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Abstract
Nowadays, industrial symbiosis (IS) is recognized as a key strategy to support the transi-
tion toward the circular economy. IS deals with the (re)use of wastes produced by a pro-
duction process as a substitute for traditional production inputs of other traditionally dis-
engaged processes. In this context, this paper provides a systematic literature review on 
the energy-based IS approach, i.e., IS synergies aimed at reducing the amount of energy 
requirement from outside industrial systems or the amount of traditional fuels used in 
energy production. This approach is claimed as effective aimed at reducing the use of tra-
ditional fuels in energy production, thus promoting a circular energy transition. 682 papers 
published between 1997 and 2018 have been collected, and energy-based IS cases have 
been identified among 96 of these. As a result of the literature review, three categories of 
symbiotic synergies have been identified: (1) energy cascade; (2) fuel replacement; and 
(3) bioenergy production. Through the review, different strategies to implement energy-
based IS synergies are highlighted and discussed for each of the above-mentioned catego-
ries. Furthermore, drivers, barriers, and enablers of business development in energy-based 
IS are discussed from the technical, economic, regulatory, and institutional perspective. 
Accordingly, future research directions are recommended.

Keywords Industrial symbiosis · Circular economy · Energy · Energy-based industrial 
symbiosis · Systematic literature review

1 Introduction

The global energy consumption has more than doubled from 1960 to 2014 (Fig. 1), due to 
the combined effect of growth in population and in per capita energy consumption (Fig. 2), 
and it is continuing to grow (e.g., Ganivet 2019; Smil 2016; The World Bank 2017). In 
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fact, global energy demand rose by 2.1% in 2017, more than twice the growth rate in 2016, 
and it is expected to further rise by 30% until 2040 (International Energy Agency 2017a, b, 
2018; The World Bank 2017). Currently, over 80% of the energy is produced by fossil fuels 
such as oil, coal, and natural gas. Such production is responsible for more than 60% of the 
 CO2 emissions worldwide (International Energy Agency 2017a), which are recognized as 
the main cause of global warming (IPCC 2014). For this reason, policymakers at the global 
level committed to cut  CO2 emissions by 80% until 2050 (European Commission 2011a; 
Rogelj et al. 2016). In order to achieve this goal, the amount of energy produced from fossil 
fuels must be drastically reduced.

Energy-based industrial symbiosis (IS) is recognized as an effective strategy to 
reduce the use of traditional fuels in energy production (Giurco et  al. 2011; Hassiba 
et al. 2017; Liu et al. 2017). For instance, the total energy consumption of the Chinese 

Fig. 1  Global primary energy consumption per energy source, measured in terawatt-hours (TWh) per 
year—adapted from Smil (2016)

Fig. 2  Per capita energy consumption and global population from 1960 to 2014—data from The World 
Bank (2017)
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iron and steel sector could be reduced up to 6% thanks to energy-based IS synergies 
(Wen et  al. 2017). IS deals with the (re)use of waste materials and energy produced 
by a production process as a substitute for traditional production inputs of other tradi-
tionally disengaged processes, belonging to the same company or to different compa-
nies (e.g., Chertow 2000; Lombardi and Laybourn 2012; Shah et al. 2020; Yadav and 
Tiwari 2019). Hence, firms implementing the IS practice can reduce their production 
costs while creating environmental benefits for the overall collectivity (e.g., Chavalparit 
et al. 2006; Jacobsen 2006; Zhao et al. 2018). Benefits created by the IS practice have 
been recognized via adopting several methodologies based on flow analysis, thermody-
namics, life cycle assessment (LCA), and network analysis (Fraccascia and Giannoccaro 
2020). Since able to create economic and environmental benefits simultaneously, IS is 
nowadays recognized as one of the most-effective strategies supporting the transition 
toward the circular economy (e.g., de Abreu and Ceglia 2018; Ungerman and Dědková 
2019). Recently, the implementation of IS has been explicitly recommended by the 
European Commission (European Commission 2011b, 2015) and several countries have 
introduced it in their agenda (Park et al. 2008; Van Berkel et al. 2009).

From the company perspective, the main driver toward adopting the IS practice is the 
willingness to gain economic benefits (Esty and Porter 1998; Yuan and Shi 2009). How-
ever, companies usually lack awareness on how to introduce the IS approach into their 
current business practice (Fraccascia et  al. 2016). Aimed at supporting the adoption 
of IS, the literature provides several contributions on IS business models discussing a 
wide range of factors (e.g., technical, operational, logistical, spatial, regulatory, market-
related, and environmental) that might influence the cooperation dynamics among com-
panies (Chopra and Khanna 2014; Genc et al. 2019; Herczeg et al. 2018; Madsen et al. 
2015; Sakr et al. 2011; Tudor et al. 2007; Yazan and Fraccascia 2020). However, so far 
the literature has mainly focused on material-based IS synergies, while less attention 
has been devoted to energy-based IS synergies, i.e., symbiotic synergies where a waste 
of one production process is exploited for energy-purposed by another production pro-
cess. In particular, the literature has mainly explored some case studies of energy-based 
IS synergies. A recent article by Butturi et  al. (2019) investigates how eco-industrial 
parks can help to promote the use of renewable energy sources via IS, at both industrial 
and urban levels. Despite its valuable contribution, their study does not provide a com-
prehensive view on energy-based IS, since it considers only eco-industrial parks, while 
IS can occur also among entities not belonging to the same park (e.g., Chertow 2000). 
Nevertheless, the authors recognize the need to perform a more in-depth analysis of the 
literature on energy-related themes that can support the implementation of energy sym-
biosis schemes. In fact, a comprehensive view of the energy-based IS approach is miss-
ing, in terms of application strategies, drivers, barriers, and enablers.

This paper aims at filling this gap. Through a systematic review of the available lit-
erature on practical cases of IS, we first frame existing and planned energy-based IS 
synergies. Then, based on the IS cases, we identify the different strategies to imple-
ment energy-based IS businesses and highlight the drivers, barriers, and enablers of 
business development in energy-based IS. Accordingly, future research directions are 
recommended.

The paper is structured as follows. Section 2 presents the methodology adopted to carry 
out the review. Sections  3 and 4 show the results of the literature review: in particular, 
Sect.  3 proposes a categorization of energy-based IS cases, while in Sect.  4 the drivers, 
barriers, and enablers of energy-based IS are elaborated. Then, a discussion follows in 
Sect. 5. The paper ends with conclusions in Sect. 6.
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2  Methodology

The study is based on a bibliographic research conducted on January 30, 2018. Figure 3 
graphically shows the steps conducted in this research. The first step was the bibliographic 
literature search, aimed at collecting papers presenting and discussing cases of IS. The data 
were retrieved from Scopus, an academic citation indexing and search service of Elsevier. 
The following research keywords have been applied to title, abstract, and keywords of 
papers:

(“Case study” OR “case studies” OR case OR cases) AND (“Industrial Symbiosis” OR 
“Industrial Ecology” OR “Circular Economy” OR “Industrial park*” OR “Eco-industrial 
park*” OR “Closed-loop supply chain*”).

