
Omega 133 (2025) 103237

A
0
n

Contents lists available at ScienceDirect

Omega

journal homepage: www.elsevier.com/locate/omega

Courier assignment in meal delivery via integer programming: A case study
in Rome✩

Matteo Cosmi a, Gianpaolo Oriolo b, Veronica Piccialli c,∗, Paolo Ventura d,e

a Luxembourg Centre for Logistics and Supply Chain Management (LCL), University of Luxembourg, 6, rue Richard
Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg
b Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università degli Studi di Roma ‘‘Tor Vergata’’, via del Politecnico 1, 00133 Roma, Italy
c Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Università degli Studi di Roma ‘‘La Sapienza’’, via Ariosto 25, 00185, Roma, Italy
d Istituto di Analisi dei Sistemi ed Informatica ‘‘A. Ruberti" del CNR, via dei Taurini 19, 00185, Roma, Italy
e Center of Competence for Optimization, Siemens Mobility, viale Marco Polo 59, 00154, Roma, Italy

A R T I C L E I N F O

Dataset link: https://github.com/MatteoCosmi/
Rome-Meal-Delivery-Instances

Keywords:
Integer linear programming
Deterministic demand
Allocation
Meal delivery

A B S T R A C T

We present an optimization model for assigning orders to couriers developed for an Italian meal delivery
firm focusing on Rome. The firm focuses on top-end restaurants and customers and pursues high Quality of
Service through careful management of delays. Our model reflects that in the firm’s business, the majority
of orders are placed in advance. This took us to design a sequential decision process implementing a rolling
horizon approach where we do not try to anticipate future demands. We, therefore, iterate the solution of
a fully deterministic optimization problem, the Offline Couriers Assignment Problem (ocap), where we assume
full knowledge of the orders and aim at minimizing delays and rejections. We solve ocap through integer
linear programming and in particular by a ‘‘flow-like’’ formulation on a suitable network whose size is kept as
small as possible. We validate both the quality of this formulation and the sequential decision process through
some computational tests on real instances collected on the ground. We make these instances available to the
scientific community.
1. Introduction

In the last few years, the spreading of e-commerce has also been
reflected in the exponential growth of the meal delivery sector as
represented by the spreading of companies like Deliveroo, Glovo, Just-
Eat Takeaway, DoorDash, and Uber Eats. This increasing interest for the
meal delivery logistics is also witnessed by several papers published in
the last years in optimization journals.

One key issue for the success of many companies in the meal deliv-
ery business is that of entrusting independent contractors (i.e., couriers)
for deliveries. This is the case of an Italian meal delivery company, that
in the following we refer to as , mainly operating in the area of Rome:
this work indeed stems from a collaboration with this company. 
focuses on top-end customers and restaurants and pursues high Quality
of Service (QoS), in particular in terms of delays in delivering the orders
while obtaining positive commitment of couriers. To this aim, couriers
are hired on a regular base, and only a part of their salary depends
indeed on the orders that they deliver during the work shift. Also, the
assignment of orders to couriers is centralized, and couriers cannot

✩ Area: Production Management, Scheduling and Logistics. This manuscript was processed by Associate Editor Kis.
∗ Corresponding author.
E-mail addresses: matteo.cosmi@uni.lu (M. Cosmi), oriolo@disp.uniroma2.it (G. Oriolo), veronica.piccialli@uniroma1.it (V. Piccialli),

paolo.ventura@iasi.cnr.it, paolo.ventura@siemens.com (P. Ventura).

refuse an order that has been assigned to them, i.e., according to 
business model, orders are therefore assigned to couriers on a ‘‘push’’
base, whereas other models are ‘‘pull’’ based and couriers will choose
orders. Moreover, while a courier may choose at what time to start the
work shift, once she starts, she must be available until its end. As for the
management of delays, in order to prevent unpleasant confrontations
between couriers and customers, orders with a delay larger than 60 min
are rejected (and therefore not delivered), and  gives a discount
voucher to customers who experience a delay, or a rejection.

Given these premises on the business model of , the target of
our collaboration with  was the design of an optimization model for
dispatching orders to couriers to avoid as much as possible delays and
rejections. Note that this model does not take into account any cost
related to the number of couriers, that are already hired, and to the
cost of the routing, as each courier will autonomously choose her route.
Also, orders are not aggregated and each courier takes a single order
for each ride so that the quality of (fine) food does not degrade.
https://doi.org/10.1016/j.omega.2024.103237
Received 26 March 2024; Accepted 22 November 2024
vailable online 2 December 2024
305-0483/© 2024 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/omega
https://www.elsevier.com/locate/omega
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
mailto:matteo.cosmi@uni.lu
mailto:oriolo@disp.uniroma2.it
mailto:veronica.piccialli@uniroma1.it
mailto:paolo.ventura@iasi.cnr.it
mailto:paolo.ventura@siemens.com
https://doi.org/10.1016/j.omega.2024.103237
https://doi.org/10.1016/j.omega.2024.103237
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Cosmi et al.

r
d
o
f
O
a

t

a
s
t
t
h
b
t
p
o

s

p
t
t
d
b
f

m
a
o
m
t
A

m

c
o
s
i

t

b
S

i
i
t
w
r
s

l

t

S

p

a
d

k
p
a

Omega 133 (2025) 103237
We propose a sequential decision process solved by means of a
olling horizon solution strategy where at each solution stage we solve a
eterministic optimization problem that assumes a complete knowledge
f the orders to be served; the set of orders to be served is then updated
or the next solution stage as to follow the insurgence of new demands.
ur solution strategy is hence fully myopic, and we do not try to
nticipate future demands.

At the core of our approach, there is the solution of a determinis-
ic optimization problem that we call the Offline Couriers Assignment
Problem (ocap). It follows from Cosmi et al. [1] that ocap is np-hard
lready for the case of a single courier. We, therefore, propose for its
olution a ‘‘flow-like’’ Integer Linear Programming (ILP) formulation
hat exploits a suitable time-extended network and the structure of
he problem: in particular, the hypothesis that once a courier starts
er work shift, she cannot refuse any order and, in a way, cannot
e ‘‘distinguished’’ from other active couriers. We keep under control
he size of the integer linear program by exploiting the monotonicity
roperty of the cost function for ocap and through a careful construction
f the time-extended network.

We devote the last part of the paper to some computational ex-
periments aiming at validating our solution strategy. We deal with a
et of real instances, collected on the ground in the period ranging

from January to March 2019, that we make available to the scientific
community. First, we show that the flow-like formulation performs
quite well, both in terms of computational time and integrality gap,
even when we deal with more challenging instances where we arti-
ficially reduce the number of couriers. Then, in order to validate the
sequential decision process, we deal again with the same instances but
in the dynamic setting described above, where we solve a sequence
of instances of ocap. Our results show that our solution to ocap scales
retty well to this setting where the computational time available for
he single instance of ocap is bounded (namely 5 min). They also show
he very good quality of the overall solution found by the sequential
ecision process, as its cost is always not too far away from the lower
ound provided by the cost of the optimal solution to ocap that assumes,
or the same set of orders, full knowledge in advance.
Contributions of this paper. The focus of this paper is on the

design and the solution of an optimization model for a specific case
study. Therefore, even if we present a few facts about the business

odel of  and discuss relationships between our optimization model
nd other models from the literature, our main interest lies in the design
f a careful optimization model that is consistent with the business
odel of  and in the design of an effective solution strategy for

he model to be validated on real instances collected on the ground.
t the core of this strategy, there is the definition of an optimization

problem, ocap. We design, for the solution of ocap, an effective flow-like
ilp formulation that carefully exploits some hypothesis in the business

odel and reduces the solution of ocap to the solution of a suitable
path problem on a network whose size is kept under control. Another
contribution is that of showing, through computational tests on real
instances that our solution algorithm to ocap scales pretty well to the
ase where we cast it into a dynamic sequential decision process where
rders arrive over time. Last but not least, we make available to the
cientific community some real computational instances as well as some
nsights and figures on meal delivery in Rome collected on the ground.

This work is organized as follows. In Section 2 we provide a lit-
erature review of some problems related to our application. Section 3
presents the specific problem encountered by , outlines the sequen-
ial decision process, and provides a formal definition for ocap. In

Section 4, we deal with our solution approach to solve ocap. We first
provide a suitable time-extended network, whose careful construction
is discussed in Sections 4.1 and 4.2. We then show in Section 4.3 how
ocap can be reduced to the solution of a suitable path problem on this
time-extended network and in Section 4.4 how the latter problem can
e formulated as an Integer Linear Programming problem. We devote
ection 5 to provide more details on the sequential decision process for
2
the dynamic setting. Section 6 presents the results of our computational
tests for both the offline and the dynamic scenario. Finally, Section 7
includes conclusions and directions for future research.

Disclaimer. In the paper, we often deal with numbers such as the number
of orders, the numbers of couriers etc. These numbers are mainly from 2019
and are not at all representative of the current volumes handled by .

2. Literature

According to a well-recognized classification introduced in [2],
Meal Delivery Problems (mdps) fall in the wide area of the Transport
On Demand (td) problems. In particular, mdps belong to a subclass of
td problems, that of Pickup and Delivery Problems (pdp), where a fleet
of vehicles must transport individuals or goods from a set of pickup
locations to certain delivery places. Even more, the mdp belongs to a
subclass of pdps, namely that of Vehicle Routing Problem with Pickup
and Delivery (vrppd). The peculiarity of vrppd is that each transportation
request has a single pickup place and a single delivery place.

According to such classification, mdps are vrppds where food is trans-
ported. Note that a well-known subclass of the dynamic vrppd problem
s the dial-a-ride problem (darp), where individuals are transported
nstead of goods. Unlike standard vrppd, in both mdp and darp it is often
he case that not all client demands need to be satisfied. Moreover,
hile for standard vrppd the objective function usually deals with total

outing cost, both mdp and darp deal with some measure of customer
atisfaction.

As we pointed out before, the main distinction between mdp and darp
is that for the former problem goods (food) are transported and for the
atter individuals. This is not just a formal distinction, as for mdp time

windows are exceptionally narrow, making it hard to combine orders
from different restaurants (as observed in [3]). According to [4], in
mdps, consecutive pickups for different customers are often not allowed,
severely restricting the design of efficient routing plans; that is not often
he case for darps (for a comprehensive overview of darp see [5–8]).

Finally, we observe that the mdps is also related to the so-called
ame-day Delivery Problem (sddp) [9,10], where consumers place or-

ders to be delivered by a single vehicle or by a fleet of vans on the same
day. In the sddp there is usually a single hub storing all the required
goods, all orders share a common deadline and, since the goods are not
erishable, it is possible to consolidate a large number of requests to

(almost) saturate the vehicle(s) capacity, reducing the number of empty
trips to the depot. There is a wide literature related to the sddp, see for
instance [11–17].

If we now step back to td problems, we observe that td problems
re usually classified as static if all requests are known in advance or
ynamic if requests are received over time and routes must be adjusted

dynamically. A more refined classification [18] partitions td problems
into several classes depending on the evolution and quality of infor-
mation available: static-deterministic, static-stochastic, deterministic-
dynamic, or dynamic-stochastic.

According to the above classification, the problem we are interested
in here is a deterministic-dynamic mdp where part of the input is un-
nown and revealed over time. We, however, highlight that while our
roblem falls in the broad class of mdps, several additional constraints
re peculiar to our problem and will be discussed in Section 3. We,

therefore, devote the last part of this section to reviewing a few papers
in the specific literature on Meal Delivery Problems. One of the first
contributions is given in [19] where the authors define a particular
problem in the class of mdps that they call the ‘‘Meal Delivery Routing
Problem’’ (mdrp).

In the mdrp, orders from the same restaurant can be grouped into
bundles that have to be assigned to couriers. Couriers have been given
active time windows and are assumed to wait at the last drop-off
location before moving to the next order to be delivered. Customers
are not allowed to request a specific delivery time, each order has a
maximum amount of time within which it must be delivered. Different

M. Cosmi et al. Omega 133 (2025) 103237
objective functions are considered, like minimizing the total cost for
the courier (that can be paid according to the number of assigned
orders or also considering a minimum amount for the work shift), or
the average difference between delivery time and placement time of
the orders. The authors introduce a fully deterministic dynamic model
to address tasks such as dispatching orders to couriers, determining
optimal routes, and sizing the fleet of drivers. In their pursuit of solving
large-scale mdrp instances, they employ a heuristic solution algorithm
based on a rolling-horizon repeated matching approach. Their study
shows that it is possible to attain high-quality solutions across various
service objectives, despite the simplicity and myopic nature of the pro-
posed solution approach. The work in [20] develops an exact solution
approach, based on a milp model, for the deterministic meal-delivery
routing problem (mdrp). To model the mdrp as a deterministic milp, the
authors assume perfect information about the order-arrival stream.

The ‘‘Virtual Food Court Delivery Problem’’ (vfcdp) proposed in [21]
focuses on the assignment of couriers to sequences of pickups and
deliveries with the objective of maximizing customer satisfaction while
respecting committed delivery times. Also in the vfcdp, customers can-
not request a delivery time but the company may commit to delivering
the food later than the delivery time associated with the ‘‘as soon as
possible’’ scenario. To solve this problem, the authors propose a milp
model and an auction-based heuristic. Similarly to [19], they evaluate
the quality of the proposed approach simulating the dynamic setting
characterizing the actual problem. In these simulations, the arrival of
each new order triggers a re-optimization which provides an updated
schedule for the operating couriers.

In more recent years, several other meal delivery models have been
proposed. In [22] the authors investigate a problem in which orders are
revealed over time but the company knows in advance the probability
distribution of future requests and aims at minimizing the expected
delays. Auad et al. [23] address a meal delivery problem where orders
arrive dynamically over time, focusing on both customer and courier
satisfaction. In their study, couriers handle deliveries within a region
that can be dynamically adjusted during their working shifts. Xue et al.
[24] propose a two-stage model where in the first stage the goal is to
minimize the number of routes performed by couriers and in the second
stage is to assign available riders to the planned routes. Liao et al. [25]
study a multi-objective problem to maximize customer satisfaction and
rider balance utilization, and to minimize carbon footprint. Bozanta
et al. [26] proposes a reinforcement learning approach to solve small
instances of a food delivery service problem, in which the goal is to
maximize the company’s revenues. These studies assume that couriers
cannot reject assigned orders. In contrast, [27] explore the possibility
that couriers may decline delivery requests. They analyze the impact
of a platform that approximates and integrates individual couriers’
acceptance behavior into the order dispatching process, quantifying
its effects on all stakeholders, including the platform, customers, and
couriers.

Moving to complexity issues [1,28] analyze some basic optimization
problems that are relevant for mdps and in particular for the model
discussed in this paper (see Section 3.3). In the simplest model, a
single restaurant entrusts a single courier to deliver meals to customers
who place orders at the restaurant; Cosmi et al. [29,30],Agnetis et al.
[31] elaborate on that model and propose exact solution approaches,
based on integer linear programming and combinatorial branch and
bound and prove that the single courier single restaurant problem is
np-hard if orders may be delivered in bundles. Still, on the complexity
side [32,33] discuss the hardness of a model where customers aim to
receive their food as soon as possible and therefore a tardiness function
has to be optimized.

To summarize the literature on meal delivery problems, Table 1
highlights its most relevant features and provides a classification of the
mentioned works according to the classification for routing problems
proposed in [18]. We point out that in this paper we provide both
static and dynamic deterministic models. Our solution algorithms, see
3
Fig. 1. For each time instant, the overall number of orders that in 2019 were placed
at that time instant (red, dashed) and the overall number of orders requiring that
time instant as target times (blue, solid) for dinner services. Customers may ask only
for a delivery time between 19:00 and 22:30 and can place orders in advance. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

the following, are based on Integer Linear Programming and, as we
later show, scale pretty well. Moreover, our models allow the customers
to define time windows for the delivery and take into account quality
of service issues. Ulmer et al. [22] propose a similar work. However,
they assume to have knowledge of the probability distribution of meal
preparation times and order arrival times and locations. On the con-
trary, we assume that there is no knowledge of future orders’ arrival
probability distribution and meal preparation times are deterministic
and provided by the restaurant when the order is received. These
two assumptions come from our collaboration with  and their daily
operational experience.

