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Abstract: Programmed cell death ligand-1 (PD-L1) binds PD-1 on CD8+ lymphocytes, inhibiting their
cytotoxic action. Its aberrant expression by head and neck squamous cell carcinoma (HNSCC) cells
leads to immune escape. Pembrolizumab and nivolumab, two humanized monoclonal antibodies
against PD-1, have been approved in HNSCC treatment, but ~60% of patients with recurrent or
metastatic HNSCC fail to respond to immunotherapy and only 20 to 30% of treated patients have
long-term benefits. The purpose of this review is to analyze all the fragmentary evidence present
in the literature to identify what future diagnostic markers could be useful for predicting, together
with PD-L1 CPS, the response to immunotherapy and its durability. We searched PubMed, Embase,
and the Cochrane Register of Controlled Trials and we summarize the evidence collected in this
review. We confirmed that PD-L1 CPS is a predictor of response to immunotherapy, but it should be
measured across multiple biopsies and repeatedly over time. PD-L2, IFN-γ, EGFR, VEGF, TGF–β,
TMB, blood TMB, CD73, TILs, alternative splicing, tumor microenvironment, and some macroscopic
and radiological features are promising predictors worthy of further studies. Studies comparing
predictors appear to give greater potency to TMB and CXCR9.

Keywords: head and neck squamous cell carcinoma; immunotherapy; PD-1/PD-L1; immunotherapy
molecular marker; immunotherapy resistance; pembrolizumab; nivolumab; chemotherapy

1. Introduction

Programmed cell death ligand-1 (PD-L1) is a physiologically expressed transmem-
brane molecule crucial in immune tolerance. The programmed cell death-1 (PD-1) molecule
binds on the surface of CD8+ T lymphocytes, blocking their cytotoxic action [1–3]. The
aberrant expression of PD-L1 by head and neck squamous cell carcinoma (HNSCC) cells
inhibits the cytotoxic activity of T cells, leading to immune escape [4,5]. After this dis-
covery, several antibodies active against the PD-1/PD-L1 axis were tested. Large phase
III trials (KEYNOTE-040, KEYNOTE-048, CheckMate-141) demonstrated that immune
checkpoint inhibitors (ICIs) against PD-1 and PD-L1 outperformed the past gold standard
therapy in terms of oncologic outcomes in the treatment of recurrent or metastatic (R/M)
HNSCC [4,6,7]. Pembrolizumab (KeytrudaTM, Merck & Co., Inc., Rahway, NJ, USA) and
nivolumab (OPDIVOTM, Bristol-Myers Squibb Company, New York, NY, USA), two hu-
manized monoclonal antibodies against PD-1, have been approved in HNSCC treatment
by the U.S. Food and Drug Administration (FDA) and the European Medical Agency
(EMA) [8]. However, ~60% of patients with recurrent or metastatic HNSCC fail to respond
to immunotherapy and only 20 to 30% of treated patients have long-term benefits from
ICIs [4,8,9].
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Despite the enormous development that immunotherapy is having, the tools for
selecting candidates for it have not evolved hand in hand [10,11]. The marker currently used
to predict response to therapy is the combined positive score (CPS) for PD-L1 expression
by the neoplastic cell (calculated as 100 times the number of PD-L1-positive cancer cells,
lymphocytes, and macrophages, divided by the number of viable tumor cells). It is well
known from the literature that CPS > 1% is related to immunotherapy response [4,6,7].
Whereby, only patients with CPS > 1 are treated with anti-PD-1/L1 drugs [9]. This predictor
does not always work, and above all, it often does not indicate a long-term response.
Furthermore, there is still a proportion of patients, as evidenced in large clinical studies,
who, despite being below this threshold, would still respond to immunotherapy [4,6–9,12].

We aim to analyze all the fragmentary evidence presented in the literature to identify
what future diagnostic markers could be useful for predicting, together with PD-L1 CPS,
the response to immunotherapy and its durability, as well as identifying the most suitable
therapy for the individual patient.

