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Abstract
Introduction Tremor is the most common movement disorder. Although clinical examination plays a significant role in 
evaluating patients with tremor, laboratory tests are useful to classify tremors according to the recent two-axis approach 
proposed by the International Parkinson and Movement Disorders Society.
Methods In the present review, we will discuss the usefulness and applicability of the various diagnostic methods in clas-
sifying and diagnosing tremors. We will evaluate a number of techniques, including laboratory and genetic tests, neuro-
physiology, and neuroimaging. The role of newly introduced innovative tremor assessment methods will also be discussed.
Results Neurophysiology plays a crucial role in tremor definition and classification, and it can be useful for the identification 
of specific tremor syndromes. Laboratory and genetic tests and neuroimaging may be of paramount importance in identifying 
specific etiologies. Highly promising innovative technologies are being developed for both clinical and research purposes.
Conclusions Overall, laboratory investigations may support clinicians in the diagnostic process of tremor. Also, combin-
ing data from different techniques can help improve understanding of the pathophysiological bases underlying tremors and 
guide therapeutic management.
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Introduction

Tremor is defined as an involuntary, rhythmic, oscillatory 
movement of a body part [1] and is one of the most common 
movement disorders. It may occur as an isolated symptom, as 

is the case of essential tremor (ET), or it may be associated 
with other signs and symptoms, such as in Parkinson’s disease 
(PD). The current criteria for diagnosis and classification of 
tremors, as proposed by the International Parkinson and Move-
ment Disorders Society (IPMDS), suggested the use of a two 
axes approach for tremor classification: axis 1, based on clinical 
features, whose evaluation would lead to the identification of 
a tremor syndrome, and axis 2, regarding tremor etiology [1].

Clinical assessment in several cases may not be sufficient 
for the diagnosis, and clinicians may be uncertain in 
defining whether they are observing tremor or another 
type of movement disorder. Moreover, in some cases the 
significance of additional signs besides tremor, including 
bradykinesia, dystonia, or ataxia, may also be uncertain. 
Laboratory tests, including measurements of serum and 
tissue biomarkers and neurophysiological and neuroimaging 
techniques, may therefore be helpful in the identification 
of tremors, better delineating a clinical syndrome and 
discovering the underlying etiology [2, 3]. However, the role 
of these tests in assisting clinicians in tremor classification is 
still debated. To the best of our knowledge, no work to date 
has comprehensively addressed the present issue.
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This narrative review aims to examine the role of the vari-
ous diagnostic laboratory methods in classifying tremors, 
following the two-axis approach suggested by the IPMDS 
Consensus Statement [1]. Individual techniques will be 
treated separately and organized into three main sections: 
serum and tissue biomarkers, electrophysiological and 
other neurophysiological investigations, and structural and 
receptor imaging [1]. We will also critically examine recent 
innovative methods for tremor assessment. Finally, we will 
discuss some future perspectives on the use of laboratory 
investigations.

Serum and tissue biomarkers

The role of laboratory and genetic tests in axis 1 classifica-
tion and tremor syndrome distinction is limited, whereas 
such tests may be of paramount importance in identifying 
specific etiologies in axis 2. The typical clinical features of 
some genetic syndromes manifesting with tremor are sum-
marized in Table 1.

A first-line screening is important for all patients, what-
ever the specific tremor pattern, and should include: thy-
roid, liver and renal function tests, electrolytes (including 
calcium and magnesium), and blood cells count. Protein 

electrophoresis as well as screening for infectious diseases 
(such as HIV, syphilis, and borreliosis) can be based on the 
patient’s specific risk factors and clinical history. Labora-
tory tests can also support the diagnostic workup of specific 
genetic causes of tremors. These include serum ceruloplas-
min in aceruloplasminemia and Wilson’s disease (WD), 
serum and urinary copper levels in WD, serum iron and 
ferritin in neuroferritinopathy and aceruloplasminemia, and 
sex hormone levels in sex chromosome aneuploidies.

