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Abstract.  The thermodynamic uncertainty relation is a universal trade-o 
relation connecting the precision of a current with the average dissipation at 
large times. For continuous time Markov chains (also called Markov jump 
processes) this relation is valid in the time-homogeneous case, while it fails 
in the time-periodic case. The latter is relevant for the study of several small 
thermodynamic systems. We consider here a time-periodic Markov chain with 
continuous time and a broad class of functionals of stochastic trajectories, 
which are general linear combinations of the empirical flow and the empirical 
density. Inspired by the analysis done in our previous work Barato et al (2018 
New J. Phys. 20 103023), we provide general methods to get local quadratic 
bounds for large deviations, which lead to universal lower bounds on the ratio 
of the diusion coecient to the squared average value in terms of suitable 
universal rates, independent of the empirical functional. These bounds are called 
‘generalized thermodynamic uncertainty relations’ (GTUR’s), being generalized 
versions of the thermodynamic uncertainty relation to the time-periodic case 
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and to functionals which are more general than currents. Previously, GTUR’s 
in the time-periodic case have been obtained in Barato et al (2018 New J. 
Phys. 20 103023); Koyuk et al (2019 J. Phys. A: Math. Theor. 52 02LT02); 
Proesmans and Van den Broeck (2017 Europhys. Lett. 119 20001). Here we 
recover the GTUR’s in Barato et al (2018 New J. Phys. 20 103023); Koyuk et al 
(2019 J. Phys. A: Math. Theor. 52 02LT02) and produce new ones, leading to 
even stronger bounds and also to new trade-o relations for time-homogeneous 
systems. Moreover, we generalize to arbitrary protocols the GTUR obtained 
in Proesmans and Van den Broeck (2017 Europhys. Lett. 119 20001) for time-
symmetric protocols. We also generalize to the time-periodic case the GTUR 
obtained in Garrahan (2017 Phys. Rev. E 95 032134) for the so called dynamical 
activity, and provide a new GTUR which, in the time-homogeneous case, is 
stronger than the one in Garrahan (2017 Phys. Rev. E 95 032134). The unifying 
picture is completed with a comprehensive comparison between the dierent 
GTUR’s.

Keywords: large deviations in non-equilibrium systems, stochastic 
thermodynamics
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1. Introduction

Stochastic thermodynamics [46, 47] generalizes thermodynamics to small nonequilib-
rium systems, such as molecular motors, colloidal heat engines and quantum dots. 
Thermal fluctuations in these systems are relatively large and cannot be neglected. In 
the last decades, some universal relations concerning fluctuations in small nonequilib-
rium systems have been obtained. These relations mainly correspond to the so called 
fluctuations theorems (see [46] and references therein) and to the more recent thermo-
dynamic uncertainty relations and their generalizations. Fluctuation theorems, initially 
developed for dynamical systems [19], provide constraints on the entropy probability 
distribution which generalize the second law of thermodynamics. On the other hand, 
the original thermodynamic uncertainty relation (TUR) introduced in [3] is a universal 
inequality that relates the precision of any current, such as the number of consumed 
ATP and the velocity of a molecular motor or the electron flux in a quantum dot, with 
the entropy production that quantifies energy dissipation. More precisely, the ratio of 
the asymptotic diusion coecient of any current to its squared asymptotic value is 
lower bounded by the inverse average entropy production rate. Possible applications 
of the TUR include the inference of enzymatic schemes in single molecule experiments 
[2], a bound on the eciency of molecular motors depending only on the fluctuations of 
the displacement of the motor [38], a universal relation between power and eciency 
for heat engines in a stationary state [41], and design principles in nonequilibrium self-
assembly [35]. More generally, the TUR can be derived from a parabolic bound on large 
deviations (LD) proposed in [22, 37]. The proof of this bound, which has been obtained 
in [22], comes from the explicit form derived in [6, 7, 32] of the rate functional associ-
ated with the so called 2.5 level LDs.

https://doi.org/10.1088/1742-5468/ab3457
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Several works about the TUR and about quadratic bounds on LD rate function-
als have already been produced (see for example [1, 2, 8–13, 16, 20, 21, 24–26, 28–31, 
34–36, 38–44] and references therein). In particular, the TUR applies to systems driven 
by a fixed thermodynamic force. Mathematically, these systems can be described as 
time-homogenous Markov chains, i.e. with time-independent transition rates, or time-
homogeneous diusions as in [23, 34, 43]. A dierent way to drive a system out of equi-
librium is through an external periodic protocol. Several artificial molecular pumps [17] 
and colloidal heat engines [33] constitute experimental examples of such periodically 
driven systems. A continuous–time Markov chain with time-periodic transitions rates 
is a standard mathematical framework to describe these systems [4].

As shown in [4], there is a fundamental dierence between systems driven by a fixed 
thermodynamic force and periodically driven systems concerning the TUR. The origi-
nal TUR from [3] that involves the entropy production does not apply to periodically 
driven systems. However, more recently, bounds on current fluctuations that generalize 
the TUR to periodically driven systems have been obtained in [1, 29, 44]. In this work 
we focus on generalized thermodynamic uncertainty relations (GTUR’s). In a very broad 
sense, given a class C of empirical functionals (i.e. functionals of the stochastic trajec-
tory as detailed in section 2.2), by GTUR we mean a lower bound on the ratio of the 
asymptotic diusion coecient to the squared asymptotic value of the empirical func-
tional which holds uniformly. This means that the lower bounding quantity depends 
only on the Markov process itself and the class C of functionals under consideration, 
but does not depend on the specific empirical functional in C.

A summary of the GTUR’s developed so far (see [1, 29, 44]) is as follows. A first 
GTUR for periodically driven systems has been provided in [44]. This result is restricted 
to protocols that are time-symmetric under time reversal and to the class of empirical 
functionals fulfilling an antisymmetry relation. The resulting lower bound is in terms of 
the averaged entropy production rate, although in a form dierent from the standard 
TUR. A second contribution has come from our previous work [1]. There we have pre-
sented a very general method to get local quadratic upper bounds on the LD rate func-
tion of currents, and therefore lower bounds on the ratio of the asymptotic diusion 
coecient to the squared asymptotic value. As an application, we have obtained several 
specific classes of lower bounds (see [1, equations (55),(56),(61),(72),(73),(74)]), which 
hold for generic currents, also with time-dependent increments (the increment is the 
variation of the current due to a transition). When restricting to time-independent 
increments several lower bounds provided in [1] become uniform w.r.t. the possible 
increments and therefore are GTUR’s, in the sense specified above (see e.g. [1, equa-
tions (26),(27)]). Another GTUR has been derived in [29] for a class of empirical func-
tionals given by a current and a generic term that is linear in the fractions of time spent 
in a state, the so called empirical density (or measure).

Part of our main results are an extension of the analysis performed in [1]. We con-
sider a quite broad class of empirical functionals. This class includes currents, which 
are the standard observables that appear in the TUR, an observable known as activity 
that has symmetric increments [20] (in contrast to currents that have antisymmetric 
increments) and the empirical density. In fact, our GTUR’s are generalizations of the 
TUR in two senses: we consider time-periodic Markov chains and empirical function-
als more general than currents. For instance one of our GTUR’s is a generalization 

https://doi.org/10.1088/1742-5468/ab3457
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to the time-periodic case of the bound found in [20] related to the dynamical activ-
ity. We remark that, even for currents and time-homogeneous processes, some of our 
GTUR’s are dierent and tighter than the usual TUR (similarly, one of our GTUR’s is 
tighter than the bound found in [20] related to the dynamical activity). Finally, these 
GTUR’s should not be confused with the generalizations of the TUR to finite time in 
time-homogeneous, time-inhomogeneous or time-periodic systems obtained in [11–13, 
28, 40].

We provide general methods to produce local quadratic upper bounds on the LD 
rate function of the empirical functionals (see theorems 2–4). These methods rely on the 
LD principles obtained in [5] and work whenever one can exhibit a suitable mathemati-
cal object, that we call here legal input. By choosing suitable legal inputs we get the 
dierent GTUR’s listed in section 3 as (GTUR 1), (GTUR 2),...,(GTUR 6). In this way 
we recover the results of [1, 29] but also go further, exhibiting new GTUR’s which are 
sometimes even stronger of the existing ones (for example, (GTUR 4) provides always 
a stronger lower bound than the GTUR in [29]).

The GTUR in [44] is of a dierent nature (see section 5) and it does not enter in the 
above general scheme. Our unifying picture is completed with a generalization of this 
GTUR to the case of general protocols that can be time-asymmetric (see (GTUR 7) in 
section 3). This GTUR applies to a class of functionals that fulfills an antisymmetry 
relation. Interestingly, the average entropy production rate that appears in the bound 
for the case of symmetric protocols is substituted in our generalization by an average 
naive entropy production rate analyzed in [5] and recalled in sections 3.3 and 5. This 
rate equals the rate of entropy production plus a rate that becomes zero if the protocol 
is symmetric.

All our results apply as well to time-homogeneous Markov chains with continuous 
time, since they are a special case of periodically driven systems. In particular, our 
GTUR’s include the original TUR from [3] and imply a generalization of the bound on 
the fluctuations of activity derived in [20].
Outline of the paper. The paper is organized according to the following scheme.

  ⦁   Notation and general framework: in section 2 we fix the notation, describe 
the model and the empirical functionals we will focus on.

  ⦁   Main results. They are shared in three parts, corresponding to sections 3–5. 
In section 3 we present our main GTUR’s, denoted by (GTUR 1), (GTUR 
2),..., (GTUR 7). In section 4 we optimize some GTUR’s with respect to the 
parameters appearing there and make comparisons between GTUR’s. In sec-
tion 5 we extend the results of [44] to generic protocols (see theorem 1, implying 
(GTUR 7)).

  ⦁   Examples.  In section 6 we discuss in detail two examples.

  ⦁   Proofs. They are shared in four parts, corresponding to sections 7–10. In 
section 7 we provide an overview on the methods used to derive the GTUR’s 
listed in section 3. In sections 8 and 9 we provide general methods (see theo-
rems 2–4 there) to get local/global quadratic upper bounds on the LD rate 
function and derive all the GTUR’s listed in section 3, apart from (GTUR 7), 

https://doi.org/10.1088/1742-5468/ab3457
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as well as some other lower bounds on the ratio between speed and precision 
(see corollaries 8.2, 9.2 and 9.6). In section 10 we derive the results concerning 
optimization and comparison presented in section 4.

  ⦁  Conclusion.  In section 11 we briefly report on the obtained results.

  ⦁   Appendixes. In appendix A we collect some general remarks and in appendix 
B we give for completeness the proof of theorem 1, which follows the main 
arguments presented in [44].

2. Notation and general framework

2.1. Models and notation

We consider a continuous-time Markov chain X(t) with finite state space V  and time-
periodic jump rates wij(t) with period τ :

P(X(t+ dt) = j |X(t) = i) = wij(t)dt, wij(t+ τ) = wij(t) ∀i, j ∈ V , ∀t � 0.

The transition graph associated with the Markov chain X(t) is denoted (V ,E), with 
vertex set V  and set of oriented edges E. Our main technical assumptions are the 
following:

 (i)  the graph (V ,E) is strongly connected; 
 (ii)  for each (i, j) ∈ E it holds wij(t)  >  0 for all t, while for each (i, j) �∈ E it holds 

wij(t)  =  0 for all t.

We recall that item (i) is equivalent to the fact that, given arbitrary states i, j ∈ V , 
there exists a path from i to j  respecting the edge orientation.

Denoting by Pi(t) the probability that the Markov chain is at state i at time t, the 
time evolution of Pi(t) is given by the equation

d

dt
Pi(t) =

∑
j:j �=i

[
Pj(t)wji(t)− Pi(t)wij(t)

]
. (2.1)

The asymptotic properties related to this equation are as follows (see e.g. [5] for 
details). In the long time limit, Pi(t) tends to an invariant time-periodic distribution 

πi(t) = πi(t+ τ). The distribution π(t) can be characterized as the unique invariant dis-

tribution of the discrete-time Markov chain 
(
X(t+ nτ)

)
n�0

. Other important quanti ties 

are the asymptotic elementary flow Qij(t) and current Jij(t) along the edge (i, j), which 
are given by

{
Qij(t) := πi(t)wij(t),

Jij(t) := πi(t)wij(t)− πj(t)wji(t) = Qij(t)−Qji(t).
 (2.2)

Note that πi(t) > 0 for all t  >  0 and i ∈ V . Moreover Qij(t) > 0 for all t  >  0 if (i, j) ∈ E, 
while Qij(t) = 0 for all t  >  0 if (i, j) �∈ E.

https://doi.org/10.1088/1742-5468/ab3457
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From equation (2.1) we get the continuity equation

∂tπi(t) +
∑
j:j �=i

Qij(t)−
∑
j:j �=i

Qji(t) = 0 ∀i ∈ V ,
 (2.3)

which is equivalent to

∂tπi(t) +
∑
j:j �=i

Jij(t) = 0 ∀i ∈ V .
 (2.4)

The continuity equation (2.3) can be rewritten with a div operator in the form

∂tπ(t) + divQ(t) = 0, (2.5)

where π(t) and divQ(t) are vectors with components πi(t) and divi Q(t) : =  ∑
j Qij(t)−

∑
j Qji(t).

Time independent transition rates wij(t) = wij correspond to a particular case of 
our theory. In this case, we have a steady state characterized by the asymptotic distri-
bution π, which fulfills the continuity equation∑

j:j �=i

Qij −
∑
j:j �=i

Qji = 0 ∀i ∈ V ,
 (2.6)

where Qij = πiwij.
Finally, when the graph (V ,E) contains an edge (i, j) if and only if it contains the 

edge ( j, i), we denote by σ the average entropy production rate. In particular, we have

σ =
1

2

∑
(i,j)∈E

1

τ

∫ τ

0

Jij(t) ln
Qij(t)

Qji(t)
dt. (2.7)

When the transition rates are time-independent, the above identity simply reads

σ =
1

2

∑
(i,j)∈E

Jij ln
Qij

Qji

. (2.8)

Let us introduce the notations for time average and scalar products used in this 
paper. In what follows, when referring to a time-periodic function f(t), we understand 
that its period equals τ . Moreover, we denote by f  the average of f  over a period, i.e.

f :=
1

τ

∫ τ

0

f(t)dt.

The scalar product of two vectors a(t) and b(t) with entries parameterized by i ∈ V  is 
given by

〈a(t), b(t)〉 :=
∑
i∈V

ai(t)bi(t);

while, if a(t) and b(t) are matrixes with entries parameterized by (i, j) ∈ V × V , their 
scalar product is given by

〈a(t), b(t)〉 :=
∑

(i,j)∈V×V

aij(t)bij(t).

https://doi.org/10.1088/1742-5468/ab3457
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Finally, in what follows Markov chains will always be considered as time-continuous 
(i.e. as Markov jump processes), also when not explicitly stated.