2. Materials and Methods

We searched the PubMed, Embase, and Cochrane Register of Controlled Trials databases
for markers that could predict response to immunotherapy treatment as well as treatment se-
lection. The keywords used by the authors were: head and neck squamocellular carcinoma
or head and neck squamous cell carcinoma, immunotherapy, pembrolizumab, nivolumab,
markers of response to immunotherapy, predictors of response to immunotherapy, immune
checkpoint inhibitors. We have only considered articles in English and without time limits
or restrictions on the type of publication. We first screened for titles and abstracts and then
read the body of the selected articles. Within the latter, we also manually searched the
bibliography for relevant manuscripts. We have decided not to include findings from other
types of cancer and treatments not tested on HNSCC. Similarly, we decided not to include
discoveries made only in animal models as they are still too far from clinical applicability.
In the end, after several meetings between all the authors in which we discussed the results
of our research, we summarized the evidence collected within the present manuscript.

3. Results

PD-L1 expression is predictive of response to anti-PD-1/L1 immunotherapy. In a
few cases, those who have shown susceptibility to immune checkpoint inhibitors do not
express this marker [4,6,7]. As consequence, the selection of patients treated with immune
checkpoint inhibitors is challenging in HNSCC treatment [13].

We divided the markers into four categories: checkpoint target, tumor neoantigens,
tumor immune microenvironment, and radiological features.

3.1. Checkpoint Target

Yearley et al. studied the expression of the other ligand of PD-1, namely PD-L2. The
interaction between PD-L2 and PD-1 occurs with a higher molecular affinity than that
with PD-L1. Despite this, the latter is considered the main molecule responsible for PD-1-
mediated immunotolerance [1,14]. PD-L2 expression usually correlates with that of PD-L1.
This correlation can be traced back to one of the mechanisms of overexpression, the one
that is based on genetic modifications. PD-L1 and PD-L2 are located at chromosomal
locus 9p24.1, only 42 kilobases apart. It has been observed that among the mechanisms
through which gene overexpression occurs, both translocation and amplification are to be
counted [15]. Furthermore, the 9p24.1 locus amplification can lead to a PD-L2 overexpres-
sion through the Janus kinase 2 (JAK2)/signal transducer and activator of transcription
1 (STAT1) signaling pathway [15]. It has been observed that only PD-L2 expression is an
independent predictor of response to immunotherapy in HNSCC, whereas the positivity to
both PD-L1 and PD-L2 confers a greater response than PD-L1 positivity alone. PD-L2 alone
was observed in 61.4–62.7% of PD-L1-negative patients and it correlates with progression-
free survival (PFS) independent of PD-L1 status (Table 1). According to Wang et al., this
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could be one of the explanations for why some patients with PD-L1-negative malignan-
cies respond to pembrolizumab or nivolumab therapy [16]. There is disagreement about
the predictor role of PD-L2, and in some studies its values correlated with increased or
decreased OS [16–18]. PD-L2 levels are independent predictors of progression-free survival
and clinical response to pembrolizumab therapy in HNSCC patients [16,17] and when the
patient is not undergoing immunotherapy, its expression is indicative of poor relapse-free
survival, overall survival, and progression-free survival [17,18].

Table 1. Diagnostic predictors of anti-PD-1/PD-L1 immunotherapy response in HNSCC.

Predictor Mechanism of Action/Observation Correlation References

PD-L2 PD-1 ligand

Correlation with PFS independent of PD-L1
status. No agreement about OS. PD-L2 levels
are related to progression-free survival and
clinical response to pembrolizumab therapy;

whereas in patients not undergoing
immunotherapy, it is related to poor

relapse-free survival and
progression-free survival

[16–18]

IFN-γ STAT1 activation, expression of IRFs,
PD-L1 induction

IFN-γ-related mRNA profile is a predictor of
the clinical response to anti-PD-1 therapy

in HNSCC.
IFN types I and II activate PI3K which

activates the AKT-mTOR cascade that is a
PD-L1 inducer. It is also an inhibitor of PTEN

that reduces PD-L1 levels

[19,20]

HIF-1α Hypoxia generates an “immune
desert” HIF-1α is a marker of hypoxia * [21,22]

VEGF and TGF-β Immune tolerance Increase in regulatory T cells and
myeloid-derived suppressor cells [23]

CD-73
Immunosuppression,

epithelial–mesenchymal transition,
metastatization

Immunosuppression in the tumor
microenvironment [24]