Positive family history is frequently reported by ET 
patients, possibly suggesting an autosomal dominant inher-
itance pattern with incomplete penetrance. However, even 
though a long list of candidate loci and genes has been asso-
ciated with ET [4], no genetic findings have conclusively 
been replicated. When tremor is classically part of a dystonic 
syndrome, dominant dystonias like DYT-ANO3 [5], DYT-
GCH1 [6], X-linked dystonia-parkinsonism DYT/PARK-
TAF1 (Lubag disease) [7] should be considered (Table 1). 
All dominant and recessive mutations causing genetic PD 
may be linked with combined tremor syndromes, with rest 
tremor being a cardinal feature. Rest tremor in familial PD is 
indistinguishable from the classic pill-rolling tremor of idi-
opathic PD [8]. On the other hand, different mutations asso-
ciated with autosomal recessive PD, such as PRKN, PINK1, 
DJ1, etc., may manifest with primarily dystonic tremor 
(DT) [9]. As for diseases with main cerebellar involvement, 

Table 1  Gene mutations and typical clinical manifestations of genetic syndromes manifesting with tremor

AD autosomal dominant; SCA12 spinocerebellar ataxia 12; SCA27 spinocerebellar ataxia 27; FXTAS fragile X-associated tremor/ataxia syn-
drome; PAPT progressive ataxia and palatal tremor; WD Wilson’s disease

Disease Gene mutations Clinical manifestations

DYT-ANO3 ANO3 mutation (AD) Isolated bibrachial action tremor, or various combinations of head, voice, 
and upper limbs tremor mainly manifesting during the disease course, 
associated with only minimal dystonic posturing

DYT-GCH1
(dopa-responsive dystonia)

GCH1 mutation (AD) Upper-limb postural tremor, either alone or associated with parkinsonism, 
head, voice, chin, and parkinsonian rest tremor. Tremor characterized 
by dopamine response and diurnal fluctuations

DYT/PARK-TAF1 (Lubag disease) TAF1 mutation (X-linked) Head or limbs rest, postural and/or kinetic tremor, either prominent or 
combined with dystonia

SCA12 PPP2R2B mutation (AD) Prominent or isolated upper-limb or head action tremor
SCA27 FGF14 mutation (AD) Postural tremor as initial motor feature, associated with slowly progres-

sive ataxia, orofacial dyskinesia, cognitive and psychiatric manifesta-
tions

FXTAS FMR1 expansion Bilateral upper-limb action tremor, more rarely unilateral, which may 
precede other clinical manifestations by years

PAPT Mutation of several genes Low-frequency (1—2 Hz) palatal tremor associated with progressive 
cerebellar dysfunction

Adult-onset paroxysmal head 
tremor responsive to acetazola-
mide

CACNA1A mutation and others Discrete events of “no–no” head tremor lasting between 5 and 60 min and 
occurring several times per week, with progressive course

WD ATP7B “Wing-beating tremor” (high amplitude proximal tremor, elicited by 
sustained abduction of the arms, with flexed elbows and palms facing 
downward) is characteristic, but all kinds of movement disorders can be 
observed
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some spinocerebellar ataxias (SCA), such as SCA12 [10] 
and SCA27 [11], can show tremor as a prominent symp-
tom (Table 1). The combination of ataxia and tremor is also 
the clinical hallmark of fragile X-associated tremor/ataxia 
syndrome (FXTAS), a late-onset neurodegenerative disor-
der affecting predominantly males carrying a premutation 
allele in the FMR1 gene on chromosome X [12] (Table 1). 
Among other tremor syndromes, orthostatic tremor (OT) has 
been reported as a possible manifestation of very rare causes 
of spastic paraplegia (SPG), like SPG31 and SPG15 [13]. 
Rarely, some specific syndromic patterns, especially in the 
“tremor syndromes with prominent additional signs” cat-
egory, can suggest a specific genetic or secondary etiology. 
This is the case of palatal tremor, that together with progres-
sive ataxia can delineate the clinical picture of the so-called 
progressive ataxia with palatal tremor (PAPT), a rare clinical 
syndrome with several genetic disorders underlying familial 
cases, the most frequent of which being late-onset Alexander 
disease, SCA20, and POLG mutations [14]. Another specific 
clinical picture is the adult-onset paroxysmal head tremor 
responsive to acetazolamide [15] (Table 1).

