
Control Theory and Technology (2022) 20:323–337
https://doi.org/10.1007/s11768-022-00101-2

RESEARCH ART ICLE

Robust and fault-tolerant spacecraft attitude control based on an
extended-observer design

Alessandro Giuseppi1 · Francesco Delli Priscoli1 · Antonio Pietrabissa1

Received: 25 May 2021 / Revised: 25 February 2022 / Accepted: 28 February 2022 / Published online: 4 August 2022
© The Author(s) 2022

Abstract
The aim of this work is to develop a robust control strategy able to drive the attitude of a spacecraft to a reference value,
despite the presence of unknown but bounded uncertainties in the system parameters and external disturbances. Thanks to
the use of an extended observer design, the proposed control law is robust against all the uncertainties that affect the high-
frequency gain matrix, which is shown to capture a broad spectrum of modelling issues, some of which are often neglected by
traditional approaches. The proposed controller then provides robustness against parametric uncertainties, asmoment of inertia
estimation, payload deformations, actuator faults and external disturbances, while maintaining its asymptotic properties.

Keywords Extended observer · Spacecraft control · Attitude stabilization

1 Introduction

Attitude is one of the fundamental components of spacecraft
operations, as it governs the most crucial aspect of the typ-
ical space missions: the pointing. Attitude control has been
studied extensively in the aerospace field, becoming one of
the classic control problems [1] not only for its real-world
implications but also for its complexity. Having to control a
device whose life-span can be well over a decade and which
is subject to significant uncertainties, disturbances and faults,
robust control naturally gained the attention of the scientific
community, as it is able to maintain the asymptotic proper-
ties needed to successfully complete the mission even under
actual, non-ideal, conditions.

The control law presented in this paper is based on the
extended-observer paradigm introduced in [2], and extended
to the MIMO domain in [3], and has been developed with
the goal of providing resiliency to the spacecraft operation
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with respect to (i) modelling uncertainties, (ii) deformations
and faults and (iii) external disturbances, while also taking
in consideration the physical limitations of the system, in the
form of the saturation of the actuators.

Utilizing a control law of this type allows to extend the
operational life of the spacecraft, which in turn reduces the
amount of space debris, one of themain challenges ofmodern
space campaigns [4], and increases the economical return of
the launch campaign.Theproposed control lawwill be shown
to reconstruct a control law designed neglecting the presence
of uncertainties, simplifying the spacecraft operator mission
planning.

The paper is organized as follows: Sect. 2 contains a
brief review of the state-of-the-art and highlights the paper
main contributions; Sect. 3 reports the needed prelaminar
notions on attitude control, normal forms for nonlinear sys-
tems and spacecraft modelling; Sect. 4 covers the design of
the extended observer and its application for the develop-
ment of the utilized control law; Sect. 5 contains the results
of numerical simulations to validate the proposed control
approach; Sect. 6 draws the conclusions and outlines future
research lines.
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Main symbols

×, ·,⊗ Vector, scalar and quaternion cross products
e, θ Euler’s axis and angle
In (n × n) identity matrix
J MOI tensor in the rigid body reference frame

(kg ·m2)
(Ix , Iy, Iz) Principal MOI (kg ·m2)
Lτ Distribution matrix
L f h(x) Lie derivative of h(x) along f
q, q13, q4 Quaternion representation of the attitude, vector

and scalar components of the quaternion
u = Lτ τ Control signal, control torques over the principal

axes of the spacecraft (N)
ω Angular velocity of the inertial reference frame

relative to the satellite measured in its
coordinates (rad/s)

τ Torques applied by the reaction wheels (N)
τ ext External torques over the principal axes of the

spacecraft (N)

2 State-of-the-art review and paper
contribution

The problem of attitude control for a rigid body has found
broad applications in aerospace [5], and due to its impact
on the spacecraft successful operation, the available litera-
ture covers several different research directions, spacing from
optimal control [6] to model predictive control [7] and fuzzy-
logic based controllers [8].

In particular, the field of robust control has always been
of particular interest for both industry and academia, as a
spacecraft is a very complex system whose physical char-
acteristics can vary over time—e.g., its Moment of Inertia
(MOI) depends on the remaining propellant and configura-
tion of its solar panels and manipulators—and are subject to
significant uncertainties, also due to the heavy stress which
the spacecraft is exposed to during its launch [9].

Several works as [10–15], developed control laws, based
on the measurements of both attitude and angular velocity
of the spacecraft, which provide robustness with respect to
uncertain inertia characteristics of the spacecraft, which in
some cases is estimated by the controller itself [12,14].

This work, as [16–18], presents a dynamic control law
that is based only on attitude measurements while addition-
ally providing robustness against uncertainties affecting the
knowledge both of the inertia moment of the spacecraft and
its actuators positioning and operativeness.

The robust control methods studied have naturally been
paired with disturbance rejection controllers, as a spacecraft
is typically subject to non-negligible external torques [19],
and several works, as [13–15], present both properties. Other
than the already mentioned robustness with respect to the
inertial estimation, Sanyal et al. [14] presented a nonlinear
control that rejects constant disturbances and sinusoidal ones,

having only information on the disturbance frequency. Sim-
ilarly, Liu et al. [15] introduced a H∞ controller that is able
to address inertial uncertainties, external disturbances, gyro
drifts and control perturbations. In [13] a control law, based
on the internal model principle, is designed specifically for
a low earth orbit (LEO) satellite, that is characterized by the
presence of significant disturbance torques, caused by aero-
dynamic drag. This work focuses on uncertainties that affect
the high frequency gain of the spacecraft system, which, as
will be discussed, capture parametric uncertainties not only
on the moment of inertia, enabling the rejection of control
perturbations. For the properties of the proposed extended
observer, the control designed in this paper will also be able
to reject constant disturbances, while also being able to arbi-
trarily attenuate sinusoidal ones.