EGFR PD-L1 inducer EGFR correlates with PD-L1 expression [25]

Alternative splicing Immunosuppression and poor
immunotherapy response

Reduction of inflammatory infiltrate in the
tumor microenvironment [26]

TMB High TMB leads to high
immunogenicity High TMB correlates with high response

to ICIs
[27–31]

bTMB High bTMB relates to high TMB

CXCL9

Interacts with T cells by binding
CXCR3, inducing the recruitment of

CD8+ lymphocytes and differentiation
of inflammatory Th1 and Th17 CD4

Predictor of response to ICIs [31]

Tertiary lymphoid structures Potentially related to immunotherapy
response Indicators of immunogenicity [32,33]

ARID1A, PIK3-CA Mutations Predictor of response
[34]

TP53 Mutation Negative predictor of response

NLR NLR > 4 and major diameter of cancer
> 4 cm

Associated with poor response to
immunotherapy and poor survival [35]

PET FDG uptake Poor FDG uptake Poor FDG uptake is a marker of poor PD-L1
expression and CD8+ infiltration [36]

DCE-MRI DCE-MRI measurement DCE-MRI correlates with PD-L1 expression [37]

PD-L2 = programmed cell death ligand-2; PFS = progression-free survival; OS = overall survival;
PTEN = phosphatase and tensin homolog gene; PI3K = phosphatidylinositol 3 kinase; HIF-1α = hypoxia-inducible
factor-1α; * = further studies necessary; TMB = tumor mutation burden; ICIs = immune checkpoint inhibitors;
bTMB = peripheral blood tumor cell mutation burden; NLR = neutrophil-to-lymphocyte ratio;
DCE-MRI = dynamic contrast-enhanced magnetic resonance imaging.
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IFN-γ is considered one of the main inducers of PD-L1 expression in cancer cells.
Its mechanism of action exploits the activation of STAT1, causing the expression of in-
terferon responsive factors (IRFs) through Janus kinases (JAK-STAT pathway, especially
STAT1) [38,39]. It has been observed that the inhibition of IFN-γ significantly reduces
the expression of PD-L1 [40] (Table 1, Figure 1). Indeed, both PD-L1 and JAK2 reside on
chromosome 9p and gene overexpression mechanisms of PD-L1 could also involve JAK2,
which is, in turn, an activator of IFN-γ [1,15]. IFNs I and II activate the AKT-mTOR cascade,
located downstream of the phosphatidylinositol 3 kinase (PI3K) signaling, increasing PD-L1
expression [41].
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On the other hand, AKT-mTOR pathway suppression reduces IFN-γ-induced PD-
L1 expression. Furthermore, the increased expression of PI3K-AKT signaling through
the inhibition of its suppressor phosphatase and tensin homolog gene (PTEN) increases
PD-L1 expression [41–44]. The action of IFN-γ is not limited to neoplastic cells, but also
other components of the tumor mass. It has been observed that endothelial cells, under
the stimulus of IFN-γ, produce PD-L1, a molecule that is otherwise not constitutively
expressed [45,46]. MicroRNA post-transcriptional regulation is a crucial level of gene
expression [47,48] and affects the expression of IFN-γ and PD-L1. MiR-513 binds the
3′UTR of the PD-L1 gene and inhibits its expression induced by IFN-γ, which, in turn,
is an inducer of miR-513 and miR-155 [1,49–51]. Considering all these mechanisms, the
interpretation of the level of active IFN-γ signaling as it is associated with response to PD-
L1 immunotherapy is complex. A possibility is that the IFN-γ-related mRNA expression
profile is a predictor of the clinical response to anti-PD-1 therapy in HNSCC [12] and it
was proposed to measure the levels of IFN-γ together with those of PD-L1 to identify the
subjects most likely to respond to immunotherapy [13].

Studying databases at Memorial Sloan Kettering Cancer Center and the Cancer
Genome Atlas, Zhang et al. observed that predictors of response to ICIs are age and
mutations of ARID1A, PIK3-CA, TP53 mutation is a negative predictor (Table 1) [34].