Only a few genetic forms of tremor are treatable; the most 
relevant is WD, especially in young patients. It is caused 
by mutations in the ATP7B gene leading to impairment of 
a copper-transporting P-type ATPase, and tremor is one of 
the most common neurological manifestations, occurring in 
around 30–50% of patients [16] (Table 1).

Tremor can be a phenotypic manifestation of both neu-
rodegeneration with brain iron accumulation (NBIAs) and 
primary familial brain calcifications (PFBC); however, 
the diagnostic suspicion of these disorders is much more 
frequently driven by specific imaging (see Table 3 below) 
rather than a particular tremor syndrome. Tremor is also 
a common manifestation of sex chromosome aneuploidies 
[17], including Klinefelter Syndrome (47, XXY karyotype), 
with up to 75% of affected patients showing bibrachial inten-
tion tremor, sometimes associated with head, voice, and leg 
tremor. Other rarer diseases like Jacobs syndrome (XYY), 
and supernumerary X or Y syndromes show generally more 
complex cognitive and psychological manifestations besides 
tremor.

Electrophysiological and other 
neurophysiological investigations

Electromyography (EMG) and accelerometry (ACC) are the 
most used and available techniques for tremor assessment. 
EMG, recorded with surface or intramuscular needle elec-
trodes, is used to detect the rhythmic entrainment of motor 
units [18], the hallmark of tremor, and is commonly applied 
in clinical and laboratory settings. Regarding ACC, inertial 
measurement units (IMU) are wearable sensors consisting 

of an accelerometer, a gyroscope, and often a magnetometer, 
used to capture the three-dimensional linear acceleration, 
angular velocity and space orientation of a body segment 
[19]. Some dedicated devices and smartphones apps have 
been developed to record body motion and tremor charac-
teristics through motion transducers, although recording and 
analysis procedures are not standardized and many methodo-
logical factors may influence tremor evaluation [19].

Frequency analysis, such as the Fourier analysis, with the 
presence of a clear and narrow peak (≤ 2 Hz) is indicative of 
high rhythmicity and thus tremor [20]. A wider or unclear 
peak implies irregular motor unit firing, which should point 
toward other movement disorders, including myoclonus. 
Tremor frequency, expressed in cycles/seconds, can be esti-
mated either directly by visually exploring the traces or indi-
rectly through spectral analysis of EMG and ACC signals 
[18, 20–22]. The frequency of most pathological tremors is 
between 4 and 8 Hz, including ET and PD tremors [1, 23]. 
However, there is considerable overlap, which thus limits the 
use of tremor frequency evaluation for the differential diag-
nosis of tremor syndromes [22, 24]. Exceptions include OT 
(13–18 Hz), Holmes tremor (HT) (< 5 Hz) and myorhythmia 
(< 4 Hz) [1], where specific frequencies can be identified. In 
addition, analyzing the harmonics of the peak frequencies 
in the power spectrum, which characterize PD tremor, can 
help distinguish it from ET [25, 26]. Finally, both EMG and 
ACC can also be used to assess the regularity of tremor [20, 
24, 27, 28] and identifying frequency variability, which is 
typical of DT, enhanced physiological tremor (EPT), and 
functional tremor (FT) [20, 23]. In this context, the so-called 
tremor stability index (TSI) has proven to be a useful tool 
to distinguish PD from ET tremor, as well as DT from ET; 
in particular, TSI in ET was found to be higher than PD but 
lower than DT [28, 29].

Tremor amplitude can be indirectly estimated by meas-
uring the amplitude of the main frequency peak in the rec-
tified and low-pass filtered power spectrum, i.e., demodu-
lated EMG signal [30], or from ACC and gyroscopes data 
[18, 21]. It should be noted that ACC should be preferred 
to EMG to objectively compare tremor amplitude between 
patients, as it is less prone to technical artefacts (position 
of electrodes, muscle selection to be tested, etc.). Neuro-
physiological sensor-derived amplitude estimation is loga-
rithmically related to tremor severity assessed by clinical 
rating scales [19, 31] and has been frequently used to assess 
treatment response objectively [18]. However, these methods 
all have a large inter-subject variability [3], and only a few 
applications exist in the differential diagnosis between the 
various tremor syndromes [24].