Other than robustness, a successful spacecraft controller
should also take into account the resiliency of the sys-
tem operation with respect to faults occurring on either its
actuators or the available sensors. Regarding noise and mal-
functioning on measurements, typical solutions are based on
Kalman filtering [20] and sensor redundancy.

Regarding actuators, the typical components utilized for
attitude control are momentum wheels and control moment
gyroscopes. Both typologies of actuators are expensive in
price and mass terms, and, due to their spinning nature and
frequent usage, are sensible to total and partial faults. For
this reason fault tolerant control schemes are commonly uti-
lized in the industry [21]. As will be discussed, this paper
considers a satellite in which a standard configuration for
actuator redundancy has been implemented to be resilient
against a complete failure of one of its actuators, but as in
[22] it develops a law that rejects the effect of partial faults
effecting, potentially, all its actuators at the same time.

Another crucial aspect to consider is the physical limita-
tion of the actuators,which translates into control saturations.
In this regard, both authors in [23] and [24] presented
robust full-state feedback controllers that address control
saturations. In particular, Boskovic et al. [23] introduced a
nonlinear dynamic control law that can successfully govern
the attitude of a spacecraft under inertial uncertainties, exter-
nal disturbances and input saturations, while Xiao et al. [24]
extended the results of [23] considering also the possibility
of actuator faults, as does this work.

Robust and fault tolerant attitude control schemes have
also been broadly explored in the multi-spacecraft setting,
where a set of satellites/spacecrafts seek some form of coor-
dination or formation control. Distributed observers were
studied in works such as [25], where a leader-following
scheme was developed, and [26–28], where distributed esti-
mation schemes were designed for formation control.

We mention that, over the last few years, a significant
research effort has been spent regarding the development of
data-driven solutions able to cope with the robustness and
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fault-tolerant aspects presented above. Such solutions, typi-
cally propose learning schemes to infer/identify unmodeled
system dynamics or estimation errors and then use the dis-
covered information to reconstruct effective control policies.
For instance, authors in [29–33] proposed data-driven control
schemes for attitude stabilization that were, in certain cases,
successfully tested on real-world helicopters and quadrotors,
demonstrating robust performances against external distur-
bances and parameter uncertainties. Themain advantage that
model-based solutions, as the one presented in this work,
have against data-driven approaches is the absence of a train-
ing phase, during which the controller interacts with the
physical system in a black-box fashion, meaning that they
may be deployed more easily in the field. Another aspect in
favour of model-based solutions for spacecraft applications
is their intrinsic explainability, that is the fact that, due to the
availability of closed-form equations that determine the con-
trol law, one may always oversee and predict how the system
will behave in a given environment.

A significant advantage that the control scheme presented
in this paper has compared to most of the available literature
is the ability of the controller to reconstruct any arbitrary
control law that could have been designed to govern the atti-
tude of a spacecraft under feedback linearization. In other
words, the proposed controller allows to design a control
law to fulfil the spacecraft mission, as one was in absence
of model uncertainties (affecting either moment of inertia
estimation and payload deformation), actuator operativeness
(either partial or complete faults) and external disturbances
(either constant or time varying). Due to the asymptotic con-
trol law reconstruction, the controller proposed also recovers
the transient performances that motivated the design of the
control law for the feedback linearized system.

As it will be discussed, the only assumptions that the con-
troller requires are the ones of feedback linearization (i.e., the
mission should avoid the quaternion singularity q4 = 0), and
the availability of an estimation of the high frequency gain,
that translates into providing the controller with a reason-
able estimation of its current moment of inertia and actuator
configuration.

3 Preliminaries

This section summarizes notions on satellite attitude control
(Sect. 3.1), normal forms (Sect. 3.2) and on the extended
observed paradigm (Sect. 3.3).

3.1 Preliminaries on satellite attitude control

In order to represent the attitude of a rigid body there exist
several representations, ranging from Euler angles and rota-
tionmatrices to the so-calledRodrigues parameters [34]. One

of the most broadly used representations for spacecraft atti-
tude is the unitary quaternion one. Let the quaternion q be

defined as q =
[
q13
q4

]
∈ R

4, in which q13 ∈ R
3 and q4∈ R,

such that the unitary norm property ‖q‖ = 1 holds.
We can link this attitude representation to the Euler axis

and angle (ς, θ) with the simple transformation [35]:

q =
⎡
⎢⎣

ς sin
θ

2

cos
θ

2

⎤
⎥⎦ . (1)

Let × be the vector cross product. We define for conve-
nience the operator

[q×] = [q13×] =
⎡
⎣ 0 −q3 q2

q3 0 −q1
−q2 q1 0

⎤
⎦

and the quaternion cross product [36]

q1 ⊗ q2 =
[
q24q

1
13 + q14q

2
13 − q113 × q213

q14q
2
4 − q113q

2
13

]
,

and we introduce the following operator:

[q⊗] =
[
q4 I3 − [q13×] q13

−qT13 q4

]
. (2)

For the sake of notation, when (2) is applied to a vector
x ∈ R

3 we assume

x ⊗ q =
[
x
0

]
⊗ q = [x⊗]q.

Finally, we remark the expressions for the conjugate and
the inverse quaternions:

q =
[−q13

q4

]
, q−1 = q

‖q‖2 .