3.2. Tumor Immune Microenvironment

Hypoxia is an immune escape mechanism adopted by neoplastic cells by which an
“immune desert” is generated in the tumor microenvironment. This means that the mi-
gration of T cells and their function are inhibited with their consequent lack of action.
Consequently, when administering a drug inhibitor of the PD-1/L1 axis, such as pem-
brolizumab or nivolumab, the cells are more vulnerable to the action of T cells, but the latter
are not present in the tumor microenvironment, therefore they cannot kill them. Potential
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markers of this phenomenon are hypoxia-inducible factor-1α (HIF-1α) and relative molec-
ular signaling (Table 1) [21,22]. Further studies are needed to understand the correlation
with response to immunotherapy in HNSCC. Like IFN-γ, EGFR is also an inducer of PD-L1,
with both using JAK2 for signaling, and the overexpression of EGFR correlates with JAK2
and PD-L1 in neoplastic cells [25].

Overexpression of VEGF and TGF-β is also linked to immune tolerance. Their inhibi-
tion is associated with the recovery of the activity of the immune system against neoplastic
cells observed histologically with an increase in effector T lymphocytes and a reduction in
regulatory ones and myeloid-derived suppressor cells. Considering oncological therapy, the
relevant data concern the newfound susceptibility to anti-PD-L1 and CTLA-4 immunother-
apy by tumors in which the activity of these two molecules was suppressed [23]. The
production of TGF-β has a role in both intracellular and extracellular environments. Its
secretion by cancer-associated fibroblasts inhibits CD8+ T cells and decreases the dendritic
cells in draining lymph nodes [52–55].

Overexpression of CD-73 by HNSCC cells is associated with immunosuppression of
the tumor microenvironment and favors epithelial-to-mesenchymal transition and metasta-
sis. By comparing tumors that overexpress it with those that have a lower representation,
it has been seen that the presence of the molecule in high quantities is associated with
reduced responsiveness to immunotherapy. Shen et al., in addition to having observed
its association with the reduced response to immune checkpoint inhibitors, have also
hypothesized its future role as a therapeutic target [24].

Alternative splicing analysis highlighted some expression profiles correlated with im-
proved survival in HNSCC patients. Selected regulating splicing factors (DDX39B, PRPF39,
and ARGLU1) have also been identified. Comparing the tumors that had an expression
profile associated with the best prognosis with those of a control group, a different rep-
resentation of the inflammatory infiltrate was observed. Therefore, the possibility of not
only using this expression profile as a prognostic predictor but also as a predictor of the
response to immunotherapy was hypothesized [26].

The tumor microenvironment also houses CD8+ T cells that are supposed to kill cancer
cells. However, Chen and Mellman observed that there are tumor areas without these cells,
called “immune deserts”, in which immunotherapy cannot work and, in tumors in which
the inflammatory infiltrate is present, this could be non-functional [56,57]. Like PD-L1
expression, the tumor microenvironment is also subject to changes induced by therapies,
and its composition should be retested to evaluate sensitivity to immunotherapy [10]. The
high presence of CD8+ cells in the tumor microenvironment is independently associated
with a lower incidence of local recurrences, and with a higher PFS and OS (Table 1) [58].
Tumor-infiltrating lymphocytes (TILs) are prognostic factors in HNSCC, their presence
correlates with response to immunotherapy, and there is no agreement regarding the
correlation between the expression of TILs and that of PD-L1 in HNSCC. Therefore, some
authors state that TILs should be evaluated independently of PD-L1 as a prognostic factor
in treatment with ICIs [59–61].

Tertiary lymphoid structures (TLSs) are ectopic aggregates that reproduce the structure
and organization of lymphatic organs. They are also present in solid tumors with an
asymmetric distribution greater in the periphery and less in the center of the mass. Some
authors have hypothesized their use as predictors of response to immunotherapy [32,33].