EMG and ACC can also record tremor changes in dif-
ferent activation conditions. For example, suppressing rest 
tremor with voluntary muscle activation (i.e., resetting) and 
a re-emergent component with a similar frequency a few 
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seconds after posturing are typical features of PD tremor 
[20, 30, 32, 33]. The addition of weight loading on the upper 
limbs during laboratory tremor recordings influences the 
mechanical reflex component of tremor and can help dis-
tinguishing it from central neurogenic oscillation, leading 
to frequency reduction in EPT, while an amplitude increase 
is observed in FT [20, 23, 24, 34]; weight loading has also 
been used to investigate the presence of a central oscillat-
ing component in peripheral neuropathies which in some 
circumstances may be accompanied by tremor [35]. In this 
regard, standard nerve conduction studies help identify neu-
ropathy when neuropathic tremor is suspected. A change in 
tremor frequency during contralateral arm rhythmic move-
ments (i.e., entrainment) is typical of FT and included in the 
laboratory-supported criteria for the FT diagnosis [23, 36]; 
however, a new frequency peak at the tapping frequency 
in the power spectrum can suggest the presence of a mir-
ror movement [20], which may be observed in DT and PD. 
Tremor suppression can be observed with contralateral tap-
ping or ballistic movement in FT [36] (although this should 
be distinguished from the resetting phenomenon in PD 
tremor) or during the execution of sensory tricks in DT [20]. 
Mental tasks may increase PD tremor amplitude [20, 23].

A synchronous pattern of agonist and antagonist mus-
cles has been observed in ET and can be used, with vari-
able results, to distinguish rest tremor in ET from PD tremor, 
which is conversely characterized by an alternating pattern 
[22, 27]. A co-contraction of agonists and antagonists can 
be observed in dystonia and myoclonus [20, 24, 34]. High 
right-left intermuscular coherence and tonic coactivation are 
often seen in FT [36]. Moreover, EMG burst morphology 
and duration can be useful for the differential diagnosis with 
myoclonus (short burst < 50 ms in cortical and brainstem 
myoclonus) [37], and identification of Holmes tremor (longer 
bursts > 150 ms) and EPT (short bursts < 50 ms) [24]. Again, 
ACC signals may be used to measure tremor-associated signs 
in PD tremor or ET-plus [38]. Finally, the combination of 
other techniques with EMG and ACC, including electro-
encephalography and magnetoencephalography, allows to 
assess tremor coherence with cortical activity and evaluate 
the presence of cortical potentials by back-averaging, dif-
ferentiating myoclonus and epileptic activity from tremor.

Several emerging neurophysiological techniques are not 
yet commonly used in clinical practice but have great poten-
tial for future application.

Optoelectronic systems detect the 3D displacement of 
different body parts and can provide objective informa-
tion about tremor amplitude, frequency, body distribu-
tion and activation conditions [39–46], as well as tremor 
changes over time [45, 46] and possible alcohol and drug 
sensitivity of tremor [42, 47]. Video recordings, associated 
to computer analysis, are also useful in assessing move-
ment features in a real-life context, and single-camera 

markerless motion capture systems have been recently 
developed. Machine learning on video data can help dif-
ferentiate the different types of tremor, such as ET from 
PD, combining various tremor and movement parameters, 
including frequency and movement speed [48], and ET 
from FT through the analysis of tremor entrainment [49]. 
Finally, both optoelectronic and video kinematic analyses 
can be used for the evaluation of neurologic signs associ-
ated with tremor, including bradykinesia [41, 43–45, 50, 
51] and possible gait disturbances [52], helping in defying 
tremor in the context of ET-plus, PD and other conditions.

Digitizing tablets have been widely used to analyze tremors 
during handwriting and drawing tasks (e.g., Archimedes’ 
spiral) [18, 53]. Data can also be derived from sensors 
fixed on the subject’s hand or the pen, and combinations 
of drawing analysis with motion transducers and magnetic 
resonance imaging (MRI) are promising approaches for 
tremor assessment. Beside tremor frequency and amplitude, 
these analyses provide information on movement regularity 
and line orientation and can help distinguish DT patients, 
which show less variability and less clearly identifiable 
tremor orientation axis in spiral drawing, from FT and ET 
[54, 55]. Another possible application of drawing analysis is 
the longitudinal assessment of tremor [56], and the detection 
of additional signs to tremor, i.e. micrographia and movement 
slowness [57, 58], as well as drawing ataxia [59].