Research keywords were selected to encompass the concept of IS including “industrial 
ecology,” “circular economy,” and “closed-loop supply chain” concepts. Such an approach 
was adopted because, according to the authors’ experience, some papers might discuss 
cases of IS without contextualizing them into the IS field but within the above-mentioned 

Fig. 3  Steps for the literature review
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fields. As a result of the research, 1100 papers were collected, 1041 of them (94.64%) in 
English. We further limited the analysis by considering only papers published in interna-
tional scientific journals, in order to focus on peer-reviewed articles (e.g., Caniato et  al. 
2015; Potrich et al. 2019), and papers whose full text was available. The first database was 
composed of 682 papers (65.80% of the original sample). The second step concerned filter-
ing papers. In this regard, a selection process was carried out through analyzing the papers 
resulting from the previous step, aimed at excluding papers discussing cases not relevant 
for the aim of this research, i.e., cases not involving energy-based IS exchanges.1 The third 
step was aimed at building the final database of papers, which includes only papers report-
ing at least one energy-based IS synergy. Such a database is made by 96 papers published 
between 2001 and 2018 in 36 journals (Fig. 4). Note that some papers may discuss more 
than one case of energy-based IS synergy. The final step was aimed at retrieving general 
information on the involved industrial sectors and production processes, the physical flows 
generated, the environmental and economic benefits created (where discussed), and driv-
ers, barriers, and enablers of energy-based IS.

3  Energy‑based industrial symbiosis classification

Following the systematic literature review, we categorize energy-based IS exchanges in 
three groups: (1) energy cascade; (2) fuel replacement; and (3) bioenergy production. In 
particular, an energy cascade between two processes occurs when the waste energy (e.g., 
waste heat or steam) produced by the former is used by the latter. A fuel replacement-based 
IS synergy occurs when waste materials are used to replace traditional fuels in existing 
fuel-based energy production processes (e.g., coal-based energy production). Finally, bio-
energy production-based IS synergies are devoted to exploiting organic wastes to produce 
bioenergy. Figure 5 depicts the graphical representation of these categories, considering—
for the sake of clarity—the case where different companies are involved.

Fig. 4  Number of papers published per year (papers published in 2018 are not shown)

1 A practical case of IS might not involve energy-based IS synergies but only material-based IS synergies.
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In the following subsections, each category is presented with an overview of cases, 
which discusses how energy-based IS synergies are implemented. This approach is mainly 
material/energy flows oriented, so to map the potential physical flows that might offer dif-
ferent sustainable and circular business opportunities to the involved companies. Techni-
cally, the IS takes place in three phases: identification of the potential of IS and potential 
business partners, assessment of economic and environmental expectations and develop-
ment of potential business strategies, and the implementation of IS as a long term and sta-
ble business. Depending on a large variety of operational, spatial, technical, and technolog-
ical conditions, each IS might show a case-specific character offering diversified pathways 
of business implementation. Technical aspects are discussed in detail in Sect. 4 for each of 
the specific energy-based IS categories proposed in this section.

3.1  Energy cascade

Four different models of energy cascade are implemented, according to business and tech-
nical dimensions (Fig.  6). From the business perspective, energy cascade can be imple-
mented within a single company (Li et  al. 2010; Zhang et  al. 2013) or among different 
companies. From the technical perspective, energy flows can be directly implemented 
among production processes (Mannino et al. 2015; Yu et al. 2015a) or the energy can be 
sent to an energy recovery facility and then to other processes (Baas 2011; Li et al. 2015a). 
In all of the above-mentioned models, implementing energy cascade requires building new 
infrastructures, e.g., the pipelines connecting the involved processes and the heat recovery 
system facility (Tsvetkova et al. 2015).

From the waste energy producer’s perspective, we found several types of companies and 
production processes involved: power plants (Kikuchi et al. 2016; Zhang et al. 2009), iron 

Company B
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Fig. 5  Graphical scheme of energy-based IS synergies involving processes from different companies: 
energy cascade (between companies A and B), bioenergy production (between companies A and C), and 
fuel replacement (between companies A and D)
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and steel companies (Dong et al. 2013a, b, 2014; Li et al. 2010; Li et al. 2015c; Yu et al. 
2015a), pulp mills (Baas 2011; Lehtoranta et al. 2011; Sokka et al. 2011), chemical com-
panies (Chae et al. 2010; Li et al. 2015c; Mannino et al. 2015), sugar production facilities 
(Short et al. 2014), biofuel producers (Martin and Eklund 2011), mineral companies (Brent 
et al. 2012), and glass manufacturers (Andrews and Pearce 2011). From the user perspec-
tive, different companies are currently involved in the use of waste energy: waste treatment 
companies (Wang et  al. 2017a, b), pulp mill and paper mill factories (Li and Ma 2015; 
Wang et al. 2017a, b), food processing companies (Fan et al. 2017; Park and Park 2014), 
home appliance companies (Fan et al. 2017), chemical companies (Dong et al. 2013a; Geng 
et al. 2014; Li et al. 2017; Park and Park 2014; Sun et al. 2017; Yune et al. 2016), desali-
nation facilities (Shi et al. 2010), construction companies (Zhang et al. 2009), automobile 
manufacturers (Shi et  al. 2010), high-tech companies (Zhang et  al. 2009), refineries and 
biofuel producers (Eckelman and Chertow 2013; Martin and Eklund 2011), community 
facilities and greenhouses (Baas 2011; Geng et al. 2010; Martin and Eklund 2011; Paka-
rinen et al. 2010; Posch 2010), steel plants and sintering plants (Wu et al. 2016a). Notice 
that the same company can play both the role of energy producer and energy user simul-
taneously, for instance when it uses high-pressure steam (which is received from another 
company) while also producing leftover low-pressure steam (which is sent to another com-
pany) (Li et al. 2010; Shi et al. 2010).