3. Problem setting

3.1. Towards an optimization model for courier assignment

We start providing a few data and figures concerning the customer
demand collected by  from January to March 2019. We focus on the
dinner service, as  receives a larger number of orders in that service.
We aim to motivate some assumptions at the base of the optimization
models presented later.

We start with Fig. 1, where we report for each time instant, the
overall number of orders that in 2019 were placed at that time instant
(red) and the overall number of orders requiring that time instant as
target times (blue) for dinner services. This figure hence provides the
distribution of placement times, i.e., the time at which a customer places
an order, vs target times, i.e., the time at which that customer would like
to receive that order. Note that, even though Fig. 1 deals with orders
for the dinner service, customers might place orders for that service
well in advance, e.g. in the morning (actually even days in advance,
but that does not happen in reality). Fig. 2 and Table 2 build upon
Fig. 1. Fig. 2 plots the difference between the placement time and the
target time of the same order. Note that the policy of  is such that
the minimum slack between the placement time and its target time
is 30 min; however, a large fraction of customers prefer to order in
advance. Table 2 summarizes these data by showing the percentage
and the cumulative percentage of orders whose target time is within 𝑛
minutes from their placement times, for different values of 𝑛. We point
out that about 70% of the orders are placed more than 1 h in advance.

We are now ready to shape an optimization model for the courier
assignment. As we already discussed in the introduction,  focuses on
top-end customers and pursues high Quality of Service: in particular

M. Cosmi et al. Omega 133 (2025) 103237
Table 1
Meal delivery literature: columns ‘‘Restaurants’’ and ‘‘Couriers’’ report if the study considers a single (S) or multiple (M) vehicles or restaurants,
‘‘TW’’ reports if time windows chosen by customers are considered (✓means yes, ✗means no), ‘‘QoS’’ reports if the considered objective tries
to maximize the QoS (e.g, max number of on-time deliveries, min (weighted) function of delays), ‘‘Scalability’’ reports if the proposed solution
can solve large real-world problem.
Classification Authors (year) Restaurants Couriers TW QoS Scalability

Static-Deterministic

Yildiz and Savelsbergh (2019) [20] M M ✗ ✓ ✗

Cosmi, Oriolo et al. (2019) [1] S-M S-M ✓ ✗ ✗

Cosmi, Nicosia and Pacifici (2019) [29] S S ✓ ✗ ✗

Cosmi, Nicosia and Pacifici (2019) [30] S S ✓ ✗ ✗

Liao, Zhang and Wei (2020) [25] M M ✓ ✓ ✗

Xue, Z. Wang and G. Wang (2021) [24] M M ✓ ✗ ✗

Joshi et al. (2021) [32] M M ✗ ✓ ✗

Böhm, Megow and Schlöter (2022) [34] S-M S-M ✓ ✗ ✗

This work M M ✓ ✓ ✓

Dynamic-Stochastic
Steever, Karwan and Murray (2019) [21] M M ✗ ✓ ✓

Ulmer, Thomas, Campbell et al. (2020) [22] M M ✗ ✓ ✓

Bozanta et al. (2022) [26] M M ✗ ✗ ✗

Dynamic-Deterministic

Reyes et al. (2018) [19] M M ✗ ✓ ✓

Agnetis et al. (2023) [31] S S ✓ ✗ ✗

Auad, Erera and Savelsbergh (2024) [23] M M ✗ ✓ ✓

This work M M ✓ ✓ ✓
Table 2
Percentage and cumulative percentage of orders with a target time within 𝑛 minutes from the placement time (the slack between target time
and placement time of a same order cannot be less than 30 min).

[30, 45) [45, 60) [60, 75) [75, 90) [90, 105) [105, 120) > 120

% 11.2 20.5 26.8 14.4 5.3 3.8 18.0
Cumulative% 11.2 31.7 58.5 72.9 78.2 82.0 100.0
Fig. 2. On the 𝑥-axis the distance between the placement time and the target time of
a same order, on the 𝑦-axis the number of orders placed during that service.

through positive commitment of couriers and careful management of
delays. Fundamental facts about couriers are the following: (i) couriers
are hired before the service, and only a small part of their salary is paid
on a piecework basis; (ii) a courier that has been assigned a delivery
cannot refuse it; (iii) a courier may decide when to start her work shift,
but must be available until the end of the service; (iv) a courier will
autonomously choose her route for dispatching an order that has been
assigned. Note also that, since couriers cannot carry multiple orders at
the same time, the typical route of a courier will follow a sequence such
as pickup of order 𝑖1 - delivery of order 𝑖1 - pickup of order 𝑖2 - delivery
of order 𝑖2

As for the management of delays, the key fact is that customers who
experience a delay, or even worse a rejection, will be given a discount
voucher for future orders: the value of the voucher is proportional to
the delay they suffered and higher in case of rejections (recall that
orders with delay larger than 60 min will always be rejected, see
Section 1). Therefore, we aim at dispatching orders to couriers to avoid
as many as possible delays and rejections.
4
A last key fact follows from the nature of the demand. As discussed
above, see Table 2, only a relatively small number of orders are placed
on a best-effort basis (that is, customers asking for a delivery as soon
as possible). Therefore, we do not try to anticipate demand or make
assumptions about the distribution of orders.

In agreement with the management of  we then decided to
develop a sequential decision process handled using a rolling horizon
approach building upon the solution of a fully deterministic optimization
problem, that is called the Offline Couriers Assignment Problem (ocap). In
defining ocap we indeed assume full knowledge of the set of orders to be
delivered; then we are interested in dispatching these orders to couriers
to minimize the cost of delays and rejections. The approach then casts
ocap into a sequential decision process depicted in Fig. 3.

Following Soeffker et al. [35], we represent our sequential decision
process by a sequence of states. Each state 𝑠𝑘 corresponds to an instance
𝐼𝑘 of ocap that is built on the base of the previous state (instance), and
based on the orders placed during a suitable time window connected to
𝑠𝑘. The solution of the instance 𝐼𝑘 of ocap – e.g. through Integer Linear
Programming – provides decisions that contribute to the definition of
the next instance 𝐼𝑘+1. Therefore, we build and solve a sequence of
instances 𝐼0, 𝐼1,… of ocap, such that 𝐼𝑘+1 inherits from the solution to
𝐼𝑘 data and decisions, while adding the set of orders that have been
placed in the last time window. We will provide more info about the
sequential decision process in Section 5, while in the next sections, we
focus on the solution of ocap.

3.2. The offline couriers assignment problem

We start by providing some basic definitions and discuss a few more
assumptions that are at the base of ocap. In the following, for 𝑇 a
positive integer, we let [𝑇] denote the set {0, 1, 2,… , 𝑇 }.

Discretization. We discretize time and each service, i.e., lunch or
dinner, can be thought of as a finite set of time steps {0, 1, 2,… , 𝑇 } each
corresponding to a time instant 𝑡ℎ = 𝑡0 + ℎ ⋅ 𝛾, for ℎ ∈ [𝑇], where 𝛾 ∈
Z+ is the base step. Time step 0 corresponds to the time instant 𝑡0 that
designates the start of the service (in our case, 18:30), while time step
𝑇 corresponds to the last time instant that can be chosen by customers
for delivery (in our case, 22:30). In the following, we therefore refer to

M. Cosmi et al. Omega 133 (2025) 103237
Fig. 3. We graphically represent our sequential decision process. The states correspond to different instances of ocap, which are influenced by the orders placed along the time
line and by the previous states, whereas the decisions are the result of applying the solver on the current instance.
time steps rather than time instants. E.g. the target time 𝑡′ ∈ 𝑇 at which
a customer would like to receive the delivery (see below) is indeed the
closest time step to the ‘‘true’’ time instant 𝜃′ required by the customer.
Analogously, the average time that a courier has to wait at a restaurant
to collect an order (see below) is also expressed in the number of time
steps.

Orders. We are given a set of orders 𝑂. Each order 𝑖 ∈ 𝑂 has been
placed by a customer and, as discussed in Section 1, the orders cannot
be aggregated with other orders. Therefore, for each order 𝑖 ∈ 𝑂, we
are given:

a pickup location 𝑝𝑖, which is where couriers will collect the order
(usually, the address of a restaurant);
a delivery location 𝑑𝑖 (usually, the address of the customer);
a target time 𝑡′𝑖 ∈ [𝑇] that is the time at which the customer would
like to receive the delivery; note however that the smaller values in
[𝑇] cannot be chosen as couriers use those times for setting up for the
service and e.g. reaching the location of a pickup;
the average waiting time 𝛽𝑖 ∈ [𝑇], the average time that a courier has
to wait once arrived at 𝑝𝑖 to have the order ready (As a matter of fact,
quite often couriers do indeed wait at a restaurant to collect an order,
even though restaurants are always informed of – and agree on – the
pickup time of an order: that is because restaurants want to be sure
that an order will not be ready before the courier shows up, as to avoid
that the quality of food to degrade).

Note that, for each order, there is indeed also a placement time, as
it was defined in Section 3.1, however, this value is not interesting for
the solution of an instance of ocap.

Width. While for each order 𝑖 we are given a target time 𝑡′𝑖 for its
delivery, we, however, allow for the possibility of delivering at a time
𝑡𝑖 ∈ [𝑇] different from 𝑡′𝑖 , provided that 𝑡𝑖 belongs to a suitable time
window around 𝑡′𝑖 . We are therefore given two parameters, 𝑤′

𝑙 , 𝑤′
𝑟 ∈ Z+,

so that the order can be indeed delivered at any time in {𝑡′𝑖−𝑤′
𝑙 , 𝑡′𝑖−𝑤′

𝑙+
1,… , 𝑡′𝑖 +𝑤′

𝑟 − 1, 𝑡′𝑖 +𝑤′
𝑟}. Note that we allow early deliveries. However,

the time window needs not to be symmetric with respect to 𝑡′ and very
likely 𝑤′

𝑙 ≪ 𝑤′
𝑟. We let 𝑤 ∶= 𝑤′

𝑙+𝑤′
𝑟 be the width. In practice, the width

is a parameter of capital importance: the smaller the value of 𝑤 is, the
higher the QoS is since the delivery of 𝑖 will be more likely at a time
close to 𝑡′𝑖 .

It follows that we may assume that for each order 𝑖 ∈ 𝑂, we are also
given:
5
a time window 𝑊𝑖 = {𝑡𝑖, 𝑡𝑖 + 1,… , 𝑡𝑖 +𝑤} ⊂ [𝑇], where 𝑡𝑖 ∶= 𝑡′𝑖 −𝑤′
𝑙 is the

start time and 𝑤 is the width just defined. So order 𝑖 can be delivered
at any time in 𝑊𝑖 (with different costs, though: see the following).

Rejection cost. As we discussed in Section 3.1, we aim at min-
imizing a suitable cost function that takes into account delays and
rejections, without considering any cost related to the number of
couriers (as they are hired before the service) and to the cost of the
routing (as the couriers will autonomously choose their routes). An
order 𝑖 ∈ 𝑂 that cannot be delivered at a time 𝑡 ∈ 𝑊𝑖 will be rejected
with a rejection cost 𝑐.

Delay cost function.We may incur some costs even if we deliver an
order 𝑖 at a time 𝑡 ∈ 𝑊𝑖. There are indeed different costs for delivering
𝑖 at different times of 𝑊𝑖. Namely, we are given:

a non-decreasing delay cost-function 𝑐 ∶ [𝑤] ↦ Z+, such that, for ℎ ∈ [𝑤],
the cost of delivering 𝑖 at time 𝑡𝑖 + ℎ is equal to 𝑐(ℎ).

Assuming that the delay cost function 𝑐 is non-decreasing, i.e., is
such that 𝑐(ℎ) ≤ 𝑐(ℎ+ 1) for each ℎ ∈ [𝑤− 1], is quite natural. However,
recall that we allow for early deliveries, i.e., deliveries can be made
before the target time requested by the customer. In this case, the
hypothesis makes sense as long as we do not deliver too far in advance.

Couriers. We are given a set 𝐶 of couriers hired (in advance) for
the service. For each 𝑗 ∈ 𝐶, we are given:

a release location 𝑝𝑗 ;

a release time 𝑟𝑗 ∈ [𝑇].

The courier 𝑗 will start her work shift from location 𝑝𝑗 at time 𝑟𝑗 .
Note that it is possibly the case that 𝑟𝑗 > 0, i.e. the courier does not start
her work shift at the beginning of the service but later. To the contrary,
we assume that she will be available for deliveries up to time 𝑇 and
without any constraint on the location of her last delivery: possibly at
a location far from 𝑝𝑗 . As we will later discuss, our flow-like integer
linear programming formulation (see Section 4.4) builds upon the fact
that somehow couriers cannot be distinguished from each other once
they start their work shift.

Travel Times and Locations. It follows from above that we can
infer a set 𝐿 of relevant locations, namely 𝐿 ∶= {𝑝 , 𝑖 ∈ 𝑂} ∪ {𝑑 , 𝑖 ∈
𝑖 𝑖

M. Cosmi et al.

o
l

c

i

b
t
i
t
f
a

c

f

T

𝑑
5
𝑑

w
6
p
c

o
1
o
t

o
1
a
d

f
𝑄

Omega 133 (2025) 103237
𝑂} ∪ {𝑝𝑗 , 𝑗 ∈ 𝐶}. We therefore assume that, for each ordered pair of
locations (𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝐿, we are given:

the expected travel time 𝑑(𝑥, 𝑦) ∈ [𝑇] to go from 𝑥 to 𝑦.

As discussed in Section 3.1, a courier that has been assigned an
rder 𝑖 ∈ 𝑂 will autonomously choose her route for going from pickup
ocation 𝑝𝑖 to delivery location 𝑑𝑖. However, the expected travel time
𝑑(𝑝𝑖, 𝑑𝑖) is the same for each courier. This assumption is extremely
reasonable in our case study since all the couriers in Rome travel by
motorbikes whose travel times are not affected by traffic conditions.

Check Out Time. Finally, we assume that we are given:

𝛼 ∈ [𝑇], the check-out time, i.e. the average time for a courier to
heck out and be ready for the next delivery (if any).

3.3. A formal definition of ocap

We are now ready to provide a formal definition of ocap. Following
the discussion in the previous section, an instance of the problem is
defined by a tuple (𝑂 , 𝐶 , 𝐿, 𝑤, 𝑐 , 𝑐 , 𝛼 , 𝑑). We want to solve the problem
of delivering the orders in 𝑂 at a minimum cost in an offline fashion,
.e., assuming full knowledge of 𝑂. In particular, we ignore the place-

ment time of the order and assume that all the orders are known at the
eginning of the shift. There are two different sub-problems that need
o be concurrently addressed: the assignment of orders in 𝑂 to couriers,
.e., an assignment of subsets 𝑂𝑗 ⊆ 𝑂 to each courier 𝑗 ∈ 𝐶 such that
he sets 𝑂𝑗 are pairwise disjoint; the scheduling of the orders in 𝑂𝑗 ,
or each courier 𝑗 ∈ 𝐶. In solving these problems, we must take into
ccount several constraints, e.g. related to time windows, and minimize

the overall cost of the delivery, which takes into account both the delay
ost function 𝑐 for orders that are delivered and the fixed rejection cost
𝑐 for orders that are rejected.

In order to provide a formal statement of the problem, we need a
ew definitions. First, consider a pair of orders 𝑖, 𝑖′ ∈ 𝑂 and a courier
𝑗 ∈ 𝐶.

• We denote by 𝜃(𝑖, 𝑗) the minimum time at which 𝑗 could deliver 𝑖
if the latter is the first order delivered by 𝑗 in her shift. Therefore:
𝜃(𝑖, 𝑗) ∶= 𝑟𝑗 + 𝑑(𝑝𝑗 , 𝑝𝑖) + 𝛽𝑖 + 𝑑(𝑝𝑖, 𝑑𝑖).