2.2. Empirical functionals

We describe now the class of empirical functionals on which we will focus and 
state the associated large deviation principle. Given a time-periodic matrix 

α(t) =
(
αij(t) : (i, j) ∈ V × V

)
 and a time-periodic vector γ(t) =

(
γi(t) : i ∈ V

)
 we 

consider the empirical functional Y
(n)
α,γ  defined as

Y (n)
α,γ :=

1

nτ

∑
t∈(0,nτ ]:

X(t−) �=X(t+)

αX(t−),X(t+)(t) +
1

nτ

∫ nτ

0

γX(t)(t)dt. (2.9)

For example, if all components of γ(t) are zero and the increments αij(t) are antisym-

metric, i.e. αij(t) = −αji(t), then Y
(n)
α,γ  is a current, which is a key observable in stochas-

tic thermodynamics. If the components of α(t) are zero, the component γi(t) = 1 and 

the other components of γ(t) are zero, then Y
(n)
α,γ  is the fraction of time spent in state i.

Note that, as n → ∞, Y
(n)
α,γ  has the following asymptotics (see [5, proposition 7.3]):

Y (n)
α,γ → yα,γ :=〈α,Q〉+ 〈γ, π〉. (2.10)

In particular, if αij = ln(wij/wji) and γ = 0, then yα,γ equals the average entropy pro-
duction rate σ in (2.7).

As a byproduct of the large deviation (LD) principle given by [5, theorem 2] and the 

contraction principle (see e.g. [14, 15, 27, 48]), Y (n)
α,γ  satisfies an LD principle as n → ∞ 

with speed nτ . Calling Iα,γ its rate functional, roughly it holds

P(Y (n)
α,γ ≈ y) � e−nτIα,γ(y), y ∈ R, n � 1. (2.11)

We point out that Iα,γ(y) � 0 and Iα,γ(y) = 0 if and only if y = yα,γ. This corresponds 
to the fact that yα,γ is the typical value and dierent values of the functional are expo-
nentially unlikely.

To describe the variational characterization of the LD rate functional Iα,γ, we intro-
duce the function Φ(q, p) defined for q, p � 0 as

Φ(q, p) := q ln(q/p)− q + p, (2.12)
with the convention that Φ(0, p) := p and Φ(q, 0) = +∞ for q  >  0. Then, it holds

Iα,γ(y) = inf{I(Q, ρ) : (Q, ρ) ∈ Fα,γ,y}, (2.13)
where

I(Q, ρ) :=
∑

(i,j)∈E

Φ
(
Qij(t), ρi(t)wij(t)

)
 (2.14)

and Fα,γ,y denotes the family of pairs (Q, ρ) = (Q(t), ρ(t))t�0 such that

 (i)  Q(t) is a time-periodic flow, i.e. Q(t) = Q(t+ τ) and Q(t) is a non-negative func-
tion on V × V  which is zero outside E for each time t; 

https://doi.org/10.1088/1742-5468/ab3457
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 (ii)  ρ(t) is a time-periodic probability measure on V ; 

 (iii)  the continuity equation ∂tρ(t) + divQ(t) = 0 is satisfied, where divi Q(t) :=  

jQij(t)−
∑

j Qji(t); 

 (iv)  y = 〈α,Q〉+ 〈γ, ρ〉.

We point out that one recovers from (2.13) that Iα,γ(yα,γ) = 0 since, denoting by 
Q = (Q(t))t�0 and π = (π(t))t�0 the asymptotic flow and density, respectively, it holds 
I(Q, π) = 0 in addition to (2.10).

Formula (2.14) corresponds to the joint LD rate functional of the empirical flow 
and measure. To recall their definition, given t � 0 we denote by [t] the only number in 
[0, τ) such that t  −  [t] is a multiple of τ . Then the empirical flow Q(n) is defined as the 
measure on E × [0, τ) given by

Q(n)(i, j,A) :=
1

n
� {t ∈ (0,nτ ] : X(t−) = i, X(t+) = j, [t] ∈ A} ,

where � denotes the cardinality of the set. On the other hand, the empirical measure 
ρ(n) is defined as the measure on V × [0, τ) such that

ρ(n)(i,A) :=
1

n

∫ nτ

0

1 (X(t) = i, [t] ∈ A) dt,

where 1(·) denotes the characteristic function (i.e. the function equals 1 if the event 
under consideration takes place, otherwise it equals zero). Note that, given a time-peri-
odic flow Q = (Q(t))t�0, we can think of Q as the measure on E × [0, τ) with weights 
(i, j, dt) �→ Qij(t)dt. Given a time-periodic probability measure ρ = (ρ(t))t�0 on V  we 
can think of ρ as the measure on V × [0, τ) with weights (i, dt) �→ ρi(t)dt. In [5, theorem 

2] it is proved that the pair 
(
Q(n), π(n)

)
 satisfies a LD principle with speed nτ  and rate 

functional I(Q, ρ) given by (2.14) if (Q, ρ) = (Q(t), ρ(t))t�0 satisfies the above conditions 

(i), (ii), (iii). If these conditions are not fulfilled, then I(Q, ρ) equals infinity. Since

Y (n)
α,γ =

1

τ

∑
i,j

∫

[0,τ)

αij(t)Q
(n)(i, j, dt) +

1

τ

∑
i

∫

[0,τ)

γi(t)ρ
(n)(i, dt), (2.15)

(2.13) follows from the contraction principle and the above LD principle for (
Q(n), π(n)

)
.

The asymptotic diusion coecient Dα,γ associated with Y
(n)
α,γ  is defined as

2Dα,γ := lim
n→∞

nτVar
(
Y (n)
α,γ

)
. (2.16)

This quantity can be obtained from the rate functional Iα,γ by the identity

2Dα,γ =
1

I ′′α,γ(yα,γ)
, (2.17)

where I ′′α,γ denotes the second derivative of Iα,γ. We point out that in the mathematical 
literature the asymptotic diusion coecient is defined without the factor 2 in the lhs 
of (2.16).
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Formula (2.17) can be applied when the rate function Iα,γ is twice dierentiable 
around its minimum point yα,γ. If the set Fα,γ,y defined after (2.14) is non-empty for 
any real value y , then the dierentiability could be proved using the smoothness of 
the function (2.12) on points with strictly positive coordinates and the linearity of the 
constraint (iv) in the definition of Fα,γ,y. There are however exceptional cases when 
this does not happen. As an example consider the case when γ ≡ 0 and αij = fj − fi 
for fixed time-independent constants ( fi)i∈V . Given (Q, ρ) ∈ Fα,γ,y we deduce that 
divQ = 0 by integrating the continuity equation ∂tρ(t) + divQ(t) = 0 on a period and 
using that ρ(t) is periodic. Due to the gradient representation αij = fi − fj and since 
divQ = 0, by a discrete integration by parts we obtain that 〈α,Q〉 = 0. We get there-
fore that Fα,γ,y = ∅ for any y �= 0 (indeed, property (iv) in the definition of Fα,γ,y cannot 
be fulfilled for y �= 0). As a consequence Iα,γ(y) = +∞ for y �= 0 and Iα,γ(0) = 0, hence 
Iα,γ is not dierentiable. In this case formula (2.17) cannot be applied. See also remark 
9.1 for another exceptional class.

3. Main results I: (GTUR 1), (GTUR 2),...,(GTUR 7)

In this section we present our main GTUR’s, given by inequalities (GTUR 1),  
(GTUR 2),...,(GTUR 7) below. For the reader’s convenience, these GTUR’s are sum-
marized in tables 1 and 2. Apart from (GTUR 7), which is a generalization of the result 
derived in [44], their derivation is obtained by extending the methods and ideas from 
[1]. We refer to sections 7–9 for the proofs and further comments.

From now on, without further mention, we restrict to the case that the asymp-

totic value yα,γ of the empirical functional Y
(n)
α,γ  is non zero (see remark 8.1 for the case 

yα,γ = 0).

3.1. GTUR with generic increments

From corollary 8.2, which contains a more general result, we obtain:

GTUR 1. If the increments α are time-independent (i.e. αi,j(t) ≡ αi,j) and γ ≡ 0, then

Dα,0

y2α,0
�

1

σ̂
, (GTUR 1)

where

σ̂ := 2
∑

(i,j)∈E

(Qij)
2 1

Qij

. (3.1)

For the case of time-homogeneous Markov chains, ̂σ = 2
∑

(i,j)∈E Qij, and this GTUR 
becomes [20, equation (19)]. Hence, (GTUR 1) is a generalization of this inequality to 

time-periodic Markov chains. The quantity 
∑

(i,j)∈E Qij, which is the rate of average 
number of transitions, is known as mean dynamical activity. For time-periodic Markov 

chains, due to Jensen’s inequality, we have the bound σ̂ � 2
∑

(i,j)∈E Qij, i.e. σ̂/2 is 

larger than the dynamical activity.
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From corollary 8.3 we obtain:

GTUR 2. For generic increments α, it holds

Dα,γ

y2α,γ
�

1

C( p)
, (GTUR 2)

where p = ( pi)i∈V  is any probability on V  with 〈γ, p〉 = 0 and

C( p) := 2
∑

(i,j)∈E

p2i

(
w2

ij

Qij

)
= 2

∑
(i,j)∈E

p2i

(
wij

πi

)
. (3.2)

Note that the above probability p  is time-independent. This novel GTUR is valid 
for generic linear functionals of the form (2.9), including the case α = 0, which corre-
sponds to functionals that depend only on the empirical density.

3.2. GTUR with antisymmetric increments

In this subsection we assume, without further mention, that

(y, z) ∈ E ⇔ (z, y) ∈ E.

For the particular case of antisymmetric increments αi,j(t) = −αj,i(t), we have the fol-
lowing GTUR’s.

First, from corollary 9.2, which contains a more general result, we obtain:

GTUR 3. If α is time-independent and antisymmetric and γ ≡ 0, then

Dα,0

y2α,0
�

1

σ̃
, (GTUR 3)

where

σ̃ :=
∑

(i,j)∈E

(J ij)
2 1

Qij +Qji

. (3.3)

This GTUR corresponds to the first bound in [1, equation (27)].
Second, from corollary 9.3, we obtain:

GTUR 4. For generic antisymmetric increments α, it holds

Dα,γ

y2α,γ
�

1

Ca( p)
, (GTUR 4)

where p = ( pi)i∈V  is any probability on V  with 〈γ, p〉 = 0 and

Ca( p) :=
∑

(i,j)∈E

((
piwij − pjwji

)2
Qij +Qji

)
. (3.4)

https://doi.org/10.1088/1742-5468/ab3457


A unifying picture of generalized thermodynamic uncertainty relations

12https://doi.org/10.1088/1742-5468/ab3457

J. S
tat. M

ech. (2019) 084017

The above GTUR for γ ≡ 0 has been obtained also in [11] by applying the Cramér–
Rao bound. The bound is not explicitly pointed out in [11], but one gets it by combin-
ing (5), (A.22) and (A.23) there.

Third, from corollary 9.6, which contains a more general result, we obtain:

GTUR 5. If α is time-independent and antisymmetric and γ ≡ 0, then

Dα,0

y2α,0
�

1

σ∗ ,

 
(GTUR 5)

where

σ∗ :=
1

2

∑
(i,j)∈E

(J ij)
2

(
1

Jij

ln
Qij

Qji

)
. (3.5)

This GTUR corresponds to the second bound in [1, equation (27)] (see [1, sec-
tion 3.4] for a physical interpretation of σ∗). Furthermore, due to the inequality σ∗ � σ̃, 
which has been proved in [1], (GTUR 5) can be also derived directly from (GTUR 3). 
The original TUR for time-homogeneous Markov chains is a particular case of (GTUR 
5). For a time-homogeneous Markov chain σ∗ becomes the average entropy production 
rate σ in (2.8).

Fourth, from corollary 9.7, we obtain:

GTUR 6. For generic antisymmetric increments α, it holds

Dα,γ

y2α,γ
�

1

C∗
a( p)

, (GTUR 6)

where p = ( pi)i∈V  is any probability on V  with 〈γ, p〉 = 0 and

C∗
a( p) :=

1

2

∑
(i,j)∈E

((
piwij − pjwji

)2
Jij

)
ln

Qij

Qji

. (3.6)

This GTUR, for the particular case γ = 0 (which is equivalent to the fact that 

γi(t) =
d
dt
gi(t) for periodic functions gi), has been obtained in [29] with a dierent deri-

vation (see [29, equations (14)–(16)]).
The inequality (GTUR 6) can be derived by the general method presented in theo-

rem 4 as well as directly from (GTUR 4) by the bound (9.30) presented in section 9.5.

3.3. GTUR with naive entropy production

Our last GTUR follows from theorem 1, which contains more general results:

GTUR 7. If αi,j(t) = −αj,i(τ − t) and γi(t) = −γi(τ − t) for any i, j and t ∈ [0, τ ], then

Dα,γ

y2α,γ
�

τ

eτσnaive − 1
, (GTUR 7)

where
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σnaive :=
1

τ

∑
(i,j)∈E

∫ τ

0

πi(s) [wij(τ − s)− wij(s)] ds

+
1

τ

∑
(i,j)∈E

∫ τ

0

πi(s)wij(s) ln
wij(s)

wji(τ − s)
ds.

 

(3.7)

The above result is a generalization to arbitrary protocols of [44, equation (2)], 
which only applies to symmetric protocols.

When the quantity τσnaive is small (for example when τ  is small and σnaive is of a 
given order of magnitude as in section 6.2), then the inverse rate given by the rhs of 
(GTUR 7) is well approximated by 1/σnaive. Note that for symmetric protocols σnaive = σ. 
In the limit τ → 0 (GTUR 7) can be applied only to currents with time-independent 
increments (due to the constraints αi,j(t) = −αj,i(τ − t) and γi(t) = −γi(τ − t)) and it 
reduces to the classical thermodynamic uncertainty relation Dα,0/y

2
α,0 � 1/σ.

We refer to section 5 for further discussions on σnaive, (GTUR 7) and its extensions.

3.4. Comments on the weights γ

We observe that (GTUR 2), (GTUR 4) and (GTUR 6) are uniform among the weights γ 

such that 〈γ, p〉 = 0 for some probability measure p  on V , i.e. the quantity lower bound-

ing the ratio Dα,γ/y
2
α,γ does not depend on the specific γ with 〈γ, p〉 = 0. We remark that 

one cannot find a GTUR uniform among all possible weights γ’s. Indeed, if we consider 
new weights γ′ defined as γ′

i = γi + c for some fixed constant c, we get yα,γ′ = yα,γ + c, 
while Dα,γ′ = Dα,γ. In particular the ratio of the asymptotic diusion coecient to the 
squared asymptotic value can be made arbitrarily small by playing with c. On the other 
hand, if we take γ′ = cγ for some c �= 0, we have yα,γ′ = c yα,γ, while Dα,γ = c2Dα,γ′, thus 
implying that Dα,γ/y

2
α,γ = Dα,γ′/y2α,γ′. As a consequence GTUR’s are automatically uni-

form among proportional γ’s. In (GTUR 2), (GTUR 4) and (GTUR 6) one goes further 
replacing proportionality by the weaker condition 〈γ, p〉 = 0.

