Bregman Neural Networks

Jordan Frecon !

Abstract

We present a framework based on bilevel opti-
mization for learning multilayer, deep data rep-
resentations. On the one hand, the lower-level
problem finds a representation by successively
minimizing layer-wise objectives made of the sum
of a prescribed regularizer, a fidelity term and a
linear function depending on the representation
found at the previous layer. On the other hand,
the upper-level problem optimizes over the lin-
ear functions to yield a linearly separable final
representation. We show that, by choosing the fi-
delity term as the quadratic distance between two
successive layer-wise representations, the bilevel
problem reduces to the training of a feedforward
neural network. Instead, by elaborating on Breg-
man distances, we devise a novel neural network
architecture additionally involving the inverse of
the activation function reminiscent of the skip
connection used in ResNets. Numerical experi-
ments suggest that the proposed Bregman variant
benefits from better learning properties and more
robust prediction performance.

1. Introduction

The past decades have seen an overwhelming interest in neu-
ral networks due to their empirical success in numerous and
disparate applications, ranging from medical imaging (Zhou
etal., 2019; Lassau et al., 2021) to self driving vehicles (Blin
et al., 2019; Grigorescu et al., 2020), among others. Conse-
quently, they have received a great interest from the machine
learning community (see, e.g.. (Maggu et al., 2020) and ref-
erences therein). A key aspect of deep neural networks is
their ability to learn a representation from raw inputs by
alternating linear transformations and non-linear operations.
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In this paper, rather than directly writing the representation
mapping as a prescribed compositional form, we present a
framework to learn the functional form of the representation
from the perspective of bilevel optimization (see Franceschi
et al., 2018; Liu et al., 2019; Grazzi et al., 2020, and ref-
erences therein). Within this framework, the lower-level
problem performs feature representation while the upper-
level problem optimizes the representation mapping. A
main insight is to define the representation as the successive
minimization of multiple learnable objective functions. The
latter are formed by summing a bilinear parametric function
and prescribed convex functions. We show how this itera-
tive scheme naturally includes standard feed-forward neural
networks and gives rise to novel multilayer networks.

Previous Work. Bilevel optimization formulations have
recently been devised in the setting of meta-learning and hy-
perparameter optimization (Grazzi et al., 2020; Franceschi
et al., 2018). Probably most related to our work is (Com-
bettes & Pesquet, 2020) where the authors have shown that
a wide range of activation operators are actually proximity
operators. In addition, the authors have provided a thorough
analysis with tools from monotone operator theory in or-
der to study a class of neural networks and their asymptotic
properties. Feedforward networks have been studied by Bibi
et al. (2019) who have also established that the forward pass
through one feedforward layer is equivalent to a single step
of a forward-backward algorithm. In addition, recent studies
have built deep models by unrolling particular optimization
algorithms (Monga et al., 2020; Bertocchi et al., 2020).

Contributions and Organization. In Section 2, we present
the proposed multilayered bilevel framework and in particu-
lar the class of layerwise objectives addressed throughout
the paper. The latter are formed by summing a linear term, a
convex regularizer and a divergence measuring the closeness
with the representation found at the previous layer. From
this, we show in Section 3 that, for an appropriate regular-
izer and a divergence chosen as a quadratic distance, the
representation found at each layer reduces to a feedforward
update. Next, by elaborating on Bregman distances, in Sec-
tion 4 we propose the Bregman feedforward layer, a new
type of neural network layer, which additionally involves
the inverse of the activation operator. This setting provides a
novel view on neural networks which allows us to interpret
activation operators as Bregman projections as opposed to
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proximity operators. The practical benefits of this new type
of layers are assessed on both synthetic and real datasets in
Section 5 by extending multilayer perceptrons and residual
networks.