• We denote by 𝜃(𝑖, 𝑖′, 𝑦) the minimum time at which order 𝑖 can be
delivered assuming that: (1) it is delivered right after order 𝑖′ and
by the same courier; (2) order 𝑖′ is delivered at time 𝑦. Therefore:
𝜃(𝑖, 𝑖′, 𝑦) ∶= 𝑦 + 𝛼 + 𝑑(𝑑𝑖′ , 𝑝𝑖) + 𝛽𝑖 + 𝑑(𝑝𝑖, 𝑑𝑖)

A schedule for a courier 𝑗 ∈ 𝐶 is a pair (𝑂𝑗 , 𝜎𝑗), where 𝑂𝑗 is a subset
of 𝑂 and 𝜎𝑗 ∶ 𝑂𝑗 ↦ {𝑟𝑗 , 𝑟𝑗 + 1,… , 𝑇 } is a function that associates
with each order 𝑖 ∈ 𝑂𝑗 the time 𝜎𝑗 (𝑖) at which courier 𝑗 delivers order
𝑖. We assume without loss of generality that 𝑂𝑗 = {𝑖𝑗1,… , 𝑖𝑗

|𝑂𝑗 |
}, with

𝜎𝑗 (𝑖
𝑗
𝑘−1) ≤ 𝜎𝑗 (𝑖

𝑗
𝑘), for 𝑘 = 2..|𝑂𝑗 |. Following the above discussion, it

follows that (𝑂𝑗 , 𝜎𝑗) is feasible if:

(i) 𝜎𝑗 (𝑖
𝑗
𝑘) ∈ {𝑡𝑖𝑗𝑘 , 𝑡𝑖𝑗𝑘 + 1,… , 𝑡𝑖𝑗𝑘 +𝑤}, 𝑘 = 1,… , |𝑂𝑗 |;

(ii) 𝜎𝑗 (𝑖
𝑗
1) ≥ 𝜃(𝑖𝑗1, 𝑗);

(iii) 𝜎𝑗 (𝑖
𝑗
𝑘) ≥ 𝜃(𝑖𝑗𝑘, 𝑖

𝑗
𝑘−1, 𝜎𝑗 (𝑖

𝑗
𝑘−1)).

Constraint (i) requires that 𝜎𝑗 (𝑖
𝑗
𝑘) is within the time window 𝑊𝑖𝑗𝑘

of
order 𝑖𝑗𝑘 (recall that we denote by 𝑡𝑖𝑗𝑘

the delivery start time for order 𝑖𝑗𝑘).
Constraint (ii) requires that 𝜎𝑗 (𝑖

𝑗
1), the delivery time for the first order

𝑖𝑗1 assigned to 𝑗, is consistent with the release time of 𝑗. Constraint (iii)
analogously requires that 𝜎𝑗 (𝑖

𝑗
𝑘+1), the delivery time for order 𝑖𝑗𝑘+1, is

consistent with the delivery time of 𝑖𝑗𝑘, which is the previous order in
the schedule of 𝑗. We illustrate the definition of schedule on a simple
example. We deal with the case of a courier 𝑂 that has been assigned

three orders.

6
Example 1. We are given a courier 0 with release time 𝑟0 = 0 and a set
𝑂 of three orders {1, 2, 3}, respectively with target times 𝑡1 = 6, 𝑡2 = 12
and 𝑡3 = 15 and average waiting times 𝛽1 = 𝛽2 = 𝛽3 = 1 (see Fig. 4).

he width 𝑤 is equal to 15, the check-out time 𝛼 is equal to 1 and
expected travel times are: 𝑑(𝑝0, 𝑝1) + 𝑑(𝑝1, 𝑑1) = 𝑑(𝑝0, 𝑝2) + 𝑑(𝑝2, 𝑑2) =
(𝑝0, 𝑝3) + 𝑑(𝑝3, 𝑑3) = 5; 𝑑(𝑑1, 𝑝2) + 𝑑(𝑝2, 𝑑2) = 4; 𝑑(𝑑2, 𝑝1) + 𝑑(𝑝1, 𝑑1) =
; 𝑑(𝑑1, 𝑝3) + 𝑑(𝑝3, 𝑑3) = 𝑑(𝑑3, 𝑝1) + 𝑑(𝑝1, 𝑑1) = 7; 𝑑(𝑑2, 𝑝3) + 𝑑(𝑝3, 𝑑3) =
(𝑑3, 𝑝2) + 𝑑(𝑝2, 𝑑2) = 2.

For the case of simplicity, we restrict to schedules where the courier
ill anyhow deliver order 1 first: this will be done not earlier than time
, as 𝑟0 = 0, 𝑑(𝑝0, 𝑝1) + 𝑑(𝑝1, 𝑑1) = 5 and 𝛽1 = 1. There are then two
ossible cases: (𝑖) the courier delivers order 2 before order 3; (𝑖𝑖) the
ourier delivers order 3 before order 2.

(𝑖) In this case, the courier will deliver order 2 not earlier than time
12 because 6 + 𝛼 + 𝑑(𝑑1, 𝑝2) + 𝑑(𝑝2, 𝑑2) + 𝛽2 = 12. She will finally deliver
rder 3 not earlier than time 16 because 12 +𝛼+𝑑(𝑑2, 𝑝3) +𝑑(𝑝3, 𝑑3) +𝛽3 =
6. Note that, in this case, it is therefore possible to deliver the first two
rders at their target time and the third order just one time step later
han its target time.

(𝑖𝑖) In this case, the courier will deliver order 3 not earlier than time
15 because 6 + 𝛼 + 𝑑(𝑑1, 𝑝3) + 𝑑(𝑝3, 𝑑3) + 𝛽3 = 15. She will finally deliver
rder 2 not earlier than time 19 because 15 +𝛼+𝑑(𝑑3, 𝑝2) +𝑑(𝑝2, 𝑑2) +𝛽2 =
9. Note that, in this case, it is therefore possible to deliver the first
nd the third order at their target time but the second order cannot be
elivered earlier than 7 time steps after its target time.

We now move to costs. Note that the cost of delivering 𝑖𝑗𝑘 at time
𝜎𝑗 (𝑖

𝑗
𝑘) is 𝑐(𝜎𝑗 (𝑖

𝑗
𝑘) − 𝑡𝑖𝑗𝑘

). We therefore let 𝑐(𝑂𝑗 , 𝜎𝑗) ∶=
∑

𝑘=1,…,|𝑂𝑗 |
𝑐(𝜎𝑗 (𝑖

𝑗
𝑘) −

𝑡𝑖𝑗𝑘
). We aim at finding a collection (, 𝜎) = {(𝑂1, 𝜎1),… , (𝑂

|𝐶|

, 𝜎
|𝐶|

)}
such that each 𝜎𝑗 ∶ 𝑂𝑗 ↦ {𝑟𝑗 , 𝑟𝑗 + 1,… , 𝑇 } is a feasible schedule
for courier 𝑗 ∈ 𝐶, the sets 𝑂𝑗 are pairwise disjoint and the cost
𝑐(, 𝜎) is minimized. The latter cost is the sum of two terms: the cost
∑

𝑗∈𝐶 𝑐(𝑂𝑗 , 𝜎𝑗), that is the cost of orders that are indeed delivered, and
the cost 𝑐 ⋅ |𝑂 ⧵

⋃

𝑗∈𝐶 𝑂𝑗 |, that is the cost of orders that are rejected.
Namely, the Offline Couriers Assignment Problem is defined as follows:

The Offline Couriers Assignment Problem (ocap). Given: a tuple
(𝑂 , 𝐶 , 𝐿, 𝑤, 𝑐 , 𝑐 , 𝛼 , 𝑑), as defined in Section 3.3. Find: a collection of
schedules (, 𝜎) = {(𝑂1, 𝜎1), … , (𝑂

|𝐶|

, 𝜎
|𝐶|

)} such that: each 𝜎𝑗 ∶ 𝑂𝑗 ↦
{𝑟𝑗 , 𝑟𝑗 + 1,… , 𝑇 } is a feasible schedule for courier 𝑗 ∈ 𝐶; the sets 𝑂𝑗 are
pairwise disjoint; the cost 𝑐(, 𝜎) ∶= 𝑐 ⋅ |𝑂 ⧵

⋃

𝑗∈𝐶 𝑂𝑗 | + ∑

𝑗∈𝐶 𝑐(𝑂𝑗 , 𝜎𝑗)
is minimized.

We point out that when the width is unbounded (the decision
version of) ocap is np-hard already for the case of a single courier,
through the reduction of a classical scheduling problem: Sequencing
with Release Times and Deadlines (see [1,36]).

4. A solution approach to ocap

In this section, we show how to reduce ocap to the problem of
inding a collection  of suitable paths in a time-extended network
(𝑁 , 𝐴). We will show in Section 4.4 that the latter problem can be

formulated as an Integer Linear Program whose size strictly depends
on the number of arcs in 𝐴. In order to keep the latter number under
control, we focus on a particular class of schedules, that, in accordance
with the scheduling literature, we call early start.

4.1. Early start schedules

Let 𝑂𝑗 = {𝑖𝑗1,… , 𝑖𝑗
|𝑂𝑗 |

} be the set of orders assigned to a courier 𝑗 ∈ 𝐶
and let 𝜎 ∶ 𝑂𝑗 ↦ {𝑟𝑗 , 𝑟𝑗 + 1,… , 𝑇 } be such that (𝑂𝑗 , 𝜎𝑗) is a feasible
schedule. We assume without loss of generality that 𝑂𝑗 = {𝑖𝑗1,… , 𝑖𝑗

|𝑂𝑗 |
},

with 𝜎𝑗 (𝑖
𝑗
𝑘−1) ≤ 𝜎𝑗 (𝑖

𝑗
𝑘), for 𝑘 = 2..|𝑂𝑗 |. The schedule (𝑂𝑗 , 𝜎𝑗) is an early

start schedule if 𝜎𝑗 is such that the courier 𝑗 delivers each order as
soon as possible, i.e., without unnecessary idle times with respect to the
sequence 𝑖𝑗1,… , 𝑖𝑗

|𝑂𝑗 |
. Namely, (𝑂𝑗 , 𝜎𝑗) is a (feasible) early start schedule
if the followings hold:

M. Cosmi et al. Omega 133 (2025) 103237
Fig. 4. The time extended network associated with the instance described by Example 1. The three orders {1, 2, 3} are associated with the layers with the circled nodes. Each
of these nodes is labeled with ℎ, for ℎ ∈ [15], and the nodes corresponding to target times are in gray. The courier is represented by the diamond node placed at time step 0
(i.e., real time 18:30). We restrict to schedules where the courier will anyhow deliver order 1 first; therefore the arcs from the second and the third layer to the first one are not
useful and we do not draw them for the sake of clarity. The red path represents the early start schedule where the courier serves the orders according to the sequence (1, 2, 3)
(case (i) in Example 1). The blue path represents instead the early start schedule where the courier serves the orders according to the sequence (1, 3, 2) (case (ii) in Example 1).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(i) 𝜎𝑗 (𝑖
𝑗
𝑘) ∈ {𝑡𝑖𝑗𝑘 , 𝑡𝑖𝑗𝑘 + 1,… , 𝑡𝑖𝑗𝑘 +𝑤}, for each 𝑘 = 1,… , |𝑂𝑗 |;

(ii) 𝜎𝑗 (𝑖
𝑗
1) = max{𝑡𝑖𝑗1

, 𝜃(𝑖𝑗1, 𝑗)};

(iii) 𝜎𝑗 (𝑖
𝑗
𝑘+1) = max{𝑡𝑖𝑗𝑘+1

, 𝜃(𝑖𝑗𝑘+1, 𝑖
𝑗
𝑘, 𝜎𝑗 (𝑖

𝑗
𝑘))}, for each 𝑘 = 1,… , |𝑂𝑗 | − 1.

If we go back to Example 1 we observe that the delivery sequence
(1, 2, 3) can be implemented by different schedules for the courier (note
that in the following we drop the subscript for 𝜎 as there is only one
courier): we may e.g. set 𝜎(1) = 6, 𝜎(2) = 13 and 𝜎(13) = 20. However,
for that sequence, there is only one early start schedule, which is:
𝜎(1) = 6, 𝜎(2) = 12 and 𝜎(13) = 19.

We skip the straightforward proof of the following lemma. Similar
results are well-known in the scheduling literature.

Lemma 2. Since the delay cost function 𝑐 is non-decreasing, it follows that
there exists an optimal solution to ocap where, for each courier, the schedule
is early start.

Remark 3. We point out that even for an optimal early start solution,
i.e., a collection of optimal schedules (, 𝜎) = {(𝑂1, 𝜎1), … , (𝑂

|𝐶|

, 𝜎
|𝐶|

)}
such that each pair (𝑂𝑗 , 𝜎𝑗) is a feasible early start schedule, it is
possible that for a courier 𝑗 there are some unavoidable idle times. For
instance, this happens if 𝑡𝑖𝑗1 > 𝜃(𝑖𝑗1, 𝑗), as in this case, the courier 𝑗 will
have an idle time of size 𝑡𝑖𝑗1

−𝜃(𝑖𝑗1, 𝑗) before her first delivery. In practice,
she has to be at the pickup location of 𝑖𝑗1 by time 𝑡𝑖𝑗1

and may spend that
idle times wherever she likes: at her release location, or at the pickup
location of 𝑖𝑗1, fractionally at both locations or in any point in between
the two locations. The same holds if 𝑡𝑖𝑗𝑘+1

> 𝜃(𝑖𝑗𝑘+1, 𝑖
𝑗
𝑘, 𝜎𝑗 (𝑖

𝑗
𝑘)), for some

𝑘 = 1,… , |𝑂𝑗 | − 1.

4.2. A time extended network

We show in the following that we may reduce ocap to the problem
of finding a suitable collection  of paths in a time extended network
7
𝑄(𝑁 , 𝐴). This network will have a horizontal layer with 𝑤 + 1 nodes
for each order 𝑖 (recall that 𝑤 is the width): namely, each layer is a
directed path with 𝑤 + 1 nodes, each corresponding to the delivery of
order 𝑖 at a time step in its time window. Different horizontal layers
will be connected through some diagonal arcs: an arc going from layer
𝑖 to layer 𝑖′ represents the fact that order 𝑖′ can be delivered right after
order 𝑖 by some courier. It will be indeed possible to associate with
each courier 𝑗 some paths of 𝑄: each path starts from a single node
representing 𝑗 and visits a sequence of layers representing the sequence
of orders assigned to, and delivered by 𝑗. We finally point out that, since
we may restrict to an early start schedule (see Lemma 2), we can keep
the number of diagonal arcs between each pair of layers of size 𝑂(𝑤):
namely, each node 𝑢 in the layer of 𝑖 may be connected to at most one
node 𝑣 of layer 𝑖′: namely 𝑣 corresponds to deliver 𝑖′ as soon as possible,
i.e., without unnecessary idle times, with respect to delivering 𝑖 at the
time step defined by 𝑢. Note that therefore the set of arcs going from a
layer 𝑖 to a layer 𝑖′ will be made of ‘‘parallel’’ arcs, as when there are
no idle times each shift in the delivery time for 𝑖 will induce the same
shift in the delivery time for 𝑖′.

We are given an instance (𝑂 , 𝐶 , 𝐿, 𝑤, 𝑐 , 𝑐 , 𝛼 , 𝑑) of ocap as defined in
Section 3.3. We first show how to build the time extended network
𝑄(𝑁 , 𝐴) associated with this instance. We start with defining the set of
nodes 𝑁 . We associate with each order 𝑖 ∈ 𝑂 a set of 𝑤+ 1 nodes that we
call the layer of 𝑖. Namely, the layer of 𝑖 is made of nodes (𝑖, 0),… , (𝑖, 𝑤),
and the node (𝑖, ℎ), for ℎ ∈ [𝑤], stands for the delivery of order 𝑖 at time
𝑡𝑖 + ℎ.