We also observe that, given γ, the existence of a probability measure p  such that 
〈γ, p〉 = 0 is equivalent to the fact that the entries of γ  are not all positive and not 
all negative. If for example the entries of γ are all positive, by taking a suitable 
constant c one can apply (GTUR 2), (GTUR 4) and (GTUR 6) to the weights α, γ′ 

where γ′
i = γi + c , and then recover information on Y

(n)
α,γ  by using that Y

(n)
α,γ = Y

(n)
α,γ′ − c, 

yα,γ = yα,γ′ − c, Dα,γ = Dα,γ′.

4. Main results II: optimization and comparisons

In this section we show three propositions. The first is concerned with the optimal p  
in the universal rate C( p) in (GTUR 2). The second is concerned with the relation 
between (GTUR 2), (GTUR 4) and (GTUR 6). The third is concerned with the rela-
tion between (GTUR 1), (GTUR 3) and (GTUR 5). Finally, we conclude with some 
comparison between (GTUR 7) and some of the other GTUR’s.
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We recall that (GTUR 2) holds for any choice of the increments α, antisymmetric 
or not. The following result shows the optimal bound that can be obtained in (GTUR 
2) by taking the minimum among p = ( pi)i∈V  of C( p):

Proposition 4.1. Setting

Ai :=
[
2

∑
j:(i,j)∈E

(wij

πi

)]−1

, (4.1)

the optimal bound in (GTUR 2) is the following:

 (i)  if γ = 0, then

Dα,γ

y2α,γ
�

∑
i

Ai; (4.2)

 (ii)  if γ �= 0 and γ  has neither all entries positive nor all entries negative, then

Dα,γ

y2α,γ
�

(
∑

i Ai) (
∑

i Aiγ
2
i )− (

∑
i Aiγi)

2

∑
i Aiγ

2
i

, (4.3)

  and the rhs of (4.3) is a positive number.

For the proof of the above proposition see section 10. We point out that the optim-
ization among p = ( pi)i∈V  for the other constants Ca( p) and C∗

a( p) appearing in (GTUR 
4) and (GTUR 6), respectively, cannot be solved explicitly in the general case.

Remark 4.2. When the increments α are time-independent and γ ≡ 0, one can apply 
both (GTUR 1) and the optimal (GTUR 2) given by (4.2). If the asymptotic density 
π(t) is time-independent as in the time-homogeneous case, or as in the time-periodic 
random walk on the ring considered in section 6.2, we can prove that (4.2) is stronger 
than (GTUR 1). We refer to section 10 for the derivation.

When α is antisymmetric, we can apply three p -dependent GTUR’s, i.e. (GTUR 
2), (GTUR 4) and (GTUR 6). Indeed, (GTUR 4) is the optimal one as follows from the 
next result:

Proposition 4.3. Assume that (i, j) ∈ E if and only if ( j, i) ∈ E. Then for each  
probability measure p = ( pi)i∈V  it holds C∗

a( p) � Ca( p) and C( p) � Ca( p). In par ticular, 

when α is antisymmetric, (GTUR 4) provides the optimal lower bound of Dα,γ/y
2
α,γ be-

tween (GTUR 2), (GTUR 4) and (GTUR 6).

For the proof of the above proposition see section 10. The optimality of (GTUR 4) 
stated in proposition 4.3 is also a consequence of a special alternative derivation of this 
bound by an optimization procedure (see remark 9.4).

Similarly to proposition 4.3 we have the following result for the universal constants 
in (GTUR 1), (GTUR 3) and (GTUR 5):

Proposition 4.4. It holds σ∗ � σ̃ and σ̂ � σ̃. In particular, when α is antisymmetric 
and time-independent and γ ≡ 0, (GTUR 3) provides the optimal lower bound between 
(GTUR 1), (GTUR 3) and (GTUR 5).
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For the proof of the above proposition see section 10 (we recall that the bound 
σ∗ � σ̃ has been derived in [1]).

In section 6.2, considering the case of a random walk on the discrete ring, we show 
that the optimal bound (GTUR 4) of proposition 4.3 and the optimal bound (GTUR 
3) of proposition 4.4 are non-comparable bounds (i.e. in some cases one is tighter, in 
other cases the other one is tighter). Similarly the bounds (GTUR 4) and (GTUR 7) are 
non-comparable, as well as the bounds (GTUR 3) and (GTUR 7). This is illustrated in 
figure 1 in section 6.2 and corresponds to the crossings of the plotted curves.

We collect the above comparative results in table 3.
We end this section with some remarks on (GTUR 7). If, in addition to (GTUR 

7), it is possible to apply (GTUR 3) or (GTUR 4) (for example for currents with 
 time-independent increments), then there is a priori no fixed order between the corre-
sponding rates. This fact is demonstrated by an example in section 6.2.

Finally, (GTUR 7) does not provide a tight bound when the periodically driven 
Markov chain is obtained by a weak perturbation of a time-homogeneous Markov 
chain with continuous time. Indeed, suppose that the transition rates are given by 
wij(t) = cij + εdij(t), where cij are the transition rates of an irreducible time-homoge-
neous Markov chain and dij(t) are genuinely time periodic, with period τ . Then, when 
ε → 0, the value in the rhs of (GTUR 7) converges to τ(eτσ − 1)−1, which is smaller 
(and even much smaller for τ  large) than 1/σ entering in the standard thermodynamic 
uncertainty relation. On the other hand, the rates C( p), Ca( p), Ca( p

∗), σ̂ , σ̃ , σ∗ behave 
well under perturbations.

5. Main results III: (GTUR 7) and its extensions

In this section we give further comments on σnaive, (GTUR 7) and we generalize the 
results from [44] to general protocols that can be time-asymmetric. Our GTUR con-
tains the rate σnaive that becomes the average entropy production rate σ for the case of 
time-symmetric protocols, as pointed out in section 3.

0 5 10 15
a

0

5

10

15 r
a

σ
σ

naive

~

Figure 1. The constants ra, σ̃ and σnaive as functions of the parameter a for the 
random walk on the ring in section 6.2 with fixed parameters b  =  1.7, c  =  0.8 and 
d  =  2.
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The rate σnaive � 0 is the asymptotic average value per unit time of the functional 
of the trajectories introduced in [5, section 4] and described as follows: the functional 
equals the logarithm of the ratio of the weight of the forward trajectory to the weight 
of the backward trajectory, without reversal of the protocol. This situation is dierent 
from the average entropy production rate σ � 0, for which the reversed trajectory with 
reversed protocol is considered. The subscript in σnaive indeed refers to the fact that 
this quantity is obtained by the naive procedure that does include the reversal of the 
protocol for the reversed trajectory.

Furthermore, the quantity σnaive can be written as σnaive = σ + σasy, where

σasy :=
∑

(i,j)∈E

Qij(Aij − 1− lnAij), (5.1)

and Aij(t) := wij(τ − t)/wij(t). This decomposition has a nice physical interpretation, 
the average entropy production rate σ quantifies energy dissipation and σasy is zero if 
the protocol is symmetric. We point out that −σ � σasy � σnaive and that σasy can have 
arbitrary sign, as demonstrated with an explicit calculation in section 6.2.

We now present our generalization of the results in [44] (see theorem 1 below), which 
in particular implies (GTUR 7). We denote by Θτ the set of all possible paths of the 
Markov chain up to time τ  (Θτ is given by the piecewise-constant paths Γ : [0, τ ] → V ). 
Note that τ  is both the period and the length of the paths. We write Rτ : Θτ → Θτ for 
the time-reflection around τ/2 and we denote by P the probability measure on Θτ given 
by the law of the random path (X(t))0�t�τ when the Markov chain has initial distribu-
tion π(0). Similarly to [5] we introduce the average entropy flow from naive reversal 
defined as the entropy H[P |P ◦ Rτ ] of P w.r.t. P ◦ Rτ  (note that Rτ = R−1

τ ), i.e.

H[P |P ◦ Rτ ] =

∫

Θτ

P (dΓ) ln
dP

d(P ◦Rτ )
(Γ), (5.2)

where P ◦ Rτ (A) := P (Rτ (A)). One gets (see [5, section 4])
H[P |P ◦ Rτ ] = τσnaive, (5.3)

where σnaive is given by (3.7).
Given a function F : Θτ → R, we define the empirical functional Y

(n)
F  as

Y
(n)
F :=

1

n

n−1∑
j=0

F ((Xjτ+s)0�s�τ ) . (5.4)

We point out that the empirical functional Y
(n)
α,γ  given in (2.9) can be written as 

Y
(n)
α,γ = Y

(n)
F  by defining F as

F (Γ) :=
1

τ

∑
t∈(0,τ ]:

Γ(t−)�=Γ(t+)

αΓ(t−),Γ(t+)(t) +
1

τ

∫ τ

0

γΓ(t)(t)dt. (5.5)

We remark that Y
(n)
α,γ  is a linear functional of the empirical flow and density, while the 

empirical functional Y
(n)
F  in (5.4) is more general.

https://doi.org/10.1088/1742-5468/ab3457


A unifying picture of generalized thermodynamic uncertainty relations

17https://doi.org/10.1088/1742-5468/ab3457

J. S
tat. M

ech. (2019) 084017

Theorem 1 ([44] revisited). Let F : Θτ → R be antisymmetric, i.e. F = −F ◦ Rτ. 

Then, as n → ∞, Y
(n)
F  satisfies an LDP with speed n. Calling IF the associated LD rate 

function, calling y F the asymptotic value of Y
(n)
F  and assuming yF �= 0, it holds

I ′′F (yF ) �
1

2y2F
(eτσnaive − 1). (5.6)

As a consequence, one has the GTUR
DF

y2F
�

1

eτσnaive − 1
, (5.7)

where DF is the asymptotic diusion coecient given by

2DF := lim
n→∞

nVar
(
Y

(n)
F

)
. (5.8)

We note that yF = E[F ] and 2DF = Var(F ), where the expectation and the variance 
are computed w.r.t. P.

We stress that theorem 1 holds for any protocol, but it is restricted to antisymmet-
ric functionals F as in [44]. In appendix B we give for completeness the derivation of 
theorem 1. This proof follows the main steps of the one in [44], while some mathemati-
cal structures are investigated more carefully.

In order to apply theorem 1 to the functional Y
(n)
α,γ = Y

(n)
F , with F defined in (5.5), 

we need that F is antisymmetric and this holds whenever
{
αi,j(t) = −αj,i(τ − t),

γi(t) = −γi(τ − t), (5.9)

for all i, j ∈ V  and all t ∈ [0, τ ]. If the weights are time independent, then (5.9) reduces 
to the fact that α is antisymmetric (i.e. αi,j = αj,i) and γ ≡ 0. Let us finally explain how 
to get (GTUR 7). By (2.16) and (5.8) we have

2Dα,γ = lim
n→∞

nτVar
(
Y (n)
α,γ

)
= lim

n→∞
nτVar

(
Y

(n)
F

)
= 2τDF , (5.10)

while

yα,γ = yF . (5.11)
As a consequence, we get that Dα,γ/y

2
α,γ = τDF/y

2
F . As a byproduct with (5.7), we get 

the desired (GTUR 7).

6. Examples

We study here two specific examples, given by a periodically driven 2-state Markov 
chain and a periodically driven random walk on a ring. The latter is particularly rel-
evant for the comparison of GTUR’s.
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6.1. 2-state model

We consider a periodically driven 2-state Markov chain, which can be used e.g. to study 
a quantum dot. We take V = {0, 1}. Then the periodic stationary distribution πi(t) has 
the following form (see [5, section 6, [18, proposition 3.13]):

π0(t) =
e−C(t)

1− e−C(τ)

[∫ t

0

w10(s)e
C(s) ds+ e−C(τ)

∫ τ

t

w10(s)e
C(s) ds

]
,

π1(t) =
e−C(t)

1− e−C(τ)

[∫ t

0

w01(s)e
C(s) ds+ e−C(τ)

∫ τ

t

w01(s)e
C(s) ds

]
,

where

C(t) :=

∫ t

0

[w01(s) + w10(s)] ds.

For simplicity we restrict below to γ = 0. 
When α is arbitrary, by proposition 4.1 we get the optimal (among p = ( p0, p1)) 

(GTUR 2)
Dα,γ

y2α,γ
�

1

2

[(
w01/π0

)−1

+
(
w10/π1

)−1
]
. (6.1)

When α is antisymmetric, by proposition 4.3 we know that (GTUR 4) is the optimal 
one between (GTUR 2), (GTUR 4) and (GTUR 6). One can optimize Ca(p ) among the 
probabilities p = ( p0, p1) as follows. Denoting the mean dynamical activity as T (t), i.e.

T (t) := Q01(t) +Q10(t) = π0(t)w01(t) + π1(t)w10(t),

by straightforward computations we get

min{Ca( p) : p = ( p0, p1)} = 2
w2

01/T · w2
10/T −

(
w01w10/T

)2

(w01 + w10)2/T
. (6.2)

Note that, if one introduces on the fundamental period [0, τ ] the probability measure

ν(dt) :=

[∫ τ

0

1

T (s)
ds

]−1
1

T (t)
dt,

then we can think of w01(t) and w10(t) as random variables on the probability space 
([0, τ ], ν) and the optimal constant given by the rhs of (6.2) equals

2
Covν

(
w01;w10

)

ν
(
(w01 + w10)2

) .

By (GTUR 4) we have, for α antisymmetric,

Dα,γ

y2α,γ
�

1

2

(w01 + w10)2/T

w2
01/T · w2

10/T −
(
w01w10/T

)2 . (6.3)
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We recall that the GTUR’s presented in section 3 are meaningful under the con-
dition that yα,γ �= 0. If one restricts to time-independent currents (i.e. αij(t) = αij, 
αij = −αji, and γ ≡ 0), then this condition fails, since J 01 = 0 for all t � 0 (see remark 
9.1 for a generalization).

6.2. Random walk on the ring

We consider a random walk on a ring with N sites, where k+ (t) and k−(t) are the peri-
odic probability rates to make a unitary jump clockwise and anticlockwise, respec-
tively. In this case πi(t) = 1/N by symmetry.

Due to proposition 4.1, when α is arbitrary and γ = 0, we have the optimal 
(GTUR 2)

Dα,γ

y2α,γ
�

1

2

1

k+ + k−
=:

1

r
. (6.4)

By proposition 4.3, when α is antisymmetric and γ = 0, (GTUR 4) is optimal among 
(GTUR 2), (GTUR 4) and (GTUR 6). By optimizing (GTUR 4) among the probability 
measures p   =  (p i), we get that the minimum is attained at the uniform probability and 
therefore we get the optimal (GTUR 4)

Dα,γ

y2α,γ
�

1

2

[(
(k− − k+)2

k− + k+

)]−1

=:
1

ra
. (6.5)

For this model we have

σ̃ = 2(k− − k+)
2 1

k− + k+
 (6.6)

and

σnaive = k+ ln
k+

k−(τ − ·)
+ k− ln

k−
k+(τ − ·)

= σ + k+ ln
k−

k−(τ − ·)
+ k− ln

k+
k+(τ − ·)

.

 
(6.7)

Above the function k±(τ − ·) is defined as t �→ k±(τ − t). If we take for example k+ ≡ 1 

we get σnaive = σ + ln k−
k−(τ−·) . This shows that there is not a fixed order between σnaive 

and σ. Indeed, given a positive periodic function f , the random walk with rates k+ ≡ 1 
and k−  =  f  and the random walk with rates k+ ≡ 1 and k− = f(τ − ·) have inverted 
ordering for σ and σnaive. In particular, σasy = σnaive − σ can be positive and negative 
as well.