Voice analysis can quantify tremor by analyzing rhythmic 
fluctuation of the fundamental frequency and sound pres-
sure level, and both spectral analysis for frequency detection 
or machine learning methods can be applied [18, 60]. Fre-
quency variability and diadochokinesis is useful in distin-
guishing tremor from spasmodic dysphonia (SD) and amyo-
trophic lateral sclerosis (ALS); in particular, patients with 
voice tremor showed a higher variability of the fundamental 
frequency than ALS patients, and greater diadochokinesis 
(i.e., slower and more irregular syllable repetition) was 
observed in patients with tremor and ALS then in those with 
SD [61]. The distinction between voice tremor and SD can 
also make use of needle EMG for the identification of larynx 
rhythmic muscle contraction at a 4–7 Hz frequency typical 
of ET [62] and laryngoscopy for the visualization of tremor 
in the palate, pharynx and larynx during specific tasks [63].

Other neurophysiological techniques mainly used in labo-
ratory settings include the study of the blink reflex recovery 
cycle, which measures brainstem excitability often altered 
in PD, DT, and ET-plus with rest tremor but not in ET 
patients [64–66]. The somatosensory temporal discrimina-
tion threshold is altered in patients with dystonia, and its 
measurement can help distinguish ET, isolated head tremor 
and DT [67–69]. Presynaptic inhibition between antagonist 
muscles of the forearm, measured through the evaluation 
of electrically conditioned H reflex, is altered in cervical 
dystonia with tremor but normal in ET [70]. Finally, tremor 
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reset induced by transcranial magnetic stimulation applied 
to the motor cortex or cerebellum may provide clues to the 
distinction of ET from PD tremor and DT [71–73].

The main neurophysiological techniques and findings 
useful in classifying the major tremor syndromes are sum-
marized in Table 2.

Structural and receptor imaging

Overall, techniques based on receptor imaging are mainly 
used to distinguish tremor syndromes (axis 1), while struc-
tural imaging is mainly used to establish tremor etiology 
(axis 2).

The most widely used receptor imaging technique is the 
123I-FP-CIT single photon emission computerized tech-
nology, i.e., dopamine transporter SPECT (DaT-SPECT), 
which detects nigrostriatal degeneration. This has proven 
useful in axis 1 classification when considering tremor in 
PD vs ET and DT [74]. The DaT-SPECT scan is typically 
considered negative in ET, although the present data is not 
entirely conclusive [75]. DaT-SPECT can also contribute to 
the axis 2 classification as it may distinguish parkinsonian 
tremors, which usually have an abnormal DaT-SPECT, from 
parkinsonian tremor due to drug-induced parkinsonism, that 
usually shows normal DaT-SPECT results [76].

Structural imaging can be used to determine a specific eti-
ology (axis 2) and is generally indicated in case of combined 
tremor syndromes where tremor is 1) focal/unilateral, 2) non-
classical in appearance, 3) in case there is a sudden onset or 
stepwise deterioration or 4) a family history of movement 
disorders combined with cognitive or psychiatric symptoms 
[34]. MRI is the preferred method, although computerized 
tomography (CT) may play a role in assessing tremors in emer-
gency settings. Furthermore, CT can provide information in 
case of cerebral calcifications, which may indicate numerous 
metabolic or genetic diseases causing tremor in combination 
with other neurological signs. Typical MRI patterns indicat-
ing specific etiologies include cerebellar lesions or atrophy 
in intention tremor syndrome due to cerebellar dysfunction, 
signs pointing towards parkinsonian syndromes (e.g., the hum-
mingbird sign in progressive supranuclear palsy (PSP)), basal 
ganglia hyperintensities on T2 MRI in WD [77], lesions of the 
red nucleus, thalamus, nigrostriatal tract, pons and superior 
cerebellar peduncle in Huntington’s disease (HT) [78]. Other 
tremor conditions in which neuroimaging can make a key con-
tribution are summarized in Table 3 [77, 79–84].