DESIGN OF PHYSICAL FLOWS (TECHNICAL DIMENSION)
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Implementing energy cascade allows to minimize the use of energy within industrial 
areas because the total energy requirement from outside is reduced, ceteris paribus (Leong 
et al. 2017; Wen et al. 2017). For instance, in Jinan City (China) the energy requirement 
has been reduced by 10,900 tons of coal equivalent (tce) per year thanks to energy cas-
cade among companies located in the industrial area close to the city (Dong et al. 2014). 
In Liuzhou (China), 200 t/year of steam produced by a power plant and an iron and steel 
company is destined to the central heating of the residential sector: this allows to reduce 
the energy consumption by 12,500 tce (Sun et  al. 2017). Furthermore, reducing energy 
requirement contributes to creating indirect environmental benefits in terms of avoided 
 CO2 emissions from energy production. For instance, reduction in  CO2 emissions thanks 
to energy cascade accounts for 12.6 kt/year in Liuzhou (China) (Sun et al. 2017) and 45.5 
kt/year in Ulsan (South Korea) (Park and Park 2014). Several studies are devoted to assess-
ing the benefits potentially stemming from implementing energy cascade among compa-
nies in a given area. For instance, implementing energy cascade in Guiyang (China) would 
allow to recover around 300 tons per year of waste heat, which corresponds to save fossil 
fuel by 18,864 tce per year and reduce  CO2 emissions by 49 kt/year (Dong et al. 2016; Li 
et al. 2015b). Zhang et al. (2016) show that the energy demand from companies located in 
the eco-industrial park in Jurong Island (Singapore) can be reduced by around 40%. Has-
siba et al. (2017) show that implementing energy cascade among companies located in the 
industrial park in Mesaieed Industrial City (Qatar) might contribute to reduce energy costs 
by around 5 million dollars per year and  CO2 emissions by more than 200 tons per day. 
Finally, Chae et al. (2010) show that energy cascade in petrochemical complex in Yeosu 
(South Korea) can reduce waste heat by 82% and energy costs by more than 88%.

3.2  Fuel replacement

Four different models of fuel replacement synergies are implemented, according to busi-
ness and technical dimensions (Fig.  7). From the business perspective, fuel replacement 
synergies can be implemented within one company or among different companies. From 
the technical perspective, the waste can be directly used to replace fuel (direct replacement) 
or converted in an alternative fuel, e.g., pallet (indirect replacement), through a waste treat-
ment process.

Several types of waste are currently used as alternative fuels: lignin from pulp and paper 
industry or from bioethanol production (Gabriel et al. 2017; Mattila et al. 2012; Tan et al. 
2016), plastic wastes (Huysman et al. 2017; Yu et al. 2015d), exhausted tires (Albino and 
Fraccascia 2015; Eckelman and Chertow 2013; Guo et al. 2016; Subulan et al. 2015; Yazan 
et  al. 2018; Yu et  al. 2015d), wood scraps (Baas 2011; Kikuchi et  al. 2016; Meneghetti 
and Nardin 2012; Rosa and Beloborodko 2015; Ruggieri et al. 2016; Velenturf 2016), coal 
gangue generated from coal mining process (Guo et  al. 2016; Li et  al. 2015b), bagasse 
from sugar production (Kikuchi et  al. 2016), solid residues from biodiesel production 
(Benjamin et  al. 2015), carbonic oxide from calcium carbide furnace (Yu et  al. 2015b), 
agricultural wastes produced by farms (Costa and Ferrão 2010), waste oil (Eckelman and 
Chertow 2013), and industrial solvents and hazardous waste (Ashton 2011). These wastes 
are mainly used to replace coal in heat and power plants or in energy-intensive industries 
(e.g., cement production).

New applications of the fuel replacement practice have also been explored, dealing with 
wastes that are traditionally not recovered but disposed of in the landfill. In this regard, 
Allesina et  al. (2017) investigate the conversion of spent coffee grounds from bars into 
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pellets, which can be used as a source of thermal energy to produce roasted coffee. Sper-
andio et al. (2017) investigate two different solutions for recovering and valorizing spent 
grain from beer production: (1) conversion into pellet that can be used for heat genera-
tion in beer production and (2) production of biochar through the thermochemical process 
of pyro-gasification. Both studies show the technical and economic feasibility of these 
applications.

Several papers report the use of urban wastes as a replacement of coal in industrial pro-
cesses. For instance, in Kawasaki (Japan) separated plastic and paper generated within the 
urban area are converted into high-performance solid fuel, which is then used in a steel 
plant as a substitute for coke and fuel in the blast furnace (Ohnishi et al. 2017). In Pingli-
ang City (China), unsorted urban wastes are used to replace coal in a power plant (Dong 
et al. 2017).

From the environmental perspective, the adoption of such an approach can result in 
three main benefits: (1) reducing the amounts of wastes disposed of in landfills; (2) reduc-
ing the amounts of fossil fuels used in industrial processes; and (3) reducing the amounts 
of associated greenhouse gases (GHG) emitted in the atmosphere. In particular, savings in 
GHG emissions are due to avoided fuel production, transport, and combustion, as well as 
avoided disposal of wastes.2 Considering the potential environmental benefits, the adop-
tion of such an approach has been planned in Guiyang (China) (Dong et al. 2016; Li et al. 
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Fig. 7  Models of fuel replacement IS synergies. Legend: P, producer; U, user; T, waste treatment process

2 One more source of saving in GHG emissions could be related to the fact that the process of burning 
wastes could produce a lower amount of  CO2 than the process of burning fossil fuels, ceteris paribus. How-
ever, in this regard, two issues should be highlighted. First, the reviewed literature has devoted a scant atten-
tion to investigate this aspect. Second, results can be highly case-specific, since they could depend on the 
characteristics of the waste and the fuel replaced, as well as on process parameters.
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2015b), where two synergies can be developed: (1) 10 t/year of waste plastic can be used 
to replace 12 t of coal by cement, iron and steel plants, reducing  CO2 emissions by 31.2 kt/
year; and (2) 100 t/year of coal gangue produced by coal industry can be reused by local 
power plants for electricity generation, saving fossil fuel by 30 ktce/year and reducing  CO2 
emission by 78 kt/year. However, savings in  CO2 emissions are highly case-specific. In 
fact, Eckelman and Chertow (2013) highlight that burning wastes could produce more  CO2 
than burning traditional fuels, ceteris paribus. This may depend on several technical issues, 
such as the replacement capability of wastes (i.e., how many units of wastes are required to 
replace one unit of fuel) and the  CO2 emission coefficients of both waste and the replaced 
fuel. For instance, for each ton of paper used in Kawasaki,  CO2 emissions can be reduced 
by 4.86 t, while 3.16 t of  CO2 can be saved per each ton of plastic used as fuel, ceteris pari-
bus (Ohnishi et al. 2017).

3.3  Bioenergy production

Bioenergy production-based IS synergies can be classified according to business and geo-
graphic dimensions. From the business perspective, bioenergy production synergies can be 
implemented within one company, when the waste producer implements bioenergy pro-
duction processes, or among different companies, so that a bioenergy production chain is 
developed. From the geographic perspective, the waste exploited for bioenergy production 
can be produced in rural, industrial, and urban areas.