Let us now take the following time-symmetric protocol, where a, b, c, d are positive 
numbers:

k+(t) =



a if t ∈ [0, τ/4)

b if t ∈ [τ/4, 3τ/4)

a if t ∈ [3τ/4, τ)

and k−(t) =



c if t ∈ [0, τ/4)

d if t ∈ [τ/4, 3τ/4)

c if t ∈ [3τ/4, τ)

.

 (6.8)
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Then we have

r = a+ b+ c+ d, (6.9)

ra =
(a− c)2

a+ c
+

(b− d)2

b+ d
, (6.10)

σ̃ =
1

4
[(a+ b)− (c+ d)]2

(
1

a+ c
+

1

b+ d

)
, (6.11)

σnaive = σ =
a− d

2
ln

a

d
+

b− c

2
ln

b

c
. (6.12)

Note that all the above quantities do not depend on the period τ .
Due to proposition 4.3 r is lower bounded by ra. Due to proposition 4.4 σ̃ lower 

bounds σ̂ and σ∗. We concentrate on the comparison between the constants ra, σ̃ 
(which are optimal in the sense clarified by propositions 4.3 and 4.4) and σnaive. As 
shown in figure 1, there is no fixed order either between ra and σnaive or between σ̃ and 
σnaive. Note that, for τ → 0, the universal constant (eτσnaive − 1)/τ  converges to σnaive. 
As a consequence there is no optimality either between the GTUR (6.5) and (GTUR 7) 
or between (GTUR 3) and (GTUR 7). Figure 1 shows also that there is no fixed order 
between ra and σ̃ , i.e. (GTUR 3) and (GTUR 4) are non-comparable bounds.

7. Proofs I: comments on the derivation of the GTUR’s

We comment the methods used to derive the GTUR’s, which are summarized in table 1.

 (1)  Due to (2.13) we have the upper bound

Iα,γ(y) � I(Q, ρ) for any (Q, ρ) ∈ Fα,γ,y, (7.1)

  where I(Q, ρ) is the explicit function given in (2.14) and the set Fα,γ,y is defined 
after (2.14).

 (2)  We assume to have an y -parameterized pair (Qy, ρy) ∈ Fα,γ,y such that (Qy, ρy) 
diers from (Q, π) by a term proportional to y − yα,γ .

 (3)  Plugging the above y -parameterized pair (Qy, ρy) in the inequality (7.1) and taking 
a 2nd order Taylor expansion of the explicit function y �→ I(Qy, ρy) around yα,γ, 
one gets a quadratic local bound of Iα,γ at yα,γ (see theorem 2 in section 8). A 

lower bound for the ratio Dα,γ/y
2
α,γ can then be obtained by (2.17).

 (4)  By exhibiting dierent choices of (Qy, ρy) satisfying the above general conditions, 
we obtain (GTUR 1) and (GTUR 2).
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 (5)  When α is antisymmetric Y
(n)
α,γ  can be expressed as a linear function of the 

empirical density and current, whose LD principle has been derived in [5] with an 
explicit LD rate functional I*. The above strategy can be implemented working 
with currents (J) instead of flows (Q). Hence, we get a general result given by 
theorem 3, which is the analogous of theorem 2. Indeed, by a dierent approach, 
we show that theorem 3 can be even derived from theorem 2. By exhibiting 
dierent choices of (Jy, ρy) satisfying our general conditions, we get (GTUR 3) 
and (GTUR 4).

 (6)  (GTUR 6) is a consequence of a general result detailed in theorem 4. This theorem 
can be obtained along the above scheme, with the exception that one uses an 
upper bound of the LD rate function I* by a suitable function proposed by [22] 
and afterwards applies a 2nd order Taylor expansion to this function. We also 
show that indeed theorem 4 can also be obtained as corollary of theorem 3.

 (7)  (GTUR 7) is a special case of a more general result given in theorem 1 in section 5 
and its derivation follows very closely the one in [44]. The trajectory of the Markov 
chain on the time interval [0,nτ ] can be thought of as a concatenation of paths on 
the fundamental periods [0, τ ], [τ , 2τ ],.., [(n− 1)τ ,nτ ]. One obtains a LD principle 

for the frequencies of these paths. On the other hand, the empirical functional Y
(n)
α,γ  

can be expressed as a linear functional of the above frequencies and by contrac-
tion one gets a new variational characterization for Iα,γ. By playing with suitable 

inputs in the variational characterization, one finally gets the resulting quadratic 

local upper bounds on Y
(n)
α,γ  and, as a byproduct with (2.17), (GTUR 7).

8. Proofs II: local bounds on Iα,γ and GTUR’s for Y (n)
α,γ with generic α

Our first aim is to describe a general method to get local quadratic upper bounds on 
Iα,γ around its minimum point yα,γ, thus leading also to lower bounds on Dα,γ via 
(2.17). This method is an extension of the one used for the empirical currents in [1, 
section 4.3].

It is convenient to introduce the concept of generalized flow, which is defined as a 
flow without the restriction of non-negativity. In other words, we will call generalized 
flow any function k : V × V → R which is zero outside E. If k is non-negative, then k is 
a flow. The divergence of k is defined as

divik :=
∑
j

kij −
∑
j

kji. (8.1)

Due to (2.13) one has

Iα,γ(y) � I(Q, ρ), ∀(Q, ρ) ∈ Fα,γ,y, (8.2)
where the set Fα,γ,y is defined after in (2.14). Moreover, the function Φ(q, p) defined in 
(2.12) satisfies the following bound obtained by a Taylor’s expansion around the arbi-
trary diagonal point (a, a):
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1

2a
( p− q)2 + o

(
(q − a)2 + ( p− a)2

)
. (8.3)

Due to (2.10), when y  is close to the asymptotic value yα,γ, it is natural to look for pairs 
(Q, ρ) ∈ Fα,γ,y which are obtained as perturbation of (Q, π). To this aim, it is conve-
nient to use the representation

{
Q = Q+ y−yα,γ

yα,γ
R,

ρ = π + y−yα,γ

yα,γ
m.

 (8.4)

We assume yα,γ �= 0 in this equation. For the case yα,γ = 0, the equation has to be 
modified, as explained in remark 8.1 below.

Note that (Q, ρ) ∈ Fα,γ,y if and only if the following properties are satisfied by the 
pair (R,m):

Table 1. Summary of GTUR’s written as Dα,γ/y
2
α,γ � lowerbound (see also table 2). 

The GTUR’s are valid for the linear functionals Y
(n)
α,γ  that fulfill the conditions on 

the third column.

GTUR Lower bound Restrictions on Y
(n)
α,γ

GTUR 1 1/σ̂ αij(t) = αij and γi(t) = 0

GTUR 2 1/C( p) 〈γ, p〉 = 0

GTUR 3 1/σ̃ αij(t) = αij, αij = −αji and γi(t) = 0

GTUR 4 1/Ca(p ) αij(t) = −αji(t) and 〈γ, p〉 = 0

GTUR 5 1/σ∗ αij(t) = αij, αij = −αji and γi(t) = 0

GTUR 6 1/C∗
a( p) αij(t) = −αji(t) and 〈γ, p〉 = 0

GTUR 7 τ/ (eτσnaive − 1) αij(t) = −αji(τ − t) and γi(t) = −γi(τ − t)

Table 2. Summary of the constants appearing in the GTUR’s.

Symbol Definition

σ̂ 2
∑

(i,j)∈E
(
Qij

)
2(1/Qij)

C( p) 2
∑

(i,j)∈E p2i (wij/πi)
Y

σ̃ ∑
(i,j)∈E(J ij)

2 1/(Qij +Qji)
Y

Ca( p) ∑
(i,j)∈E

((
piwij − pjwji

)
2/(Qij +Qji)

)Y

σ∗
1
2

∑
(i,j)∈E(J ij)

2
(

1
Jij

ln
Qij

Qji

)Y

C∗
a( p) 1

2

∑
(i,j)∈E

((
piwij − pjwji

)
2/Jij

)
ln

Qij

Qji

Y

σnaive ∑
(i,j)∈E πi

[
wij(τ − ·)− wij + wij ln

wij

wji(τ−·)

]Y
g
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 (P1)  R =
(
R(t)

)
t�0

 is a time-periodic generalized flow and therefore R(t) : V × V → R 

is zero outside E for all t � 0; 

 (P2)  m =
(
m(t)

)
t�0

 is time-periodic and m(t) : V → R satisfies 
∑

i mi(t) = 0 for all 

t � 0; 

 (P3)  ∂tm(t) + divR(t) = 0,

 (P4)  yα,γ = 〈α,R〉+ 〈γ,m〉; 

 (P5)  the functions in the rhs of (8.4) take non-negative values.

We point out that, given R,m satisfying (P1) and (P2), since Qij(t) > 0 for all (i, j) ∈ E 
and πi(t) > 0 for all i ∈ V , property (P5) is satisfied for y  suciently close to yα,γ. Since 
our bounds are local for y  close to yα,γ, we will disregard (P5) in what follows.

Theorem 2. For any pair (R,m) fulfilling the above properties (P1),...,(P4) the  
following local quadratic upper bound holds:

Iα,γ(y) �
1

2

(y − yα,γ)
2

y2α,γ

∑
(i,j)∈E

((
Rij −miwij

)2
Qij

)
+ o

(
(y − yα,γ)

2
)
. (8.5)

In particular, we have the lower bound

Table 3. Implications between GTUR’s. Lines, from top to bottom, correspond 
respectively to proposition 4.1—(i), proposition 4.1—(ii), remark 4.2, proposition 
4.3 and proposition 4.4. Recall that (GTUR 3) and (GTUR 4) are non-comparable 
and the same holds for the pairs (GTUR 3) and (GTUR 7), (GTUR 4) and 
(GTUR 7).

SET-UP HIERARCHY OF GTUR’s

γ̄i = 0 (4.2) is the optimal (GTUR 2)


γ̄i �= 0

γ̄ �∈ (0, +∞)V

γ̄ �∈ (−∞, 0)V

(4.3) is the optimal (GTUR 2)



πi(t) = πi

αij(t) = αij

γi(t) = 0

Optimal (GTUR 2) (4.2) ⇒ (GTUR 1)

αij(t) = −αji(t)
{
(GTUR 4) ⇒ (GTUR 2)

(GTUR 4) ⇒ (GTUR 6)


αij(t) = αij

αij = −αji

γi(t) = 0

{
(GTUR 3) ⇒ (GTUR 1)

(GTUR 3) ⇒ (GTUR 5)
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2Dα,γ � y2α,γ





∑
(i,j)∈E

((
Rij −miwij

)2
Qij

)



−1

. (8.6)

We point out that, since (8.4) defines a bijection (R,m) �→ (Q, ρ), one would get an 
identity in (8.5) and (8.6) by optimizing among (R,m) in the above theorem.

Proof. From (2.14) and (8.3) by setting a = Qij(t), we have

I(Q, ρ) : =
∑

(i,j)∈E

Φ
(
Qij(t), ρi(t)wij(t)

)

=
∑

(i,j)∈E

(
(Qij − ρiwij)

2

2Qij

+ Eij

)

=
1

2

(y − yα,γ)
2

y2α,γ

∑
(i,j)∈E

(
(Rij −miwij)

2

Qij

+ Eij

)
,

 

(8.7)

where the error term Eij(t) is given by

Eij(t) = o
(
(Qij(t)−Qij(t))

2
)
+ o

(
(ρi(t)− πi(t))

2
)
= o

(
(y − yα,γ)

2
)
. (8.8)

Equations (8.7) and (8.8) imply (8.5). Finally, (8.6) follows from (8.5) by means of 
(2.17). □ 

Remark 8.1. When yα,γ = 0 the above arguments remain valid by making the follow-
ing changes. Formula (8.4) becomes Q = Q+ yR, ρ = π + ym. In (P4) one replaces yα,γ 
with 1. In (P5) the yα,γ’s on the numerator are 0 while the ones on the denominator 
become 1. Then theorem 2 remains valid by replacing yα,γ with 1 in the denominator 
of (8.5) (the yα,γ in the numerator is zero) and in (8.6).

Theorem 2 provides a very general method from which several local quadratic 
bounds and GTUR’s can be derived by inserting dierent choices of (R,m). To get 
sharp and interesting bounds it is important to select special perturbations (R,m) 
fulfilling the above properties (P1)–(P4). We discuss below some special choices, lead-
ing to some corollaries of theorem 2. This is of course not a complete list and one can 
find other choices in [1].

A first class of choices, closely related to the ones in [1, section 4.5], is given in the 
following corollary:

Corollary 8.2. Suppose that K(t) = (Kij(t)) is a time-periodic generalized flow with 

divK = 0 and such that 〈α,K〉 �= 0. Then it holds

Iα,γ(y) �
1

4

σ̂

〈α,K〉
2 (y − yγ,α)

2 + o
(
(y − yγ,α)

2
)

 (8.9)
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and

Dα,γ �
〈α,K〉

2

σ̂
, (8.10)

where

σ̂ := 2
∑

(i,j)∈E

(K2
ij

Qij

)
. (8.11)

Proof. It is enough to apply theorem 2 with R := (yα,γ/〈α,K〉)K and m  =  0. □ 

We collect some comments on the above corollary 8.2.

 •	  A possible choice of K is given by K = Q when 〈α,Q〉 �= 0.

 •	  When γ ≡ 0 and α is time-independent we have that yα,γ = 〈α,Q〉 = 〈α,Q〉. In 
particular, by taking K = Q in the above corollaries 8.2, (8.10) becomes (GTUR 
1) valid whenever 〈α,Q〉 �= 0.

 •	  Another possible choice for K is given by Kij(t) = µi(t)wij(t), where µi(t) denotes 
the so-called accompanying distribution, i.e. the invariant distribution for the 
time-homogeneous Markov chain with time-independent rates wij(t) (t thought of 
as frozen). For this second choice we also refer to [1, section 4.5].

 •	  The property of being a time periodic generalized flow with zero diver-
gence is preserved by linear combinations. In particular, one can also take 

Kij = c1Qij + c2µi(t)wij(t), for any fixed c1, c2 ∈ R.

 •	  Given the model, one can look for more ecient choices of K by using 
Schnakenberg’s cycle theory [7, 45] to build divergence-free flows, and afterwards 
by trying to optimize among these flows. Note that non-trivial divergence-free 
flows on the graph (V ,E) always exist.

We are not going to discuss in detail the possible optimization problems related to the 
last comment above, concerning Schnakenberg’s cycle theory, since this approach is 
very model-dependent. We consider in the next section just one special case where an 
argument of this type works naturally (see first proof of theorem 3).