Notations. Let X and ) be two Hilbert spaces. For ev-
ery lower semicontinuous extended real-valued function
f: X > RU {+oo}, we denote by df the subdifferential
of f and by V, f the gradient of f with respect to the j-th
variable. In addition, we let I;)(X') be the space of functions
from X to | — oo, +00] which are closed proper and convex,
and B(X, ) be the space of bounded operators from X to ).
Also let D(X') be the space of functions f: X' — ]—co, +00]
which are proper, lower semicontinuous, definable on an o-
minimal structure on R, large enough to include most of the
Bregman divergences used in applications (Attouch et al.,
2010), locally Lipschitz continuous and subdifferentially
regular. For n € N%, we let [n] = {1,..., n}. For every set C
we denote by int C the interior of C.

2. Multilayered Bilevel Framework

In this section, we present our bilevel framework for repre-
sentation learning.

Given some training data set {x;,y;}?"_; made of n samples,
we propose to learn a representation mapping h such that,
for every i € [n], the learned features h(x;) from the input
data x; € RY are more amenable for predicting y; € R
In other words, this means that the predicted target 7; can
be written as a simple transformation ¢ € B(R,R) of
h(x;), i.e., 9; = P(h(x;)). The transformation 1) can model a
large variety of operations popularly used such that a simple
linear layer or a linear layer followed by a softmax operator.
The closeness between 7; and the true target y; is measured
by a given loss function ¢ such as the quadratic loss (for
regression) or the cross-entropy (for classification) to name
a few.

Similarly to neural networks, we define the learned rep-

resentation h(x;) through a sequence {z(l) }{“:_01 of L € N*

i
intermediate representations of x;. A key feature of our
)

framework is to implicitly learn z;

jective function depending on zgl_l). More formally, we

consider that the representation is issued from the following
learning scheme.

by minimizing an ob-

Z(-O) =X;

forl—Ol .L-1

zgl N argmin [ll(z,zgl)) (1

zeR?

h(x;) = 2

1

This gives rise to a discrete dynamical system where £;

describes the layer-dependence of the representations. Here,

we assume that each of the objective can be split into three
components, i.e.,

r (NN (l) D 2

222 fiz2) 4D 4 g, @

playing distinct roles. Firstly, f; € F(R? x RY), where

F(RY x R?) models a class of functions to be specified

in Definition 2.1, which encourages some peculiar solu-

tion zgl“) by judging upon the representation at the previ-

(1

ous layer z; *. Secondly, D(-, zf.l)) € D(R?) is a divergence

. . ! i
measuring the closeness with zg ) As such, it is acts as a

data-fidelity term ensuring some relationship between two
successive layer-wise representations. Lastly, g € To(RY) is
a simple! function acting as a regularizer. For instance, g
can promotes sparse solutions or constrain the solution to
live in some manifold.

We consider that both D and g are prescribed while we treat
{ fl};‘:’(} as hyper-parameters whose choice permits to tune
the representation mapping /. In order to learn both ¢ and
{ fl}lL:_(}, we consider the following bilevel problem.

Problem 2.1 (Multilayered Bilevel Problem). Given a train-
ing data set {x;,y;}" , where {x;,v;} € R? x R¢ for every
i € [1] and a function g € [y(IRY), solve

L .
minimize Ly where Vi€ [n],
PeB(R?,R®) Z »9i)
Ui er( mdeRd)
2% = x,
forl =0,1,...L-1

3)
{ z(.l+1) =argmin fl(z,zi-l)) + D(z, Z,(l)) +g(2).

i
zelR4

Problem 2.1 represents one of the main proposal of the paper.
For different choices of {f;, D, g}, we will later show that it
is equivalent to training different forms of neural networks.
More specifically, { fl}lL:_(} will relate to the linear layers
whereas {D, g} will be linked to the activation functions.

Note that the choice of the divergence D directly affects
the geometry of the representation learning problem. Later,
we will consider two cases, namely the squared Euclidean
distance and general Bregman distances, and discuss how
the choice of D impacts the architecture of the resulting
neural network.