We also associate with each courier 𝑗 ∈ 𝐶 a node that is convenient
to denote as (𝑗 , 0). The node (𝑗 , 0) stands for 𝑗 being ready at her release
location at time 𝑟𝑗 . It is also convenient to think of (𝑗 , 0) as the layer of
courier 𝑗, even though in this case the layer is made of a single node.

We now define the set of arcs 𝐴. There are three sets of arcs, each
with a cost, that will be discussed later. A first set of arcs, that we call
horizontal, run in the layer of orders and stand for a courier waiting
at the delivery location of an order: these arcs model unavoidable idle
times, see Remark 3, and allow to keep the size of 𝐴 under control by

M. Cosmi et al.

o

l
b
𝑗

(

o
T
m
n
a
𝑂
t
w
a

o

w
s

n

p

Omega 133 (2025) 103237
reducing the number of order diagonal arcs, see below. Namely, for each
rder 𝑖 ∈ 𝑂, we define the following set of arcs:

for ℎ ∈ [𝑤 − 1], the arc ((𝑖, ℎ), (𝑖, ℎ + 1)), which stands for a courier
waiting from time ℎ to time ℎ + 1 at the delivery location of order 𝑖.

A second set of arcs, that we call courier diagonal, run from the
ayer of a courier to the layer of an order and stand for that order
eing the first delivered by that courier (in her shift). Namely, let
∈ 𝐶 be a courier and 𝑖 ∈ 𝑂 an order. Again, we denote by 𝜃(𝑖, 𝑗)

the minimum time at which courier 𝑗 could deliver her first order 𝑖,
i.e. 𝜃(𝑖, 𝑗) ∶= 𝑟𝑗 + 𝑑(𝑝𝑗 , 𝑝𝑖) + 𝑑(𝑝𝑖, 𝑑𝑖) + 𝛽𝑖. There are three possible cases:

𝜃(𝑖, 𝑗) > 𝑡𝑖 +𝑤 In this case, courier 𝑗 cannot deliver order 𝑖 by time
𝑡𝑖 + 𝑤, which is the last time for delivering it: there will be no
arcs running from the layer of 𝑗 to the layer of 𝑖;

𝑡𝑖 +𝑤 ≥ 𝜃(𝑖, 𝑗) ≥ 𝑡𝑖 In this case, by leaving 𝑝𝑗 at time 𝑟𝑗 , courier 𝑗 will
reach 𝑑𝑖 within the time window [𝑡𝑖, 𝑡𝑖+𝑤]: there will be a single
arc from layer 𝑗 to layer 𝑖 and, according to the early start policy,
it will be the arc ((𝑗 , 0), (𝑖, 𝜃(𝑖, 𝑗) − 𝑡𝑖));

𝑡𝑖 > 𝜃(𝑖, 𝑗) In this case, by leaving 𝑝𝑗 at time 𝑟𝑗 , courier 𝑗 will reach 𝑑𝑖
before time 𝑡𝑖. There is therefore an idle time (see Remark 3)
of size 𝑡𝑖 − 𝜃(𝑖, 𝑗): there will be a single arc from layer 𝑗 to
layer 𝑖 and, according to the early start policy, it will be the
arc ((𝑗 , 0), (𝑖, 0)).

The last set of arcs, which we call order diagonal, runs from the layer
of an order to the layer of another order and stands for an order being
delivered right after the other by the same courier. Consider therefore
orders 𝑖 and 𝑙 in 𝑂. Let 𝜃(𝑙 , 𝑖, 𝑡𝑖) ∶= 𝑡𝑖 + 𝛼 + 𝑑(𝑑𝑖, 𝑝𝑙) + 𝛽𝑙 + 𝑑(𝑝𝑙 , 𝑑𝑙) be the
earliest time at which a courier can deliver order 𝑙 if she delivers order 𝑖
at time 𝑡𝑖 (which is the first possible delivery time for 𝑖). We delve into
four cases:

𝜃(𝑙 , 𝑖, 𝑡𝑖) > 𝑡𝑙 +𝑤 In this case, the courier cannot deliver order 𝑙 by time
𝑡𝑙 + 𝑤, which is the last time for delivering it: there will be no
arcs running from the layer of 𝑖 to the layer of 𝑙;

𝑡𝑙 +𝑤 ≥ 𝜃(𝑙 , 𝑖, 𝑡𝑖) ≥ 𝑡𝑙 In this case, if the courier delivers 𝑖 at time 𝑡𝑖, she
will reach 𝑑𝑙 within the time window [𝑡𝑙 , 𝑡𝑙 + 𝑤]. According to
the early start policy, the arcs that are going from layer 𝑖 to layer
𝑙 are the following: ((𝑖, 0), (𝑙 , 𝜃(𝑙 , 𝑖, 𝑡𝑖) − 𝑡𝑙)), ((𝑖, 1), (𝑙 , 𝜃(𝑙 , 𝑖, 𝑡𝑖) − 𝑡𝑙 +
1)),… , ((𝑖, 𝑤 − 𝜃(𝑙 , 𝑖, 𝑡𝑖) + 𝑡𝑙), (𝑙 , 𝑤)). Analogously, if she delivers 𝑖
at a time 𝑡𝑖 + 𝑡𝑙 − 𝜃(𝑙 , 𝑖, 𝑡𝑖) + 𝜇, for any 𝜇 ∈ [𝑤 + 𝜃(𝑙 , 𝑖, 𝑡𝑖) − 𝑡𝑙],
she will reach 𝑑𝑙 at time 𝑡𝑙 + 𝜇. Therefore, the complete set
of arcs going from layer 𝑖 to layer 𝑙 is the following: ((𝑖, 𝑡𝑙 −
𝜃(𝑙 , 𝑖, 𝑡𝑖)), (𝑙 , 0)), ((𝑖, 𝑡𝑙−𝜃(𝑙 , 𝑖, 𝑡𝑖) + 1), (𝑙 , 1)),… , ((𝑖, 𝑤), (𝑙 , 𝑤+𝜃(𝑙 , 𝑖, 𝑡𝑖) −
𝑡𝑙)).

𝑡𝑙 > 𝜃(𝑙 , 𝑖, 𝑡𝑖) ≥ 𝑡𝑙 −𝑤 In this case, if the courier delivers 𝑖 at any time
in [𝑡𝑖, 𝑡𝑖+ 𝑡𝑙 −𝜃(𝑙 , 𝑖, 𝑡𝑖)] she will still be able to reach 𝑑𝑙 by time 𝑡𝑙.
There is therefore an idle time (see Remark 3) of size 𝑡𝑙−𝜃(𝑙 , 𝑖, 𝑡𝑖):
this will be represented by the single arc ((𝑖, 𝑡𝑙 − 𝜃(𝑙 , 𝑖, 𝑡𝑖)), (𝑙 , 0)).
Analogously, if the courier delivers order 𝑖 at a time 𝑡𝑖 + 𝑡𝑙 −
𝜃(𝑙 , 𝑖, 𝑡𝑖) + 𝜖, for any 𝜖 ∈ [𝑤 + 𝜃(𝑙 , 𝑖, 𝑡𝑖) − 𝑡𝑙], she will reach 𝑑𝑙
at time 𝑡𝑙 + 𝜖. Therefore, according to the early start policy, the
complete set of arcs going from layer 𝑖 to layer 𝑙 is the following:
((𝑖, 𝑡𝑙 − 𝜃(𝑙 , 𝑖, 𝑡𝑖)), (𝑙 , 0)), ((𝑖, 𝑡𝑙 − 𝜃(𝑙 , 𝑖, 𝑡𝑖) + 1), (𝑙 , 1)),… , ((𝑖, 𝑤), (𝑙 , 𝑤+
𝜃(𝑙 , 𝑖, 𝑡𝑖) − 𝑡𝑙)).

𝑡𝑙 −𝑤 > 𝜃(𝑙 , 𝑖, 𝑡𝑖) In this case, even if the courier delivers 𝑖 at time 𝑡𝑖+𝑤,
which is the last time to deliver, she will reach 𝑑𝑙 before time
𝑡𝑙. This case is indeed similar to the previous case and there is
again an idle time and we again put a single arc from layer 𝑖 to
layer 𝑙, namely the arc ((𝑖, 𝑤), (𝑙 , 0)).
8
We now deal with arc costs. Each arc is entering a node (𝑖, ℎ), for
suitable 𝑖 ∈ 𝑂 and ℎ ∈ [𝑤]. We give each arc 𝑎 entering node (𝑖, ℎ)
the cost 𝑐𝑎 ∶= 𝑐(ℎ) of delivering order 𝑖 at time 𝑡𝑖 + ℎ, but for the arc
(𝑖, ℎ − 1), (𝑖, ℎ)) that has cost zero.

The time extended network for the instance described by Example 1
is shown in Fig. 4. If we again restrict to schedules where the courier
will anyhow deliver order 1 first, diagonal arcs going from the second
and the third layer to the first one are not useful so we do not draw
them for the sake of clarity. Still, for the sake of clarity, we skip the
cost of the arcs. We will later explain what the red and the blue paths
represent.

We close this section by first discussing the size of the network
𝑄(𝑁 , 𝐴). The number of nodes is roughly 𝑤⋅|𝑂|+|𝐶|. As for the number
f arcs, we start with horizontal arcs: their number is roughly 𝑤⋅|𝑂|⋅|𝐶|.
he number of courier diagonal arcs is at most |𝑂| ⋅ |𝐶|, as there is at
ost one arc for each courier to the layer of each order. Finally, the
umber of diagonal arcs is at most 𝑤 ⋅ |𝑂|

2: note that horizontal arcs
llow to keep the number of diagonal arcs under control and to avoid
(𝑤2) factors. It turns out that the size of 𝑤 has a strong impact on

he size of 𝑄: that is not surprising since as we already pointed out,
hen the width is unbounded, (the decision version of) ocap is np-hard
lready for the case of a single courier (see [1]).

4.3. Ocap as a path problem on the time extended network

Lemma 2 shows that there exists an optimal solution to ocap where,
for each courier, the schedule is early start. We now show that each
feasible early start schedule of a courier corresponds to a suitable path
in the network 𝑄(𝑁 , 𝐴) and vice versa.

We start with a couple of useful notations. Each node in 𝑄 is indexed
by a suitable pair (𝑖, ℎ): we denote by 𝛿−(𝑖, ℎ) (𝛿+(𝑖, ℎ)) the set of arcs
entering (leaving) the node (𝑖, ℎ). We then denote, for each order 𝑖 ∈ 𝑂,
by 𝛿−(𝑖) the set of arcs ‘‘entering’’ the layer of nodes associated with 𝑖:

𝛿−(𝑖) =
(

⋃

ℎ∈[𝑤]
𝛿−(𝑖, ℎ)

)

⧵ {((𝑖, ℎ), (𝑖, ℎ + 1)), ℎ ∈ [𝑤 − 1]},

i.e., 𝛿−(𝑖) is the set of arcs entering the cut induced by the set of nodes
⋃

ℎ∈[𝑤](𝑖, ℎ). By definition, the arcs in 𝛿−(𝑖) are either courier diagonal
r order diagonal.

Let 𝑗 ∈ 𝐶 be a courier and (𝑂𝑗 , 𝜎𝑗) a feasible early start schedule,
ith 𝑂𝑗 = {𝑖𝑗1,… , 𝑖𝑗𝑠} ⊆ 𝑂 and 𝜎𝑗 ∶ 𝑂𝑗 ↦ [𝑟𝑗 , 𝑇]. Recall that 𝑡𝑖𝑗𝑘

is the
tart time of order 𝑖𝑗𝑘, for 𝑘 = 1,… , 𝑠. We want to associate with (𝑂𝑗 , 𝜎𝑗)

a path 𝑃𝑗 through the nodes:

(𝑗 , 0), (𝑖𝑗1, 𝜎𝑗 (𝑖
𝑗
1) −𝑡𝑖𝑗1

), (𝑖𝑗2, 𝜎𝑗 (𝑖
𝑗
2) −𝑡𝑖𝑗2

),… , (𝑖𝑗𝑠−1, 𝜎𝑗 (𝑖
𝑗
𝑠−1) −𝑡𝑖𝑗𝑠−1

), (𝑖𝑗𝑠, 𝜎𝑗 (𝑖𝑗𝑠) −𝑡𝑖𝑗𝑠)

but we must take into account that it is possibly the case that there is
o arc between two consecutive nodes in the above sequence. On the

one hand, that happens only if the schedule (𝑂𝑗 , 𝜎𝑗) has some idle times
(see Remark 3) and, in this case, there is a path between the two nodes
that exploits horizontal arcs. We therefore associate with (𝑂𝑗 , 𝜎𝑗) the
ath 𝑃𝑗 :

(𝑗 , 0), (𝑖𝑗1, 𝜎𝑗 (𝑖
𝑗
1) − 𝑡𝑖𝑗1

),… , (𝑖𝑗1, 𝜎𝑗 (𝑖
𝑗
1) − 𝑡𝑖𝑗1

+ 𝑏1), (𝑖
𝑗
2, 𝜎𝑗 (𝑖

𝑗
2) − 𝑡𝑖𝑗2

),

… , (𝑖𝑗2, 𝜎𝑗 (𝑖
𝑗
2) − 𝑡𝑖𝑗2

+ 𝑏2),…

… , (𝑖𝑗𝑠−1, 𝜎𝑗 (𝑖
𝑗
𝑠−1) − 𝑡𝑖𝑗𝑠−1

),… , (𝑖𝑗𝑠−1, 𝜎𝑗 (𝑖
𝑗
𝑠−1) − 𝑡𝑖𝑗𝑠−1

+ 𝑏𝑠−1), (𝑖𝑗𝑠, 𝜎𝑗 (𝑖𝑗𝑠) − 𝑡𝑖𝑗𝑠).

for some suitable 𝑏𝑘 ∈ [𝑤−𝜎𝑗 (𝑖
𝑗
𝑘)] and for each 𝑘 = 1,… , 𝑠− 1: for each

𝑏𝑘 > 0, the path 𝑃𝑗 exploits horizontal arcs in the layer of order 𝑖𝑗𝑘 to
represent idle times.

Note that, while the path 𝑃𝑗 might visit several nodes from the layer
of the same order, these nodes will be visited one after the other, and
the layer of each order is indeed visited by 𝑃𝑗 at most once. In other
words, the following holds:

M. Cosmi et al.

t

o
o

b
s

s

f

c

p
r

i

w
c
c
u
i
c

h
a
a

h

b
i

0
w
m
o
a
d
T
w
t
f

Omega 133 (2025) 103237
Remark 4. For each order 𝑖𝑗𝑘 ∈ 𝑂𝑗 , there is exactly one arc in
𝑃𝑗 ∩ 𝛿−(𝑖𝑗𝑘): the arc is courier diagonal if 𝑖𝑗𝑘 is the first order delivered
by 𝑗, and order diagonal otherwise.

Vice versa, consider now a path 𝑃𝑗 that is going from node (𝑗 , 0)
o node (𝑖, ℎ), for some 𝑗 ∈ 𝐶 , 𝑖 ∈ 𝑂 and ℎ ∈ [𝑤] and obeys to

Remark 4. We also assume without loss of generality that either ℎ = 0
r (𝑖, ℎ− 1) ∉ 𝑃𝑗 (otherwise we just shorten the path). Then the sequence
f nodes visited by 𝑃 ′

𝑗 must be of the following form:

{(𝑗 , 0), (𝑖1, ℎ1),… , (𝑖1, ℎ1 + 𝑏1), (𝑖2, ℎ2) … , (𝑖𝑠−1, ℎ𝑠−1 + 𝑏𝑠−1), (𝑖𝑠, ℎ𝑠)} with:

• 𝑠 ≥ 1, 𝑖𝑠 = 𝑖, 𝑖𝑘 ∈ 𝑂 and ℎ𝑘 ∈ [𝑤] for 𝑘 = 1,… , 𝑠;
• 𝑏𝑘 ∈ [𝑤 − ℎ𝑘] for 𝑘 = 1,… , 𝑠 − 1.