In [29] the authors consider functionals of the form (2.9) with α antisymmetric and 
γ not arbitrary, but of the form

γi(t) =
d

dt
gi(t) ∀i ∈ V , (8.12)

for some periodic function gi. The above form (8.12) is equivalent to the property

γi = 0 ∀i ∈ V . (8.13)
In the following result we consider general weights α and we weaken condition (8.13) 
on γ.
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Corollary 8.3. Suppose that the entries of γ  are not all strictly positive, and not all 
strictly negative. Fix any time-independent probability measure p = ( pi)i∈V  on V  with 
〈 p, γ〉 = 0. Recall the constant C( p) defined in (3.2). Then we have the upper bound

Iα,γ(y) �
C( p)

4

(y − yα,γ)
2

y2α,γ
+ o

(
(y − yα,γ)

2
)
. (8.14)

As a consequence we have (GTUR 2).

Proof. We take

R(t) := Q(t), m(t) := π(t)− p.

Properties (P1), (P2), (P3) are satisfied (recall the continuity equation (2.5)). Due to 
(2.10) and (8.13) we have

〈α,R〉+ 〈γ,m〉 = yα,γ − 〈γ, p〉 = yα,γ .

Hence, also property (P4) is satisfied. Note that

Rij(t)−mi(t)wij(t) = Qij(t)− (πi(t)− pi)wij(t) = piwij(t).

By plugging the above identity in (8.5) and (8.6) we get (8.14). (GTUR 2) then follows 
due to (2.17). □ 

Remark 8.4. We would like to point out that the art of finding good bounds is related 
to the art of finding good perturbations (m,R) and this is essentially the art of finding 
periodic solutions of the continuity equation in condition (P3). We briefly discuss in 
appendix A two possible approaches.

9. Proofs III: local bounds on Iα,γ and GTUR’s for Y (n)
α,γ with antisymmetric α

In all this section we will assume, without further mention, that
{
α is antisymmetric, i.e. αij(t) = −αji(t),

(i, j) ∈ E if and only if ( j, i) ∈ E.

Below we provide two general methods to get local quadratic bounds on Iα,γ (see 
theorems 3 and 4) and we discuss some corollaries. We prove theorem 3 using two 
approaches. For the first proof, we start with theorem 2 and perform an optimization 
among flows. Hence, theorem 3 can be seen as corollary of theorem 2. For the second 
proof, we use the LD rate functional associated with the empirical current and empiri-
cal measure from [5]. Also for theorem 4 we provide two alternative derivations. In one 
derivation we get theorem 4 from theorem 3. As a consequence, both theorems 3 and 
4 follow from theorem 2.
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9.1. Preliminaries and theorem 3

In what follows, we call current any function d : V × V → R which is zero outside E 
and antisymmetric, i.e. dij = −dji ∀i, j. We order the elements of V  (arbitrarily) and 
write  <  for the order relation. Given a : V × V → R, we define

〈〈a, d〉〉 :=
∑

(i,j)∈E:i<j

aijdij.

Note that, when also a is antisymmetric, we have 〈〈a, d〉〉 = 1
2
〈a, d〉. Finally, we define 

the divergence of a current d by
divi d =

∑
j

dij. (9.1)

We point out that the divergence of a current is defined dierently from the divergence 
of a generalized flow (see (8.1)). This definition guarantees that, if k is a generalized flow 
and d is the current dij := kij − kji, then 〈〈d′, d〉〉 = 〈d′, k〉 for any current d′.

Due to the antisymmetry of the increments αij, the LD rate functional Iα,γ admits 
an alternative variational characterization, in addition to (2.13), in terms of the empiri-
cal current and density [5], as explained below. We consider the function

ψ( j, g, a) :=
√

g2 + a2 −
√
j2 + a2 + j

[
sinh−1( j/a)− sinh−1(g/a)

]
, (9.2)

sinh−1(x) denoting the hyperbolic arcsinus. Then it holds

Iα,γ(y) = inf{I∗(J , ρ) : (J , ρ) ∈ F∗
α,γ,y}, (9.3)

where now

I∗(J , ρ) :=
∑

(i,j)∈E:i<j

Ψ
(
Jij(t),Gij(t), aij(t)

)
,

 (9.4)

Gij(t) := ρi(t)wij(t)− ρj(t)wji(t), (9.5)

aij(t) := 2
√

ρi(t)ρj(t)wij(t)wji(t), (9.6)

and F∗
α,γ,y denotes the family of pairs (J , ρ) = (J(t), ρ(t))t�0 such that

 (i)  J(t) is a time-periodic current, i.e. J(t) = J(t+ τ) and J(t) is an antisymmetric 
function on V × V  which is zero outside E for each time t; 

 (ii)  ρ(t) is a time-periodic probability measure on V ; 

 (iii)  the continuity equation ∂tρ(t) + div J(t) = 0 is satisfied (see (9.1)); 

 (iv)  y = 〈〈α, J〉〉+ 〈γ, ρ〉.

According to [5, theorem 3], formula (9.4) with the restrictions (i), (ii) and (iii) is 
the joint LD rate function for the empirical current and measure with speed 
nτ . The empirical current J(n) is defined as the measure on E × [0, τ) given by 
J (n)(i, j, dt) := Q(n)(i, j, dt)−Q(n)( j, i, dt) (see section 2.2). Formula (9.4) can be 
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deduced directly by contraction starting from the joint LD rate functional for the 
empirical measure and flow discussed in section 2.2. As in (2.15) we have

Y (n)
α,γ =

1

τ

∑
(i,j)∈E:i<j

∫
αij(t)J

(n)(i, j, dt) +
1

τ

∑
i

∫
γi(t)ρ

(n)(i, dt),

 

(9.7)

thus allowing to derive the LD principle for Y
(n)
α,γ  from the LD principle of 

(
J (n), ρ(n)

)
 

by contraction. We point out that the asymptotic pair (J , π) belongs to F∗
α,γ,y with 

y = yα,γ and that it fulfills the identity I∗(J , π) = 0.
As in section 8, from now on we assume that yα,γ �= 0.

Remark 9.1. Suppose that the transition graph (V ,E) has the property that (i) for 
each edge in E also the reversed edge belongs to E, (ii) the non-oriented graph ob-
tained from (V ,E) by disregarding the edge orientation is a tree. In this case, being 
divergence-free, J  must be zero and, as a consequence, yα,0 = 0 for currents with time-
independent increments. Moreover, reasoning as in the last paragraph of section 2, one 
can show that the set F∗

α,γ,y defined after (9.6) is empty for y �= 0, thus implying that 
Iα,γ(y) = +∞ for y �= 0 and Iα,γ(0) = 0.

As in section 8 we consider pairs (J , ρ) written as perturbations of the stationary 
pair (J , π) as follows:

{
J = J + y−yα,γ

yα,γ
Z,

ρ = π + y−yα,γ

yα,γ
m.

 (9.8)

To assure that (J , ρ) ∈ F∗
α,γ,y, the pair (Z,m) must satisfy the following properties:

 (P1*)  Z =
(
Z(t)

)
t�0

 is a time-periodic current (in particular Z(t) : V × V → R is anti-

symmetric and is zero outside E for all t � 0); 

 (P2*)  m =
(
m(t)

)
t�0

 is time-periodic and m(t) : V → R satisfies 
∑

i mi(t) = 0 for all 

t � 0; 

 (P3*)  ∂tm+ divZ(t) = 0 (see (9.1)); 

 (P4*)  yα,γ = 〈〈α,Z〉〉+ 〈γ,m〉; 

 (P5*)  it holds πi(t) +
y−yα,γ

yα,γ
mi(t) � 0 for all t � 0 and i ∈ V .

Since πi(t) > 0 for any t, condition (P5*) is satisfied for y  near enough to yα,γ. As a 
consequence, in what follows we disregard condition (P5*).

We can finally state our general method to get local quadratic bounds on Iα,γ:

Theorem 3. For any pair (Z,m) fulfilling the above properties (P1*),...,(P4*) the follow-
ing local quadratic upper bound holds:

Iα,γ(y) �
1

2

(y − yα,γ)
2

y2α,γ

∑
(i,j)∈E:i<j

((
Zij − (miwij −mjwji)

)2
Qij +Qji

)
+ o

(
(y − yα,γ)

2
)
.

 (9.9)
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In particular, we have the lower bound

2Dα,γ � y2α,γ





∑
(i,j)∈E:i<j

((
Zij − (miwij −mjwji)

)2
Qij +Qji

)



−1

. (9.10)

We point out that, since (9.8) defines a bijection (Z,m) �→ (J , ρ), one would get an 
identity in (9.9) and (9.10) by optimizing among (Z,m) in the above theorem.

9.2. First proof of theorem 3

The proof relies on theorem 2 and an optimization procedure in the same spirit of the 
last comment on corollary 8.2.

Let (Z,m) be a pair fulfilling properties (P1*),...,(P4*) and let R′ be the time-periodic 

generalized flow given by R′
ij(t) := Zij(t)/2. Note that the pair (R′,m) satisfies proper-

ties (P1),...,(P4) in section 8. We take R = (R(t))t�0 as R(t) := R′(t) + S(t), where S(t) 
is a generic time-periodic symmetric generalized flow, i.e. Si,j(t) = Sj,i(t) for all i, j, t. 
Since div S(t) = 0 and 〈α(t),S(t)〉 = 0 by the antisymmetry of α, also the pair (R,m) 
satisfies conditions (P1),..,(P4) and therefore theorem 2 applies to (R,m).

We optimize the upper bound (8.5) in theorem 2 over the symmetric generalized 
flows S. For the optimization, the basic computation that we need is the following. We 
consider some fixed numbers rk, ak, qk, k = 1, 2 and compute

inf
s∈R

[
(r1 + s− a1)

2

q1
+

(r2 + s− a2)
2

q2

]
. (9.11)

The function is minimized at

s∗ =
c1

c1 + c2
(a1 − r1) +

c2
c1 + c2

(a2 − r2),

where ck := q−1
k . The minimal value is given by

[(r1 − r2)− (a1 − a2)]
2

q1 + q2
. (9.12)

Let us come back to the upper bound (8.5) in theorem 2. Independently for each pair 
of edges (i, j) and ( j, i), we can evaluate

inf
s∈R

{(
R′

ij(t) + s−mi(t)wij(t)
)2

Qij(t)
+

(
R′

ji(t) + s−mj(t)wji(t)
)2

Qji(t)

}
,

where s has to be thought as the value Sij(t) = Sji(t). According to (9.12) the above 

infimum is indeed attained at a suitable value S∗
ij(t) and equals

[(
R′

ij(t)−R′
ji(t)

)
−

(
mi(t)wij(t)−mj(t)wji(t)

)]2
Qij(t) +Qji(t)

. (9.13)

As a consequence, by taking R(t) = R′(t) + S∗ the resulting bound (8.5) reduces to (9.9) 
since Zij(t) := R′

ij(t)−R′
ji(t). Finally, (9.10) follows from (9.9) and (2.17).
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9.3. Second proof of theorem 3

We follow the same arguments of theorem 2 but applied to the functional (9.4). We 
first consider the Taylor’s expansion up to the second order of the function Ψ( j, g, a) 
around the point (x− y, x− y, 2

√
xy) with x, y � 0. By writing




j = x− y + δj,

g = x− y + δg,

a = 2
√
xy + δa,

 (9.14)

we have (after cumbersome but straightforward computations) that

ψ( j, g, a) =
1

2

1

x+ y
( j − g)2 + o

(
(δj)2

)
+ o

(
(δg)2

)
+ o

(
(δa)2

)

=
1

2

1

x+ y
(δj − δg)2 + o

(
(δj)2

)
+ o

(
(δg)2

)
+ o

(
(δa)2

)
.

 
(9.15)

By (9.5) and (9.6) we can write

Jij(t) = Qij(t)−Qji(t) +
y − yα,γ
yα,γ

Zij(t), (9.16)

Gij(t) = Qij(t)−Qji(t) +
y − yα,γ
yα,γ

[
mi(t)wij(t)−mj(t)wji(t)

]
, (9.17)

aij(t) = 2
√

Qij(t)Qji(t) + δaij(t) (9.18)

where δaij(t) = O
(
|y − yα,γ|

)
 (i.e. |δaij(t)| � C|y − yα,γ| for y  near to yα,γ). Due to the 

above identities, applying (9.15) with x = Qij(t) and y = Qji(t) we get

ψ
(
Jij(t),Gij(t), aij(t)

)

=
1

2

(y − yα,γ)
2

y2α,γ

[
Zij(t)−

(
mi(t)wij(t)−mj(t)wji(t)

)]2
Qij(t) +Qji(t)

+ o
(
(y − yα,γ)

2
)
.

 
(9.19)

From this equation together with (9.3) and (9.4) we get (9.9). Finally, (9.10) follows 
from (9.9) by (2.17).

9.4. Corollaries to theorem 3

Likewise the previous section we have also the following results.

Corollary 9.2. Suppose that K(t) =
(
Kij(t)

)
 is a time-periodic current with divK = 0 

and such that 〈〈α,K〉〉 �= 0. Then it holds

Iα,γ(y) �
1

4

σ̃

〈〈α,K〉〉
2 (y − yγ,α)

2 + o
(
(y − yγ,α)

2
)

 (9.20)

and
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Dα,γ �
〈〈α,K〉〉

2

σ̃
, (9.21)

where

σ̃ := 2
∑

(i,j)∈E:i<j

K2
ij

Qij +Qji

. (9.22)

We point out that corollary 9.2 was also obtained in [1] and it is an immediate 

consequence of theorem 3 with Z :=
(
yα,γ/ 〈〈α,K〉〉

)
K and m  =  0.

As in section 8 we can collect some comments on the above corollary 9.2.

 •	  A possible choice of K is given by K = J  when 〈〈α,J 〉〉 �= 0.

 •	  When γ ≡ 0 and α is time-independent we have that yα,γ = 〈〈α,J 〉〉 = 〈〈α,J 〉〉. 
In particular, by taking K = J  in the above corollary 9.2, (9.21) becomes (GTUR 
3) valid whenever 〈α,J 〉 �= 0.

 •	  Another possible choice for K is given by Kij(t) = µi(t)wij(t)− µjwji(t), where 
µi(t) denotes the so-called accompanying distribution (see section 8). For this 
second choice we also refer to [1, section 4.5].

 •	  The property of being a time periodic current with zero divergence 
is preserved by linear combinations. In particular, one can also take 

Kij = c1J ij + c2 (µi(t)wij(t)− µj(t)wji(t)), for any fixed c1, c2 ∈ R (see [1, sec-
tion 4.5] for further discussions).

 •	  Given the model, one can look for more ecient choices of K by using Schnakenberg’s 
cycle theory [7, 45] to build divergence-free currents, and afterwards by trying 
to optimize among these currents. We recall that any divergence-free current K 
must be zero if the graph (V ,E) is a tree after replacing pairs of oriented edges 
(i, j) and ( j, i) by the unoriented edge {i, j}. In this case corollary 9.2 becomes 
empty.

Corollary 9.3. Suppose that the entries of γ  are not all strictly positive, and not all 
strictly negative. Fix any time-independent probability measure p = ( pi)i∈V  on V  with 
〈 p, γ〉 = 0. Recall the definition of Ca( p) in (3.4). Then we have the upper bound

Iα,γ(y) �
1

4

(y − yα,γ)
2

y2α,γ
Ca( p) + o

(
(y − yα,γ)

2
)
. (9.23)

As a consequence we have (GTUR 4).

The above result follows from theorem 3 by taking Z(t) := J (t) and m(t) := π(t)− p.