3.3. Tumor Neoantigen

Usually, the immunogenicity of a neoplastic cell is also linked to the number of
mutations. This, in turn, correlates with the susceptibility to the action of T lymphocytes.
PD-1/L1 immunotherapy drugs simply suppress the immune escape mechanism adopted
by cancer cells. In this way, their antigenicity becomes a target of lymphocytes. Indeed,
it has been observed that a high tumor mutation burden (TMB-high) is a predictor of
the response to anti-PD-1/L1 therapy in HNSCC [62]. There is no correlation between
TMB and PD-L1, as TMB is significantly associated with PFS and treatment response in
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patients with immunotherapy [27]. Furthermore, the measurement of peripheral blood
tumor cell mutation burden (bTMB), together with TMB and inflammatory biomarkers,
is an independent predictor of pembrolizumab efficacy (Table 1) [28,29]. Progression-free
survival (PFS) is significantly greater in individuals with a high number of mutations
detected in circulating tumor DNA compared to those with a low number of mutations
when treated with immune checkpoint inhibitors (Table 1) [30]. In a meta-analysis with
over 1000 patients and 7 different cancer types, including HNSCC, Litchfield et al. analyzed
predictors of response to ICIs using whole-exome and transcriptomic data. They observed
that clonal TMB and TMB are the strongest predictors of response to ICIs. In their article,
they considered TMB as the number of non-synonymous mutations per tumor cell and
observed an odds ratio between responders to therapy, i.e., complete responders or partial
responders, versus non-responders, i.e., stable disease and progressive disease, of 1.74 (95%
confidence interval [1.41–2.15], p = 2.93). The odds ratio for total TMB was similar, with
a value of 1.70 ([1.33–2.17], p = 1.93). Conversely, subclonal TMB was not significantly
associated with TPI response [31].

The tumor microenvironment is crucial in immune tolerance [34]. The predictors
of response to therapy are not only molecular but the cell ratio or the macroscopic char-
acteristic of the mass also gives us information about the response to immunotherapy.
Neutrophil-to-lymphocyte ratio (NLR) > 4 and a sum of the target lesion greater than 4 cm
are significantly associated with poor response to immunotherapy and poor survival [35].

3.4. Radiological Features

Some radiological factors may also be useful in evaluating the immunological status of
squamous cell cancer of the head and neck [10,26,32,33,56–58]. Starting from oral squamous
cell carcinoma samples, Togo et al. observed that poor fluor-D-glucose (FDG) uptake in a
PET scan is a marker of poor PD-L1 expression and CD8+ infiltrate in the stroma and of poor
prognosis (Table 1) [36]. In particular, the most accurate metabolic parameter is the derived
neutrophil-to-lymphocyte ratio [63]. Moreover, as PET visualization, magnetic resonance
imaging has also been studied to identify radiological predictors of PD-L1 expression.
The benchmark parameter was dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) which was correlated with PD-L1 expression. Tekiki et al. observed that the
value of DCE-MRI is significantly correlated with that of PD-L1 in oral squamous cell
carcinoma (Table 1) [37].

4. Discussion

The reviewed literature shows interesting new perspectives have emerged, which are
worthy of further clinical investigation. The search for PD-L2 could be an experimental
theme [17,18]. The currently approved medications for the treatment of HNSCC are
molecules active against PD-1 (pembrolizumab and nivolumab) [8]. Thus, they do not
account for tumor overexpression of PD-L1 or PD-L2. Although a correlation between
PD-L1 and -2 was observed, this is not the rule, being homogeneous throughout the
tumor tissue [17,18]. Since the prognostic value in terms of survival of PD-L2 has shown
heterogeneous results, we suggest further investigation is needed [17,18]. As also noted
by Wang et al., the status of PD-L2 expression by HNSCC should be considered to predict
the efficacy of anti-PD-1 therapy. Furthermore, the role of PD-L2 should be investigated
not only for its ability to interact with PD-1 but also because it mediates the invasion
and chemoresistance of neoplastic cells [16]. The prognostic value of PD-L2 regardless of
immunotherapy might be found in the actions of the molecules that are not only involved in
immune escape. Among its functions is promoting the epithelial-mesenchymal transition,
one of the fundamental steps for the metastasis of solid tumors [64].

One of the most promising immune checkpoint inhibitor response markers in HNSCC
is IFN-γ. In fact, it has already been proposed together with PD-L1 to identify eligible
patients [19,20]. IFN-γ has a high correlation with PD-L1 expression and there is widespread
consensus among researchers regarding its central role in modulating PD-L1 expression.
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Starting from the research of Noguchi et al., it could be observed that even if the inhibition
through IFN-γ antibodies considerably reduces the expression of PD-L1, this is not totally
reset. Thus, we conclude that IFN-γ is critical in regulating PD-L1 expression by neoplastic
cells and tumor microenvironments, but it is not the only regulatory mechanism [40].