Concerning the wastes produced in rural areas, Alfaro and Miller (2014) identify sev-
eral energy-based IS synergies that can be adopted inside smallholder farms, aimed at pro-
ducing electricity and biogas for internal use, and discuss their economic implications for 
farms. Sharib and Halog (2017) highlight the possible use of rubber wood as a biomass 
feedstock for electricity production. Zabaniotou et  al. (2015) and Ruggieri et  al. (2016) 
discuss how to produce energy from wastes generated by olive oil production. Pierie et al. 
(2017) and Yazan et al. (2018) analyze the electric energy production chain from animal 
manure in the Netherlands, where different manure producers can cooperate with one or 
more energy producers. In particular, Pierie et al. (2017) assess the possible economic and 
environmental benefits for the involved companies and the collectivity, respectively. Yazan 
et al. (2018) focus on the cooperation pathways among manure producers and bioenergy 
producers, investigating the manure exchange price that would enhance the willingness 
to cooperate of these actors. Several papers analyze palm-based energy production (e.g., 
empty fruit bunches, palm kernel shells, palm mesocarp fiber, palm oil mill effluent) in 
Malaysia. In particular, Ng et al. (2014b) and Ng et al. (2014a) propose a disjunctive fuzzy 
optimization approach to determine the configuration of production chain which optimizes 
the total economic performance, while Tan et al. (2016) and Andiappan et al. (2016) focus 
on exploring the fair allocation of economic benefits among all the actors based on their 
respective contributions toward the chain. In particular, Tan et al. (2016) propose a linear 
programming cooperative game model, while Andiappan et al. (2016) propose an optimi-
zation-based negotiation framework. Tan et al. (2016) also address the energy production 
chain from waste biomass of sago palm waste (e.g., sago fibers and sago bark), which is 
generated in sago starch food production typically to be found in tropical lowland forest in 
South East Asia countries and Papua New Guinea. Gonela and Zhang (2014) and Gonela 
et  al. (2015) develop optimization models for designing the bioethanol production chain 
based on the IS approach, aimed at determining the configuration of the chain that maxi-
mizes the overall economic performance. Furthermore, Martin and Eklund (2011) suggest 
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the opportunity to reuse the waste heat from ethanol production in biogas and biodiesel 
processing, as these processes can utilize low-temperature heat. Tsvetkova et  al. (2015) 
investigate the biogas production chain using agricultural wastes, highlighting the key 
actors and modeling both material and monetary flows among them.

Concerning the wastes produced in urban areas, several papers explore the energy pro-
duction from organic wastes, which on average account for around 46% of total munici-
pal wastes (The World Bank 2012). Such a practice is considered as a useful strategy for 
mitigating the environmental impact created within urban areas. Apart from the energy 
producer, these IS synergies involve also citizens, responsible for waste production, and 
the local government, responsible for waste collection and disposal. Within urban areas, 
three kinds of organic wastes can be used to produce energy: food waste, waste cooking 
oil, and green wastes (i.e., wastes produced in green areas) (Fraccascia et al. 2016; Li et al. 
2017). These wastes stem from household consumption, food retail (e.g., food selling in 
supermarkets), food service (e.g., food cooked and served in restaurants and canteens), and 
green areas maintenance (Albino et  al. 2015). Furthermore, these organic wastes can be 
used in combination with wastes produced in rural areas. In this regard, Vega-Quezada 
et al. (2017) assess the technical and economic feasibility of producing biogas through a 
mixture of municipal urban waste and livestock manure. Nevertheless, the sludge resulting 
from wastewater treatment plants can be used to produce electric energy through cogenera-
tion (e.g., Gonela and Zhang 2014; Yu et al. 2015a).

Concerning the use of industrial wastes for energy production, Sgarbossa and Russo 
(2017) and Santagata et  al. (2017) investigate IS synergies implemented by companies 
belonging to the supply chain of meat products, where large amounts of slaughterhouse 
waste are produced. These wastes mainly consist of the portion of a slaughtered animal that 
cannot be sold as meat or used in meat products. All the unusable parts of the slaughtered 
carcass can be collected for processing from abattoirs, butchers, and food processing sites. 
Then, after a pretreatment process, the solid fraction (i.e., bone and meat) can be used in a 
cogeneration plant to produce energy. Velenturf (2016) highlights the exploitation of waste 
oils generated by fuel production to produce energy. Electric energy and biogas can also 
be produced from sludge generated by waste treatment processes (Benjamin et al. 2015; Li 
et al. 2015c; Maaß and Grundmann 2016; Sharib and Halog 2017; Tan et al. 2016; Tsvet-
kova et al. 2015; Yu et al. 2015a; Zijp et al. 2017).

In general, bioenergy production might create three environmental benefits: (1) a lower 
amount of (bio-) waste disposed of in landfills; (2) a lower amount of energy produced 
from conventional sources; and (3) a reduction in GHG emissions. In particular, the lower 
amount of GHG emissions results from the reduced amount of energy production from 
conventional sources and the (potential) reduced GHG emitted by the bioenergy production 
process.

4  Energy‑based industrial symbiosis: drivers, barriers, and enablers

A variety of drivers, barriers, and enablers (DBEs) for the energy-based IS practice is found 
in the literature. Following Li et  al. (2015c), we observe four different forms of DBEs: 
(1) financial, (2) technological, (3) regulatory, and (4) institutional. In general, financial 
DBEs refer to the monetary benefits and investments related to IS synergies. Technological 
DBEs concern any technical condition that influences the implementation of IS synergies. 
Regulatory DBEs are about any form of binding or encouraging legislation that is either 
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in place or required to be established with respect to IS. Finally, institutional DBEs con-
cern issues related to the organizational structure of involved firms, their business models, 
and their strategic behavior in implementing IS. Note that such a general classification is 
mainly based on the primary nature of DBEs—and not all their potential consequences or 
available solution concepts to deal with them. We use this categorization on various forms 
of DBEs in order to have a clear view of the essence of DBEs and their potential conflict-
ing/enhancing interactions (see the upcoming subsections for detailed discussions).

While the above-mentioned four classes of DBE are common among the four catego-
ries, their manifestation is not necessarily the same. In the following subsections, we sur-
vey different forms of DBEs in the three energy-based IS categories presented in Sect. 3. 
Exploring the DBEs—categorized with respect to the type of energy-based symbiotic 
practice—might support firm managers’ decisions during the process of IS evaluation as 
well as implementation. For instance, even if a manager encounters a barrier against a spe-
cific IS synergy, he/she may accept to explore the opportunity to implement IS—and not 
to evaluate it as an unpromising IS immediately—as he/she would be aware of potential 
enablers to overcome the barrier in question. In this way, the potential economic and socio-
environmental benefits of the practice would not be dismissed.

Table 1 shows a summarized list of drivers, barriers, and enablers for each category, 
which are discussed in the following subsections.3 Note that although some DBEs are com-
mon among different forms of energy-based IS practices, this table is generated merely 
based on specified DBEs in case studies included in the literature review.