Starting from the model of the rigid spacecraft, we can
derive, based on the quaternion kinematics and from the rigid
body dynamics - as customary in the literature [36]—the
following model of the spacecraft:

⎧⎨
⎩
q̇ = 1

2
[ω⊗]q,

ω̇ = J−1
[
τ ext + Lτ τ − ω × (Jω)

]
,

(3)

where x =
[
q
ω

]
; ω = [

ωx , ωy, ωz
]T is the angular velocity

vector of the rigid body; τ is the vector of the control torques
provided by the reaction wheels mounted on the spacecraft;
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Lτ is their distribution matrix as discussed below; τ ext repre-
sents the disturbance torques, such as solar radiation, gravity
gradient ad magnetic torques [37,38]; and finally, J is the
MOI tensor, expressed, as customary, in the rigid body ref-
erence frame. Under dynamics (3), q evolves in such a way
that unitary norm property always holds, since

|q̇| = q̇Tq + qTq̇

= 1

2
([ω⊗]q)Tq + 1

2
qT([ω⊗]q)

= 1

2
([ω⊗]q)Tq − 1

2
([ω⊗]q)Tq = 0.

The typical attitude regulation problem consists in stabi-
lizing (3), as with trivial coordinate transformations or by
the introduction of the so-called error quaternions [39], the
stabilization of any arbitrary attitude can be reconducted to
the stabilization of the origin of (3).

Thedistributionmatrix Lτ plays a particularly crucial role,
as it projects the control torques τ over the principal rigid
body inertial axes [40]. It follows that, if nw > 3 reaction
wheels are mounted, one can independently control the three
resulting torques affecting the principal inertial axes as long
as rank(Lt ) = 3. For this reason, u = Lτ τ represents a
typical choice for the control signal of system (3).

For its projection nature, it is worth remarking that the
structure of Lτ is

Lτ = [
a1 a2 a3 · · · anw

]
, (4)

in which the column ai ∈ R
3 indicates the direction of the

axis of the i-th reaction wheel, measured over its principal
axes of inertia. The rank property has also implications for
fault-tolerant control, since the condition rank(Lt ) = 3 can
be maintained even in case of the failure of one or more
actuators—the complete fault of the i-th actuator modifies
the matrix Lτ by substituting its i-th column with a vector of
zeros.

Once the control u has been computed, its actuation
requires that it is redistributed over the available reaction
wheels. A common solution is to use the pseudo-inverse of
Lτ , defined as L#

τ := LT
τ (Lτ LT

τ )
−1

.
The resulting control torque vector is then

τ = L#
τu. (5)

3.2 Preliminaries on normal forms

If we consider a multi-input multi-output (MIMO) system
with m inputs and m outputs of the form

⎧⎨
⎩
ẋ = f (x) +

m∑
i=1

gi (x)ui ,

y = h(x),
(6)

in which x(t) ∈ R
n , u(t) ∈ R

m , y(t) ∈ R
m ,

f (x) = [ f1(x), · · · , fn(x)]
′ ,

h(x) = [h1(x), · · · , hm(x)]′ .

It is well known that, if it has a well-defined vector of relative
degree {r1, r2, · · · , rm} in x0 [41], there exists a diffeomor-
phism T (x) that transforms system (6) into the so-called
Byrnes-Isidori normal form around x0:

⎧⎪⎨
⎪⎩

ξ̇ = Aξ + B [a(ξ, η) + b(ξ, η)u] ,

η̇ = z(ξ, η),

y = Cξ,

(7)

in which ξ ∈ R
r , with r = r1 + r2 + · · · + rm ,

A = diag{A1, · · · , Am}, B = diag{B1, · · · , Bm}, C =
diag{C1, · · · , Cm},

Ai =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

∈ R
ri×ri ,

Bi =
⎡
⎢⎣
0
...

1

⎤
⎥⎦ ∈ R

ri×1, Ci = [
1 0 · · · 0 ]

.

In (7), a(ξ, η) : Rn → R
r , b(ξ, η) : Rn → R

r×m and
z(ξ, η) : Rn → R

r−n are smooth maps. z(ξ, η) is referred to
as the zero-dynamics [42] of system (7).

For the existence of the vector of relative degree in x0,
system (6) must satisfy two conditions: Lg jLk

f hi (x) = 0,
for all x∈ B(x0) and for all j, i, k such that 1≤ j ≤ m,

1 ≤ i ≤ m, 1 < k < r j − 1; the decoupling matrix

Δ(x) =

⎡
⎢⎢⎣
Lg1Lr1−1

f h1(x) · · · LgmLr1−1
f h1(x)

...
...

Lg1Lrm−1
f hm(x) · · · LgmLrm−1

f hm(x)

⎤
⎥⎥⎦

is nonsingular in x0.
Ideally, under these conditions, the system (7) is stabilized

by applying a linearizing control of the form

u = b−1(ξ, η)(K ξ − a(ξ, η)) (8)
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with K such that (A+BK ) is Hurwitz. It is worth remarking
that the selection of K is what determines the performances
of the controlled system, in terms of its transient behaviour. In
particular, K can be chosen following standard procedures
for transient response shaping, such as pole-placement or
LQR.

Note that (8) requires the precise knowledge of the system
model, specifically to implement the exact cancellation of the
term a(ξ, η) in (7).

3.3 Preliminaries on the extended observer

In this paper, we will control system (3) utilizing a dynam-
ical output-feedback control based on an extended-observer
paradigm, introduced in [2,43] and extended to the MIMO
domain in [3].