There is a strong consensus regarding the study of gene mutations and response to
immunotherapy. TMB and PD-L1, although unrelated, are both predictors of response to
treatment with immune checkpoint inhibitors [27,30].

As noted by Litchfield et al., TMB appears to be the most impactful element influencing
the response to ICI. This finding is not specific to HNSCC but pertains to a heterogeneous
patient population affected by seven different cancer types, including head and neck
cancer [31]. Therefore, there is no direct comparison between the various predictors of
response to ICI, and, as stated by Burcher et al., we can observe that TMB helps us predict
response to immunotherapy in HNSCC [27,28,30].

The possibility to measure TMB in its circulating form, i.e., as bTMB, highlights how
liquid biopsy can be useful to investigate the characteristics of neoplasms. Circulating
tumor cells have been detected in 65% of patients with HNSCC and their potential use in
the diagnosis and prognosis has yet to be fully explored [65]. In the same way, infection
markers such as HPV have also been identified in the plasma of patients affected by
HNSCC, demonstrating how the circulating component of these neoplasms must be taken
into consideration [66,67]. Circulating tumor cells in HNSCC could be used both as a
prognostic factor and as a basis for analyzing the expression of molecules such as PD-L1
and other markers of response to immunotherapy [68]. Promising future results could also
be achieved using non-invasive biopsy, such as salivary biomarkers [69,70].

Among other molecules identified, such as HIF-1α and JAK2, a clinical investigation is
required [21,22,25]. The study of TLSs as a predictor of response to immunotherapy seems
promising, but there is still no clarity about their applicability as predictors of immunother-
apy. Therefore, at present, further studies are needed before incorporating this parameter
into the assessment of prognosis and response to anti-PD-1/PD-L1 therapy [32,33]. TGF-β
and VEGF act cooperatively in modulating the action of the immune system in the tumor
microenvironment. Their ability to regulate response to immunotherapy appears to be rele-
vant, but there are no experimental data on human patients. The studies, albeit promising,
concern mouse models, so we are far from understanding their clinical applicability as
predictors of the response to pembrolizumab, nivolumab, or other forms of immunotherapy
currently in use. However, there are still some molecules whose value in this sense needs
to be investigated with further studies [23].

CD-73 is a molecule overexpressed within tumors compared to healthy tissue. Usually,
high levels correlate with a worse prognosis for patients affected by HNSCC, in terms of
overall survival. This observation is partly attributed to the ability of CD-73 to promote
epithelial-to-mesenchymal transition and metastasis, as well as the reduction of CD8+ T
cell infiltration in the tumor microenvironment. Furthermore, its elevated expression is
associated with a higher incidence of TP53, HRAS, and CDKN2A mutation, and negatively
correlates with TMB, which is a factor of immunogenicity and a potential predictor of good
response to immunotherapy [24] The analysis of alternative splicing as a prognostic factor
of survival and response to immunotherapy, although interesting and compared with a
control, still needs studies in larger cohorts and validation with further research [26].

The currently approved system for assessing the eligibility of HNSCC patients for
the ICIs pembrolizumab and nivolumab is CPS for PD-L1 greater than or equal to 1%.
This inference derives from the significant major response that the patients with this trait
showed in the large trials that led to the approval of immunotherapy drugs in the treatment
of HNSCC [4,6,7]. Two problems are yet to be fully understood: (i) the possibility of
identifying that portion of the population below this threshold that would still respond to
the therapy and (ii) how to predict which patients, while satisfying this criterion, do not
respond effectively and/or durably to immunotherapy.
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Some authors have observed that PD-L2 can also become a target of immunotherapy.
After observing that IL-6 increases PD-L2 expression in HNSCC cell lines, they proposed to
study IL-6 inhibitors in the treatment of HNSCC with high expression of this interleukin,
but to date, there are no clinical trials on this subject [18]. Indoleamine 2, 3-dioxygenase
(IDO) is a gene induced by IFN-γ. Some authors have hypothesized the utility of its
measurement as its function in tryptophan catabolism could be one of the mechanisms by
which neoplastic cells suppress T cells. Moreover, IDO increases the number of T regulatory
cells (T-regs) and myeloid-derived suppressor cells (MDSCs) which further inhibit CD8+

