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ABSTRACT

The generation of focused beams in the millimeter- and submillimeter-wave ranges, with transverse-electric (TE) polarization, is investigated
in the radiative near-field region. The desired field distribution is achieved through a leaky-wave beam launcher consisting of a grounded
dielectric slab with an annular strip grating on top excited by a circular slot on the bottom ground plane. The latter is fed by a Mari�e trans-
ducer, which converts the input, fundamental TE10 mode of a standard rectangular waveguide into the higher-order TE01 mode propagating
in the circular waveguide connected to the device. The generation of TE-polarized diffraction-limited Bessel and Bessel–Gauss distributions is
achieved by suitably synthesizing the annular strip grating. Simulated results are in excellent agreement with those predicted by leaky-wave
analysis providing a proof-of-concept for the generation of TE-polarized Bessel and Bessel–Gauss beams at 300GHz with a beam size of 1.7
and 1.9mm up to the nondiffractive range of about 25 and 15mm from an aperture plane with radius of 12.75mm, respectively.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0234371

The generation of focused beams at millimeter and submillimeter
waves is of tremendous importance in many practical scenarios, such
as near-field communications,1 wireless power transfer,2,3 and imag-
ing.4,5 Among all the possible field distributions, Bessel beams (BBs)
have gained much attention due to their diffraction-limited6 and self-
healing7 properties. For this reason, many technologies have been pro-
posed for the synthesis of BBs from microwaves to submillimeter
waves.8–15

A planar and cost-effective solution is offered by leaky-wave BB
launchers.16,17 Due to the simple implementation of vertical electric
dipoles (VEDs) through coaxial connectors, transverse-magnetic (TM)
polarization has been preferred for such devices. However, this kind of
excitation scheme is commercially available up to 110GHz (Ref. 18)
and it is fragile and expensive for working frequencies above 40GHz.
Moreover, it has recently been shown that a transverse-electric (TE)-
polarized BB is interesting from both a theoretical and a practical
viewpoint.19 In particular, it has been recently shown that magnetic
resonance can be used to minimize coupling with the surrounding
dielectric objects19 and, thus, TE-polarized BB launchers could be
exploited advantageously as emitters in wireless power-transfer19–22

and imaging, magnetic resonance23 scenarios thanks to a focusing,

nondiffractive, vertical component of the magnetic field. For these rea-
sons, at microwave frequencies, TE-polarized BBs were first generated
through resonant BB launchers,19–21 showing, nevertheless, limited
bandwidth and maximum nondiffractive distances.

This Letter presents an original TE-polarized wideband BB
launcher16 with a realistic feeding network working around 300GHz.
The device is constituted by a grounded dielectric slab (GDS) with an
annular metal strip grating on top and it is excited by a circular slot
etched on the ground plane. This structure is hereafter referred to as
radially periodic leaky-wave beam launcher and is sketched in Fig. 1
along with a qualitative field distribution. The circular slot is fed by a
circular waveguide (CW) where only the higher-order TE01 mode
propagates. This is achieved through a Mari�e transducer [see
Fig. 2(a)],25,26 which is suitably matched to a standard WR3
rectangular-waveguide input using the semi-analytical approach in
Ref. 24. Moreover, by properly tapering the aperture-field distribution,
a leaky-wave Bessel–Gauss beam (BGB)27 has been obtained. In this
manner, the first generation of a BGB both at submillimeter-wave fre-
quencies and with TE polarization is demonstrated.

We start here from discussing the design of a TE-polarized BB
launcher, thus based on a nontapered aperture distribution, and the
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realization of its feeding network. An azimuthelly symmetric TE-polar-
ized Bessel beam requires a vertical-magnetic dipole (VMD) excitation.
At microwave and submillimeter-wave frequencies, practical realiza-
tions of VMDs are not as simple as for VEDs.20 The typical VMD
implementation is indeed usually constituted by loop antennas or
coils19,21 but their feeding point breaks the azimuthal symmetry of the
device and excites both TE and TM components.17 An alternative
solution is to synthesize a realistic counterpart of a radially directed
magnetic current.28 At microwave frequencies, the latter can be
achieved through a radial slot array on the ground plane fed through
microstrip lines.20 In order to avoid the technological challenges posed
by the excitation of multiple slots at millimeter and submillimeter
waves, we here replace the radial slot array with a simple circular slot
on the ground plane fed through a CW that propagates only the
higher-order TE01 mode.29

An ad hoc mode converter has been implemented to achieve
the TE01 mode in the CW from a standard WR3 working in the