There are several other imaging methods reported in the 
literature that, to date, are not commonly used in clinical prac-
tice. Data from MRI relaxometry [85], machine learning analy-
sis of structural measures [86], DTI measures of basal ganglia 
and cerebellum [87], neuromelanin and nigrosome-1 imaging 

Table 2  Main neurophysiological techniques and findings useful in the classification of the major tremor syndromes

ET essential tremor; ET-plus essential tremor plus; EPT enhanced physiological tremor; OT orthostatic tremor; DT dystonic tremor; PT parkin-
sonism associated tremor; FT functional tremor; VT voice tremor; BRrc blink reflex recovery cycle; EMG electromyography; ACC  accelerom-
etry; STDT somatosensory temporal discrimination threshold

Syndrome Neurophysiological techniques and major findings

ET EMG/ACC: synchronous pattern between agonist and antagonist muscles activity, high coherence between ipsilateral but not side-
to-side muscles, high TSI (> 1.05)

Drawing analysis: identifiable tremor orientation axis in spiral drawing
ET-plus ACC, optoelectronic and video recordings: objective assessment of soft signs, e.g., bradykinesia and gait disturbances

Drawing analysis: bradykinesia, micrographia and drawing ataxia
BRrc: increased R2 component in ET-plus with rest tremor

EPT EMG/ACC: frequency variability, short EMG bursts (< 50 ms), frequency reduction with weight loading
OT EMG/ACC: typical frequency (13–18 Hz), high right-left coherence
DT EMG/ACC: frequency variability, co-contraction of agonist and antagonist muscles, appearance of a new frequency peak during 

contralateral arm rhythmic movements when mirror movements are present, tremor suppression during sensory tricks
BRrc: increased R2 component
STDT: altered
Presynaptic inhibition between antagonist forearm muscles: altered

PT EMG/ACC: suppression of rest tremor with voluntary muscle activation, reemergent tremor, amplitude increase with mental tasks, 
presence of harmonics of the main peak in the power spectrum, low TSI (< 1.05)

BRrc: increased R2 component
FT EMG/ACC: frequency variability, high right-left coherence and tonic coactivation at tremor onset, amplitude increase with weight 

loading, change in tremor frequency, or tremor suppression during contralateral arm rhythmic movements, tremor suppression 
with contralateral arm ballistic movements

Drawing analysis: variability in spiral drawing
VT EMG: frequency 4–7 Hz

Laryngoscopy: visualization of tremor in the palate, pharynx, and larynx



 Neurological Sciences

1 3

[88, 89], substantia nigra hyperechogenicity in transcranial 
sonography [90], and cardiac 123metaiodobenzylguanidine 
(MIGB) scintigraphy [91] have been mainly applied to distin-
guish ET and PD. Structural, functional, and perfusion imag-
ing have been used for research purposes for the differential 
diagnosis between ET and DT [92, 93]. Though not directly 
compared within one study, distinct tremor-related cerebellar 
activation patterns have been identified between ET, DT and 
PD [94]. Namely, in ET reduced cerebellar task-related activ-
ity, resting state connectivity, and cerebellar atrophy have been 
demonstrated [95]. In DT, where the cerebellar vermis/fastigial 
nuclei loop is preferentially involved, the cerebellum’s role 
must be included within a larger network involving the basal 
ganglia and cortical motor regions. In PD, the cerebellum is 
likely involved in specific tremor subtypes, i.e., postural tremor 
and dopamine-resistant rest tremor [95, 96]. ET and ET-plus 
may also potentially be distinguished, considering white matter 
abnormalities [97] and functional connectivity in areas outside 
the cerebello-thalamo-cortical circuit [98]. ET and OT differ 
in terms of cortical and subcortical grey matter volume [99]. 
Again, focal voice tremor and dystonic voice tremor show dif-
ferent brain volume data [100]. Finally, neuroimaging may 
provide information on the disease course, showing signs of 
neurodegeneration such as cortical atrophy [101], and on the 
response of tremor to therapy [96].