4.1  DBEs in energy cascade IS

From the business perspective, in energy cascade cases the producer company usually 
sells the waste energy to the user company. Hence, waste energy producers are encouraged 
to implement IS synergies thanks to the additional revenues from selling waste energy, 
while waste users are willing to reduce energy costs, because of the lower energy price 
paid (Dong et al. 2014; Park and Park 2014). However, the willingness of companies to 
cooperate in energy cascade synergies might be hampered by the need to adjust their busi-
ness strategy according to the IS practice (Wang et al. 2017a, b). This shows a trade-off 
between (former) financial drivers against (latter) institutional barriers in energy cascade 
IS practices. In addition, a fundamental prerequisite for the development of energy cascade 
is the capability to transport energy among different companies (Yune et al. 2016). Such a 
technological barrier limits the geographic scale of possible synergies, since the involved 
companies need to be located in close proximity so that energy transportation is technically 
and economically feasible.

From the technical perspective, energy users might have technical requirements (e.g., 
temperature and pressure of waste steam) for using the waste energy. Such requirements 
may make the IS synergy unfeasible—unless the waste energy user company implements 
technical changes in the production processes, which induce additional costs. Hence, a 
technological barrier may call for financial investments. Thus, in case the total foreseeable 
benefit (of implementing the IS practice) does not pay off such an investment, firms assess 
the practice as economically unpromising due to a financial barrier—which stems from a 

3 The four different forms of DBEs proposed by Li et al. (2015c) are not highlighted in this table because 
of a space limitation but are discussed in the following subsections.
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technological origin. In principle, the return on investments—to implement energy cascade 
IS—mainly depends on the energy market price, as well as on the operational costs of IS 
that companies need to sustain (Wang et al. 2017a, b).

Furthermore, energy cascade IS synergies might face risks related to the fluctuations in 
the stream of waste energy supply or in the continuity of the energy demand—which can 
be affected by the seasonality of the main product demands, technical failures, or chang-
ing market dynamics (technological/institutional DBEs). As discussed by Albino et  al. 
(2016), the uncertainty in waste production is also a typical problem for material-based 
IS synergies. In that case, to reduce the vulnerability of IS relations caused by the mis-
match between demand and supply of waste companies can stock waste materials (when 
the amount of waste required is lower than the amount produced) and use them when the 
demand becomes higher than supply (Fraccascia et  al. 2017b). However, this solution is 
not always applicable in the energy cascade synergies, mainly because energy storage tech-
nologies may not be economically sustainable (Andrews and Pearce 2011; Kikuchi et al. 
2016). In such a case, the IS synergy has a low resilience to perturbations caused by the 
mismatch between demand and supply of waste energy (Wang et al. 2017a, b).4

The implementation of energy cascade may be in conflict with regulations that con-
sider the linear economy as the established paradigm (Li and Ma 2015; Yu et al. 2015c). 
Yu et al. (2015c) classify the IS-related policies into three categories: (1) resource com-
prehensive utilization policies; (2) tax preference policies; and (3) CE and IS promotion 
policies (regulatory DBE). While the traditional set of policies merely focuses on fostering 
the industries to realize a desirable outcome from the economic, environmental, and social 
perspective, the CE-oriented legislations also take into account the methods that indus-
tries employ (e.g., exploiting IS practices). Hence, governments are ought to reduce the 
complexity and remove the barriers in implementing IS synergies through similar forms 
of legislative reform and creations—as illustrated in Yu et  al. (2015b). For instance, by 
adopting regulations that specify boundaries on energy consumption and greenhouse gas 
(GHG) emissions, as well as policies aimed at nudging firms to discard obsolete processes 
and equipment, governments may enforce companies to implement energy cascade syner-
gies (Cerceau et al. 2014; Lehtoranta et al. 2011; Lenhart et al. 2015; Wu et al. 2016b; Yu 
et al. 2015a). In parallel, governments might stimulate the application of advanced cleaner 
technologies through the provision of fiscal subsidies (Li et al. 2017; Wen et al. 2018) or 
directly supporting IS synergies by financing physical infrastructures required to exchange 
energy (Hein et  al. 2017; Park and Park 2014). Although it is generally recognized that 
policy is an important instrument that can stimulate and remove barriers for IS, the number 
of regulations specifically aimed toward fostering IS or regulation in which IS appears as a 
promoted business model is still relatively low (Lehtoranta et al. 2011).

4.2  DBEs in fuel replacement IS

From the business perspective, companies are willing to adopt the fuel replacement 
approach aimed at reducing traditional fuel purchase costs (waste users) and waste disposal 
costs (waste producers)—financial DBEs. However, according to the European Waste 

4 For a detailed discussion on the resilience of IS synergies and its importance for the IS approach, we refer 
the readers to the following papers: (Ashton et al. 2017; Benjamin et al. 2015; Chopra and Khanna 2014; 
Fraccascia 2017a; Li and Shi 2015; Meerow and Newell 2015; Zeng et al. 2013; Zhu and Ruth 2013).
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Hierarchy (European Parliament 2008), the use of waste materials as alternative fuel is 
suggested only in the case of low-quality wastes (e.g., wastes with a high percentage of 
impurities), because high-quality wastes might be used to replace production inputs—reg-
ulatory DBEs.5 For instance, high-grade lignin can be used to replace carbon fibers and 
high-quality plastic can be used to replace Phenol (Gabriel et al. 2017).

A key barrier for the development of fuel replacement IS synergies is the lack of useful 
and reliable information on the waste demand and supply (Guo et al. 2016)—institutional 
DBE. In fact, as a common property among IS-based practices, it may happen that demand 
(supply) for a given waste exists, but firms producing (requiring) that waste are not aware 
of such a demand (supply) (Aid et al. 2017; Chertow 2007; Golev et al. 2015; Sakr et al. 
2011; Zhu and Cote 2004). However, even in case of full information availability, several 
issues may hamper the use of wastes as fuels.

First, the waste may require a pretreatment process before being used as fuel, e.g., aimed 
at removing impurities (Fraccascia et al. 2017a; Herczeg et al. 2018). In such a case, com-
panies need to design and implement additional processes, which are not related to their 
core business (institutional DBE). For instance, using the spent coffee grounds as tradi-
tional fuel in coffee roasting plants requires appropriate drying and pallet-making machin-
ery (Allesina et  al. 2017)—technological DBE. Purchase costs of these machineries and 
associated operational costs (e.g., maintenance, workforce, inputs, and energy) erode the 
economic benefits that companies gain from the IS approach. Again, we observe how the 
required institutional change (in the business model) calls for technological updates and 
accordingly requires financial investments.