If we let 𝑂𝑗 ∶= {𝑖1,… , 𝑖𝑠} and 𝜎𝑗 (𝑖𝑘) ∶= 𝑡𝑖𝑘 +ℎ𝑘, for 𝑘 = 1,… , 𝑠, then
the schedule (𝑂𝑗 , 𝜎𝑗) is feasible, early start and 𝑐(𝑂𝑗 , 𝜎𝑗) = 𝑐(𝑃𝑗).

If we go back to Example 1 and Fig. 4, we see that the red path
represents the early start schedule where the courier serves the orders
according to the sequence (1, 2, 3), which is case (𝑖) in Example 1. The
lue path represents instead the early start schedule where the courier
erves the orders according to the sequence (1, 3, 2), which is case (𝑖𝑖).

It follows from above that each feasible early start schedule (𝑂𝑗 , 𝜎𝑗)
corresponds to a path 𝑃𝑗 in 𝑄(𝑁 , 𝐴) starting from node (𝑗 , 0) and
obeying to Remark 4, and vice versa every path 𝑃𝑗 in 𝑄(𝑁 , 𝐴) starting
from node (𝑗 , 0) and obeying to Remark 4 corresponds to a feasible early
tart schedule. Moreover, by construction, the cost 𝑐(𝑃𝑗) of path 𝑃𝑗 is

equal to 𝑐(𝑂𝑗 , 𝜎𝑗). Building upon Lemma 2, we may therefore state the
ollowing:

Theorem 5. It is possible to reduce ocap to the problem of finding a
ollection  of paths in the time extended network 𝑄(𝑁 , 𝐴) such that:
(i) each path 𝑃𝑗 leaves from the node (𝑗 , 0) associated with courier 𝑗 ∈ 𝐶,

and for each courier 𝑗 ∈ 𝐶 there is at most one path leaving from node
(𝑗 , 0);

(ii) for each order 𝑖 ∈ 𝑂, the collection  is such that there exists at
most one path 𝑃𝑗 ∈  that is entering 𝛿−(𝑖), i.e., the layer of nodes
associated with 𝑖;

(iii) the cost 𝑐() is minimized: 𝑐() is the sum of two terms: the cost
∑

𝑗∈𝐽 𝑐(𝑃𝑗) of the paths in  and the cost of rejections, namely, 𝑐
times the number of orders not covered by any path in  , i.e., nodes
𝑖 such that ⋃𝑗∈𝐽 𝑃𝑗 ∩ 𝛿−(𝑖) = ∅.

4.4. An integer linear programming formulation for ocap

Building upon Theorem 5, we provide an Integer Linear Program-
ming formulation for ocap. This program exploits two binary variables:
𝑦𝑎, which will be equal to 1 if and only if arc 𝑎 ∈ 𝐴 belongs to some
ath 𝑃𝑗 ∈  ; 𝑤𝑖, which will be equal to 1 if and only if order 𝑖 ∈ 𝑂 is
ejected.

min
∑

𝑖∈𝑂
𝑐 ⋅𝑤𝑖 +

∑

𝑎∈𝐴
𝑐𝑎 ⋅ 𝑦𝑎 (1)

∑

𝑎∈𝛿+(𝑗 ,0)
𝑦𝑎 ≤ 1 ∀𝑗 ∈ 𝐶 (2)

∑

𝑎∈𝛿+(𝑖,ℎ)
𝑦𝑎 ≤

∑

𝑎∈𝛿−(𝑖,ℎ)
𝑦𝑎 ∀𝑖 ∈ 𝑂 , ℎ ∈ [𝑤], ℎ ≠ 0 (3)

∑

𝑎∈𝛿−(𝑖)
𝑦𝑎 +𝑤𝑖 = 1 ∀𝑖 ∈ 𝑂 (4)

𝑦𝑎 ∈ {0, 1} ∀𝑎 ∈ 𝐴 (5)

𝑤𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑂 (6)

Constraints (2) impose that for each courier 𝑗 there is at most
one path leaving from node (𝑗 , 0) (see Theorem 5(𝑖)). Constraints (3)
mpose flow conservation and that paths may start only at a node (𝑗 , 0)

associated with some courier 𝑗 (see again Theorem 5(𝑖)). Constraints
9
(4) impose that, for each order 𝑖, there is at most one path entering the
layer of 𝑖 and, in case there is none, force the corresponding variable
𝑤𝑖 to be one.

We point out that the formulation above, which in the following
e refer to as 𝐹 -formulation, is a ‘‘flow-like’’ formulation, but for the

onstraints (4). In other words, if we skip constraints (4), then the
onstraints matrix is essentially a network matrix and therefore totally
nimodular. Notice that we could write such a formulation – that
s essentially a single commodity flow formulation – because once
ouriers start their work, they cannot be ‘‘distinguished’’ from each

other. As soon as we impose constraints on that, say a given courier
as to quit at a different time than 𝑇 , or at time 𝑇 she has to be back
t her release location, we are not able to extend the above formulation
nd we need a multi-commodity flow one.

In Section 6, we will show that the 𝐹 -formulation is indeed quite
effective. We believe that keeping under control the size of the inte-
ger linear program, by restricting to early start schedules and thanks
to the careful construction of the extended time network 𝑄(𝑁 , 𝐴),
significantly contributes to the efficiency of the formulation.

5. Casting ocap into a sequential decision process

The Offline Couriers Assignment Problem assumes a complete
knowledge of the set of orders to be delivered. In this section, we sketch
ow to cast ocap into the sequential decision process depicted in Fig. 3.

In our framework, each state 𝑠𝑘 corresponds to an instance 𝐼𝑘 of
ocap that is built on the base of the previous instance (state) and on
the basis of the orders placed during the time step. We in particular
uild and solve a sequence of instances 𝐼0, 𝐼1,… , 𝐼𝑇 of ocap where the
ndex 𝑘 of an instance 𝐼𝑘 is consistent with the discretization defined in

Section 3.2. Therefore, we think of a service as a finite set of time steps
, 1,… , 𝑇 each corresponding to a time instant 𝑡ℎ = ℎ ⋅ 𝛾, for ℎ ∈ [𝑇],
here the base-step 𝛾 is small enough and in particular 𝛾 ≤ 𝛼 (we
otivate this choice below). Then, we devote time 𝛾 to the solution

f each instance 𝐼𝑘 – we run an ilp solver on the 𝐹 -formulation but any
lgorithm or heuristic for the solution of ocap would work – provides
ecisions that contribute to the definition of the next instance 𝐼𝑘+1.
herefore, we build and solve a sequence of instances 𝐼0, 𝐼1,… of ocap,
hile adding at each time step the orders that have been placed in

he last time window. More in detail, our approach is described by the
ollowing facts:

(i) We build a sequence of instances of ocap 𝐼0, 𝐼1,…, 𝐼𝑇 such that
each instance 𝐼ℎ, ℎ > 0, is inductively built at time 𝑡ℎ upon
instance 𝐼ℎ−1. We devote time 𝛾 to finding a solution (ℎ, 𝜎ℎ)
to each instance 𝐼ℎ: therefore (ℎ, 𝜎ℎ) will be available at time
𝑡ℎ+1 = 𝑡ℎ+𝛾. The solution (ℎ, 𝜎ℎ) will be the ‘‘reference’’ solution
for the time window [𝑡ℎ+1, 𝑡ℎ+2), as at time 𝑡ℎ+2 = 𝑡ℎ+1 + 𝛾 a new
solution (ℎ+1, 𝜎ℎ+1) to 𝐼ℎ+1 will be available.

(ii) Following Section 3.3, each instance 𝐼ℎ is defined by a tuple
(𝑂ℎ, 𝐶 , 𝐿ℎ, 𝑤, 𝑐 , 𝑐 , 𝛼 , 𝑑). Note that while most values and parame-
ters in the tuple are ‘‘static’’ and do not change from one instance
to the other, the set of orders 𝑂ℎ will change e.g. because of
placement times. However, the attributes of an order (pickup
location, delivery location, start time, and average waiting time)
will not change. To the contrary, while the set 𝐶 of couriers does
not change, the attributes of each courier, namely the release
location 𝑝ℎ𝑗 and the release time 𝑟ℎ𝑗 , will very likely vary from one
instance to the other. We therefore discuss below how 𝑂ℎ, 𝑝ℎ𝑗 and
𝑟ℎ𝑗 change.

(𝑖𝑖𝑎) For ℎ ≥ 1, the set 𝑂ℎ is built at time 𝑡ℎ by taking into account
the orders placed in the time window (𝑡ℎ−1, 𝑡ℎ] and the decisions
taken on orders placed before 𝑡ℎ−1 by the solution (ℎ−1, 𝜎ℎ−1)
to the instance 𝐼ℎ−1. For orders in the latter class, there are
four possible classes: the order has been delivered; the order has
been rejected; the order is being ‘‘processed’’, i.e., according to

M. Cosmi et al.

s
t

a

(

r
B
s
a
d
a
t
o

Omega 133 (2025) 103237
(ℎ−1, 𝜎ℎ−1) the courier that has been assigned to that order is
on her way to deliver it; the order is ‘‘not yet processed’’, even
though (ℎ−1, 𝜎ℎ−1) defines a courier and a schedule for that
order. We then include in 𝑂ℎ, besides the orders placed in the
time window (𝑡ℎ−1, 𝑡ℎ], only the orders not yet processed. It is
therefore possible that, for some order in 𝑂ℎ ∩𝑂ℎ−1, the solution
(ℎ, 𝜎ℎ) overrides decisions previously taken by (ℎ−1, 𝜎ℎ−1).

(𝑖𝑖𝑏) For ℎ ≥ 1, we infer the release location 𝑝ℎ𝑗 and the release time 𝑟ℎ𝑗
of a courier 𝑗 for the instance 𝐼ℎ upon 𝑝ℎ−1𝑗 , 𝑟ℎ−1𝑗 and the solution
(ℎ−1, 𝜎ℎ−1). This, however, requires to fix where couriers spend
possible idle times that arise according to (ℎ−1, 𝜎ℎ−1): that is
because we need to know how close or far they are from e.g. the
pickup place of a new order placed in the last time window. So
we need to fix where a courier on idle is spending her idle time:
we assume that couriers will always spend idle times at the delivery
location of the last customer. Under this assumption, there are two
possible cases: either at time 𝑡ℎ+1 the courier is moving to deliver
an order 𝑖 ∈ 𝑂ℎ−1 or she has not been moving for the entire time
window [𝑡ℎ, 𝑡ℎ+1) (that is why it is convenient to choose the time
step 𝛾 not larger than the check-out time 𝛼). In the former case,
we set the release location 𝑝ℎ𝑗 as the delivery location 𝑑(𝑖) of order
𝑖 and the release time 𝑟ℎ𝑗 as the time at which 𝑗 will complete the
delivery of order 𝑖 according to (ℎ−1, 𝜎ℎ−1); in the latter case, we
simply set 𝑝ℎ𝑗 ∶= 𝑝ℎ−1𝑗 and 𝑟ℎ𝑗 ∶= 𝑟ℎ−1𝑗 .

(iii) We are left with describing the base instance 𝐼0. As discussed
above, we simply need to define the set of orders 𝑂0 and, for each
courier 𝑗 ∈ 𝐶, the release location 𝑝0𝑗 and release time 𝑟0𝑗 . The set
of orders 𝑂0 is made by all orders that have been placed by time
𝑡0 (note that this set might be non-empty because customers may
place orders before the shift starts); the release location 𝑝0𝑗 and
the release time 𝑟0𝑗 are those that have been communicated at the
beginning of the service, i.e., 𝑝𝑗 and 𝑟𝑗 .

Remark 6. When we build an instance 𝐼ℎ from instance 𝐼ℎ−1 the time
windows of each order are adjusted according to the advance of time,
as no time window can start before the current time 𝑡ℎ (note that in the
time extended network corresponding to 𝐼ℎ some layers will be shorter,
as some nodes that would be in the past will be removed). We did not
detail this aspect of the process above to avoid a too heavy notation.

6. Computational tests

In this section, we provide computational results on the solution of
ome instances of ocap with the aim of validating both the quality of
he 𝐹 -formulation for the solution of ocap and the sequential decision

process presented in the previous section to cast ocap into a dynamic
setting.

Once again, we point out that when we solve a single instance ocap
the set of orders is fixed and known in advance; however when we cast
ocap into a dynamic setting and solve a sequence of instances of ocap we
must take into account the placement times of each order (as defined
in Section 3.1): the placement time of an order will be a trigger for
deciding which is the first instance that is aware of that order. Also note
that the value of an optimal solution to an instance ocap that takes into
ccount the entire set of orders for a shift – i.e., no matter the placement

times – provides a lower bound to that of any dynamic solution strategy
that takes into account their placement times.

6.1. Base ocap instances

We focus on the data already exploited in Section 3.1. In particular,
we consider 33 dinner shifts for a day between January and March 2019
and derive 33 ‘‘base’’ instances 𝐼1,… , 𝐼33 of ocap where we consider
the entire set of orders that were placed for that service and the set of
couriers that were hired for the service.
 S

10
Recall that each instance of ocap is indeed defined by a tuple
𝑂 , 𝐶 , 𝐿, 𝑤, 𝑐 , 𝑐 , 𝛼 , 𝑑), see Section 3.3 for more details. We now provide a

few details on the setting of  that are required for a precise definition
of some values in the tuple.

Discretization. At dinner (the service we are interested in here) cus-
tomers may ask for target times (i.e., delivery) between 19.00
and 22:30 However, couriers can start their work shift from
18:30 as they will use the first 30 min to get ready for the
service and e.g. reach the location of a pickup from their release
locations. In both cases, we set the base step 𝛾, i.e., the length
of a time step, equal to 5 min (see Section 3.2 for more details).
Therefore, according to our definitions, the set of time steps is
[𝑇] = {0, 1,… , 42}.

Orders. Customers may place orders at any time, even outside [𝑇]: this
is the placement time. However, for each order 𝑖, they can only
set a few target times 𝜃′𝑖 ∈ [𝑇], namely those corresponding to
:00 mins, :15 mins, :30 mins, and :45 mins. It follows that there
are only 15 possible values for 𝑡′𝑖 .

Width. The width 𝑤 is equal to 15 as 𝑤′
𝑙 = 3 and 𝑤′

𝑟 = 12. Therefore,
if 𝜃𝑖 is the true target time selected by the customer for order 𝑖,
then the (discretized) time window for 𝑖 is 𝑊𝑖 = {𝑡𝑖, 𝑡𝑖+ 1,… , 𝑡𝑖+
15}, where 𝑡𝑖 is the time step closest to 𝜃𝑖.

Costs. The rejection cost 𝑐 (recall that orders with delay larger than
60 min will always be rejected, see Section 1) is set equal to
10, while the non-decreasing delay cost function 𝑐 ∶ [𝑤] ↦ Z is
defined as follows:

• 𝑐(ℎ) = 0 for ℎ ∈ {0, 1,… , 6};
• 𝑐(ℎ) = 1 for ℎ ∈ {7, 8, 9};
• 𝑐(ℎ) = 2 for ℎ ∈ {10, 11, 12};
• 𝑐(ℎ) = 3 for ℎ ∈ {13, 14, 15}.

Travel Times and Check Out Time. Expected travel times are esti-
mated through the package Geodesics.jl and assuming a speed
of 30 k m∕h that is reasonable for riders in Rome (note that travel
times will be then rounded to the closest time step according to
the base step 𝛾). The checkout time 𝛼 is set equal to the base
step 𝛾, i.e., 5 min.

As a result, we got a set of 33 instances where the number of orders
varies from 169 to 239; the number of couriers from 23 to 32; the ratio
between the number of orders and the number of couriers from 6.47 to
7.62: in the following we refer to this value simply as the ratio. Details
about these instances are given in the first four columns of Table 3
and the instances themselves can be found here: https://github.com/
MatteoCosmi/Rome-Meal-Delivery-Instances.