The extended observer is implemented by the following
dynamical system:

⎧⎪⎪⎨
⎪⎪⎩

˙̂
ξ i,1 = ξ̂i,2 + καi,1(yi − ξ̂i,1),

˙̂
ξ i,2 = σi + bi u∗ + κ2αi,2(yi − ξ̂i,1),

σ̇i = κ3αi,3(yi − ξ̂i,1),

i = 1, 2, 3, (9)

in which κ and αi,1, · · · , αi,3 are design parameters, ξ̂i,1,
ξ̂i,2 and σi , are the state variables of the observer and bi ∈ R

3

is the i-th row of the constant matrix b ∈ R
3×3, i = 1, 2, 3.

The structure of (9) is the one of a typical high-gain
observer, with the vector ξ̂ = col(ξ̂1,1, · · · , ξ̂3,2) estimat-
ing of the state ξ of the system, with the addition of a new
variable vector, σ = col(σ1, · · · , σ3), that will be used to
attain the robustness of the control. Differently to standard
high-gain observers, the extended observer (9) is also used
to compute the robustly stabilizing control law

u∗ = GH (b−1[K ξ̂ − σ ]) (10)

with GH (s) : R3 → R
3 defined as

GH (s) = col(gH (s1), gH (s2), gH (s3)),

where gH (s): R → R is a smooth saturation function such
that:

• gH (s) = s if |s| ≤ H ;
• gH (s) is odd and monotonically increasing, with 0 ≤

dGH (s)
ds ≤ 1; and

• lim
s→∞GH (s) = H(1 + c) with 0 < c 
 1.

Note that the dynamic feedback law u∗ is computed by (9)
and (10) based only on the output measures yi , i = 1, 2, 3.

The goal of the control is to utilize (10) as an “asymptotic
robust proxy” of the ideal law (8) (see [44])1.

As proven in [3], two assumptions must hold for u∗ to
converge to the control law (8). Firstly, the matrix b must
represent a conservative guess of b(ξ, η) according to the
following assumption:

Assumption 1 There exists a constant nonsingular matrix
b ∈ R

m×m and a number 0 < δ0 < 1 such that

max
Λ diagonal, |Λ|≤1

| [b(ξ, η) − b]Λb−1| ≤ δ0, ∀(ξ, η). (11)

Equation (11) implies that bmin ≤ |b(ξ, η)| ≤ bmax for all
(ξ, η) and for some pair bmin < bmax.

The second assumption concerns the zero-dynamics:

Assumption 2 The system η̇ = z(ξ, η), viewed as a system
with input ξ and state η, is input-to-state stable.

Under Assumptions 1 and 2, the main result in [3] is the
following theorem.

Theorem 1 Considering system (7), with uncertain but
bounded parameters, controlled by the output feedback law
(9) and (10), there exists a choice of the design parameters
such that, for any arbitrary compact set C, the equilibrium
(η, ξ, ξ̂ , σ ) = (0, 0, 0, 0) is asymptotically stable, with a
domain of attraction that contains C.

In particular, for every choice of C there are conditions
for the choice of the parameters αi,1, · · · , αi,3, κ, K , L:

• the parameters αi,1, · · · , αi,3 to be chosen in such a way
that the polynomial

s3 + αi,1s
2 + αi,2s + αi,3

is Hurwitz for i = 1, · · · , 3, and it is shown in [3] that
their values regulate the convergence speed of the error
e = ‖ξ − ξ̂‖;

• the gain κ bounds the value of ‖e‖; if κ is sufficiently
high, the state trajectory of the controlled system enters,
in finite time, an arbitrarily small compact system;

• as with the law (8), the matrix K in (10) has to be chosen
such that (A + BK ) is Hurwitz;

• the role of the saturation level H of the function GH in
(10) is to avoid that system (7) is affected by the destabi-
lizing effect of peaking [45] and, hence, to avoid a finite
escape time. The value of H depends only on the domain
of attraction in which the initial conditions are taken.

1 As proven in [43], the proposed controller is able to reconstruct (8)
also in terms of transitory behavior, allowing the controller to perform
closely to optimal solutions such as the LQR one, provided that the gain
K is set accordingly.
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4 Robust output-feedback control of a
spacecraft system

This section details how the extended-observer paradigm can
be used to address the spacecraft robust attitude control prob-
lem. Firstly, in Sect. 4.1, the normal form (3) for a spacecraft
system is defined. Section 4.2 highlights the physical mean-
ing of the assumptions needed for the robust control to work.
Section 4.3 focuses on the disturbance rejection properties
of the proposed control law.

4.1 Normal form of the spacecraft system

We now derive the normal form of (3). As customary in atti-
tude studies, we assume y = [q1, q2, q3]T and set u = Lτ τ .
For now, we also assume τ ext = 0 and, without loss of gen-
erality, we set J = diag{Ix , Iy, Iz}.