Second, the whole idea of replacing fuels with wastes might be influenced by techni-
cal and regulatory issues. From the technical perspective, the waste might have different 
characteristics from the replaced fuel, e.g., a lower heating value. In such a situation, the 
replacement is not a perfect match—with respect to quality—but a considerable alterna-
tive. In other words, some characteristics may constrain the substitution, e.g., when the 
available quality of waste is lower than the required quality (on the receiver side). One 
explanation is that waste is not produced upon demand but emerge as secondary outputs of 
main production activities (Yazan et al. 2016). This may simply result in a mismatch with 
respect to both quantity and quality. Then, a common solution is to use a mixture of tradi-
tional fuels with the waste-based fuel. It should be noticed that such a practice may require 
to calibrate the burning facilities, e.g., furnaces, according to the specific waste-fuel mix 
they receive, which results in additional operations for companies to undertake.

Third, when a waste material is substituting a traditional fuel, environmental protection 
technologies must be adopted as well (Subulan et al. 2015). Otherwise, the traditional tech-
nologies that are in place (e.g., to filter the emissions caused by the traditional fuel) may be 
insufficient when a company either replaces or mixes the fuel with a non-traditional waste 
material, e.g., exhausted tires—technological DBE.

Fourth, from the governance perspective, one main driver behind the use of wastes as 
fuel is to promote the reduction of raw material consumption and the GHG emissions. To 

5 A common definition of waste quality is lacking in the context of IS. In fact, according to Prosman and 
Wæhrens (2019, p. 113), “the context in which many industrial symbiosis practices unfold complicates 
defining waste quality and developing suitable incentives for waste quality (Yenipazarli 2019).” Generally, 
the concept of waste quality can be related to the similarity of the waste to the replaced input, in terms of 
physicochemical characteristics. The more similar the waste characteristics are to those of replaced input, 
the higher the waste quality will be, ceteris paribus. In this regard, a low-quality waste can be considered as 
a waste characterized by a high content of impurities.
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encourage such a practice, governments at regional, national or even international level can 
play a key role by means of economic and regulatory instruments, as well as by provid-
ing companies with technical support. For instance, governments can introduce economic 
incentives for firms that replace traditional fuels and enforce penalties against GHG emit-
ters (Fraccascia et al. 2017b; Liu et al. 2018; Ohnishi et al. 2017)—regulatory DBE. Rosa 
and Beloborodko (2015) acknowledge that the necessity to comply with European environ-
mental regulations—concerning waste landfilling—has made Latvian industrial companies 
review their by-product management practice and that IS became a useful approach to com-
ply with these regulations. In addition to promoting IS via legislative actions, policymakers 
can facilitate the availability of information for companies. In fact, they can promote public 
meetings among stakeholders in which information related to produced or required wastes 
is disseminated leading toward collaborative IS actions (Costa and Ferrão 2010). Further-
more, a regularly updated information-sharing platform can be developed in which firms 
upload their waste generation/requirement information and also find useful data from other 
companies (Fraccascia and Yazan 2018; Grant et al. 2010; van Capelleveen et al. 2018).

Overall, the above-mentioned issues and their representation in IS characterize a spe-
cific DBE profile that a particular IS practice is facing with. Such a profile, which consists 
of all four types of financial, regulatory, institutional, and technological DBEs, in some 
aspects hampers and in some other aspects fosters the implementation of the energy-based 
IS in question. In principle, the awareness of firms (and supporting entities such as govern-
ments) about these DBEs supports their decisions in the process of evaluating and imple-
menting fuel replacement IS practices.

4.3  DBEs in bioenergy production IS

From the business perspective, companies are willing to adopt such an alternative form of 
energy production because they can benefit from lower waste disposal costs and additional 
revenues from selling the energy produced from (bio-) wastes (Maaß and Grundmann 
2016)—financial DBEs.

From the technical perspective, the access to required technologies for bioenergy pro-
duction is a key facilitator behind producing energy from wastes—technological DBEs. For 
instance, Tan et al. (2016) mention that the availability of a biomass-based refinery system 
is the main requisite for the establishment of symbiotic relations in palm oil eco-industrial 
parks in Malaysia, as such a system utilizes biomass feedstock to simultaneously produce 
heat, power, and cooling energy on-site. In an olive farm case, Zabaniotou et  al. (2015) 
show that, in the presence of required machinery, the bio-oil obtained from pyrolysis can 
generate enough electricity to not only cover the energy requirements of the olive milling 
procedure but also to produce an electricity surplus. While having access to the proper 
technology enables large process industries to implement IS and produce energy, the lack 
of access to such technologies may be a barrier for small and medium-sized enterprises.

From the economic perspective, the feasibility of bioenergy production IS synergies is 
affected by technical, spatial, and economic factors that are highly case-specific. These factors 
include different forms of DBEs in general and specific factors such as biowaste transporta-
tion costs, electricity price (to see if a bioenergy production IS is beneficial), waste treatment 
processes (that are able to treat bioresources), and up-to-date bioenergy production facilities. 
In some cases, depending on the above-mentioned factors, bioenergy production IS synergies 
might have a negative cost–benefit ratio, thus requiring financial support from governments 
to be implemented (Velenturf 2016; Zhang et  al. 2013b)—regulatory DBEs. In fact, apart 
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from creating economic benefits for the involved companies and environmental benefits for the 
society, bioenergy production practices can also contribute to developing regional economic 
and substance cycles, boosting a local or regional economy, and enhancing its competitive-
ness (Brent et al. 2012; Martin and Eklund 2011). Hence, regional and national governments 
may be interested in supporting the implementation of this approach by introducing monetary 
incentives (Vega-Quezada et al. 2017) or regulations that focus on enhancing energy efficiency 
or limiting renewable fuel usage and GHG emissions (Gonela et al. 2015). While in one hand 
some regulations (e.g., monetary incentives) should be established to foster bioenergy produc-
tion IS practice, some binding regulations have to be removed—or updated.6

5  Discussion

The findings of the systematic literature review can be evaluated from various perspectives. 
We discuss the identified key DBE’s for energy-based IS, the three primary stakeholders 
with respect to required actions involved for improving energy-based IS, and the role of 
structure, geography, and investments in energy-based IS.

The first set of findings address the identified key drivers, barriers, and enablers for energy-
based IS (see Table 1). There appear to be differences in regard to the identified primary DBE’s 
for each energy-based IS category: energy cascade, fuel replacement, and bioenergy production. 
While in general enablers appear to be fairly similar, i.e., all categories list economic incen-
tives and regulations as enablers, drivers and barriers are more divergent among the catego-
ries. Unsurprisingly, it is the overall dominating presence of economic drivers in all catego-
ries, either resulting from cost savings or from revenues obtained through energy transactions. 
Many researchers (e.g., Chae et al. 2010; Costa and Ferrão 2010; Shi et al. 2010) argue that IS 
is mostly not the core business of organizations. Therefore, explained well by Ashton (2011), 
many industries lack the incentive to initiate IS, as they are more focused on their own eco-
nomic interests and are unaware or disregard the common potential in forming partnerships. 
While some of these DBE’s are likely to strengthen in forthcoming years (e.g., additional rev-
enues from selling energy), others (e.g., adjusting business models and co-locating particular 
industries) are expected to change due to the current prospect of increasing the financial quan-
tification of environmental pollution and material use. This is primarily due to the increased 
intrinsic value of energy caused by energy scarcity and the growing demand of energy triggered 
by the increasing population and the associated growing demand in rising economies.