However, in its current form, Problem 2.1 is not amenable
for optimization. Indeed, we need to specify parametric ex-
pressions for both ¢ and { fl Concermng the former, we

1Simple is meant in the sense that its proximity operator (see
Equation (7)) has a closed-form expression.
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make the common assumption that i) denotes a linear map-

ping, hence promoting representations so that {ZEL),y,-}?Zl
can be linearly separated. Concerning the latter, we suggest
to restrict to the following class of functions.

Definition 2.1 (Class of layer-wise functions F). We con-
sider bi-linear functions {f}};- J- 1 such that (Vz € RY, Yz W e
R?)

() ATZ sz Cl ()+bl? 4)

filz2) =

where A; € R4 b, e RY, ¢; € R? and §; € R. In addition
we let

F(RY xR = {ﬁ | f; is as in (4)}. (5)

As we will see in the next sections, for such choice, each
of the lower-level problems in (3) yields a closed form
expression. In addition, the bi-linearity of f; will be pivotal
to stress connections with linear layers of neural networks.

3. Connection to Multilayer Networks

In this section, we explore more in depth the Problem 2.1
when D stands for the squared Euclidean distance. For
peculiar choice of g, we show that it boils down to the
training of feedforward neural networks.

3.1. Layer-wise update with quadratic distance

By hinging on bi-linear functions f; from Definition 2.1
and quadratic distance D, then each of the L lower-level
minimization problems of Problem 2.1 reads

1+1 . 1
zg * ):argmln fl(z,zi. )) —||z z ||2 g(2),

zeR4
= prox ( (0 -Vifi(z,z )));

I
:proxg((Id—Al)Zf. )+b1), (6)
S

W,

where we have introduced the variable W; € R?*“ and the

proximity operator of g, defined as

1
(Yu e le) proxg(u) =argmin g(v) + Ellu —v|]%. (D)

velRd

Hence, each layer update yields a closed form expression
taking the form a single forward-backward step (Chen &
Rockafellar, 1997; Combettes & Wajs, 2005). Therefore,
Problem 2.1 can be equivalently rewritten as follows.

Problem 3.1. Given some training data set {x;,y;}" ; made
of n samples, where {x;,y;} € R? x R¢ for every i € [n],

solve
e L
minimize Y where
peB(RY,R) Z’ g4
{VV] bl}L 1 (IRdXdXIRd)

74" =x,

Yie[n], {forl=0,1,...,L-1 . ()

(I+1) _ (1) b

[ z;  =prox(Wiz;" +by)

As discussed in (Bibi et al., 2019; Combettes & Pesquet,
2020), we also argue that the compositional form in (8) is
evocative of feedforward neural networks made of L lay-
ers. In the next section, we further strengthen the existing
connections.

3.2. Connection with neural networks

Problem 3.1 yields similarities with the training of feedfor—
ward neural networks made of L layers. Here {Wl} !and
{bl} ! represent the weights and biases of neural networks
respectlvely. We highlight that the case where W is sym-
metric (Hu et al., 2019) corresponds to the scenario where
A, appearing in (6), is symmetric as well. In addition, as
shown in (Combettes & Pesquet, 2020), the proximity op-
erator prox, can match a variety of activation functions
depending on the choice of the function g. Below, we recall
two of such examples.

Example 3.1 (ReLu). The rectified linear unit function
p: t € R+ max(t,0) € R can be expressed as the prox-
imity operator prox, of ¢ = 1[0,400[- Henceforth, prox
reduces to the projection onto the positive orthant.

8

Example 3.2 (Arctan). The arctangent activation function
p: t € R (2/m)arctan(t) is the proximity operator of

—2]og(cos &) - t2/2,

+00,

if|t| < 1;

g:teR— .
otherwise.

Here, we go one step further than (Combettes & Pesquet,
2020) by additionally linking activation functions to strongly
convex Legendre functions (see Definition A.1). This is the
subject of Proposition 3.1 and Proposition 3.2.