With the selected input-output, the vector of relative
degree becomes {2, 2, 2} [46], and the decoupling matrix

Δ(x) =

⎡
⎢⎢⎢⎢⎢⎣

q4
2Ix

− q3
2Iy

q2
2Iz

q3
2Ix

q4
2Iy

− q1
2Iz

− q2
2Ix

q1
2Iy

q4
2Iz

⎤
⎥⎥⎥⎥⎥⎦

is nonsingular for q4 �= 0.
Regarding the diffeomorphism T (x), recalling its struc-

ture from [41] and setting η = q4, we can write

[
ξ

η

]
= T (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
L f h1
q2

L f h2
q3

L f h3
q4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
1

2
(ωxq4 + ωzq2 − ωyq3)

q2
1

2
(ωyq4 − ωzq1 + ωxq3)

q3
1

2
(ωzq4 + ωyq1 − ωxq2)

q4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This choice leads the system to the form (7), in which

a(ξ, η) =1

4
ω × (ω + q13) − 1

4
ωTq13ω

+ 1

2
([q13×] + q4 I3)(J

−1ω) × (Jω)

(12)

and

b(ξ, η) = 1

2
([q13×] + q4 I3)J

−1. (13)

4.2 Extended-observer design for the spacecraft
model

In the framework introduced so far, the condition (11) in
Assumption 1 is at the basis of the definition of the extended
observer and is of particular interest in spacecraft control, as
it has a physical meaning that captures several criticalities
that emerge in real spacecraft control applications.

Assumption 1 reduces to the existence and availability
to the control of the nonsingular matrix b ∈ R

m×m , which
represents the guess of b(ξ, η). In the considered case, even
if it is trivial to show that |b(ξ, η)| is bounded thanks to the
unitary norm property of q, the identification of such matrix
b is not straightforward.

As the meaning behind Assumption 1 is to guarantee that
the elements of b(ξ, η)u are bounded and have the correct
sign [47], in this work we provide the controller with a
dynamic estimation b̂(q) of the function b(ξ, η), as in [43],
obtained from the available measures of q and from the nom-
inal, or estimated, MOI Ĵ . It is worth noting that the MOI of
the satellite is time-varying and of nontrivial estimation, as
it heavily depends on factors as the attitude of its auxiliary
peripherals (e.g., solar panels, antennas, …), the remaining
propellant and its distribution in the tanks. For this reason,
it is necessary to consider a difference between its nominal
value Ĵ and the real one J .

Instead of Assumption 1, wewill then verify the following
one:

Assumption 3 There exists a function b̂(q) : R4 → R
r×m

and a number 0 < δ0 < 1 such that

max
Λ diagonal,|Λ|≤1

∣∣[b(ξ, η) − b̂(q)]Λb̂(q)
−1∣∣ ≤ δ0, ∀(ξ, η)

(14)

with

b̂(q) = 1

2
([q13×] + q4 I3) Ĵ

−1. (15)

The function b̂(q) of equation (15) represents the case in
which the controller has what we may consider the “nominal
value” of the high frequency gain.

ConcerningAssumption 2, in viewofRemark 1 and in line
with Assumption 3 in [43] and with the concluding remarks
in [3], it can be relaxed as follows.

Assumption 4 The system η̇ = z(ξ, η), viewed as a system
with input ξ and state η, is bounded-input-bounded-state sta-
ble.

The main result of the paper is then a consequence of
Theorem 1.
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Theorem 2 If the following condition holds:

|J−1 − Ĵ−1| · | Ĵ |
|q4| < 1, (16)

where Ĵ is the estimated MOI tensor available to the
controller, systems (7), (12) and (13), with uncertain but
bounded parameters, controlled by the output-feedback law
(9) and (10), asymptotically converges towards (ξ, ξ̂ , σ ) =
(0, 0, 0), with an overall domain of attraction that contains
an arbitrary compact set C.

Proof The proof relies on the verification of Assumptions 3
and 4.

By substituting Eqs. (13) and (15) in Eq. (14) of Assump-
tion 3, it becomes

max
Λ diagonal,|Λ|≤1

|Θ(q)(J−1 − Ĵ−1)Λ Ĵ Θ(q)−1| ≤ δ0, (17)

in which we have set, for notation convenience, Θ(q) =
[q13×] + q4 I3.

A conservative bound for theMOI estimation can be found
by utilizing the submultiplicative property of the matrix

norm, which, noting that |Θ(q)| = 1 and |Θ(q)−1| = 1

|q4| ,
yields

|Θ(q)(J−1 − Ĵ−1)Λ Ĵ Θ(q)−1| ≤ |J−1 − Ĵ−1| · | Ĵ |
|q4| ,

implying that, if the condition (16) holds, Assumption 3 is
satisfied.

Under Assumption 3, the convergence proof replicates the
one of the extended observer [3] (further detailed in [47]),
with some awareness on b̂(q). In fact, the proof in [3] relies
on the boundness of some quantities which depend on the
guess b used in the inequality (11). However, these quantities
remain limited also when considering b̂(q) instead of b, i.e.,
inequality (14) instead of inequality (11), with b̂(q) defined
as in (15), and the convergence proof still holds. Specifically,
it is sufficient to retrace the proof in [3] noting that, as long
as the state of the system is bounded, ‖b̂(q)‖,‖[b̂(q)]−1‖ and
their time derivatives are bounded. In our case, ‖b̂(q)‖ =
1

2
‖ Ĵ‖ is constant and, therefore, ‖db̂(q)

dt
‖ = 0; ‖b̂(q)−1‖ is

bounded by
‖ Ĵ‖
‖q4 ‖ which is bounded as long as q4 �= 0;

‖d(b̂(q)−1)

dt
‖ is bounded, as long as q4 �= 0, since q̇ is

bounded due to the physical limitations of the spacecraft sys-
tem.

As regards Assumption 4, we note that the zero dynam-
ics of system (7) is not input-to-state stable (in the sense

of Assumption 2) but, since η = q4, it is bounded-input-
bounded-state stable (in the sense of Assumption 3 of [43]),
as −1≤ q4 ≤ 1 thanks to the unitary norm property of the
quaternion representation.