Throughout the literature review, we came across three main types of actors that have a 
capacity to influence the formation of IS cooperation, being: governments (or institutional 
anchors), industries, and facilitating bodies. Typically, the role of industries is finding inputs 
that can be replaced by waste and vice versa, finding potential symbiotic partners, and assess-
ing the relationship. The key role of the governments is to create environmental regulations, 
provide industries with economic incentives, and create public institutions aimed at support-
ing industries in adopting IS. Finally, facilitators play an anchor role by providing guidance 
on waste treatment, political support, technical and economic feasibility, and sometimes act 
as a governing organization facilitating infrastructure and monitoring shared facilities.

The success of energy-based IS is dependent on all three actors. As the literature shows, 
many IS relations benefit from the use of the results listed capabilities and instruments of these 

6 For instance, Yazan et  al. (2018) show that the presence of some (IS-binding) regulations might nega-
tively affect the economic performance of companies. Hence, policymakers should carefully select the 
appropriate “sweet spot” policy that balances economic and environmental performance.
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actors. The primary factor in energy cascades is the economic viability, which is highly influ-
enced by the fluctuating market price and forces companies to change business strategy accord-
ingly in order to adopt IS (Wang et al. 2017a, b). This could be changed by creating more stable 
and higher energy prices. For fuel replacement, it is argued that waste should only be treated 
as fuel in the case of low-quality waste. Furthermore, the supply of waste should be stable. 
Institutional actors can provide a mix of regulations targeted to prevent high-quality waste from 
being burned, while low-quality waste to be a considerable option. Secondly, contracted stock-
ing waste at centralized warehouses may create a more stable flow of waste that can enable a 
sustainable business model for new IS relations. Finally, bioenergy production is heavily influ-
enced by the technological infrastructure required for production. Again, measures like financial 
support both for acquiring infrastructure as well as operating the bioenergy production can sup-
port the feasibility of bioenergy (Velenturf 2016). In addition, regulations, that foster bioenergy 
production and enhance energy efficiency of biofuel, are advised (Gonela et al. 2015).

From the cases analyzed, it is observed that energy-based IS takes different forms with respect 
to the involvement of companies and physical flows of heat and energy sources. One of the com-
mon cases is that a central energy company—mostly in the form of combined heat and power 
(CHP)—sends excess heat to a number of receivers operating in process industry. Similarly, a 
central firm operating in process industry sends the excess heat deriving from its production 
process to other companies operating in process industry. For both cases, also the urban use 
of excess heat is possible. To render such a business model applicable, pipeline systems must 
be established, which require considerable investments. How such investment costs should be 
shared among involved stakeholders is an essential practical issue. Investments can be allocated 
to involved companies as well as being partially shared by an anchor company that generates or 
receives the most part of excess heat. The involvement of governments in investment-sharing is 
also possible via financing pipeline establishment. In such cases, technical issues such as the use 
of excess heat in the final destination should be carefully addressed. For example, the calorific 
value of the excess heat sent to a company operating in process industry and to households might 
be different, calling for adjustments in pipeline systems. There might also be differences between 
companies operating in disengaged process industries in terms of energy use. While a CHP intui-
tively would have economic gains thanks to additional sales of heat, for an anchor company oper-
ating in the process industry the economic gains are mostly in the form of cost reduction.

In terms of physical flows, involved companies might have different roles in the sym-
biosis: a company might provide energy source but do not receive energy, provide energy 
source and receive energy, do not provide energy source but receives energy. When mul-
tiple actors are involved, physical flows among companies might be one-to-one, multiple-
to-one, or one-to-multiple. In addition, some cases are based on the substitution of the 
energy source, while some cases involve direct energy production/use. Implementing such 
a framework of physical flows would assist companies to understand the (potential) typol-
ogy of the symbiotic network and define the centrality degree of each involved actor. Such 
an approach might enlighten the question of investment-sharing revealing the operational, 
economic, and environmental importance of each company for the network.

From the geographical perspective, a number of case studies display successful cooper-
ation between industry and urban areas. On the other hand, the use of organic resources for 
particularly bioenergy production is commonly observed in rural areas, while there are also 
cases from the use of food waste, cooking oil waste and food/beverage processing waste 
in urban areas. So, the potential of energy-based-IS exists for both urban and rural areas 
involving small-medium enterprises, large-scale companies, local/urban communities, and 
(local) governments. This shows a clear indication that best-practices occur when there is 
the involvement of multiple stakeholders.
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In terms of the additional costs of material-based IS, transportation costs, waste treat-
ment costs, and transaction costs are observed to be the most relevant ones. In the case of 
energy-based industrial symbiosis, investment costs appear as the most relevant additional 
costs. This is a challenge to neutralize the savings associated with waste emission costs and 
traditional resource purchase costs. Therefore, future practices might show economic trade-
off challenges, calling for the attention of governments in terms of subsidies or incentives, 
in line with their sustainable development agendas.

From the analysis of results, it can be highlighted that the environmental and economic 
benefits created by energy-based IS synergies are strongly case dependent. In particular, 
the environmental benefits depend on several factors, such as how much energy can be 
saved via IS, the  CO2 production rate of that energy source, how much energy can be pro-
duced via IS, the  CO2 production rate of the energy produced via IS, etc. Also the eco-
nomic benefits depend on several factors, different than those above-mentioned, such as the 
additional costs required to implement and operate the energy-based IS synergies. There-
fore, both the economic and the environmental feasibility of each energy-based IS syn-
ergy should be carefully investigated a priori. In this regard, future research should address 
several issues. From the environmental perspective, the environmental (current and poten-
tial) benefits from energy-based IS should be investigated more in-depth, for instance via 
methodologies based on thermodynamics—e.g., emergy analysis (e.g., Ren et  al. 2016) 
and exergy analysis (e.g., Valero et al. 2013)—or LCA (e.g., Aissani et al. 2019; Martin 
2019). In this regard, there is an extensive literature on the adoption of the above-men-
tioned methodologies specifically to analyze IS (Fraccascia and Giannoccaro 2020), but 
few contributions concern energy-based IS synergies. Furthermore, the process of using 
wastes instead of fossil fuels should be investigated more in depth, in order to highlight 
whether, ceteris paribus, using wastes would result in additional GHG emissions compared 
to the emissions resulting from using fossil fuels (see, e.g., Eckelman and Chertow 2013). 
In fact, some cases reported by the literature show that the use of alternative fuels could 
have negative consequences from the environmental perspective (e.g., Man et  al. 2016). 
Also this issue could be investigated via LCA analysis. In fact, in this literature analysis, 
only few out of 96 articles analyzed (e.g., Eckelman and Chertow 2013; Geng et al. 2010; 
Mattila et al. 2012; Pakarinen et al. 2010; Pierie et al. 2017; Sokka et al. 2011) adopt LCA 
to energy-based IS, while the rest of them, having different focuses, skip the use of the 
LCA, which is critically important to measure the holistic contribution of IS rather than 
the core contribution. From the economic perspective, the profitability of energy-based IS 
synergies should be investigated more in depth, taking into account the investment costs 
and economic accounting of environmental cost reductions, which might be a base for 
governments to decide for subsidy distribution among stakeholders. Accordingly, sustain-
able business implementation via fair cost- and benefit-sharing should also be researched. 
Impacts of energy-based IS implementation on the traditional supply chains of companies, 
particularly in terms of contracts and business strategy change between companies, is also 
an open field of research. Finally, cross-cutting operational dynamics of water-based, mate-
rial-based, service-based, and energy-based IS can be searched and a general framework 
for operations of IS can be implemented.