6.2. Computational results for ocap instances

We solved the 33 base instances discussed above by means of the
𝐹 -formulation and the mip solver of Gurobi 10.0.3, set with 8 threads.
The experiments were carried out on a machine with a CPU 13th Gen
Intel(R) Core(TM) i9-13900K and with 128 GB RAM. Computational
details are given in the fifth and sixth columns of Table 3, where we
eport respectively the number of explored nodes in the Branch and
ound by the mip solver and the time to find an optimal solution (in
ecs). In the last column we report the cost of the optimal solution
nd, when this cost is larger than 0, the number of orders that are
elivered with a delay within [15, 30) mins; the number of orders that
re delivered with a delay within [30, 45) mins; the number of orders
hat are delivered with a delay within [45, 60) mins; the number of
rders that have been rejected (for details on the cost function see
ection 6.1).

https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances

M. Cosmi et al.

i
o

s

a
w
o

f
s
p
1
i
o
o
t

w
a
t
o
t
o

i
o

d

i

t

u
w

s

s
i
b
t

t
t
i
s

Omega 133 (2025) 103237
Table 3
This table refers to the 33 base instances built upon real shifts from . For each
nstance, the table reports: the instance ID (Instance); the ratio between the number of
rders and the number of couriers (Ratio); the number of orders (Orders); the number

of couriers (Couriers); the number of explored nodes in the Branch and Bound (Nodes);
the time to optimality (Time); the cost of the optimal solution (𝑧∗): when positive, by
(𝑧1 , 𝑧2 , 𝑧3 , 𝑧𝑟) we respectively report: the number of orders with a delay within [15, 30)
mins (𝑧1); the number of orders with a delay within [30, 45) mins (𝑧2); the number
of orders with a delay within [45, 60) mins (𝑧3); the number of orders that have been
rejected (𝑧𝑟).

Instance Ratio Orders Couriers Nodes Time 𝑧∗

(secs)

𝐼1 7.46 179 24 1 21.22 0
𝐼2 7.47 239 32 1 33.92 0
𝐼3 7.58 197 26 1 20.29 0
𝐼4 7.52 188 25 1 12.21 0
𝐼5 6.88 172 25 1 16.45 0
𝐼6 7.10 213 30 1 26.05 0
𝐼7 6.97 237 34 1 46.31 0
𝐼8 7.44 186 25 1 24.31 0
𝐼9 7.46 209 28 1 20.49 0
𝐼10 6.90 200 29 1 32.39 0
𝐼11 7.57 212 28 0 0.01 0
𝐼12 7.42 178 24 1 27.68 0
𝐼13 7.07 212 30 1 36.64 0
𝐼14 7.58 182 24 1 13.57 0
𝐼15 7.35 169 23 1157 357.56 0
𝐼16 7.58 197 26 1 14.37 0
𝐼17 7.48 202 27 1 25.38 0
𝐼18 7.65 176 23 1 24.41 0
𝐼19 7.52 173 23 1 14.98 0
𝐼20 7.00 217 31 1 24.69 0
𝐼21 6.54 183 28 1 7.97 0
𝐼22 6.93 187 27 1 14.13 0
𝐼23 7.48 172 23 1 11.5 0
𝐼24 7.58 182 24 1 14.67 0
𝐼25 7.06 219 31 1 15.67 0
𝐼26 7.08 184 26 1 24.32 0
𝐼27 7.48 187 25 0 0.01 0
𝐼28 7.62 221 29 1 37.04 0
𝐼29 6.59 191 29 1 16.71 0
𝐼30 7.50 180 24 4853 125.48 3(3, 0, 0, 0)
𝐼31 6.47 194 30 1 12.13 0
𝐼32 7.58 197 26 1 29.14 0
𝐼33 6.90 207 30 1 14.77 0

Fig. 5. The average value of the integrality gap for ocap, for ratios in [4.5, 10].

We observe two main facts. First, all instances but three could be
olved in less than a minute and the toughest in about six minutes.

Then, the cost of the optimal solution is always 0 but for an instance
where 3 orders are served within a delay between 15 and 30 min. We
point out that at the time these instances were collected,  was using
11
a manual dispatching of the orders that did not perform very well:
therefore, in order to reduce delays too many couriers were hired. Note
lso that, since the cost function is non-negative, any feasible solution
ith cost 0 is trivially optimal, and so instances with optimal solution
f value 0 are somehow ‘‘easier’’.

Therefore, in order to define more challenging instances for the 𝐹 -
ormulation, we randomly removed from each instance in {𝐼1,… , 𝐼33}
ome couriers to impose larger ratios: namely, we set the ratio (ap-
roximately) equal to 8, 8.5, 9, 9.5 and 10 and therefore derived
65 additional instances of ocap. These instances were indeed very
nteresting to the management of  as they allow to evaluate the trade-
ff between the cost of hiring less/more couriers and the QoS in terms
f rejection and delays (ratios larger than 9 were anyhow considered
oo demanding for couriers).

For the sake of shortness we report in Table 4 detailed results only
for ratios 8, 9, and 10. In particular, for each instance and each ratio,

e report: 𝑧∗, the cost of the optimal solution with details on delays
nd rejections when this cost is positive (as we did for Table 3); ⌈𝑧∗𝑅𝐿⌉,
he cost (rounded up) of the optimal solution of the linear relaxation
f the 𝐹 -formulation; 𝑁 𝑜𝑑 𝑒𝑠, the number of nodes that are explored in
he branch and bound tree; 𝑇 𝑖𝑚𝑒 the computational time to find the
ptimal solution.

We observe that, as the ratio grows, the computation becomes
ndeed more challenging. Nevertheless, all instances could be solved to
ptimality, within 200 secs of computational time for ratio 8 (but for

one instance) and within 2 h of computational time for ratio 9. Note
also that 𝑧∗ is always 0 when such is the value of 𝑧∗𝑅𝐿. We think this is
ue to the good quality of the 𝐹 -formulation, as it is also certified by

the small values of |𝑧∗ − 𝑧∗𝑅𝐿| (the maximum is 7 and it comes for an
nstance with ratio 10) and by the integrality gap 𝑧∗−⌈𝑧∗𝑅𝐿⌉

𝑧∗ . The average
value of the integrality gap is plotted in Fig. 5 for different ratios up
to 10; note that we exploit the computations for ratios 8.5 and 9.5 as
well as additional computations for ratios smaller than 8. Fig. 5 shows
hat the integrality gap stays below 11% and scales well when the ratio

increases. One might be surprised that the maximum is attained at ratio
9 and the value is smaller at ratio 10. However, there is an explanation
for that: when 𝑧∗ is small, the value of the integrality gap is easily quite
high. Indeed the average value for 𝑧∗ is 23.55 for ratio 9 and 81.79 for
ratio 10.

We finally point out that rejections are very uncommon and show
p only for a few instances with ratio 9, which is quite high: a fact that
as very much appreciated by the management of .

6.3. Dynamic ocap instances

In the previous section, we showed that the 𝐹 -formulation is quite
effective for the solution of ocap. However, there is a ‘‘catch’’ with
ocap, as we there assume all orders to be known in advance. In this
ection, we deal again with instances 𝐼1,… , 𝐼33, but cast them into the

dynamic setting. We therefore consider the framework introduced in
Section 5 and test the sequential decision process. For each instance
𝐼𝑖, 𝑖 = 1,… , 33, we build a sequence of sub-instances {𝐼ℎ𝑖 , ℎ = 0,… , 𝑇 }
uch that each instance 𝐼ℎ𝑖 , ℎ > 0, is inductively built at time 𝑡ℎ upon
nstance 𝐼ℎ−1𝑖 , with 𝑡ℎ = ℎ⋅𝛾. We set 𝛾 ∶= 1, i.e., we set the time distance
etween two sub-instances equal to one time step and therefore equal
o 5 min.

We also point out that, in order to build 𝐼ℎ𝑖 from 𝐼ℎ−1𝑖 , we exploit
he data on placement times collected by  for the shift corresponding
o 𝐼𝑖: namely, we add the set of orders with placement time in the
nterval (𝑡ℎ−1, 𝑡ℎ]. Finally, for each 𝑖, instance 𝐼0𝑖 is built along the
ame lines discussed in Section 5 (see Item (iii)). This implies that the

instances mimic the actual flow of orders during the considered shifts,
representing a realistic example of a dynamic scenario.

6.4. Computational results for dynamic ocap instances

For 𝑖 = 1,… , 33, we solved the sequence of sub-instances {𝐼ℎ𝑖 , ℎ =
0,… , 𝑇 } making again use of the mip solver Gurobi 10.0.3. However,

M. Cosmi et al.

(
w
n

c
r
a
t
f
t

o

b

𝑂

m
o

S

t
m
i

c

Omega 133 (2025) 103237
Table 4
Testing high ratios. For instances 𝐼1 ,… , 𝐼33, the original ratio and then ratios 8, 9 and 10, we report: the cost of the optimal solution 𝑧∗: when positive, we report values
𝑧1 , 𝑧2 , 𝑧3 , 𝑧𝑟), namely: the number of orders with a delay within [15, 30) mins (𝑧1); the number of orders with a delay within [30, 45) mins (𝑧2); the number of orders with a delay
ithin [45, 60) mins (𝑧3); the number of orders that have been rejected (𝑧𝑟); the cost (rounded up) of the optimal solution to the linear relaxation of the 𝐹 -formulation (⌈𝑧∗𝑅𝐿⌉),
ote that it is affected by Gurobi presolve phase; the number of nodes that are explored in the branch and bound tree (𝑁 𝑜𝑑 𝑒𝑠); the running time to optimal solution (𝑇 𝑖𝑚𝑒).
Ratio Original 8 9 10

Instance 𝑧∗ ⌈𝑧∗𝑅𝐿⌉ Nodes 𝑇 𝑖𝑚𝑒 𝑧∗ ⌈𝑧∗𝑅𝐿⌉ 𝑁 𝑜𝑑 𝑒𝑠 𝑇 𝑖𝑚𝑒 𝑧∗ ⌈𝑧∗𝑅𝐿⌉ 𝑁 𝑜𝑑 𝑒𝑠 𝑇 𝑖𝑚𝑒 𝑧∗ ⌈𝑧∗𝑅𝐿⌉ 𝑁 𝑜𝑑 𝑒𝑠 𝑇 𝑖𝑚𝑒
(secs) (secs) (secs) (secs)

𝐼1 0 0 1 21.22 0 0 1 17.71 4(4, 0, 0, 0) 2 2119 618.68 61(20, 13, 5, 0) 57 39 662 1863.22
𝐼2 0 0 1 33.92 0 0 1 30.77 0 0 1 32.12 7(5, 1, 0, 0) 6 89 175 7786.76
𝐼3 0 0 1 20.29 0 0 1 19.6 0 0 1 36.14 30(19, 4, 1, 0) 28 47 113 1761
𝐼4 0 0 1 12.21 0 0 1 23.58 0 0 1 35.94 9(9, 0, 0, 0) 8 896 142.18
𝐼5 0 0 1 16.45 0 0 1 14.38 35(17, 1, 2, 1) 32 25 952 1072.77 113(22, 14, 21, 0) 109 94 495 4964.01
𝐼6 0 0 1 26.05 0 0 1 40.84 18(12, 0, 2, 0) 16 4380 739.86 114(28, 10, 22, 0) 108 121 482 10 139.29
𝐼7 0 0 1 46.31 0 0 1 63.31 19(8, 4, 1, 0) 16 61 186 3218.84 71(26, 12, 7, 0) 67 358 287 94 791.65
𝐼8 0 0 1 24.31 0 0 1 30.78 0 0 39 172.4 26(10, 8, 0, 0) 24 59 153 1472.43
𝐼9 0 0 1 20.49 0 0 1 27.85 8(6, 1, 0, 0) 7 4 101.86 27(11, 5, 2, 0) 25 2927 1219.95
𝐼10 0 0 1 32.39 18(3, 6, 1, 0) 17 6512 145.63 69(20, 5, 13, 0) 66 22 575 639.51 151(29, 22, 26, 0) 147 23 237 738.76
𝐼11 0 0 0 0.01 0 0 1 31.66 0 0 1 65.21 23(15, 1, 2, 0) 20 147 160 18 500.35
𝐼12 0 0 1 27.68 0 0 781 432.9 31(6, 5, 5, 0) 29 2868 503.99 102(25, 13, 17, 0) 98 37 600 2259.21
𝐼13 0 0 1 36.64 7(5, 1, 0, 0) 5 7013 527.65 42(14, 3, 4, 1) 40 38 155 5277.31 158(28, 17, 32, 0) 152 785 175 73 366.57
𝐼14 0 0 1 13.57 0 0 1 15.91 7(3, 2, 0, 0) 7 6411 112.46 55(12, 14, 5, 0) 51 3080 191.4
𝐼15 0 0 1157 357.56 18(6, 3, 2, 0) 17 1296 198.43 55(13, 6, 10, 0) 53 1732 198.97 132(14, 14, 30, 0) 126 75 968 4233.68
𝐼16 0 0 1 14.37 0 0 1 17.1 0 0 1 199.52 36(13, 4, 5, 0) 33 347 733 14 004.89
𝐼17 0 0 1 25.38 0 0 1 48.6 48(23, 2, 7, 0) 45 5754 640.23 129(18, 21, 23, 0) 124 11 581 1517.1
𝐼18 0 0 1 24.41 0 0 1 22.91 2(2, 0, 0, 0) 1 1 88.68 57(16, 10, 7, 0) 55 3722 507.77
𝐼19 0 0 1 14.98 0 0 1 19.58 18(11, 2, 1, 0) 16 21 955 597.41 72(22, 10, 10, 0) 69 43 841 1580.93
𝐼20 0 0 1 24.69 0 0 1 40.21 6(1, 1, 1, 0) 4 84 086 4453.37 56(16, 5, 10, 0) 52 356 138 21 723.42
𝐼21 0 0 1 7.97 2(2, 0, 0, 0) 1 1954 156.22 27(6, 6, 3, 0) 25 1408 798.25 79(25, 9, 12, 0) 76 13 884 449.36
𝐼22 0 0 1 14.13 0 0 1 44.38 19(11, 4, 0, 0) 17 15 628 567.96 76(27, 11, 9, 0) 72 48 990 1509.52
𝐼23 0 0 1 11.5 0 0 1 13.72 0 0 1 34.68 37(14, 4, 5, 0) 34 40 649 683.62
𝐼24 0 0 1 14.67 0 0 1 32.84 43(11, 4, 8, 0) 40 96 875 2717.82 122(21, 13, 25, 0) 117 114 075 6407.01
𝐼25 0 0 1 15.67 0 0 1 43.6 24(8, 2, 4, 0) 21 145 129 5720.07 85(16, 12, 15, 0) 80 522 499 30 576.16
𝐼26 0 0 1 24.32 0 0 1 57.84 28(14, 2, 0, 1) 25 35 587 1953.75 105(17, 14, 20, 0) 100 84 929 8100.82
𝐼27 0 0 0 0.01 0 0 1 21.3 3(3, 0, 0, 0) 2 1 46.67 18(8, 2, 2, 0) 17 417 741.06
𝐼28 0 0 1 37.04 0 0 1 42.92 4(4, 0, 0, 0) 3 14 618 2244.99 71(18, 10, 11, 0) 67 58 977 14 309.27
𝐼29 0 0 1 16.71 2(2, 0, 0, 0) 1 546 162.21 54(16, 4, 10, 0) 51 150 348 3339.69 134(21, 19, 25, 0) 129 273 888 18 594.25
𝐼30 3(3, 0, 0, 0) 2 4853 125.48 37(18, 5, 3, 0) 35 865 107.03 96(22, 6, 14, 2) 92 18 207 666.12 198(15, 24, 45, 0) 191 73 107 3890
𝐼31 0 0 1 12.13 0 0 1 118.58 22(9, 5, 1, 0) 19 4457 798.63 119(19, 14, 24, 0) 114 8716 1461.57
𝐼32 0 0 1 29.14 0 0 39 146.08 50(19, 8, 5, 0) 47 180 506 7144.04 124(26, 10, 26, 0) 119 64 146 7710.21
𝐼33 0 0 1 14.77 3(3, 0, 0, 0) 2 1427 70.78 45(12, 9, 5, 0) 42 4368 400.43 102(20, 17, 16, 0) 97 281 018 10241.59

Mean 0.09 0.06 183 33.51 2.64 2.36 619.91 84.45 23.55 21.73 28 616.82 1370.86 81.79 77.94 128 294.55 11 134.52
o
s

a
s

for each instance 𝐼ℎ𝑖 , we set a time limit of 5 min for the overall
omputation, i.e., we stop the computation if it is still running when
eaching the next time step. Note that therefore, it might happen that
n instance 𝐼ℎ𝑖 is not solved to optimality. In this case, we simply use
he best solution found by the solver so far. Note also that the solution
ound for 𝐼ℎ𝑖 will be used as a warm start for solving 𝐼ℎ+1𝑖 (we skip
echnical details).