Since Assumptions 3 and 4 are satisfied, the law (10)
leads the components of ξ to annihilate. The spacecraft atti-
tude, consequently, converges to either of the two points
(η, ξ, ξ̂ , σ ) = (±1, 0, 0, 0), depending on its initial con-
ditions. This completes the proof. 
�
Remark 1 Noting that the two quaternions q and −q repre-
sent the same attitude thanks to definition (1), it follows that
a controller that stabilizes the chain of integrators in (7) leads
the system to the correct attitude, independently of the con-
vergence value of η. In other words, the convergence of the
system to one of the two equilibriumpoints identified byThe-
orem 2 or to the other one depends on its initial conditions,
but this does not impact the final attitude of the spacecraft.

Remark 2 Regarding the presence of
1

|q4| in (16) we note

that, as customary in singularity avoidance solutions for the
so-called “large-scale manoeuvres” [46], we can divide any
attitude regulation problem for which the initial value of q4
is so close to the origin that (17) does not hold into multiple
subsequent smaller rotations, in such a way that |q4| stays as
close to 1 as desired.

Remark 3 The physical limitations of the system—the actu-
ating capabilities of the reaction wheels mounted on space-
crafts are limited, typically, the torque is in the order of
0.1Nm—set an upper-bound on the saturation level H ofGH

in the control law (10). In general, H depends on the con-
sidered set of possible initial conditions and on the matrix K
that appears in (8) [3], but, since the mission can be divided
in multiple arbitrarily small manoeuvres (see Remark 2), one
can restrict such set accordingly. It is also worth remarking
that, in the considered scenario, the components of τ are
the ones that are directly subject to the actuator saturation,
and, consequently, the components of the control law u are
affected by the actuator saturation because of Eq. (5).

4.3 Fault tolerance and disturbance rejection

Due to the significant lifespan of spacecraft systems and to
the difficult maintenance, rotating actuators such as reactions
wheels are often subject to partial and total failures. Further-
more, during the launch phase, the structure of the satellite
is under heavy stress and it is not unusual that it could be
slightly deformed or one of its actuators damaged [9].

It is clear then that uncertainty is present not only in the
estimation of J but also in the distribution matrix Lτ , as any
fault occurring to the reaction wheels or any frame modifi-
cation impacts directly on the elements of Lτ , as it will be
further clarified in the following.
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Faults causing the actuated torque to differ from the com-
manded control torque τ can be modelled by a multiplicative
disturbance that affects the control torque. Let

F = diag{ f1, f2, · · · , fm}, 0 ≤ fi ≤ 1, i = 1, · · · ,m

be the matrix that collects the operative level of the actuators,
where fi = 1 means that the i-th actuator works perfectly,
whereas fi = 0 means that it is completely inoperative. The
actuated torque τ ′ is then written as τ ′ = Fτ . Recalling
Eq. (5), the torque τ computed by the controller is τ = L̂#

τu,
where L̂#

τ is the pseudo-inverse of the estimated, or nomi-
nal, distribution matrix L̂τ . The actual control that drives the
spacecraft is then

u′ = Lτ τ
′ = Lτ F L̂#

τu = L ′
τ L̂

#
τu, (18)

where L ′
τ := Lτ F represents the unknown actual distribu-

tion matrix of the spacecraft that includes also the effects of
the deformations and faults. Note that such matrix can differ
from the nominal one, L̂τ , not only due to the presence of
faults but also because of possible structural deformations
that impact on the actuator axis projections on the rigid body
axes.

By considering Eq. (18), the actual high-frequency gain
takes into account the fact that the system is driven by the
control u′ and not by the desired u:

b′(ξ, η) = 1

2
([q13×] + q4 I3)J

−1L ′
τ L̂

#
τ . (19)

With the same reasoning of Theorem 2, it is possible to re-
conduct the robustness property of the proposed controller to
a bound on the quality of the estimation of both the matrices
J and L ′

τ available to the controller. As long as the controller
is provided with a sufficiently good estimate b̂(q) of the high
frequency gain, satisfying (14), its asymptotic properties are
guaranteed, independently from the effect of the uncertainties
on the other functions of (ξ, η) in (7).

In the analysis conducted so far, we assumed the absence
of external torques, but this assumption may not be reason-
able in real-world scenarios.

If we assume

τ ext =
[
τ extx , τ exty , τ extz

]T �= 0,

and let

w =
[
f1, f2, · · · , fnw , τ extx , τ exty , τ extz

]T
,

we can rewrite system (7) as

⎧⎪⎨
⎪⎩

η̇ = f (η, ξ),

ξ̇ = Aξ + B [q(η, ξ, w) + b(η, ξ, w)u] ,

y = Cξ

(20)

with the matrices A, B,C defined as in the previous section.
In [43], it is shown that the proposed controller achieves,

due to its integral action property, for a system in the form of
(20), (i) complete rejection with respect to step disturbances
and (ii) arbitrary attenuation of the effect of bounded distur-
bances with bounded derivatives. Both properties are very
significant for practical applications. Concerning property
(i), it is common to approximate a slow-varying disturbance
τ ext with a signal such that τ̇ ext = 0, whereas property (ii)
means that any disturbance that can be modelled as a series
of sinusoidal components can be arbitrarily attenuated, and
hence all the signals generated by an exosystemhaving eigen-
values on the imaginary axis, as customary in the internal
model control paradigm, can be compensated arbitrarily by
adjusting the parameters of the controller.

5 Simulations

This section reports several numerical simulations to validate
the proposed control law.