220–330GHz range, which is the typical antenna excitation in the
upper millimeter- and submillimeter-wave regime.30 In particular, a
Mari�e transducer with an additional matching section is considered.
From a practical viewpoint, the latter cannot be realized at
submillimeter-wave frequencies through a 3D printer since the surface
roughness limits its application beyond the W-band.31,32 On the other
hand, the fabrication of a Mari�e transducer using only computer
numerical control (CNC) milling is a challenging task as it requires a
5-axis machine and multiple parts. For this reason, the simpler imple-
mentation of the device could rely on a combination of CNC milling
with platelet fabrication for the complex cross sections; the latter tech-
nique has been proven effective at frequencies as high as 560GHz.33

As concerns, instead, the theoretical viewpoint, the working principle
of the mode converter is explained in Ref. 26: the TE10 mode coming
from the feeding WR3 is totally converted into the TE01 CW mode
since it is the first mode supporting the symmetries and field structure
of the desired radially directed magnetic current. Propagation of the
TE41 mode, which is the next higher-order mode after the TE01, is pre-
vented by properly selecting the waveguide radius qCW.

According to these design rules, a converter with the geometrical
parameters given in Table I is designed and simulated in CST
Microwave Studio with an input WR3 port and an output CW one. As
can be inferred by the scattering parameters in Fig. 2(b), the converter
properly works in the 290–330GHz frequency range, achieving nearly
unitary power transmission from the fundamental TE10 mode at the
input rectangular port to the desired TE01 mode at the output circular

FIG. 1. Representation of a TE-polarized radially periodic leaky-wave launcher
excited by a CW through a slot on the ground plane. The near-field jHzj distribution,
normalized with respect to its maximum, is qualitatively reported through a dB color-
map for the proposed TE BB launcher.

FIG. 2. (a) Schematic view of the proposed Mari�e transducer with its geometrical parameters. The initial WR3 section of length LMN works as a simple matching network of the device
through a pair of capacitive irises and its equivalent transmission-line model is reported on the right.17 (b) Magnitude in dB of the S-parameters when the Mari�e transducer is consid-
ered as a two-port network with a WR3 input port and a CW output port. (c) Magnitude in dB of S11 when the Mari�e transducer is connected to the BB launcher with (black solid line)
and without (blue solid line) matching irises. The red dashed line represents the theoretical prediction of S11 thanks to a circuital representation of the matching network.

24

TABLE I. Design parameters of the proposed Mari�e transducer in millimeters.

aWR3 a1 a2 a3 a4 qCW LCW

0.8636 0.6521 0.2156 0.2919 1.3384 0.65 0.8152

bWR3 b1 b2 b3 b4 g1 g2

0.4318 0.2630 1.3069 1.3384 0.2919 0.0216 0.054

L1 L2 L3 L4 L5 d1 d2

1.2954 3.2606 0.6521 1.6303 1.6303 0.25 0.7325
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port. It is worth pointing out that, as desired, all the modes with lower
cutoff frequencies with respect to the TE01 mode are suppressed, as
their S21 parameters have magnitude lower than�40 dB. Moreover, as
can be seen from S11, the device impedance bandwidth covers the
desired bandwidth with a matched output port. However, when the
Mari�e transducer is implemented as a feeder for the TE-polarized BB
launcher, the load impedance is different and a matching network is
needed [see the S11 blue curve in Fig. 2(c)]. The latter can be imple-
mented through two capacitive irises in the first feeder section, which
has a length LMN ¼ k0 (with k0 being the free-space wavelength at the
working frequency f0 ¼ 300GHz) and lateral dimensions aWR3 and
bWR3.

The matching network is designed by following the approach in
Ref. 24. The method only requires a single full-wave simulation of the
mode converter (without the matching irises) exciting the BB launcher
to retrieve the input impedance Yin at the reference plane marked by
the dashed red line in Fig. 2(a). The latter is exploited as the load for a
matching-network transmission-line equivalent model to represent the
radiating device. In this manner, the design parameters of the capaci-
tive irises, namely, the gap dimensions g1 and g2, and their distance
with respect to the reference plane, d1, and to each other, d2, can be
optimized through a fully numerical technique based on analytical,
closed formulas [see Fig. 2(a)]. In particular, the waveguide discontinu-
ities are represented as shunt elements with equivalent susceptances B1

and B2 whose formulas, reported in Ref. 34, are functions of g1 and g2.
An ultra-fast optimization procedure can thus be carried out to obtain
the design parameters of the matching network by exploiting
transmission-line theory.24 At f0 ¼ 300GHz, the procedure provides
the dimensions of gaps and the distances of the two irises, viz., g1, g2,
d1, and d2 shown in the inset in Fig. 2(a) and reported in Table I. After
this matching procedure, the magnitude of the reflection coefficient is
significantly reduced, as shown by the red dashed line in Fig. 2(c). The
effectiveness of the equivalent transmission line is corroborated by the
full-wave simulation of the entire BB launcher (whose design is dis-
cussed below) represented with the black solid line S11 in Fig. 2(c).