The results on the 33 base instances are shown in the first 4 columns
f Table 5 (the values in the other columns are discussed below). For

each instance 𝐼1,… , 𝐼33 we report: 𝑧𝐷, the cost of the solution provided
y the sequential decision process (D stands for dynamic); 𝑧∗, the cost

of the optimal solution to the same instance but in an offline setting
(these are the same values reported in Table 4: recall that 𝑧𝐷 ≥ 𝑧∗);
 𝑝𝑡. 𝑆 𝑜𝑙 𝑣𝑒𝑟, the percentage of times that in the sequential decision

process the solver was able to find an optimal solution within the time
limit of 5 min.

We point out that the average value of 𝑂 𝑝𝑡. 𝑆 𝑜𝑙 𝑣𝑒𝑟 is about 94%,
eaning that the 5-minutes time limit is not too severe. Also for 17 out

f 33 instances, 𝑧𝐷 = 𝑧∗. These results seem to suggest that it is indeed
possible to combine the solution of ocap with the sequential decision
process. We decided however to stress again our model by reducing the
number of couriers, as we did in Section 6.2. We, therefore, consider
again the 165 additional instances of ocap defined there and cast them
into the dynamic setting by means of the same technique described in
ection 6.3. Results for ratios 8, 9, and 10 are reported in the other

columns of Table 5.
Note that also when the ratio increases the solver is able on average

o find an optimal solution within the time limit (one time step) for
ore than 91% of the calls. As for the values of 𝑧𝐷 and 𝑧∗, we plot

n Fig. 6 their average values for different ratios (we again exploit
the results for instances with ratio 8.5 and 9.5 as well as additional
omputations for ratios smaller than 8). Note that for large enough

values of the ratio, the value 𝑧𝐷

𝑧∗ is monotonically decreasing: it is 6.86
for ratio 8; 3.95 for ratio 8.5; 2.50 for ratio 9; 1,87 for ratio 9.5; 1.5
12
Fig. 6. The solid-red and dashed-blue lines represent respectively the average values
f the offline solutions to ocap and the average values of the solutions found by the
equential decision approach, for ratios ranging from 4.5 to 10.

for ratio 10. Overall, the results in this section show that our solution
lgorithm to ocap scales pretty well to the case where we cast it into a
equential decision process.

7. Conclusions

We investigate some optimization models for meal delivery stem-
ming from a collaboration with , a meal delivery company operating
in Rome. The focus of this collaboration was the design of optimization
models for dispatching orders to couriers so as to avoid as many
as possible delays and rejections in a setting where a large part of

M. Cosmi et al.

d
s

s
w
t
d
P
t
(
a
t
w
t
t

c
w

n
c
s
a

a
a

Omega 133 (2025) 103237
Table 5
Testing the sequential decision process. For instances 𝐼1 ,… , 𝐼33, the original ratio and then ratios 8, 9 and 10, we report: the cost of the solution provided by the sequential
ecision process (𝑧𝐷), the optimal solution to the off-line problem (𝑧∗), which is the same value reported in Table 4; the percentage of times the solver was able to find an optimal
olution within the time limit of 5 min (𝑂 𝑝𝑡. 𝑆 𝑜𝑙 𝑣𝑒𝑟). Note that for both 𝑧𝐷 and 𝑧∗, when they are positive, we report values (𝑧1 , 𝑧2 , 𝑧3 , 𝑧𝑟), namely: the number of orders with a

delay within [15, 30) mins (𝑧1); the number of orders with a delay within [30, 45) mins (𝑧2); the number of orders with a delay within [45, 60) mins (𝑧3); the number of orders that
have been rejected (𝑧𝑟).

Ratio Original 8 9 10

Instance 𝑧𝐷 𝑧∗ Opt. Solver 𝑧𝐷 𝑧∗ Opt. Solver 𝑧𝑅𝐻 𝑧∗ Opt. Solver 𝑧𝐷 𝑧∗ Opt. Solver
(%) (%) (%) (%)

𝐼1 0 0 80.00 5(3, 1, 0, 0) 0 94.12 7(5, 1, 0, 0) 0 95.45 33(18, 6, 1, 0) 4(4, 0, 0, 0) 91.14
𝐼2 0 0 100.00 0 0 100.00 8(6, 1, 0, 0) 0 89.47 14(6, 1, 2, 0) 0 94.87
𝐼3 0 0 100.00 0 0 100.00 0 0 100.00 9(9, 0, 0, 0) 0 97.67
𝐼4 1(1, 0, 0, 0) 0 90.91 1(1, 0, 0, 0) 0 90.91 5(5, 0, 0, 0) 0 93.75 8(6, 1, 0, 0) 0 95.00
𝐼5 0 0 100.00 2(0, 1, 0, 0) 0 90.32 26(10, 5, 2, 0) 12(8, 2, 0, 0) 94.74 51(19, 7, 6, 0) 35(17, 1, 2, 1) 94.44
𝐼6 0 0 85.00 13(6, 2, 1, 0) 0 95.24 39(16, 4, 5, 0) 6(3, 0, 1, 0) 92.65 58(30, 5, 6, 0) 18(12, 0, 2, 0) 91.67
𝐼7 0 0 100.00 12(8, 2, 0, 0) 0 100.00 36(15, 9, 1, 0) 0 100.00 79(21, 17, 8, 0) 19(8, 4, 1, 0) 99.06
𝐼8 2(0, 1, 0, 0) 0 72.73 7(5, 1, 0, 0) 0 88.46 13(9, 2, 0, 0) 0 92.86 19(11, 4, 0, 0) 0 95.65
𝐼9 0 0 100.00 0 0 100.00 1(1, 0, 0, 0) 0 100.00 10(4, 3, 0, 0) 8(6, 1, 0, 0) 87.80
𝐼10 0 0 100.00 27(6, 3, 5, 0) 18(3, 6, 1, 0) 88.24 35(10, 5, 5, 0) 30(11, 5, 3, 0) 88.52 85(16, 10, 13, 1) 69(20, 5, 13, 0) 85.88
𝐼11 0 0 100.00 0 0 88.89 1(1, 0, 0, 0) 0 95.24 8(8, 0, 0, 0) 0 95.00
𝐼12 1(1, 0, 0, 0) 0 92.59 31(16, 3, 3, 0) 0 94.34 47(19, 5, 6, 0) 11(6, 1, 1, 0) 93.06 63(17, 11, 8, 0) 31(6, 5, 5, 0) 91.86
𝐼13 5(3, 1, 0, 0) 0 96.15 48(16, 7, 6, 0) 7(5, 1, 0, 0) 96.05 75(28, 1, 15, 0) 21(10, 4, 1, 0) 94.25 98(20, 7, 18, 1) 42(14, 3, 4, 1) 95.41
𝐼14 0 0 93.75 2(2, 0, 0, 0) 0 85.19 21(12, 3, 1, 0) 0 88.52 43(21, 8, 2, 0) 7(3, 2, 0, 0) 87.84
𝐼15 15(8, 2, 1, 0) 0 93.02 37(11, 7, 4, 0) 18(6, 3, 2, 0) 90.74 59(6, 10, 11, 0) 34(8, 7, 4, 0) 91.55 77(13, 9, 12, 1) 55(13, 6, 10, 0) 91.55
𝐼16 0 0 89.47 1(1, 0, 0, 0) 0 89.19 32(15, 1, 5, 0) 0 92.21 48(17, 5, 7, 0) 0 90.80
𝐼17 2(2, 0, 0, 0) 0 96.30 32(14, 3, 4, 0) 0 94.12 49(23, 4, 6, 0) 4(4, 0, 0, 0) 94.12 94(24, 12, 12, 1) 48(23, 2, 7, 0) 95.37
𝐼18 2(2, 0, 0, 0) 0 93.94 14(6, 1, 2, 0) 0 97.56 26(12, 4, 2, 0) 0 94.83 54(15, 12, 5, 0) 2(2, 0, 0, 0) 95.83
𝐼19 5(5, 0, 0, 0) 0 100.00 11(7, 2, 0, 0) 0 100.00 33(16, 4, 3, 0) 4(2, 1, 0, 0) 94.92 64(18, 8, 10, 0) 18(11, 2, 1, 0) 95.95
𝐼20 0 0 100.00 5(2, 0, 1, 0) 0 92.68 21(9, 0, 4, 0) 0 98.36 56(18, 7, 8, 0) 6(1, 1, 1, 0) 94.68
𝐼21 0 0 100.00 9(6, 0, 1, 0) 2(2, 0, 0, 0) 90.91 14(7, 2, 1, 0) 8(4, 2, 0, 0) 84.85 40(8, 4, 8, 0) 27(6, 6, 3, 0) 84.78
𝐼22 6(6, 0, 0, 0) 0 100.00 32(18, 4, 2, 0) 0 96.83 55(20, 7, 7, 0) 5(5, 0, 0, 0) 96.20 82(18, 11, 14, 0) 19(11, 4, 0, 0) 94.68
𝐼23 1(1, 0, 0, 0) 0 85.71 0 0 75.00 11(7, 2, 0, 0) 0 88.89 21(7, 4, 2, 0) 0 89.58
𝐼24 20(8, 3, 2, 0) 0 96.23 35(10, 5, 5, 0) 0 98.31 82(16, 6, 18, 0) 19(8, 1, 3, 0) 93.55 112(20, 16, 20, 0) 43(11, 4, 8, 0) 93.20
𝐼25 0 0 91.67 16(4, 3, 2, 0) 0 92.31 32(13, 2, 5, 0) 0 95.31 68(24, 7, 10, 0) 24(8, 2, 4, 0) 91.21
𝐼26 0 0 100.00 9(9, 0, 0, 0) 0 92.45 31(18, 5, 1, 0) 0 94.44 71(24, 5, 9, 1) 28(14, 2, 0, 1) 93.41
𝐼27 0 0 100.00 1(1, 0, 0, 0) 0 84.62 6(4, 1, 0, 0) 0 89.47 8(4, 2, 0, 0) 3(3, 0, 0, 0) 88.00
𝐼28 8(6, 1, 0, 0) 0 85.00 13(8, 1, 1, 0) 0 86.54 43(17, 4, 6, 0) 0 88.31 68(22, 11, 8, 0) 4(4, 0, 0, 0) 89.69
𝐼29 2(2, 0, 0, 0) 0 96.43 49(19, 6, 6, 0) 2(2, 0, 0, 0) 92.31 92(21, 13, 15, 0) 31(9, 2, 6, 0) 93.75 117(20, 12, 21, 1) 54(16, 4, 10, 0) 94.17
𝐼30 41(20, 6, 3, 0) 3(3, 0, 0, 0) 95.31 76(24, 11, 10, 0) 37(18, 5, 3, 0) 93.26 107(24, 16, 17, 0) 63(20, 11, 7, 0) 93.62 146(19, 23, 27, 0) 96(22, 9, 14, 2) 93.94
𝐼31 0 0 100.00 15(9, 3, 0, 0) 0 90.91 35(13, 8, 2, 0) 6(3, 0, 1, 0) 90.77 48(16, 10, 4, 0) 22(9, 5, 1, 0) 94.52
𝐼32 1(1, 0, 0, 0) 0 100.00 39(16, 4, 5, 0) 0 95.45 87(21, 12, 14, 0) 27(12, 3, 3, 0) 95.51 104(22, 11, 20, 0) 50(19, 8, 5, 0) 94.90
𝐼33 27(13, 7, 0, 0) 0 94.12 43(24, 8, 1, 0) 3(3, 0, 0, 0) 92.42 90(20, 11, 16, 0) 27(11, 5, 2, 0) 94.25 91(20, 10, 17, 0) 45(12, 9, 5, 0) 94.32

Mean 4.21 0.09 94.80 18.06 2.64 92.65 59.00 23.55 92.85 122.73 81.79 91.25
d
i
w

customers’ orders are known in advance. This took us to design a
equential decision process based on a rolling horizon approach where
e do not try to anticipate future demands. At the core of this approach,

here is the solution through integer linear programming of a fully
eterministic optimization problem, the Offline Couriers Assignment
roblem (ocap), and, in particular, a suitable ‘‘flow-like’’ formulation for
he latter. This formulation exploits both the hypothesis that couriers
once they start their shift) cannot be ‘‘distinguished’’ from each other
nd some monotonicity of the delay cost function. We validated both
he use of this formulation to solve ocap, and the solution of ocap itself
ithin the sequential decision process, through some computational

ests on real instances collected on the ground, that we make available
o the scientific community.

We now discuss a few generalizations of our model, part of which
we plan to investigate in the future. First, we point out that our model
an easily handle the case where we assume that each order has its own
idth and its own rejection cost, which in practice is a simple way for

providing higher QoS to valuable customers (e.g. the width could be
smaller and the rejection cost higher for their orders).

On the contrary, there are other natural generalizations that cannot
be taken without loss of generality for our model. (𝑖) We may also
handle non-regular delay cost function, i.e., delay cost-function 𝑐 ∶
[𝑤] ↦ Z such that it is not always the case that 𝑐(ℎ) ≤ 𝑐(ℎ+ 1); however,
in this case, we expect to pay some computational cost as Lemma 2 does
ot need to hold and the size of the network used by the 𝐹 -formulation
ould be larger. (𝑖𝑖) Our model exploits the hypothesis that couriers
tart their work shift at different times and locations but they must be
vailable until the end of the service, without any constraint on the

time and location of their last delivery. Therefore, once a courier starts
her work shift, she cannot be ‘‘distinguished’’ from other active couriers
and that is why the 𝐹 -formulation is essentially a single-commodity flow
formulation. However, if the latter constraints are to be taken into
ccount by the model, then we need a multi-commodity formulation,

nd, once again, we expect to pay higher computational costs. (𝑖𝑖𝑖)

13
Finally, a natural extension of the Offline Couriers Assignment Problem
is that of considering orders’ aggregation (e.g. a courier could pick
ifferent orders from the same restaurant), but this was not considered
n this research because it conflicts with the maximization of QoS which
as the main focus of .

CRediT authorship contribution statement

Matteo Cosmi: Writing – review & editing, Writing – original
draft, Visualization, Validation, Software, Methodology, Data curation.
Gianpaolo Oriolo: Writing – review & editing, Writing – original draft,
Visualization, Validation, Supervision, Methodology, Investigation, For-
mal analysis, Conceptualization. Veronica Piccialli: Writing – review
& editing, Writing – original draft, Visualization, Validation, Super-
vision, Methodology, Investigation, Data curation, Conceptualization.
Paolo Ventura: Writing – review & editing, Writing – original draft,
Validation, Supervision, Software, Methodology, Investigation, Formal
analysis, Data curation.

Declaration of competing interest

The authors wish to confirm that there are no known conflicts of
interest associated with the publication Efficient Courier Assignment
in Meal Delivery via Integer Programming by Matteo Cosmi, Gianpaolo
Oriolo, Veronica Piccialli and Paolo Ventura.

Data availability

The data are shared at the link https://github.com/MatteoCosmi/
Rome-Meal-Delivery-Instances.

https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances
https://github.com/MatteoCosmi/Rome-Meal-Delivery-Instances

M. Cosmi et al. Omega 133 (2025) 103237
References

[1] Cosmi Matteo, Oriolo Gianpaolo, Piccialli Veronica, Ventura Paolo. Single
courier single restaurant meal delivery (without routing). Oper Res Lett
2019;47(6):537–41. http://dx.doi.org/10.1016/j.orl.2019.09.007.