T cells. There are still no conclusive studies on its correlation with any drug resistance to
immune checkpoint inhibitors [10]. Some authors have already tried to create genetic scores
that can serve as a guide to therapy based on prognostic-related differentially expressed
ferroptosis-related genes (PR-DE-FRGs), but these still need to be validated through clinical
trials [71].

The research on intratumoral PD-L1 expression by CPS has some challenges. One
of these has recently been highlighted by Rasmussen et al., who observed that there is
significant heterogeneity of expression within the tumor with zones of higher expression
and zones of lower expression. The observed agreement within tumors for multiple biopsies
using a 1% cut-off was 52% for the PD-L1 CPS [72]. In a first evaluation, some parts of the
neoplastic tissue do not significantly express PD-L1, and they are therefore not susceptible
to the action of immunotherapy. On the other hand, it means that a PD-L1 CPS < 1% in a
single biopsy is not representative of the mass. The application of anti-PD-1 drugs to those
patients, hypothetically, could cause an initial reduction of the mass which, however, would
not lead to curing of the patient, but only to selecting the population of resistant neoplastic
cells. This may be one explanation for the non-long-term response seen in some patients.

How PD-L1 is measured may also play a role in predicting response to therapy. Some
authors have observed intra- and inter-operator variability using commercial kits (SP263
and 142) and a platform-independent test (E1L3N). The SP263 kit and the E1L3N platform
were observed to have nearly perfect intra- and interobserver agreements. SP142 has a
moderate interobserver agreement and reduced intra-observer agreement [73]. Further-
more, PD-L1 expression within the tumor is not constant. We know that the expression
of this molecule varies and can be modified by pharmacological therapy. Radiotherapy,
chemotherapy, and anti-angiogenesis agents induce the production of IFN which increases
the production of PD-L1. Therefore, a tumor which at a given moment is apparently not
sensitive to immunotherapy does not necessarily become so after some treatments. It, there-
fore, becomes useful to repeat the biopsies after having given chemotherapy and to evaluate
whether the patient could be a candidate for the use of immune checkpoint inhibitors [10].
Relevant data concern the concordance between the biopsies and the surgical specimen
taken from the HNSCC, in terms of the CPS for PD-L1. Up to 39% of samples analyzed by
De Keukeleire et al. had discordance in this value and 34% of the samples were discordant
in the measurement of TILs, further confirming that it is necessary to perform multiple and
serial biopsies over time to monitor the neoplasm in the most effective way [60].

Other authors have proposed the use of the tumor proportion score (TPS) for PD-L1,
as an immunotherapy response marker, but, given its correlation with the CPS, the use of
which is now validated, it is necessary to verify whether its use is necessary [74]. In terms of
predictors of response to therapy, we should not ignore the radiotherapy that is often used
in HNSCC [75]. PD-L1 and p16 expression correlate with increased tumor radiosensitivity,
while survivin and c-Met expression indicate radioresistance. These markers could be
useful, together with those listed above, in evaluating the best therapy for the patient [76].
Using a machine learning mechanism that allows for a combined score across 7 tumor
histotypes, a score with 11 variables has been created, highlighting that TMB and CXCL9
are the main predictors for all cancers considered [31].