The leaky-wave analysis and the design of a TE-polarized BB
launcher requires the evaluation of dispersion curves of the relevant
leaky radial wavenumber.17,20 The device is based here on an annular
metal strip grating printed on top of a GDS. Owing to its azimuthal
symmetry, the dispersion curve of the structure can efficiently be

evaluated through the analysis of its linearized 1D counterpart.16

Different methods are known for the evaluation of the leaky wavenum-
ber, referred to as kq ¼ b� ja, with b and a being the leaky phase and
attenuation constants.35–37 In this work, by enforcing a TE-polarized
propagation mode in a 1D metal strip grating configuration simulated
on CST Microwave Studio, the b and a dispersion curves have been
extrapolated by the unit-cell T matrix. The latter is evaluated through
the T-matrices of truncated structures with N ¼ 6 and N ¼ 7 periods
on the full-wave solver (a similar approach has been shown in Ref. 38).

The dispersion-analysis results are reported in Fig. 3(a) through
the dispersion curves of the phase and attenuation constants normal-
ized with respect to the vacuum wavenumber k0, viz., b̂ ¼ b=k0 and
â ¼ a=k0. As desired for the generation of an inward cylindrical leaky
wave, needed for the excitation of a focused beam,39 a negative value
for b and a positive value for a are achieved. Moreover, as expected,
the dispersion curve of the TE leaky wave propagating in the structure
lies within the curves of the fundamental TE modes for the limiting
unperturbed cases of a parallel-plate waveguide (PPW) and a GDS. In
addition, from the leaky phase and attenuation constants at the work-
ing frequency f0 ¼ 300GHz (viz., b̂ ¼ �0:461 and â ¼ 0:019), one
can determine the BB-launcher axicon angle h0 ¼ arcsinðb̂Þ ’ 25�

and the radiation efficiency gr ¼ 1� expð�2qapaÞ ’ 95%, with
qap ¼ 12:75 mm being the radius of the launcher.40 The axicon angle
determines the nondiffractive range, i.e., the maximum distance for
which a BB distribution approximately maintains its self-healing and
diffraction-limited properties, through the ray-optics formula
zndr ¼ qapcoth0. Therefore, the nondiffractive range is here equal to
zndr ¼ 24:2 mm, corresponding to about 24:5k0.

It is worth pointing out that the metal is assumed to be a perfect
electric conductor (PEC). This hypothesis can be justified by consider-
ing a standard photolithographic process for the realization of a
200-nm-thick aluminum-based grating [a reduction of the bulk con-
ductivity for aluminum (Al) thin films is expected for thicknesses
lower than 150 nm as discussed in Ref. 41]. At 300GHz, the skin depth
of Al is about 50 nm, thus a 200-nm-thick Al film can be characterized
with its bulk conductivity value (viz., 37.7 MS/m)42 that leads to an
equivalent sheet resistance of Rs ¼ 177mX (Ref. 42). The obtained Rs

value, in the worst-case scenario of a PPW, leads to an attenuation
constant related to Ohmic losses of about âc ¼ 0:0014 (Ref. 42). The
latter, along with an attenuation constant due to radiation losses equal

FIG. 3. (a) Dispersion curves of the leaky phase (black solid line) and attenuation (blue solid line) constants reported vs frequency f and normalized with respect to the vacuum
wavenumber k0 (indicated by b̂ ¼ b=k0, and â ¼ a=k0, respectively). The black dashed and dotted lines represent the unperturbed limit cases of a parallel-plate waveguide
(PPW) and of a grounded dielectric slab (GDS) TE mode, respectively. Absolute value of the (b) Hz and (c) Hq components are reported, normalized with respect to their maxi-
mum on the z ¼ zndr=2 plane. The dashed blue line represents the theoretically predicted near-field distributions, while the red solid line shows the field obtained from a 3D
full-wave simulation of the entire BB launcher.
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to ârad ’ 0:019 when jb̂j ¼ 0:46 [see Fig. 3(a)], leads to a reduction of
the overall antenna efficiency of about 5%—the radiation efficiency of
a leaky structure, for jbj � a, scales with the ratios of the attenuation
constants between the lossless and lossy cases (see Refs. 43 and 44 for
further details). This effect would be the only appreciable difference,
since all the other near-field properties of the generated Bessel and
Bessel–Gauss beams would practically remain the same. Therefore,
metal losses are hereafter neglected and the metallic parts treated as
PEC with considerable advantage in terms of computational burden in
the full-wave simulations.