We modelled a satellite with the same physical character-
istics of the one considered in [40], with MOI matrix

J =
⎡
⎣4.2 0 0

0 4.4 0
0 0 4.2

⎤
⎦ ,

and with reaction wheels capable of providing torques in the
range [−0.1; 0.1]Nm. Regarding the reaction wheels con-
figuration, we considered the rotated pyramid configuration
considered in [48], shown in Fig. 1.

Recalling (4), it is immediate to characterize the nominal
distribution matrix L̂τ as

L̂τ =
⎡
⎣ cosβ1 cos θ1 − cosβ2 sin θ2 − cosβ3 cos θ3 cosβ4 sin θ4
cosβ1 sin θ1 cosβ2 cos θ2 − cosβ3 sin θ3 − cosβ4 cos θ4

sin β1 sin β2 sin β3 sin β4

⎤
⎦ .

Setting θi = a sin
√
3
3 and βi = π

4 , i = 1, · · · , 4, (as in

the pyramidal wheel configuration of Fig. 1) L̂τ becomes

L̂τ =
√
3

3

⎡
⎣1 −1 −1 1
1 1 −1 −1
1 1 1 1

⎤
⎦ . (21)

We consider the case inwhich an uncertain estimatedMOI
matrix Ĵ is available to the controller, with diagonal elements
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Fig. 1 Reaction wheels
configuration

ranging in the interval [2.9, 5.7], capturing estimation errors
on J of ±30%. As an example, to compute the guess of the
high-frequency gain as in (11), in the presented simulations
we set the estimated MOI matrix available to the controller
as

Ĵ =
⎡
⎣4.6 0 0

0 4.8 0
0 0 4.6

⎤
⎦ , (22)

but similar simulation behaviour was observed with different
choices of Ĵ within the allowed parameter range.

In all the simulations, condition (16) was always met.
Regarding theother parameters characterizing the extended

observer and the controller we have set {αi,1, αi,2, αi,3} =
{9, 27, 27} , ∀i = 1, · · · , 3 and κ = 100. The last parame-
ter, K , such was chosen so that the matrix (A + BK ) has its
eigenvalues in {−0.25,−0.5,−0.25,−0.5,−0.25,−0.5} .

5.1 First simulation: nominal operation

The first simulation reports the system behaviour when no
fault or disturbance is present. Figure 2 and 3 show the
dynamics of the state x = (q, ω) and confirm that the con-
trol effectively stabilizes the system. Figure 2 shows that q1,
q2 and q3 annihilate with time in about 30 s, whereas q4,
representing the system zero-dynamics, remains bounded—
it approaches 1 with time due to the norm condition. Fig-
ure 3 shows the angular velocities of the spacecraft over time,
which also annihilates in about 30 s. In Fig. 4, which reports
the control torques, we can see that the control input satu-
rates during the first few seconds of the simulation, when the
spacecraft has to correct its attitude significantly. The control
becomes unsaturated as soon as it is reduced in magnitude
due to the spacecraft approaching the target attitude.

For the sake of comparison, and to highlight the per-
formance recovery of the proposed approach, we report in
Figs. 5 and 6 the deviation observed between the states of a
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Fig. 3 Spacecraft angular velocity over time, 1st simulation

spacecraft controlled by (12)–(13) and one of a satellite gov-
erned by (8) with complete state feedback and provided with
the correct estimation of the MOI matrix J . Figure 7 reports
the deviation observed between the control torques of the
two satellites, showing that the ideal control is recovered in
a short amount of time.

5.2 Second simulation: single fault

In the second simulation, we introduce a total failure on the
fourth reactionwheel, leading to an actual distributionmatrix
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Fig. 6 Velocity deviation, 1st simulation
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Fig. 7 Control torques deviation, 1st simulation

L ′
τ =

√
3

3

⎡
⎣1 −1 −1 0
1 1 −1 0
1 1 1 0

⎤
⎦ ,

which affects the actual control action as in (18).
This uncertainty is capturedby themodifiedhigh-frequency

gain (19), but the controller is not aware of this event, as the
guess b̂(q) is still given by (11) and (22), with the addition of
(21). As it is highlighted in Fig. 8, the desired attitude is still
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Fig. 8 Spacecraft attitude over time, 2nd simulation
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Fig. 9 Control torques over time, 2nd simulation

reached after about 40 s, i.e., approximately 10 s later than
in the former simulation.

Regarding the control torques, Fig. 9 shows that τ4 is
always null (fault condition), while the other torques exhibit
the same behaviour analysed in the first simulation: they sat-
urate during the first part of the simulation and converge to
zero as the attitude approaches the target one.

5.3 Third simulation: multiple faults

For the third simulation, we report a case in which there is
a generalized fault in all the actuators. In particular, the first
and the second wheels actuate only 90% and 50% of the
commanded torques, respectively, whereas the fourth wheel
is inactive as in the previous simulation. For the third wheel,
we modelled a deformation on its housing which causes its
angle θ3 to be increased by 10◦, while its angle β3 is reduced
by 5◦. The resulting distribution matrix is

L ′
τ =

√
3

3

⎡
⎣0.9 −0.5 −0.4954 0
0.9 0.5 −0.7075 0
0.9 0.5 0.5040 0

⎤
⎦ .