Proposition 3.1. Given some 1-strongly convex Legendre
Sunction ©, then for g(-) = D(-) — %H 1%

(Vt € intdom®), pmxg(t):vqu(t). )

Proposition 3.2 (Informal connection). Many activation
Sfunctions p can be written as the inverse gradient of strongly
convex Legendre functions @, i.e., p = Vol

We report in Table 1 some of the most common activation
functions and their link to Legendre functions. To the best
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of our knowledge, such connection with Legendre functions
was not explicitly derived. We believe that this might be
useful to design new activation functions tailored to the
geometry of the representation learning problem at hand. In
the next section, we will further build upon this observation
in order to devise a novel neural network architecture.

4. Bregman Multilayer Network

While in the previous section we have considered quadratic
distance D, we now investigate a more general class involv-
ing the use of Bregman distances. In addition, we show
that, for some regularizer g, the lower-level of Problem 2.1
yields a new type of neural network. An extension to varying
number of neurons per layer is provided in Appendix B.

4.1. Layer-wise update with Bregman distances

We begin by recalling the definition of Bregman dis-
tances (Bauschke et al., 2018).

Definition 4.1 (Bregman distance). Given some Legendre
function @ € I(R?), the Bregman distance associated to @
reads, (Yu € dom®,v € intdom @),

Dg(u,v) =DP(u) —D(v) —(VO(v), u —v). (10)

In particular, we recover the squared Euclidean distance for
1 : 1
® = §” : ”2, 1-e-,D%||.||2(M,V) = 7”7/1 —V”2

Equipped with this definition, each layer-wise update can
be rewritten as

zElH) =argmin fj(z, zgl))

zeR4

+Do(z2)) +g(2)

1 )
= prox? (Vq)(zg )) -Vifi(z, zg )))
= prOXZ,D(VCD(ZEZ)) —A; Z + b])
——
LW,

(1)

which leads to one step of the forward-backward algorithm
with Bregman distances (Van Nguyen, 2017; Bolte et al.,
2018). We recall that the Bregman proximity operator (in
Van Nguyen sense) of g with respect to @ reads

(u,v). (12

prox?(v) =argmin g(u)+P(u) -

ueR4

Once again, by using the same arguments as in Section 3,
Problem 2.1 boils down to:

Problem 4.1. Given some training data set {x;,y;}" ; made
of n samples, where {x;,;} € R? x R¢ for every i € [1], and

a strongly convex Legendre function © on R, solve

e L
minimize (Y where
peBIRL K) Z’ P31
{Wi,bi} g €(R4XR)-
250) =X;
Yie([n], {forl=0,1,...,L-1

L A - prox?(VCD(zEl)) + le:-l) +b;)

1

Remark 4.1. It is worth stressing that Problem 3.1 is partic-
ular instance of Problem 4.1 obtained for @ = || - ||%. In that
case, since V@(zgl)) = zgl) is a linear term, it is encapsulated
into Wj, as shown in (6). However, in general, VO is a
non-linear operation and should thus be treated apart.

In the next section, we show how the compositional form in
Problem 4.1 gives rise to a novel neural network architec-
ture.

4.2. Proposed Bregman neural network

Similarly to the comparisons drawn in Section 3.2, we argue
that the lower-level algorithm in Problem 4.1 bears some
similarities to feedforward neural networks made of L layers.
Indeed, we also identify {Wl} !and {b,} ! to the weights
and biases, respectively. In the remammg of the section, we
will show that, when proxg’ is an activation operator, then

VO is the inverse activation operator.

We start by establishing that a large variety of activation
operators can be put in the form of a proximity operator with
Bregman distances for specific choices of g and @. The
starting point is the following counterpart of Proposition 3.1
for Bregman proximity operators.