Remark 9.4. Note that both corollaries 9.2 and 9.3 could be derived respectively from 
corollaries 8.2 and 8.3 by an optimization over symmetric generalized flows as in the 
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first proof of theorem 3. In particular, in the case of an antisymmetric α, the bounds 
discussed in this section are better than the corresponding ones discussed in the previ-
ous section, since they are obtained by an optimization procedure. We recall that we 
have proved in a direct way this issue (see proposition 4.3 and its proof in section 10).

9.5. Theorem 4 and its corollaries

In theorem 4 below we present another general method to produce quadratic bounds 
on the LD rate functional Iα,γ. We provide two simple derivations of this theorem. The 
first one is inspired by the approach followed in [1, section 4.1]. The second one, based 
on theorem 3, shows indeed that the bounds provided by theorem 3 are better than 
the ones provided by theorem 4 (see remark 9.5 below). Nevertheless, the interest to 
theorem 4 comes from the fact that it allows (see the corollaries below) to get GTUR’s 
with constants resembling in their form to the average entropy production rate σ.

Theorem 4. For any pair (Z,m) fulfilling properties (P1*),...,(P4*) the following local 
quadratic upper bound holds:

Iα,γ(y) �
1

4

(y − yα,γ)
2

y2α,γ

∑
(i,j)∈E:i<j

((
Zij − (miwij −mjwji)

)2
Jij

ln
Qij

Qji

)
+ o

(
(y − yα,γ)

2
)
. (9.24)

In particular, we have the lower bound

Dα,γ � y2α,γ




∑
(i,j)∈E:i<j

((
Zij − (miwij −mjwji)

)2
Jij

ln
Qij

Qji

)


−1

. (9.25)

First proof. We have (recall (9.3) and (9.5))

Iα,γ(y) � I∗(J , ρ) �
1

4

∑
(i,j)∈E:i<j

1

τ

∫ τ

0

[Jij(t)−Gij(t)]
2

Gij(t)
ln

ρi(t)wij(t)

ρj(t)wji(t)
dt, (9.26)

for any pair (J , ρ) in F∗
α,γ,y. The second bound in (9.26) follows from equation (12) in 

[22], implying that

Ψ
(
Jij(t),Gij(t), aij(t)

)
�

1

4

[Jij(t)−Gij(t)]
2

Gij(t)
ln

ρi(t)wij(t)

ρj(t)wji(t)
.

We take the pair (J , ρ) as in (9.8). Then, for y  close to yα,γ, we have that (J , ρ) ∈ F∗
α,γ,y 

and therefore we can apply (9.26) to (J , ρ). The thesis then follows by a Taylor’s expan-
sion of the rhs of (9.26) for y  close to yα,γ, since

Jij(t)−Gij(t) =
y − yα,γ
yα,γ

(Zij(t)− [mi(t)wij(t)−mj(t)wji(t)]) , (9.27)

Gij(t) = Jij(t) + o(1), (9.28)
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ρi(t)wij(t)

ρj(t)wji(t)
=

Qij(t)

Qji(t)
+ o(1). (9.29)

Second proof. The bound (9.24) is an immediate consequence of the bound (9.9) in 
theorem 3 and the general inequality (see [1, equation (29)])

(x− y) ln
x

y
�

2(x− y)2

x+ y
, x, y > 0. (9.30)

Indeed, from the above inequality one gets that (Jij)
−1 ln(Qij/Qji) � 2(Qij +Qji)

−1. 
Finally, (9.25) follows from (9.24) and (2.17). □

Remark 9.5. Due to (9.30), the rhs of (9.10) in theorem 3 is lower bounded by the rhs 
of (9.25) in theorem 4. In particular, the bounds obtained by theorem 3 are better than 
the corresponding bounds obtained by theorem 4.

Corollary 9.6. Suppose that K(t) =
(
Kij(t)

)
 is a time-periodic current with divK = 0 

and such that 〈〈α,K〉〉 �= 0. Then it holds

Iα,γ(y) �
1

4

σ∗

〈〈α,K〉〉
2 (y − yγ,α)

2
 (9.31)

and

Dα,γ �
〈〈α,K〉〉

2

σ∗ , (9.32)

where

σ∗ :=
∑

(i,j)∈E:i<j

(K2
ij

Jij

ln
Qij

Qji

)
. (9.33)

Proof. We apply theorem 4 with a slight improvement, by taking m := 0 and 

Z :=
(
yα,γ/ 〈〈α,K〉〉

)
K. theorem 4 would imply the thesis, with the exception that the 

bound (9.31) would be only local. On the other hand, since m  =  0, the error terms o(1) 
in (9.28) and (9.29) are simply zero and the first proof of theorem 4 gives that the local 
bound (9.24) is in this case a global bound. □ 

We point out that corollary 9.6 was also obtained in [1]. Moreover, we observe that 
(GTUR 5) follows from corollary 9.6 by taking K := J . Finally, by remark 9.5 we also 
get that σ∗ � σ̃, where the constant σ̃ is defined as in (9.22).

Corollary 9.7. Suppose that the entries of γ  are not all strictly positive, and not all 
strictly negative. Fix any time-independent probability measure p = ( pi)i∈V  on V  with 
〈 p, γ〉 = 0. Recall the constant C∗

a( p) defined in (3.6). Then we have the upper bound
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Iα,γ(y) �
1

4

(y − yα,γ)
2

y2α,γ
C∗

a( p) + o
(
(y − yα,γ)

2
)
. (9.34)

As a consequence we have (GTUR 6).

The above corollary follows from theorem 4 by taking Z(t) := J (t) and 
m(t) := π(t)− p, as in corollary 9.3. (GTUR 6) corresponds to [29, equation (14)]. We 
point out that, by remark 9.5, we get that C∗

a( p) � Ca( p), where the constant Ca( p) is 
defined as in (3.4).

10. Proofs IV: proof of propositions 4.1, 4.3, 4.4 and remark 4.2

10.1. Proof of proposition 4.1

The universal rate in (GTUR 2) can be written as C( p) =
∑

i p
2
iXi, where Xi = 1/Ai, 

Ai is defined in (4.1), and Ai  >  0. By (GTUR 2) we have that

Dα,γ

y2α,γ
�

1

C�

, (10.1)

where C� is the infimum of C( p) as p = ( pi)i∈V  varies among the probability measures 
on V  with 〈γ, p〉 = 0. Below we show that the convex function p �→ C( p), defined on 
the set of probability measures with 〈γ, p〉 = 0, has exactly one extremal point, hence 
this extremal point must be the minimum point.

By the Lagrange’s multipliers method, we look to the extremal points of the function

f( p) =
∑
i

p2iXi − a
(∑

i

pi − 1
)
− b

(∑
i

piγi

)
,

a, b being the multipliers. The extremal point satisfies 2p�iXi − a− bγi = 0 for all i ∈ V , 
i.e.

p�i =
a+ bγi

2Xi

=
aAi + bAiγi

2
∀i ∈ V .

The constants a, b are fixed by imposing that 
∑

i p
�
i = 1 and 〈γ, p�〉 = 0. This is equiva-

lent to the system
{
aA+ bB = 2

aB + bC = 0

with A :=
∑

i Ai, B :=
∑

i Aiγi and C :=
∑

i Aiγ
2
i .

We point out that by Cauchy–Schwarz inequality we have

B2 =
(∑

i

Aiγi

)2

=
(∑

i

√
Ai(

√
Aiγi)

)2

�
(∑

i

Ai

)(∑
i

Aiγ
2
i

)
= AC.

Moreover, the above bound becomes an identity if and only if the vectors (Ai) and 
(
√
Aiγi) are proportional. This condition is fulfilled in the case given by Item (i) in 

proposition 4.1 since γ = 0, but not in the case given by Item (ii) in proposition 4.1, 
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since Ai  >  0 for all i while γ �= 0 has neither all entries negative nor all entries positive. 
Hence, for Item (ii) we have AC �= B2.

If AC �= B2, then the solution of the system is given by a = 2C
AC−B2 and b = −2B

AC−B2, 
thus leading to

C� = C( p�) =
∑
i

( p�i )
2 Xi =

∑
i

p�i ( p
�
iXi) =

∑
i

p�i

(
a+ bγi

2

)

=
a

2
+

b

2

(∑
i

p�i γi

)
=

a

2
+

b

2

∑
i

γi

(
aAi + bAiγi

2

)

=
a

2
+

ab

4
B +

b2

4
C =

C

AC − B2
.

This concludes the proof of item (ii) in proposition 4.1 by (10.1) and by the above 
observation that AC  −  B2  >  0.

For the case corresponding to item (i) of proposition 4.1 with γ = 0, the multiplier 

b can be neglected and aA  =  2. Hence p�i = Ai/
∑

j Aj, which leads to the identity

C� = C( p�) =
∑
i

( p∗i )
2 Xi = [

∑
i

Ai]
−1.

10.2. Proof of remark 4.2

Since πi is time-independent, the statement in remark 4.2 is equivalent to the inequality

2
∑
i

Ai =
∑
i

πi

[ ∑
j:(i,j)∈E

wij

]−1

�
[ ∑
(i,j)∈E

(Qij)
2(1/Qij)

]−1

= 2/σ̂. (10.2)

Recall that, given a positive random variable Y, it holds E[1/Y ] � 1/E[Y ] by Jensen’s 
inequality. We apply this inequality twice. As a first application we get (1/Qij) � 1/Qij. 
This implies that

[ ∑
(i,j)∈E

(Qij)
2(1/Qij)

]−1

�
[ ∑
(i,j)∈E

Qij)
]−1

. (10.3)

As a second application we get
∑
i

πi

[ ∑
j:(i,j)∈E

wij

]−1

�
[∑

i

πi

∑
j:(i,j)∈E

wij

]−1

=
[ ∑
(i,j)∈E

Qij)
]−1

. (10.4)

(10.2) is then a byproduct of (10.3) and (10.4).

10.3. Proof of proposition 4.3

The last statement in proposition 4.3 is an immediate consequence of the bounds 
C( p) � Ca( p) and C∗

a( p) � Ca( p), on which we focus. The bound C∗
a( p) � Ca( p) fol-

lows from remark 9.5 as discussed after corollary 9.7. Let us prove that C( p) � Ca( p). 
Given x, y � 0 and X,Y > 0, we have
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(x− y)2

X + Y
�

x2 + y2

X + Y
=

x2

X + Y
+

y2

X + Y
�

x2

X
+

y2

Y
.

The above bound implies

∑
(i,j)∈E

(
piwij(t)− pjwji(t)

)2
Qij(t) +Qji(t)

�
∑

(i,j)∈E

[( piwij(t)
)2

Qij(t)
+

(
pjwji(t)

)2
Qji(t)

]

= 2
∑

(i,j)∈E

(
piwij(t)

)2
Qij(t)

.

 

(10.5)

By taking the time average on [0, τ ] in (10.5), we conclude that Ca( p) � C( p).

10.4. Proof of proposition 4.4

The bound σ∗ � σ̃ has been derived in [1] and follows also from remark 9.5. The bound 
σ̂ � σ̃ can be derived as follows:

σ̃ =
∑

(i,j)∈E

(Qij −Qji)
2 1

Qij +Qji

�
∑

(i,j)∈E

(Q2

ij +Q2

ji)
1

Qij +Qji

�
∑

(i,j)∈E

Q2

ij

1

Qij

+
∑

(i,j)∈E

Q2

ji

1

Qji

= σ̂.
 

(10.6)

11. Conclusion

The TUR, introduced in [3], is a universal trade-o relation connecting the precision of 
a current with the average dissipation at large times. For periodically driven systems 
this relation fails and generalizations (GTUR’s) have been provided in the literature in 
the form of lower bounds of the ratio of the asymptotic diusion coecient of the cur-
rent to its square asymptotic value.

In this work we give a general overview in the time periodic case, recovering previ-
ous GTUR’s, providing new ones and comparing the dierent GTUR’s. Overall, we 
get seven GTUR’s listed in section 3. More precisely, we have considered here a time-

periodic Markov chain 
(
X(t)

)
t�0

 with continuous time and a broad class of functionals 

of stochastic trajectories of the form (2.9), which are general linear combinations of the 
empirical flow and the empirical density. Our method to get GTUR’s is mainly based 
on the level 2.5 large deviation principles obtained in [5]. Inspired by the analysis 
done in our previous work [1], we provide general methods (see theorems 2–4 in sec-
tions 8 and 9) to get local/global quadratic bounds for large deviations, thus leading to 
GTUR’s via (2.17). The resulting bounds correspond to (GTUR 1),...,(GTUR 6). The 
last bound (GTUR 7) has been obtained dierently, by extending the analysis of [44] to 
generic protocols, not necessarily symmetric. This extension covers also other empirical 
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functionals as detailed in theorem 1 in section 5 and goes through level 2.5 large devia-
tion principles for time-homogeneous Markov chains with discrete time.

The range of applicability of each GTUR corresponds to a suitable class of empirical 
functionals and when these classes intersect it is natural to investigate which GTUR 
provides the best bound. We have proved that some GTUR’s are tighter than others, 
while we have shown by providing examples that some GTUR’s are incomparable (see 
section 4). Finally, we have studied in detail two specific examples, given by a periodi-
cally driven 2-state Markov chain and a periodically driven random walk on a ring. The 
latter is particularly relevant for the comparison of GTUR’s.
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Appendix A. Periodic solutions of the continuity equation

In this short appendix we illustrate two possible approaches to find good perturbations 
(m,R) in section 8. We present just the general ideas since a complete development 
would be long and model-dependent.

A.1. Time dependent Schnakenberg theory

We consider a cycle

C = (i1, i2, . . . , iN , i1)

of the transition graph (V ,E) and look for pairs (R,m) satisfying properties (P1), (P2), 
(P3) in section 8, just restricted to this cycle. Since we have a one dimensional ring this 
is relatively easy. The continuity equation reduces to

ṁik = Rik−1ik −Rikik+1
, k = 1, . . . ,N , (A.1)

where the sums k ± 1 are modulo N. The general solution is therefore given by
{
mik(t) = Mk + α̂k−1(t)− α̂k(t),

Rikik+1
(t) = αk(t),

where αk, k = 1, 2, . . . ,N, are arbitrary time-periodic functions such that 
∫ τ

0
αk(t)dt 

does not depend on k. The functions α̂k are the corresponding primitives of αk and Mk 

are arbitrary numbers such that 
∑N

k=1 Mk = 0.
A special degenerate case is obtained as follows. Consider two particles, perform-

ing time-periodic deterministic trajectories on the cycle C. Call m the dierence of the 
empirical densities associated to the trajectory of the first and of the second particle, 
respectively. Similarly call R the dierence of the empirical flows. Then the pair (m,R) 
satisfies properties (P1), (P2), (P3).

Once obtained solutions on elementary cycles, a trial pair (m,R) satisfying proper-
ties (P1), (P2), (P3) for the transition graph (V ,E) can be obtained as a combination of 
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them. The classic Schnakenberg theory allows to construct divergence free flows using 
cycles. This approach in a sense is a time-dependent version of this theory, giving solu-
tions of the continuity equation using the cycle decomposition.