Figures 10 and 11 show that the control still robustly
stabilizes the system—even if, this time, about 50 s were
necessary—despite having its controls compromised by the
faults and despite both the MOI and the distribution matrices
were wrongly estimated. Figure 11 also shows that, due to
the actuator deformation, the torque τ1 saturates above the
nominal lower saturation level −0.1Nm.
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Fig. 10 Spacecraft attitude over time, 3rd simulation
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Fig. 11 Control torques over time, 3rd simulation

For the sake of comparison, we now consider the con-
troller proposed in [24], as it provides a robust solution
against multiple faults without requiring any estimation of
the MOI matrix and hence provides a fair comparison to our
control logic, under similar assumptions. The same faults
previously were applied to the satellite, with the tuneable
controller parameters set according to [24]. From the anal-
ysis of Fig. 12 it is evident that, even if the controller is
able to steer the spacecraft towards the desired attitude, the
quaternion trajectory converges very differently from both
the behaviours observed in Fig. 10 (our solution on the fault
system) and Fig. 2 (that is the nominal case with no faults).
The reason for this difference is to be found in the profile of
the actuated controls, that is reported in Fig. 13. In fact, the
controller in [24], as most of the existing robust approaches
for attitude control, does not take into account the recon-
struction of a nominal control law whereas the proposed
control law asymptotically converges towards the control
law employed in the first simulation, that was obtained fol-
lowing a pole-placement design. An equivalent behaviour is
observed in Fig. 14, where the satellite system is governed by
the sliding-mode control scheme proposed in [49] that, even
neglecting the chattering-related shortcomings related to the
sliding mode design, in turn assures the finite time conver-
gence of the attitude tracking error under assumptions on the
parameter uncertainty and the nature of the disturbances that
are comparable to ours. The reconstruction of the nominal
control law assured by our control logic allows for simpler
mission planning and design phases, as the extended observer
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Fig. 12 Spacecraft attitude over time, benchmark for the 3rd simulation
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Fig. 13 Control torques over time, benchmark for the 3rd simulation
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Fig. 14 Spacecraft attitude over time, second benchmark for the 3rd
simulation

and the control law (13) lead the system towards trajectories
closer to its ideal behaviour. We mention that, recent works
such as [32,50] and [51] focusmostly on data-driven/learning
identification systems for faults and disturbances, showing
noteworthy performances but, compared to works such as
the present paper and [24], lacking asymptotic guarantees
on their properties and requiring significant training phases
with limited applicability to existing and orbiting spacecraft
platform.

5.4 Fourth simulation: external disturbances

In the fourth simulation, we consider the system in presence
of disturbances. All the spacecraft actuators are fully func-
tional and the system is subject to an additional constant dis-
turbance torque, whose components, over the principal axes
of inertia of the spacecraft, are τ ext = [−0.06, 0.05, 0.08]T Nm,
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Fig. 15 Disturbance torques over time, 4th simulation
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Fig. 16 Spacecraft attitude over time, 4th simulation
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Fig. 17 Control torques over time, 4th simulation

as shown in Fig. 15. Even in the presence of these distur-
bances, which are comparable in magnitude to the control
itself (recall that the torque saturation level is 0.1Nm), Fig. 16
shows that the control law (13) still stabilizes the system.

It is interesting to note how the controls successfully
reconstruct and compensate the disturbances of Fig. 15. The
controls are shown in Fig. 17, and their projections on the
principal axes of inertia (computed by using the distribution
matrix) are shown in Fig. 18: the steady-state values are such
that the constant disturbances are exactly cancelled.

5.5 Fifth simulation: sinusoidal disturbances

The fifth and final simulation reports, in the same fault-free
case of the previous simulation, the case in which the dis-
turbances have a time-varying component. As depicted in
Fig. 19, the disturbance torques are biased sinusoidal signals
at different frequencies:
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Fig. 18 Resulting control torques over time, 4th simulation
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Fig. 19 Disturbance torques over time, 5th simulation
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Fig. 20 Spacecraft attitude over time, 5th simulation

τ ext =
⎡
⎣ 0.01 sin t − 0.05
0.05 sin(2t) + 0.01

0.01 sin(3t)

⎤
⎦Nm.

Figure 20 shows that, practically, the control law (13) still
manages to stabilize the systembyusing, this time, sinusoidal
control torques—see Fig. 21. However, by analysing the
torque projections on the principal axes of inertia, depicted in
Fig. 22, we may notice that there is not a perfect reconstruc-
tion of the external torque of Fig. 19, as expected (see Section
4.3). This small error, which is in the order of 10−4 Nm,
results in small oscillations of the attitude, in the order of
10−5, as shown in Fig. 23.

6 Conclusions and future work

This paper presented a control strategy for the attitude control
of a spacecraft, robust to unknown, but bounded, uncertain-
ties in the system parameters and external disturbances. The
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Fig. 21 Control torques over time, 5th simulation
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Fig. 22 Resulting Control torques over time, 5th simulation
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Fig. 23 Spacecraft attitude oscillations, 5th simulation

main contribution is the adoption of the extended-observer
paradigm of [3,43] in the attitude control problem. The
resulting control law is then robust also to uncertainties in
the high-frequency gain matrix and, as shown in the paper,
this property allows us to include uncertainties that are not
commonly addressed by other robust control methods, such
as uncertainties in the actuators positioning and faults. As
shown also by simulation results, the control is in fact robust,
within the physical limits (e.g., a suitable number of actua-
tors must be available, at least partially, as required by a
rank condition on the distribution matrix) in terms of total
faults, partial faults and deformations of the actuators. The
controller is also able to achieve zero steady-state error for
step disturbances and an arbitrarily small error for sinusoidal
ones.

Future work is aimed at extending the developed frame-
work to the problems of attitude tracking and constellation
control, as well as its application to flexible satellites.
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