[2] Cordeau Jean-François, Laporte Gilbert, Potvin Jeana Yves, Savelsbergh Martin.
Chapter 7 Transportation on demand. Handbooks Oper Res Management
Sci 2007;14(C):429–66. http://dx.doi.org/10.1016/S0927-0507(06)14007-4,
URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77950475013&
doi=10.1016%2fS0927-0507%2806%2914007-4&partnerID=40&md5=
0d41e4c655b72008797313455c0a19ed.

[3] Cant Callum. Riding for deliveroo: Resistance in the new economy. Wiley; 2019.
[4] Martínez-Sykora Antonio, McLeod Fraser, Cherrett Tom, Friday Adrian. Exploring

fairness in food delivery routing and scheduling problems. Expert Syst Appl
2024;240:122488. http://dx.doi.org/10.1016/j.eswa.2023.122488.

[5] Cordeau Jean-François, Laporte Gilbert. The dial-a-ride problem: models and
algorithms. Ann Oper Res 2007;153:29–46. http://dx.doi.org/10.1007/s10479-
007-0170-8.

[6] Molenbruch Yves, Braekers Kris, Caris An. Typology and literature review for
dial-a-ride problems. Ann Oper Res 2017;259:295–325. http://dx.doi.org/10.
1007/s10479-017-2525-0.

[7] Ho Sina C, Szeto WY, Kuo Yong-Hong, Leung Jannya MY, Petering Matthew,
Tou Terencea WH. A survey of dial-a-ride problems: Literature review and recent
developments. Transp Res B 2018;111:395–421. http://dx.doi.org/10.1016/j.trb.
2018.02.001.

[8] Gökay Sevket, Heuvels Andreas, Krempels Karl-Heinz. A high-level category
survey of dial-a-ride problems. In: Proceedings of the 5th international conference
on vehicle technology and intelligent transport systems. SciTePress; 2019, p.
594–600. http://dx.doi.org/10.5220/0007801605940600.

[9] Ulmer Marlina W, Goodson Justina C, Mattfeld Dirka C, Thomas Barretta W. On
modeling stochastic dynamic vehicle routing problems. EURO J Transp Logist
2020;9(2):100008. http://dx.doi.org/10.1016/j.ejtl.2020.100008.

[10] Klein Vienna, Steinhardt Claudius. Dynamic demand management and online
tour planning for same-day delivery. European J Oper Res 2022. http://dx.doi.
org/10.1016/j.ejor.2022.09.011.

[11] Klapp Mathiasa A, Erera Alan, Toriello Alejandro. The dynamic dispatch waves
problem for same-day delivery. European J Oper Res 2018;271(2):519–34. http:
//dx.doi.org/10.1016/j.ejor.2018.05.032.

[12] Klapp Mathiasa A, Erera Alan, Toriello Alejandro. The one-dimensional dynamic
dispatch waves problem. Transp Sci 2018;52(2):402–15. http://dx.doi.org/10.
1287/trsc.2016.0682.

[13] Ulmer Marlina W, Thomas Barretta W, Mattfeld Dirka C. Preemptive depot
returns for dynamic same-day delivery. EURO J Transp Logist 2019;8(4):327–61.
http://dx.doi.org/10.1007/s13676-018-0124-0.

[14] Voccia Stacya A, Campbell Anna Melissa, Thomas Barretta W. The same-day
delivery problem for online purchases. Transp Sci 2019;53(1):167–84. http:
//dx.doi.org/10.1287/trsc.2016.0732.

[15] Stroh Alexandera M, Erera Alan, Toriello Alejandro. Tactical design of same-day
delivery systems. Manage Sci 2022;68(5):3444–63. http://dx.doi.org/10.1287/
mnsc.2021.4041.

[16] Chen Xinwei, Ulmer Marlina W, Thomas Barretta W. Deep Q-learning for same-
day delivery with vehicles and drones. European J Oper Res 2022;298(3):939–52.
http://dx.doi.org/10.1016/j.ejor.2021.06.021.

[17] Côté Jean-François, Alves de Queiroz Thiago, Gallesi Francesco, Iori Manuel. A
branch-and-regret algorithm for the same-day delivery problem. Transp Res E
2023;177:103226. http://dx.doi.org/10.1016/j.tre.2023.103226.

[18] Pillac Victor, Gendreau Michel, Guéret Christelle, Medaglia Andrésa L. A review
of dynamic vehicle routing problems. European J Oper Res 2013;225(1):1–11.
http://dx.doi.org/10.1016/j.ejor.2012.08.015.
14
[19] Reyes Damian, Erera Alan, Savelsbergh Martin, Sahasrabudhe Sagar, O’Neil Ryan.
The meal delivery routing problem. Optimization-Online 2018. URL: http://
www.optimization-online.org/DB_HTML/2018/04/6571.html.

[20] Yildiz Baris, Savelsbergh Martin. Provably high-quality solutions for the meal
delivery routing problem. Transp Sci 2019;53(5):1372–88. http://dx.doi.org/10.
1287/trsc.2018.0887.

[21] Steever Zachary, Karwan Mark, Murray Chase. Dynamic courier routing for a
food delivery service. Comput Oper Res 2019;107:173–88. http://dx.doi.org/10.
1016/j.cor.2019.03.008.

[22] Ulmer Marlina W, Thomas Barretta W, Campbell Anna Melissa, Woyak Nicholas.
The restaurant meal delivery problem: Dynamic pickup and delivery with
deadlines and random ready times. Transp Sci 2020;55(1):75–100. http://dx.
doi.org/10.1287/trsc.2020.1000.

[23] Auad Ramon, Erera Alan, Savelsbergh Martin. Courier satisfaction in rapid
delivery systems using dynamic operating regions. Omega 2023;121:102917.
http://dx.doi.org/10.1016/j.omega.2023.102917.

[24] Xue Guiqin, Wang Zheng, Wang Guan. Optimization of rider scheduling for a
food delivery service in O2O business. J Adv Transp 2021;2021. http://dx.doi.
org/10.1155/2021/5515909.

[25] Liao Wenzhu, Zhang Liuyang, Wei Zhenzhen. Multi-objective green meal de-
livery routing problem based on a two-stage solution strategy. J Clean Prod
2020;258:120627. http://dx.doi.org/10.1016/j.jclepro.2020.120627.

[26] Bozanta Aysun, Cevik Mucahit, Kavaklioglu Can, Kavuk Eraya M, Tosun Ayse,
Sonuc Sibela B, et al. Courier routing and assignment for food delivery service
using reinforcement learning. Comput Ind Eng 2022;164:107871. http://dx.doi.
org/10.1016/j.cie.2021.107871.

[27] Ausseil Rosemonde, Ulmer Marlina W, Pazour Jennifera A. Online ac-
ceptance probability approximation in peer-to-peer transportation. Omega
2024;123:102993. http://dx.doi.org/10.1016/j.omega.2023.102993.

[28] Böhm Martin, Megow Nicole, Schlöter Jens. Throughput scheduling with equal
additive laxity. In: Calamoneri Tiziana, Coró Federico, editors. Algorithms and
complexity. Springer International Publishing; 2021, p. 130–43.

[29] Cosmi Matteo, Nicosia Gaia, Pacifici Andrea. Lower bounds for a meal pickup-
and-delivery scheduling problem. In: Proceedings of the 17th cologne-twente
workshop on graphs and combinatorial optimization. 2019, p. 33–6, URL: https:
//foreman.virt.dacs.utwente.nl/~ctw/CTW2019ProceedingsFinal.pdf.

[30] Cosmi Matteo, Nicosia Gaia, Pacifici Andrea. Scheduling for last-mile meal-
delivery processes. In: IFAC-papersOnLine. IFAC-MIM conference 2019, vol. 52,
no. 13, 2019, p. 511–6. http://dx.doi.org/10.1016/j.ifacol.2019.11.117.

[31] Agnetis Alessandro, Cosmi Matteo, Nicosia Gaia, Pacifici Andrea. Two is better
than one? Order aggregation in a meal delivery scheduling problem. Comput Ind
Eng 2023;109514. http://dx.doi.org/10.1016/j.cie.2023.109514.

[32] Joshi Manas, Singh Arshdeep, Ranu Sayan, Bagchi Amitabha, Karia Priyank,
Kala Puneet. Batching and matching for food delivery in dynamic road networks.
In: 2021 IEEE 37th international conference on data engineering. Los Alamitos,
CA, USA: IEEE Computer Society; 2021, p. 2099–104. http://dx.doi.org/10.1109/
ICDE51399.2021.00207.

[33] Joshi Manas, Singh Arshdeep, Ranu Sayan, Bagchi Amitabha, Karia Priyank,
Kala Puneet. FoodMatch: Batching and matching for food delivery in dynamic
road networks. ACM Trans Spatial Algorithms Syst 2022;8(1). http://dx.doi.org/
10.1145/3494530.

[34] Böhm Martin, Megow Nicole, Schlöter Jens. Throughput scheduling with equal
additive laxity. Oper Res Lett 2022;50(5):463–9. http://dx.doi.org/10.1016/j.orl.
2022.06.007.

[35] Soeffker Ninja, Ulmer Marlina W, Mattfeld Dirka C. Stochastic dynamic vehicle
routing in the light of prescriptive analytics: A review. European J Oper Res
2022;298(3):801–20. http://dx.doi.org/10.1016/j.cie.2023.109514.

[36] Garey MR, Johnson Davida S. Computers and intractability: A guide to the theory
of NP-ompleteness. W. H. Freeman; 1979.

http://dx.doi.org/10.1016/j.orl.2019.09.007
http://dx.doi.org/10.1016/S0927-0507(06)14007-4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77950475013&doi=10.1016%252fS0927-0507%252806%252914007-4&partnerID=40&md5=0d41e4c655b72008797313455c0a19ed
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77950475013&doi=10.1016%252fS0927-0507%252806%252914007-4&partnerID=40&md5=0d41e4c655b72008797313455c0a19ed
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77950475013&doi=10.1016%252fS0927-0507%252806%252914007-4&partnerID=40&md5=0d41e4c655b72008797313455c0a19ed
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77950475013&doi=10.1016%252fS0927-0507%252806%252914007-4&partnerID=40&md5=0d41e4c655b72008797313455c0a19ed
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77950475013&doi=10.1016%252fS0927-0507%252806%252914007-4&partnerID=40&md5=0d41e4c655b72008797313455c0a19ed
http://refhub.elsevier.com/S0305-0483(24)00201-9/sb3
http://dx.doi.org/10.1016/j.eswa.2023.122488
http://dx.doi.org/10.1007/s10479-007-0170-8
http://dx.doi.org/10.1007/s10479-007-0170-8
http://dx.doi.org/10.1007/s10479-007-0170-8
http://dx.doi.org/10.1007/s10479-017-2525-0
http://dx.doi.org/10.1007/s10479-017-2525-0
http://dx.doi.org/10.1007/s10479-017-2525-0
http://dx.doi.org/10.1016/j.trb.2018.02.001
http://dx.doi.org/10.1016/j.trb.2018.02.001
http://dx.doi.org/10.1016/j.trb.2018.02.001
http://dx.doi.org/10.5220/0007801605940600
http://dx.doi.org/10.1016/j.ejtl.2020.100008
http://dx.doi.org/10.1016/j.ejor.2022.09.011
http://dx.doi.org/10.1016/j.ejor.2022.09.011
http://dx.doi.org/10.1016/j.ejor.2022.09.011
http://dx.doi.org/10.1016/j.ejor.2018.05.032
http://dx.doi.org/10.1016/j.ejor.2018.05.032
http://dx.doi.org/10.1016/j.ejor.2018.05.032
http://dx.doi.org/10.1287/trsc.2016.0682
http://dx.doi.org/10.1287/trsc.2016.0682
http://dx.doi.org/10.1287/trsc.2016.0682
http://dx.doi.org/10.1007/s13676-018-0124-0
http://dx.doi.org/10.1287/trsc.2016.0732
http://dx.doi.org/10.1287/trsc.2016.0732
http://dx.doi.org/10.1287/trsc.2016.0732
http://dx.doi.org/10.1287/mnsc.2021.4041
http://dx.doi.org/10.1287/mnsc.2021.4041
http://dx.doi.org/10.1287/mnsc.2021.4041
http://dx.doi.org/10.1016/j.ejor.2021.06.021
http://dx.doi.org/10.1016/j.tre.2023.103226
http://dx.doi.org/10.1016/j.ejor.2012.08.015
http://www.optimization-online.org/DB_HTML/2018/04/6571.html
http://www.optimization-online.org/DB_HTML/2018/04/6571.html
http://www.optimization-online.org/DB_HTML/2018/04/6571.html
http://dx.doi.org/10.1287/trsc.2018.0887
http://dx.doi.org/10.1287/trsc.2018.0887
http://dx.doi.org/10.1287/trsc.2018.0887
http://dx.doi.org/10.1016/j.cor.2019.03.008
http://dx.doi.org/10.1016/j.cor.2019.03.008
http://dx.doi.org/10.1016/j.cor.2019.03.008
http://dx.doi.org/10.1287/trsc.2020.1000
http://dx.doi.org/10.1287/trsc.2020.1000
http://dx.doi.org/10.1287/trsc.2020.1000
http://dx.doi.org/10.1016/j.omega.2023.102917
http://dx.doi.org/10.1155/2021/5515909
http://dx.doi.org/10.1155/2021/5515909
http://dx.doi.org/10.1155/2021/5515909
http://dx.doi.org/10.1016/j.jclepro.2020.120627
http://dx.doi.org/10.1016/j.cie.2021.107871
http://dx.doi.org/10.1016/j.cie.2021.107871
http://dx.doi.org/10.1016/j.cie.2021.107871
http://dx.doi.org/10.1016/j.omega.2023.102993
http://refhub.elsevier.com/S0305-0483(24)00201-9/sb28
http://refhub.elsevier.com/S0305-0483(24)00201-9/sb28
http://refhub.elsevier.com/S0305-0483(24)00201-9/sb28
http://refhub.elsevier.com/S0305-0483(24)00201-9/sb28
http://refhub.elsevier.com/S0305-0483(24)00201-9/sb28
https://foreman.virt.dacs.utwente.nl/~ctw/CTW2019ProceedingsFinal.pdf
https://foreman.virt.dacs.utwente.nl/~ctw/CTW2019ProceedingsFinal.pdf
https://foreman.virt.dacs.utwente.nl/~ctw/CTW2019ProceedingsFinal.pdf
http://dx.doi.org/10.1016/j.ifacol.2019.11.117
http://dx.doi.org/10.1016/j.cie.2023.109514
http://dx.doi.org/10.1109/ICDE51399.2021.00207
http://dx.doi.org/10.1109/ICDE51399.2021.00207
http://dx.doi.org/10.1109/ICDE51399.2021.00207
http://dx.doi.org/10.1145/3494530
http://dx.doi.org/10.1145/3494530
http://dx.doi.org/10.1145/3494530
http://dx.doi.org/10.1016/j.orl.2022.06.007
http://dx.doi.org/10.1016/j.orl.2022.06.007
http://dx.doi.org/10.1016/j.orl.2022.06.007
http://dx.doi.org/10.1016/j.cie.2023.109514
http://refhub.elsevier.com/S0305-0483(24)00201-9/sb36
http://refhub.elsevier.com/S0305-0483(24)00201-9/sb36
http://refhub.elsevier.com/S0305-0483(24)00201-9/sb36

	Courier assignment in meal delivery via integer programming: A case study in Rome
	Introduction
	Literature
	Problem Setting
	Towards an Optimization Model for Courier Assignment
	The Offline Couriers Assignment Problem
	A Formal Definition of ocap

	A Solution Approach to ocap
	Early start schedules
	A Time Extended Network
	ocap as a Path Problem on the Time Extended Network
	An Integer Linear Programming Formulation for ocap

	Casting ocap into a sequential decision process
	Computational Tests
	Base ocap Instances
	Computational results for ocap Instances
	Dynamic ocap Instances
	Computational Results for Dynamic ocap Instances

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

