The
bounds obtained are upper bounds for the rate of decreasing of the excess risk in
terms of the number of samples and the number of centers.

Moreover, we introduced a novel artificial neuron designed to enhance model
interpretability. Our research ensured that networks built with these neurons are
not only more interpretable but also preserve the same expressive power as those
utilizing standard neurons. Indeed, we proved that such networks can approximate
the same sets of functions as standard neural networks and verified their comparable
performance to standard neural networks on the datasets we tested.

Finally, we focused on a topological analysis of loss functions. The goal of
providing critical insights into the structure of loss landscapes stems from the fact
that the study of loss landscapes is of interest to the behavior of the gradient-based
algorithm. Consequently, studying loss landscape is interesting because it affects the
convergence and stability of the optimization method and significantly influences
the reliability of a model.
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