In order to corroborate the theoretical analysis, the entire
3D model of the device has been simulated using the time-domain
solver of CST Microwave Studio. The considered design parameters,
namely, the GDS height h ¼ 0:38 mm and dielectric permittivity
er ¼ 2:3ð1� j0:001Þ (representing a THz low-loss cyclo-olephin
polymer30), the period of the metal strip grating p ¼ 0:75 mm, the slot
width s ¼ 0:33 mm, the diameter of the central circular metallic patch
D ¼ 0:75 mm, and the number of periods N ¼ 16, are shown in Fig. 1.
Full-wave results are reported through a red solid line in Figs. 3(b) and
3(c) for the vertical Hz and radial component Hq, respectively, of the
magnetic field at z ¼ zndr=2, normalized with respect to their maxi-
mum. As expected for a TE polarization,17 Hz and Hq follow a J0ð�Þ
and a J1ð�Þ radial distribution, respectively, where the BB is generated16

(with Jqð�Þ being the qth-order Bessel function of the first kind).
It is worth pointing out that simulated results are in a very good

agreement with those obtained theoretically [blue dashed lines in Figs.
3(b) and 3(c)]. The latter are achieved by enforcing a dominant leaky-
wave distribution given by an inward cylindrical leaky wave on the
aperture plane.40 In particular, for a TE-polarized BB launcher, being
the dual case of the TM polarization,16 the radial envelope of the non-
vanishing tangential components is given by

E/;Hq / Hð2Þ
1 ðkqqÞ; (1)

with Hð2Þ
1 ð�Þ being the Hankel function of the second kind and of the

first order. With the leaky-wave aperture field at hand, one can predict
the theoretical near-field distribution by exploiting the Huygens–
Fresnel radiation integral29 as in Ref. 40. In Fig. 3, the leaky-wave
approach, the relevant design, and the dispersion diagram are validated
by the excellent agreement between numerical [obtained through the

radiation integral of the field distribution in Eq. (1)] and full-wave
results. It is worth pointing out that the beam size, commonly referred
to as the null-to-null beam width (NNBW), can be theoretically com-
puted as NNBW ’ 4:81=b ’ 1:7 mm (Ref. 17) and this value is cor-
roborated through full-wave simulations [see Fig. 3(b)].

Since BBs have a limited amount of power carried through their
main lobe and show on-axis intensity oscillations due to edge diffrac-
tion,45 the combination of BB and Gaussian-beam properties through
leaky waves was proposed in Ref. 27, analyzing the nondiffracting fea-
tures of BGBs. Starting from a leaky-wave design able to generate a BB
distribution, it is possible to synthesize a BGB with a certain Gaussian-
beam waist parameter w0 by properly tapering the radiating aperture.
According to Ref. 27, in order to excite a TE-polarized BGB, one has
to enforce the radially dependent normalized leaky attenuation
constant,

âðqÞ ¼ k0
4p

grqjHap
q ðqÞj2ðqap

0
q0jHap

q ðq0Þj2dq0 � gr

ðq
0
q0jHap

q ðq0Þj2dq0
(2)

with the radial magnetic-field component having the form

Hap
q ðqÞ ¼ Hð2Þ

1 ðbqÞe�ð1=2Þðq=w0Þ2 : (3)

Therefore, from a practical viewpoint, one has to synthesize over
the aperture plane the â value indicated by Eq. (2) while maintaining
b̂ constant. This objective can be achieved by progressively changing
the unit-cell design parameters. Since the phase constant mostly
depends on p and the leakage constant can be significantly affected by
variations of s (Ref. 16), the idea for a simple design procedure is to
modify the slot width along the radius while maintaining the strip peri-
odicity constant. As shown in Fig. 4(a) by the b̂ and â values com-
puted for p ¼ 0:75 mm through the previously discussed Bloch
analysis at f0, the phase constant is almost flat for s < 0:41 mm, while
the leakage constant spans from 0 to âmax ’ 0:025, with âmax being
the maximum value that can be obtained for the selected value of p.