Finally, the authors would like to recognize a potential limitation of this paper. In fact, 
some articles could address cases of symbiotic synergies without directly defining them 
as IS (e.g., Man et  al. 2018, 2020). These papers are not collected by the bibliographic 
research, which is designed to take into account the definition of IS (see Sect. 2). However, 
this limitation does not affect the main results of this research.
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6  Conclusion

This paper addresses the different types of implementations of IS linked to one of our 
society’s current and future concerns, i.e., energy security. Companies’ traditional linear 
approach to producing and selling more goods (independently from society’s demand) trig-
gers a substantial increase in energy consumption in the production phase of goods. Fur-
thermore, society’s unsustainable consumption pattern, which is also highly energy-inten-
sive, increases our hunger for energy sources to run the modern world economy and put the 
energy security in high ranks in future agendas of governments.

From the literature survey conducted, it is concluded that energy-based IS is one of the 
pioneering fields to achieve energy transition from linear to circular economy.7 The field 
achieved an encouraging but not a sufficient number of success stories and barriers are 
still high and it starves for finding answers to a wide range of questions. The DBE analysis 
points out that the efforts to demolish financial, regulatory, technological, and institutional 
barriers have been insufficient up-to-date.

The following topics are the future research problems associated with multiple (poten-
tial) stakeholders in the IS-based.

How to reduce investment-related financial barriers? Existing excess heat transfer pipe-
lines are constructed for short distances and the involvement of long-distance companies 
to such pipeline systems faces the financial barrier. Indeed, it is already expensive to con-
struct an excess heat transfer pipeline between two companies. So, there is more way to 
go to understand how an excess heat transfer network would be implemented by reducing 
investment costs. Reduction in investment costs can be associated with multiple factors 
such as the use of alternative materials or production techniques for the construction of 
pipelines. Sustainable finance would also play a critical role to tackle with high investment 
costs in terms of moderate pay-back options which allows investors to internalize the envi-
ronmental and social externalities. Internalization of environmental and social externali-
ties require strong engagement and encouragement of (local) governments to safeguard the 
needs of the society and the environment while facilitating the economic viability of such 
big projects. In short, multiple stakeholder engagement is a must.

How to achieve ‘coupled management of IS’ at operational level? This is critical to reduce 
operational costs and a challenge due to the dynamic physical conditions of excess energy and 
the dynamic market conditions for the principal products of involved companies. Some cases 
might require improvement of physical or technical conditions for technical reasons, while some 
cases might require temporary energy storage to tackle with supply–demand mismatch fluctua-
tions. Hence, a cooperation between thermodynamics, purchasing management and operations 
management research fields would contribute to decrease financial and logistical barriers giv-
ing an impetus on dynamic purchasing and pricing of transferred energy. Collaborative demand 
forecasting to reduce supply–demand mismatch, dynamic contracts to achieve fairness in cost- 
and benefit-sharing, and multi-lateral contracts to achieve stable and sustainable energy cas-
cades are critical. If barriers can be demolished, then the industry’s dependency on fossil fuels 
(particularly natural gas) can significantly decrease.

How to achieve society’s integration? The first answer to this question is ‘via integrating 
energy industry-household energy systems’. If economic viability can be demonstrated, the 

7 Although this paper is focused on energy-based IS, the authors recognize that there are also other strate-
gies to achieve energy transition from linear to circular economy. In fact, green energies , e.g., photovoltaic 
energy (e.g., D’Adamo 2018) and wind energy (e.g., Hao et al. 2020), can play an important role toward the 
energy transition to circular economy.
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excess heat transfer pipelines can reach households. This might be quite promising for house-
holds living in industrial areas that produce a sufficient supply of excess heat. The impact would 
be: (1) society respires cleaner air due to the fossil energy source reduction in the industrial zone 
and household areas; (2) society has the chance of reducing its energy bills (which might require 
governmental support); and (3) the society, governments, and the industry would achieve the 
integral circular economy. Consumer organizations would play a glue role in this integration.

Not only energy loops to be closed: what about closing other loops in cooperation with other 
sectors? Closing the energy loop via energy cascades, fuel replacement, and bioenergy produc-
tion is only a part of the energy-based IS. However, there are side stream wastes that offer new 
business and loop-closing opportunities, which are likely to enhance the economic viability of 
energy-based IS. For example, integrated recovery of value-added materials from manure (via 
biorefining) would also economically facilitate the viability of biogas production. Furthermore, 
it would significantly reduce the economic burdens for animal farmers who need to pay manure 
discharge or treatment costs. As a result, the increase in meat and dairy product prices can be 
ceased, increasing the social sustainability in terms of access to food. So, circularity is comple-
mentary: once you start to close loops the others will follow, as long as multiple stakeholder 
engagement is ensured and individual needs are taken into account in an integrated manner.

What about the role of (local) governments? Governments might support the diffusion of 
energy-based IS networks via a thorough understanding of the entire life cycle impact of taken 
actions. Inter-sectorial activities like IS take place in long and complex supply chains and influ-
ence upstream and downstream actors as well as the environment and society. Industrial ecosys-
tems transform and evolve in a circular manner that requires behavioral and strategic changes 
both in the society and in industry. The (local) governments play a key role to encourage com-
panies through IS implementation via providing subsidies or applying binding regulations. 
Similarly, the sustainable energy consumption can be promoted via incentives to households 
who take place in energy cascades via using excess heat or bio-based energy. The position of 
traditional energy suppliers might produce conflicts of interest among multiple actors which 
requires also a transition plan from governments so to achieve resilient circular transformation.

In conclusion, an enormous field is open for researchers to conduct multi/cross/inter-disci-
plinary research on the above-mentioned niches to achieve the circular energy transition. The 
authors expect that energy-based IS will play a pioneering role to activate multiple industries 
for closing more loops in the future and quick establishment of the sustainable future of circular 
economy.
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