Conclusions and future perspectives

Neurophysiology plays an important role in tremor definition 
and axis 1 classification; it is useful in objectively measur-
ing tremor parameters, tremor evolution over time, detecting 
elements not visible to the naked eye, and providing crucial 
elements in the definition of specific syndromes, especially 
when clinical manifestations overlap. On the other hand, 
serum and genetic tests and neuroimaging, although provid-
ing some clues for the differential diagnosis of the tremor 
syndromes, play their main role in identifying axis 2 etiolo-
gies. These methods must be preceded by a thorough clinical 
evaluation, which aims to select the most useful ancillary 
tests and guide the interpretation of the results.

Future studies on techniques for tremor assessment should 
directly compare different groups of patients, focusing on 
identifying helpful elements to distinguish syndromes and 
etiologies. This is particularly relevant for syndromes with 
similar manifestations, where a correct diagnosis is neces-
sary to optimize clinical management and for a more accu-
rate classification for research needs. Again, although many 
of the technologies described are not yet integrated into clin-
ical practice, developing innovative technologies is highly 
promising for the near future. Thanks to wearable devices 
and recent developments in telemedicine, for instance, con-
tinuous, non-invasive, accurate, domestic monitoring of 

Table 3  Neuroradiological findings typical of various diseases with specific etiologies that may present initially or predominantly with tremor

MRI magnetic resonance imaging; CT computerized tomography; PET positron emission tomography; SPECT single-photon emission computed 
tomography; T1WI T1 weighted image; T2WI T2 weighted image; T2*WI T2* weighted image; WMHs white matter hyperintensities; D2 dopa-
mine receptors D2; PKAN pantothenate kinase-associated neurodegeneration; SCA12 spinocerebellar ataxia 12; SCA27 spinocerebellar ataxia 
27; PFBC primary familial brain calcifications; WD Wilson’s disease; FXTAS fragile X-associated tremor/ataxia syndrome; PAPT progressive 
ataxia and palatal tremor

Disease Neuroimaging findings

Neuroferrinopathy Iron deposition observed as low-intensity areas on T2WI and as signal loss on T2 ∗ WI MRI in widespread location 
including globus pallidus, putamen, and dentate nuclei accompanied by lesions in the caudate nuclei or thalami, and 
cortical deposition; tissue edema and gliosis hyperintense areas on T2WI MRI in the same regions of iron deposition; 
symmetrical cystic changes in the basal ganglia in the advanced stages; atrophy in cerebellar and cerebral cortices 
(frontal lobe)

PKAN Iron deposition observed as hypointensity with an area of central hyperintensity in the globus pallidi on T2WI and T2*WI 
MRI (“eye-of-the-tiger” sign); abnormalities restricted to the globus pallidus and substantia nigra

Aceruloplasminemia Iron deposition observed as hypointensity on T2WI and T2*WI MRI with distribution comparable to neuroferritinopathy, 
but all basal ganglia nuclei and thalami simultaneously and homogenously involved

SCA12 Cortical cerebellar atrophy, eventually associated with cerebral atrophy, white matter changes and PET hypometabolism in 
cerebral cortex

SCA27 Normal or cortical cerebellar atrophy and PET cerebral and cerebellar hypometabolism
PFBC Bilateral calcification of the basal ganglia with possible involvement of other brain regions, observed as hyperdense 

lesions in CT and low intensity signal on a T2WI and low or high intensity signals on T1WI MRI
WD Cortical, brainstem and cerebellar atrophy, MRI diffuse white matter hyperintensities (WMHs), T2WI hyperintensity of 

the putamina, increased susceptibility and diffusion-related abnormalities
FXTAS Symmetric T2WI hyperintensity of middle cerebellar peduncles and peridentate white matter, cerebral white matter, and 

corpus callosum; cerebellar cortex, cerebral and corpus callosum atrophy; SPECT decreased uptake of the dopamine 
transporter and post-synaptic D2 receptors in the striata

PAPT Sporadic: inferior olives hypertrophy and T2WI hyperintensity. Familial: brainstem and cervical cord atrophy
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symptoms will be possible, with relevant implications for 
patient management. Moreover, developments in neuroimag-
ing and neurophysiology are contributing to an increasingly 
deeper pathophysiological understanding of tremor in dif-
ferent conditions, and this may lead in the future to further 
classifications based on underlying mechanisms in the per-
spective of increasingly accurate targeted therapies.
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