Meta-analysis by Litchfield et al. analyzed 723 articles with a total pool of over
1000 patients and described several potential non-histospecific predictors of response to
ICIs. In addition to TMB, they indicated several other predictors related to immunotherapy
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response such as frameshift insertion/deletion burden (OR = 1.38 [1.15–1.66], p = 1.63),
nonsense-mediated decay (NMD) escaping (NMD-escape) fs-indel burden (OR = 1.38
[1.15–1.66], p = 5.63), proportion of mutations fitting tobacco (OR = 1.39 [1.02–1.88],
p = 3.53), UV (OR = 1.34 [1.12–1.60], p = 1.23), and APOBEC (OR = 1.39 [1.09–1.76], p = 8.13)
mutation signatures, as well as SERPINB3 mutations (OR = 1.33 [1.12–1.59], p = 1.23), and
Fs-indel mutations escaping-NMD. Among markers of immune infiltration into the tumor
microenvironment, CXCL9 expression also appears to be a predictor of response to ICIs
(OR = 1.67 [1.38–2.03], p = 1.33). It is a chemokine that interacts with T cells by binding
CXCR3, inducing the recruitment of CD8+ lymphocytes to the tumor microenvironment
and inducing the differentiation of inflammatory T helper type 1 (Th1) and Th17 CD4
cells [31,77,78]. Additionally, CD8A (OR = 1.45 [1.20–1.74], p = 1.03), the T cell inflamed
gene expression signature (OR = 1.43 [1.05–1.96], p = 2.53), and CD274 (PD-L1) expression
level (OR = 1.32 [1.10–1.58], p = 3.03) were shown to influence response to immunother-
apy [31]. We did not include these findings within the results of our study but mention them
since these findings were from a heterogeneous cancer population. Although Litchfield
et al. stated that most of the markers had pan-cancer significance, many molecules were
not extendable to all neoplastic histotypes [31]. Furthermore, for appropriate validation,
each of these predictors needs to be clinically validated in randomized trials.

Moreover, the presence of histospecific biochemical markers would make the cre-
ation of a unique score sometwhat underpowered compared to the actual possibilities
that molecular medicine could offer. In fact, this would cause us to ignore or marginalize
some histospecific markers which could be very useful in the therapeutic choice, such as
CD38 (OR = 1.29 [1.03–1.61], p = 2.63), CXCL13 (OR = 1.38 [1.11–1.73], p = 3.83), IM-PRES
(OR = 1.31 [1.05–1.65], p = 1.83), T effector signature from the POPLAR trial (OR = 1.38
[1.13–1.70], p = 1.93), and cytolytic score (OR = 1.22 [1.00–1.51], p = 4.93), which are not
extendable to all populations of the meta-analysis. The same issue is seen for the loss of
TRAF2, which increases the efficacy of ICIs by reducing the cytotoxic activity of TNF and
increases T cell-induced apoptosis [31,79]. However, the loss of TRAF2 does not signifi-
cantly impair the efficacy of immunotherapy in HNSCC, but it does in urothelial cancer
and melanoma. Similarly, in the cohort of all the neoplasms considered it is significant, but
then, specifically analyzing HNSCC, it is not [31].

The decision to adopt an immune checkpoint inhibitor therapy in R/M HNSCC may
also be based on predictors other than the molecular expression of the neoplasm. Cachectic
patients and those who have significant weight loss during therapy have been observed to
have worse survival regardless of PD-L1 expression. Independent predictors of 6-month
progression-free survival are low performance status, low subcutaneous adipose tissue
level, and weight loss [80].

Analyzing the predictors, TMB and CXCL9 appear to have the greatest accuracy in
predicting the response to immunotherapy in a heterogeneous population composed of
patients with neoplasms of different origins [31].

Much remains to be studied on the predictors of response to immunotherapy, and it
is estimated that about 40% of the factors that determine the outcome of immunotherapy
have yet to be discovered [31].

5. Conclusions

Interesting new perspectives have emerged, regarding the already-known use of CPS
for PD-L1. We suggest that, whenever possible, it is useful to look for it in multiple biopsies
from the same cancer and not on a single specimen and that these should be repeated over
time during treatment.

Large-scale trials are necessary to validate anti-PD-1/L1 immunotherapy markers
such as PD-L2, IFN-γ, EGFR, TMB and bTMB, age, mutations of ARID1A, PIK3-CA and
TP53, NLR, VEGF, TGF–β, TILs, alternative splicing, tumor size, and tumor microenvi-
ronment, including TLS, PET, and MRI contrast enhancement profiles. CD-73 seems to
offer interesting perspectives both as a marker and as a potential therapeutic target, and
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further studies are needed. Biological predictors of radiosensitivity should also be validated
to better identify patients who will respond to radiotherapy [69,70]. Studies comparing
predictors appear to give greater potency to TMB and CXCR9.
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