A.2. Perturbations from Markov models

Another possible approach that can be useful in specific situations is obtained by the 
following observation. Consider a Markov chain with periodic rates w̃. If we call π̃ its 

invariant time periodic distribution and Q̃ij = π̃i(t)w̃ij(t) the corresponding asymptotic 

flow we have that π̃ and Q̃ are related by the continuity equation. We can therefore fix 

the pair (m,R) by mi(t) = Mi − π̃i(t) and Rij(t) = Q̃ij(t), where the arbitrary numbers 
Mi satisfy the condition 

∑
i Mi = 1. This special way of proceeding can be useful in 

specific cases where there is a simple and natural periodic chain to be introduced.
For both approaches we just discussed the constraints given by (P1), (P2) and (P3) 

in section 8. To really implement the methods it is necessary to satisfy also the addi-
tional constraint (P4) in section 8. This further restriction has to be imposed on the 
perturbations discussed above.

Appendix B. Derivation of theorem 1

We use the same notation introduced in section 5. Recall that Θτ is the family of 
piecewise constant paths Γ : [0, τ ] → V . P(Θτ ) is the set of probability measures on Θτ. 
Rτ : Θτ → Θτ is the time-reflection around τ/2 and P is the probability law of the ran-
dom path (X(t))0�t�τ induced by the τ -periodic stationary state. Note that P ∈ P(Θτ ). 
We denote by E[·] the expectation w.r.t. P.

The GTUR (5.7) is an immediate consequence of (5.6) and the identity 2DF = 1/I ′′F (yF ). 
We now explain how to derive (5.6) .

We first focus on the empirical object

Q(n) :=
1

n

n−1∑
j=0

δ(Xjτ+s)0�s�τ
, (B.1)

where δ(Xjτ+s)0�s�τ
 is the measure on Θτ of unitary mass concentrated on the path 

(Xjτ+s)0�s�τ . Q
(n) is a trajectory-dependent probability on the path space Θτ (shortly, 

Q(n) ∈ P(Θτ )). It can be described by words as follows. Given the trajectory (Xt)0�t�nτ 
of the Markov chain up to time nτ , we cut this trajectory at the intermediate times 
τ , 2τ , . . . , (n− 1)τ. The resulting subpaths can be written as

(Xs)0�s�τ , (Xτ+s)0�s�τ , . . . , (X(n−1)τ+s)0�s�τ (B.2)
and are elements of Θτ. Then Q(n) is a linear combination of Dirac measures on the 
space Θτ and the weight assigned to each Γ ∈ Θτ is given by the relative frequency of 
appearances of Γ in the above list (B.2).

Note that Q(n) is also the empirical measure of the Markov chain (Wk)k�0 on Θτ, 
where Wk := (Xkτ+s)0�s�τ . We point out that in this appendix Q(n) is defined as in (B.1) 
in order to make the notation closer to the one in [44], in particular Q(n) is not the 
empirical flow as in the rest of the file (see section 2.15).
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The link with the empirical functional (5.4) is given by the identity

Y (F )
n =

∫

Θτ

dQ(n)(Γ)F (Γ). (B.3)

As discussed in appendix B.1 Q(n) fulfills an LDP with speed n and the associated LD 
rate functional I (which has not to be confused with the function I in (2.14)) satisfies 
the inequality

I(Q) � H(Q|P ) (B.4)
for any Q ∈ P(Θτ ) satisfying (B.5). To have I(Q) < +∞ we need that

Q(Γ0 = i) = Q(Γτ = i) ∀i ∈ V . (B.5)
This follows from the fact that Q(n)(Γ0 = i) = Q(n)(Γτ = i) +O(1/n) (simply, the final 
value of (Xjτ+s)0�s�τ equals the initial value of (X( j+1)τ+s)0�s�τ). By the contraction 

principle we get that Y
(F )
n  satisfies an LDP with speed n, whose LD rate functional IF 

is given by

IF (y) = inf
{
I(Q) : Q ∈ P(Θτ ),

∫

Θτ

dQ(Γ)F (Γ) = y
}
. (B.6)

By combining (B.4) and (B.6) we have

IF (y) � H(Q|P ) ∀Q ∈ P(Θτ ) fulfilling (B.5) and

∫

Θτ

dQ(Γ)F (Γ) = y.

 (B.7)
We apply (B.7) with some special Q  =  Qy  that we take absolutely continuous w.r.t. P. 
Since yF �= 0, for some function G we can write Qy  as

dQy

dP
= 1 +

y − yF
yF

(1−G). (B.8)

Due to (B.8), the properties Qy ∈ P(Θτ ), 
∫
Θτ

dQy(Γ)F (Γ) = y and (B.5) are satisfied if 
and only if

E[G] = 1, E[FG] = 0 and E[G1Γ0=i] = E[G1Γτ=i] ∀i ∈ V . (B.9)
We claim that, using that F ◦ Rτ = −F , the last two conditions on (B.9) are always 
satisfied if

G

G ◦ Rτ

=
dP ◦ Rτ

dP
, (B.10)

where P ◦ Rτ  is the probability on Θτ defined as P ◦ Rτ (A) := P (Rτ (A)) for A ⊂ Θτ 
measurable.

Let us derive the claim. Assuming (B.10), we can write

E
[
GF

]
= −E

[
G(F ◦ Rτ )

]
= −

∫

Θτ

d(P ◦ Rτ )(Γ)(G ◦ Rτ )(Γ)F (Γ)

= −E
[dP ◦ Rτ

dP
(G ◦ Rτ )F

]
= −E[GF ],

 
(B.11)
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thus implying that E[GF]  =  0 (note that (B.10) has been used to get the last identity). 
Similarly one can derive the last condition of (B.9) from (B.10).

One possible choice for (B.10) satisfying the constrain E[G]  =  1 is

G =
(1 + eZ)−1

E [(1 + eZ)−1]
, e−Z =

d(P ◦ Rτ )

dP
. (B.12)

Note that E[Z] = τσnaive (see (5.2) and (5.3)).

Remark B.1. Let us naively think of the path space as countable. Writing GΓ for 

G(Γ), Γ̃ := Rτ (Γ) and setting CΓ := PΓGΓ, (B.10) is equivalent to CΓ = CΓ̃, while (B.8) 
reads

Qy
Γ = PΓ +

y − yF
yF

(PΓ − CΓ). (B.13)

The identity E(G) = 1 would read 
∑

Γ CΓ = 1. The choice CΓ = 1
N

PΓPΓ̃

PΓ+P
Γ̃

 as in [44] (N  

being the normalization constant) would correspond to

GΓ =
CΓ

PΓ

=
1

N
PΓ̃

PΓ + PΓ̃

,

which is equivalent to

1

GΓ

= const

(
1 +

dP

dP ◦ R

)
= const

(
1 + eZ

)
.

The above form of G is exactly the choice (B.12).

From now on G is as in (B.12). For simplicity we write

G =
1

N
1

1 + eZ
, N = E

[
(1 + eZ)−1

]
. (B.14)

By (B.7) we have

IF (y) � H(Qy|P ) = E
[dQy

dP
ln

dQy

dP

]
. (B.15)

Using that x ln x = x− 1 + 1
2
(x− 1) 2 + o((x− 1) 2), we obtain (recall that E(G) = 1)

IF (y) �
1

2

(y − yF )
2

y2F
E
[
(1−G)2

]
+ o

(
(y − yF )

2
)

=
1

2

(y − yF )
2

y2F
(E

[
G2

]
− 1

)
+ o

(
(y − yF )

2
)
.

 (B.16)

Now observe that

E[G2] =

∫
d(P ◦ Rτ )(Γ)(G ◦ Rτ )

2 = E
[dP ◦ Rτ

dP
(G ◦ Rτ )

2
]
.

 (B.17)
Using (B.10) we get that
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E
[dP ◦ Rτ

dP
(G ◦ Rτ )

2
]
= E

[dP ◦ Rτ

dP
G2 ·

( dP

dP ◦ Rτ

)2]
= E

[
G2 dP

dP ◦ Rτ

]
= E[G2eZ ].

 (B.18)
As a byproduct of (B.17) and (B.18) we conclude that E[G2] = E[G2eZ ] and therefore

E[G2] =
1

2
E[G2(1 + eZ)] =

1

2N 2
E[(1 + eZ)−2(1 + eZ)] =

1

2N
=

1

2E [(1 + eZ)−1]
.

 (B.19)
Inserting the above identity in (B.16) we get

IF (y) �
1

2

(y − yF )
2

y2F

(
1

2E [(1 + eZ)−1]
− 1

)
+ o

(
(y − yF )

2
)
. (B.20)

We now claim that

1

N
=

1

E [(1 + eZ)−1]
� 1 + eE[Z] = 1 + eτσnaive

 (B.21)

(note that the identities in (B.21) follow from the definitions). By plugging (B.21) into 
(B.20) we get that

IF (y) �
1

4

(y − yF )
2

y2F
(eτσnaive − 1) + o

(
(y − yF )

2
)
, (B.22)

which implies (5.6).
Inequality (B.21) corresponds to [44, equation (17)] and follows from a very tricky 

algebra in [44, Appendix A] that we adapt to our terminology. Since E[e−Z ] = 1 (by 

the definition of Z), P ′ defined as dP ′ = 1+e−Z

2
dP  is a probability measure on Θτ. By 

applying Jensen’s inequality w.r.t. this probability P ′ we have

lnN = lnE
[
(1 + eZ)−1

]
= lnE

[1 + e−Z

2

2e−Z

(1 + e−Z)2

]
� E

[1 + e−Z

2
ln

2e−Z

(1 + e−Z)2

]
.

Since E[e−ZZ] = −E[Z] (by the definition of Z), we have

E[Z] = −E
[e−Z − 1

2
Z
]
.

Hence, setting u := e−Z, one gets a bound corresponding to [44, equation (A.1)]:

lnN + E[Z] � E
[1 + u

2
ln

2u

(1 + u)2
+

u− 1

2
ln u

]
. (B.23)

Since 1+a
2

ln 2a
(1+a)2

+ a−1
2

ln a � (1− ln 2)1+a
2

− 2a
a+1

 for a  >  0 and since dP ′ = 1+u
2
dP  is a 

probability, we can lower bound the rhs of (B.23) by

E
[
(1− ln 2)

1 + u

2
− 2u

u+ 1

]
= (1− ln 2)− 2E

[ e−Z

e−Z + 1

]
= (1− ln 2)− 2N .

 

(B.24)

Since 1− ln 2− 2a � ln(1− a) for all a � 0, one concludes from (B.23) and (B.24) that 
lnN + E[Z] � ln(1−N ). This last estimate trivially implies (B.21).
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B.1. Large deviations of Q(n)

Given Q ∈ P(Θτ ) we define, for k, l ∈ V ,
{
qk = Q(Γ0 = k)

qk,l = Q(Γ0 = k, Γτ = �).

We let q =
(
qk,l

)
(k,l)∈V×V

. When we want to stress the dependence on Q, we write qk[Q], 

qk,l[Q], q[Q]. Recall that P is the law on Θτ of the random trajectory 
(
Xs

)
0�s�τ

 when X0 

has initial distribution π0. We then set pk,l := qk,l[P ] and pk := qk[P ].
We consider the pair empirical measure

q(n) :=
1

n

n−1∑
j=0

δ(Xjτ ,X( j+1)τ ), (B.25)

and observe that q(n) := q[Q(n)]. By [27, theorem IV.3], q(n) satisfies a LD principle 

with speed n and rate functional I2 defined as follows. Let M̃1(V × V ) be given by the 
families

c = (ckl)(k,l)∈V×V

with

ckl � 0,
∑
k

∑
l

ck,l = 1,
∑
k

ckl =
∑
k

clk.

If q ∈ M̃1(V × V ), then

I2 (q) :=
∑
k,l

qk,l ln
qkl

qkP (Xτ = l |X0 = k)
=

∑
k,l

qk,l ln
qkl
pkl

−
∑
qk

qk ln
qk
pk

,
 (B.26)

otherwise I2 (q) := +∞.

Proposition B.2. Q(n) satisfies a LDP with speed n and rate function

I(Q) = I2 (q) +
∑
k,l

qk,lH[Qkl|Pkl] ∀Q ∈ P(Θτ ), (B.27)

where

 •	  q = q[Q], qk,l = qk,l[Q]; 

 •	  I2 is the pair empirical measure LD functional for the discrete time homogeneous 
Markov chain (Xnτ )n�0, which has invariant distribution π0; 

 •	  Qk,l := Q(·|X0 = k,Xτ = l); 

 •	  Pk,l := P (·|X0 = k,Xτ = l); 

 •	  H[Qkl|Pkl] is the relative entropy of the probability Qkl w.r.t. the probability Pkl.

https://doi.org/10.1088/1742-5468/ab3457


A unifying picture of generalized thermodynamic uncertainty relations

43https://doi.org/10.1088/1742-5468/ab3457

J. S
tat. M

ech. (2019) 084017

Proof. We only sketch the main idea which can be easily formalized. We will make 
some abuse of notation for the sake of intuition. Recall that q = q[Q]. Given Q ∈ P(Θτ ) 
we have

P
(
Q(n) = Q

)
= P

(
Q(n) = Q, q(n) = q

)
= P

(
Q(n) = Q, | q(n) = q

)
P
(
q(n) = q

)
.

 (B.28)
By [27, theorem IV.3] we have

P
(
q(n) = q

)
= e−nI2(q). (B.29)

Consider the time interval [0,nτ ] as the union ∪n−1
j=0Aj, where Aj = [ jτ , ( j + 1)τ ]. If 

we know that q(n) = q, then for each pair (k, l) we know that there are qkln intervals Aj ’s 
where the trajectory starts at k and ends at l (we call such a random set of intervals 
Akl). If we further condition on these intervals, then the random trajectories on Aj , with 
Aj ∈ Akl, behave as nqkl i.i.d. random variables with value in Θτ and with distribution 
Pk,l. Moreover, the random objects involved are independent when varying (k, l). By 
applying Cramér’s theorem and the independence we conclude that

P
(
Q(n) = Q, | q(n) = q

)
=

∏
(k,l)

e−qklnH[Qk,l|Pk,l].
 (B.30)

The thesis then follows as a byproduct of (B.28)–(B.30). □ 

Note that, since in (B.27), q = q[Q] and Q ∈ P(Θτ ), we get that q ∈ M̃1(V × V ) if 
and only if 

∑
k qkl =

∑
k qlk for each l ∈ V , which is equivalent to (B.5). As a conse-

quence, if Q ∈ P(Θτ ) fulfills (B.5) then

I2 (q) =
∑
k,l

qk,l ln
qkl
pkl

−
∑
qk

qk ln
qk
pk

where q = q[Q].
 (B.31)

By combining (B.27) and (B.31) one easily gets that the LD rate functional I(Q), for 
Q ∈ P(Θτ ) fulfilling (B.5), can be written as

I(Q) = H(Q|P )−
∑
k

qk ln
qk
pk

. (B.32)

We derive (B.32) for completeness. Given k, l ∈ V  we set Θτ (k, l) := {Γ ∈ Θτ :  
Γ0 = k, Γτ = l}. Then, when Qk,l � Pk,l (the case Qk,l �� Pk,l can be treated easily)

H[Qk,l|Pk,l] =

∫

Θτ (k,l)

dQk,l(Γ) ln
dQk,l

dPk,l

(Γ)

=
1

qk,l

∫

Θτ (k,l)

dQ(Γ) ln
dQ

dP
(Γ)− ln

qk,l
pk,l

.
 