In order to verify the proposed approach, a case study is
addressed below. Since the best range for the beam waist parameter
normalized with respect to the aperture radius, viz., ~w0 ¼ w0=qap, is
0:4 � ~w0 � 0:6 (Ref. 27), ~w0 ¼ 0:5 is assumed in the following. In
this case, by considering b̂ ¼ �0:41 and gr ¼ 90%, Eqs. (2) and (3)

FIG. 4. (a) Normalized leaky phase (black solid line) and attenuation (blue solid line) constants at f0 for different slot-width values s. (b) Desired, continuous distribution of the
normalized leaky attenuation constant (blue solid line) and its sampling (red asterisks) for the generation of a TE-polarized BGB with ~w 0 ¼ 0:5. The black dashed line repre-
sents the maximum value that can be synthesized with the proposed unit-cell period and configuration. (c) Full-wave (red solid line) and theoretical (blue dashed line) evalua-
tions of the Hz radial distribution on the z ¼ zBGBndr =2 plane normalized with respect to its maximum for the proposed TE-polarized BGB launcher. The black solid line represents
jHzjðq; z ¼ zndr=2Þ normalized with respect to its maximum for the BB launcher to show the higher concentration of power in the central lobes in the case of a BGB. (d) On-
axis jHzj 1D profile (for q ¼ 0) vs z normalized with respect to its maximum for the TE-polarized BB (black solid line) and BGB (blue solid line) launcher. The red solid line rep-
resents the expected amplitude exponential decay for a leaky-wave BB or BGB launcher.40
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generate the radial profile of â reported by the blue solid line in
Fig. 4(b), which is always below âmax; this condition ensures in princi-
ple the exact leaky-wave synthesis of the desired beam. Therefore, by
sampling the value of Eq. (2) for each period, the desired leakage con-
stant is synthesized by adjusting s in each unit cell as reported in Table
II. The running index of s represents the period number, which
increases from the center toward the aperture radius. It is worth point-
ing out that the BGB nondiffractive range differs from that of the BB
launcher since, for ~w0 < 1=

ffiffiffiffiffiffiffiffi
ln 4

p� �
, it is just a fraction of it. In partic-

ular, it reads as follows (Ref. 27): zBGBndr ¼ zndr~w0

ffiffiffiffiffiffiffiffi
ln 4

p
, which corre-

sponds to zBGBndr ’ 0:6zndr ’ 14:5mm.
In order to corroborate the proposed analysis and achieve a real-

istic design of the proposed original TE-polarized BGB launcher, a 3D
model of the device has been simulated using the time-domain solver
of CST Microwave Studio. The structure is realized on a GDS with the
same electric and geometrical features as the BB launcher. It consists of
annular strips printed on the GDS with a period p ¼ 0:75mm and
whose widths are tapered as reported in Table II. The circular slot
etched on the ground is fed by the CW output of the previously dis-
cussed Mari�e transducer. As shown in Fig. 4(c), full-wave results are in
very good agreement with the theoretical ones, validating the leaky-
wave design of the structure. It is worth noticing that a beam size of
about 1.9mm is achieved in this case, a value which is slightly larger
than the BB distribution as expected due to the lower b̂ value consid-
ered for the BGB. The theoretical near-field distribution has been
obtained by assuming a dominant leaky-wave contribution [i.e., using
Eq. (3)] on the radiating aperture. The minimal differences among the-
oretical and full-wave results are justified by both the discretized physi-
cal implementation of Eq. (2) in the realistic scenario and by the
smooth variation of b̂ along the aperture radius. It is worth pointing
out that the main advantages of a BGB have been achieved also for TE
polarization: the field intensity is concentrated on the central lobes
whereas the amplitude level on the side lobes is significantly reduced,
almost halved after the second null [see the difference between BB and
BGB in Fig. 4(c)]. Moreover, the on-axis oscillations have been
strongly reduced [see Fig. 4(d)]. In Fig. 4(d), the exponential decay
profile of the amplitude of the jHzj component is also evident, which
can be described, in leaky-wave devices, through e�a tanðh0Þz , as shown
in Ref. 40.

In conclusion, in this work we have addressed the analysis and
design of TE-polarized, (sub)millimeter-wave, leaky-wave beam
launchers for the generation of focusing, diffraction-limited beams in
the radiative near-field region. TE-polarized Bessel or Bessel–Gauss
beams with a beam size of 1:7k0 and 1:9k0 have been obtained
through a leaky-wave approach at 300GHz up to a nondiffractive dis-
tance of 24:5k0 and 14:5k0, respectively. Moreover, the implementa-
tion of a realistic, innovative feeder, matched through an effective

semi-analytical approach is presented. Demonstrated results pave the
way for developing Bessel and Bessel–Gauss launchers also at
submillimeter-wave frequencies, providing a robust, azimuthally sym-
metric, and realistic feeder for TE-polarized devices, which is currently
lacking.
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