(B.33)

By combining the above equation with (B.26) and (B.27) we get the (B.32).
As a consequence we have

I(Q) � H(Q|P ) (B.34)
for any Q ∈ P(Θτ ) fulfilling (B.5).

https://doi.org/10.1088/1742-5468/ab3457


A unifying picture of generalized thermodynamic uncertainty relations

44https://doi.org/10.1088/1742-5468/ab3457

J. S
tat. M

ech. (2019) 084017

References

  [1]  Barato A C, Chetrite R, Faggionato A and Gabrielli D 2018 Bounds on current fluctuations in periodically 
driven systems New J. Phys. 20 103023

  [2]  Barato A C and Seifert U 2015 Universal bound on the fano factor in Enzyme Kinetics J. Phys. Chem. B 
119 6555–61

  [3]  Barato A C and Seifert U 2015 Thermodynamic uncertainty relation for biomolecular processes Phys. Rev. 
Lett. 114 158101

  [4]  Barato A C and Seifert U 2016 Cost and precision of brownian clocks Phys. Rev. X 6 041053
  [5]  Bertini L, Chetrite R, Faggionato A and Gabrielli D 2018 Level 2.5 large deviations for continuous-time 

Markov chains with time periodic rates Ann. Henri Poincaré 19 31973238
  [6]  Bertini L, Faggionato A and Gabrielli D 2015 Large deviations of the empirical flow for continuous time 

Markov chains Ann. Inst. Henri Poincaré 51 867–900
  [7]  Bertini L, Faggionato A and Gabrielli D 2015 Flow currents and cycles for Markov chains: large deviation 

asymptotics Stoch. Process. Appl. 125 2786–819
  [8]  Bisker G, Polettini M, Gingrich T R and Horowitz J M 2017 Hierarchical bounds on entropy production 

inferred from partial information J. Stat. Mech. 093210
  [9]  Brandner K, Hanazato T and Saito K 2018 Thermodynamic bounds on precision in ballistic multiterminal 

transport Phys. Rev. Lett. 120 090601
 [10]  Chiuchiù D and Pigolotti S 2018 Mapping of uncertainty relations between continuous and discrete time 

Phys. Rev. E 97 032109
 [11]  Dechant A 2019 Multidimensional thermodynamic uncertainty relations J. Phys. A: Math. Theor. 52 035001
 [12]  Dechant A and Sasa S 2018 Current fluctuations and transport eciency for general Langevin systems 

J. Stat. Mech. 2018 063209
 [13]  Dechant A and Sasa S 2018 Entropic bounds on currents in Langevin systems Phys. Rev. E 97 062101
 [14]  Dembo A and Zeitouni O 2010 Large Deviations Techniques and Applications 2nd edn (New York: 

Springer)
 [15]  Deuschel J-D, Stroock D W and Diego S 1989 Large Deviations (New York: Academic)
 [16]  Terlizzi I D and Baiesi M 2019 Kinetic uncertainty relation J. Phys. A: Math. Theor. 52 02LT03
 [17]  Erbas-Cakmak S, Leigh D A, McTernan C T and Nussbaumer A L 2015 Artificial molecular machines Chem. 

Rev. 115 10081–206
 [18]  Faggionato A, Gabrielli D and Ribezzi Crivellari M 2009 Non-equilibrium thermodynamics of piecewise 

deterministic Markov processes J. Stat. Phys. 137 259–304
 [19]  Gallavotti G and Cohen E G D 1995 Dynamical ensembles in nonequilibrium statistical mechanics Phys. 

Rev. Lett. 74 2694–7
 [20]  Garrahan J P 2017 Simple bounds on fluctuations and uncertainty relations for first-passage times of count-

ing observables Phys. Rev. E 95 032134
 [21]  Gingrich T R and Horowitz J M 2017 Fundamental bounds on first passage time fluctuations for currents 

Phys. Rev. Lett. 119 170601
 [22]  Gingrich T R, Horowitz J M, Perunov N and England J L 2016 Dissipation bounds all steady-state current 

fluctuations Phys. Rev. Lett. 116 120601
 [23]  Gingrich T R, Rotsko G M and Horowitz J M 2017 Inferring dissipation from current fluctuations J. Phys. 

A: Math. Theor. 50 184004
 [24]  Guioth J and Lacoste D 2016 Thermodynamic bounds on equilibrium fluctuations of a global or local order 

parameter Europhys. Lett. 115 60007
 [25]  Hasegawa Y and Vu T V 2019 Uncertainty relations in stochastic processes: an information inequality 

approach Phys. Rev. E 99 062126 
 [26]  Hyeon C and Hwang W 2017 Physical insight into the thermodynamic uncertainty relation using Brownian 

motion in tilted periodic potentials Phys. Rev. E 96 012156
 [27]  den Hollander F 2000 Large Deviations (Fields Institute Monographs) (Providence, RI: American  

Mathematical Society)
 [28]  Horowitz J M and Gingrich T R 2017 Proof of the finite-time thermodynamic uncertainty relation for  

steady-state currents Phys. Rev. E 96 020103
 [29]  Koyuk T, Seifert U and Pietzonka P 2019 A generalization of the thermodynamic uncertainty relation to 

periodically driven systems J. Phys. A: Math. Theor. 52 02LT02
 [30]  Macieszczak K, Brandner K and Garrahan J P 2018 Unified thermodynamic uncertainty relations in linear 

response Phys. Rev. Lett. 121 130601
 [31]  Maes C 2017 Frenetic bounds on the entropy production Phys. Rev. Lett. 119 160601

https://doi.org/10.1088/1742-5468/ab3457
https://doi.org/10.1088/1367-2630/aae512
https://doi.org/10.1088/1367-2630/aae512
https://doi.org/10.1021/acs.jpcb.5b01918
https://doi.org/10.1021/acs.jpcb.5b01918
https://doi.org/10.1021/acs.jpcb.5b01918
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevX.6.041053
https://doi.org/10.1103/PhysRevX.6.041053
https://doi.org/10.1007/s00023-018-0705-3
https://doi.org/10.1007/s00023-018-0705-3
https://doi.org/10.1214/14-AIHP601
https://doi.org/10.1214/14-AIHP601
https://doi.org/10.1214/14-AIHP601
https://doi.org/10.1016/j.spa.2015.02.001
https://doi.org/10.1016/j.spa.2015.02.001
https://doi.org/10.1016/j.spa.2015.02.001
https://doi.org/10.1088/1742-5468/aa8c0d
https://doi.org/10.1103/PhysRevLett.120.090601
https://doi.org/10.1103/PhysRevLett.120.090601
https://doi.org/10.1103/PhysRevE.97.032109
https://doi.org/10.1103/PhysRevE.97.032109
https://doi.org/10.1088/1751-8121/aaf3ff
https://doi.org/10.1088/1751-8121/aaf3ff
https://doi.org/10.1088/1742-5468/aac91a
https://doi.org/10.1088/1742-5468/aac91a
https://doi.org/10.1103/PhysRevE.97.062101
https://doi.org/10.1103/PhysRevE.97.062101
https://doi.org/10.1088/1751-8121/aaee34
https://doi.org/10.1088/1751-8121/aaee34
https://doi.org/10.1021/acs.chemrev.5b00146
https://doi.org/10.1021/acs.chemrev.5b00146
https://doi.org/10.1021/acs.chemrev.5b00146
https://doi.org/10.1007/s10955-009-9850-x
https://doi.org/10.1007/s10955-009-9850-x
https://doi.org/10.1007/s10955-009-9850-x
https://doi.org/10.1103/PhysRevLett.74.2694
https://doi.org/10.1103/PhysRevLett.74.2694
https://doi.org/10.1103/PhysRevLett.74.2694
https://doi.org/10.1103/PhysRevE.95.032134
https://doi.org/10.1103/PhysRevE.95.032134
https://doi.org/10.1103/PhysRevLett.119.170601
https://doi.org/10.1103/PhysRevLett.119.170601
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1088/1751-8121/aa672f
https://doi.org/10.1088/1751-8121/aa672f
https://doi.org/10.1209/0295-5075/115/60007
https://doi.org/10.1209/0295-5075/115/60007
https://doi.org/10.1103/PhysRevE.99.062126
https://doi.org/10.1103/PhysRevE.99.062126
https://doi.org/10.1103/PhysRevE.96.012156
https://doi.org/10.1103/PhysRevE.96.012156
https://doi.org/10.1103/PhysRevE.96.020103
https://doi.org/10.1103/PhysRevE.96.020103
https://doi.org/10.1088/1751-8121/aaeec4
https://doi.org/10.1088/1751-8121/aaeec4
https://doi.org/10.1103/PhysRevLett.121.130601
https://doi.org/10.1103/PhysRevLett.121.130601
https://doi.org/10.1103/PhysRevLett.119.160601
https://doi.org/10.1103/PhysRevLett.119.160601


A unifying picture of generalized thermodynamic uncertainty relations

45https://doi.org/10.1088/1742-5468/ab3457

J. S
tat. M

ech. (2019) 084017

 [32]  Maes C and Netočný K 2008 Canonical structure of dynamical fluctuations in mesoscopic nonequilibrium 
steady states Europhys. Lett. 82 30003

 [33]  Martínez I A, Roldán É, Dinis L and Rica R A 2017 Colloidal heat engines: a review Soft Matter 13 22–36
 [34]  Nardini C and Touchette H 2018 Process interpretation of current entropic bounds Eur. Phys. J. B 91 1434
 [35]  Nguyen M and Vaikuntanathan S 2016 Design principles for nonequilibrium self-assembly Proc. Natl Acad. 

Sci. 113 14231–6
 [36]  Nyawo P T and Touchette H 2016 Large deviations of the current for driven periodic diusions Phys. Rev. E 

94 032101
 [37]  Pietzonka P, Barato A C and Seifert U 2016 Universal bound on current fluctuations Phys. Rev. E 

93 052145
 [38]  Pietzonka P, Barato A C and Seifert U 2016 Universal bound on the eciency of molecular motors J. Stat. 

Mech. 124004
 [39]  Pietzonka P, Barato A C and Seifert U 2016 Anity- and topology-dependent bound on current fluctuations 

J. Phys. A 49 34LT01
 [40]  Pietzonka P, Ritort F and Seifert U 2017 Finite-time generalization of the thermodynamic uncertainty rela-

tion Phys. Rev. E 96 012101
 [41]  Pietzonka P and Seifert U 2018 Universal trade-o between power, eciency, and constancy in steady-state 

heat engines Phys. Rev. Lett. 120 190602
 [42]  Pigolotti S, Neri I, Roldán É and Jülicher F 2017 Generic properties of stochastic entropy production Phys. 

Rev. Lett. 119 140604
 [43]  Polettini M, Lazarescu A and Esposito M 2016 Tightening the uncertainty principle for stochastic currents 

Phys. Rev. E 94 052104
 [44]  Proesmans K and Van den Broeck C 2017 Discrete-time thermodynamic uncertainty relations Europhys. 

Lett. 119 20001
 [45]  Schnakenberg J 1976 Network theory of microscopic and macroscopic behavior of master equation systems 

Rev. Mod. Phys. 48 571–85
 [46]  Seifert U 2012 Stochastic thermodynamics, fluctuation theorems and molecular machines Rep. Prog. Phys. 

75 126001
 [47]  Sekimoto K 2010 Stochastic Energetics (Lecture Notes in Physics vol 799) (Berlin: Springer)
 [48]  Touchette H 2009 The large deviation approach to statistical mechanics Phys. Rep. 478 1–69

https://doi.org/10.1088/1742-5468/ab3457
https://doi.org/10.1209/0295-5075/82/30003
https://doi.org/10.1209/0295-5075/82/30003
https://doi.org/10.1039/C6SM00923A
https://doi.org/10.1039/C6SM00923A
https://doi.org/10.1039/C6SM00923A
https://doi.org/10.1140/epjb/e2017-80612-7
https://doi.org/10.1140/epjb/e2017-80612-7
https://doi.org/10.1073/pnas.1609983113
https://doi.org/10.1073/pnas.1609983113
https://doi.org/10.1073/pnas.1609983113
https://doi.org/10.1103/PhysRevE.94.032101
https://doi.org/10.1103/PhysRevE.94.032101
https://doi.org/10.1103/PhysRevE.93.052145
https://doi.org/10.1103/PhysRevE.93.052145
https://doi.org/10.1088/1742-5468/2016/12/124004
https://doi.org/10.1088/1751-8113/49/34/34LT01
https://doi.org/10.1088/1751-8113/49/34/34LT01
https://doi.org/10.1103/PhysRevE.96.012101
https://doi.org/10.1103/PhysRevE.96.012101
https://doi.org/10.1103/PhysRevLett.120.190602
https://doi.org/10.1103/PhysRevLett.120.190602
https://doi.org/10.1103/PhysRevLett.119.140604
https://doi.org/10.1103/PhysRevLett.119.140604
https://doi.org/10.1103/PhysRevE.94.052104
https://doi.org/10.1103/PhysRevE.94.052104
https://doi.org/10.1209/0295-5075/119/20001
https://doi.org/10.1209/0295-5075/119/20001
https://doi.org/10.1103/RevModPhys.48.571
https://doi.org/10.1103/RevModPhys.48.571
https://doi.org/10.1103/RevModPhys.48.571
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002

	A unifying picture of generalized thermodynamic uncertainty relations*
	Abstract
	1. Introduction
	2. Notation and general framework
	2.1. Models and notation
	2.2. Empirical functionals

	3. Main results I: (GTUR 1), (GTUR 2),...,(GTUR 7)
	3.1. GTUR with generic increments
	3.2. GTUR with antisymmetric increments
	3.3. GTUR with naive entropy production
	3.4. Comments on the weights 

	4. Main results II: optimization and comparisons
	5. Main results III: (GTUR 7) and its extensions
	6. Examples
	6.1. 2-state model
	6.2. Random walk on the ring

	7. Proofs I: comments on the derivation of the GTUR’s
	8. Proofs II: local bounds on  and GTUR’s for ￼ with generic ￼
	9. Proofs III: local bounds on  and GTUR’s for ￼ with antisymmetric ￼
	9.1. Preliminaries and theorem 3
	9.2. First proof of theorem 3
	9.3. Second proof of theorem 3
	9.4. Corollaries to theorem 3
	9.5. Theorem 4 and its corollaries

	10. Proofs IV: proof of propositions 4.1, 4.3, 4.4 and remark 4.2
	10.1. Proof of proposition 4.1
	10.2. Proof of remark 4.2
	10.3. Proof of proposition 4.3
	10.4. Proof of proposition 4.4

	11. Conclusion
	Acknowledgments
	Appendix A. Periodic solutions of the continuity equation
	A.1. Time dependent Schnakenberg theory
	A.2. Perturbations from Markov models
	Appendix B. Derivation of theorem 1
	B.1. Large deviations of Q(n)
	References