Proposition 4.1. Given some 1-strongly convex Legendre
Sfunction @, then for § = 13om e being the indicator function
of dom®, we have that

(Yt €intdom®), proxg (¢) = VO~ (). (13)
As a consequence, any invertible activation function p taking
the form V®~! (see Proposition 3.2) can be equivalently
written as the proximity operator of g(-) = ®(-) — %Il 12
with respect to the Euclidean metric (see Proposition 3.1)
or in the form of a Bregman projection with respect to the
Legendre function @ (see Proposition 4.1). In other words,
many activation functions can be recovered independently
from the choice of the couple {D, g}, i.e.,

(Standard) g=® -
(Bregman) g =

%” : ”2 and D = D%”.“z,
ldom ® and D = Dq).

However, interpreting the activation function from the view-
point of a Bregman distance has the particularity of having



Bregman Neural Networks

dom ¢ Legendre function ¢ Activation function p £ V¢! Inverse activation function p~1 2 V¢
[-1,1] t>—V1-t2 ISRU: t > t/V1 + £2 t t/V1 -2

[0,1] tr—>tlogt+(1—t)log(1—t) Sigmoid: t — ' i — tHlog(ﬁ)

[-1,1] t>—= log(cos( 51) Scaled atan: t — 5 T arctan(t) t— tan(%t)
[FAA] | t— 35 log(A2 -2+ arctanh(i) Scaled tanh: t +> Atanh(Bt) + (1/B)arctanh(t/A)
[-1,1] t > V1 —t2 + tarcsin(f) Sinusoidal: t + sin(t) t > arcsin(t)

R t + cosh(t) Asinh: t > arcsinh(t) t > sinh(t)
Roo | £ (t/B)log(E55h) — (1/8%)Lia(eP) | Softplus: ¢ > (1/8)log(exp(pt) + 1) > (1/B)log(exp(Bt) - 1)

Table 1. Connection between activation functions p and Legendre functions. We report how V(j)_l matches popular smooth activation

functions for specific choice of Legendre functions ¢. For the Softplus activation f > 0 and Li,(x) =

k
Y ke gu is the polylogarithm

function. The larger g, the closer to the ReLu activation. For the scaled hyperbolic tangent, A = 17159 and B = 0.6666.

the additional term V@ (z()) appearing in Problem 4.1 which
was absent in Problem 3.1. As a matter of fact, it follows
from Proposition 3.2 that this terms is the inverse activation
applied to the previous representation. Henceforth, the com-
positional form in Problem 4.1 can be rewritten in terms of
the proposed Bregman feedforward layers.

Definition 4.2 (Bregman feedforward layer). Let p be some
invertible activation function. Then, the Bregman feedfor-
ward layer reads:

21D = p(p7! (2") + Wiz + by, (14)

Intuitively, the added term p‘l(z(l)) plays a similar role
as the shortcut term present in ResNet (He et al., 2016)
since it will connect one layer to all previous ones. Another
particularity is that, whenever W; = 0 and b; = 0, then

2 = P(P (z") + w;z?) +bl)
=p(p7' (") =2". (15)

In other words, the neuron is the identity. The reader is
invited to refer to Appendix C for a complementary point
of view on (15). Note that, when designing an activation,
a special attention is usually given to the property that the
activation function should approximates the identity near
the origin in order to reproduce (15). Last but not least, (14)
paves the way to an ordinary differential equation of the

form
dp~"(2(t))
dt

involving p~! in place of the identity present for residual
networks (Chen et al., 2018).

= W(t)z(t) + b(¢), (16)

5. Numerical Experiments

In this section, we compare both standard multilayer percep-
trons and residual networks against their proposed Bregman
variants. The purpose of these experiments is not to out-
perform the accuracy of top leading neural networks but

to assess, on simple architectures trained with vanilla opti-
mizers, the added benefits. A Pytorch package is publicly
available”.

5.1. Bregman Multi-layer Perceptron

Throughout this section, we compare the performance of
standard multi-layer perceptrons (MLP) against the pro-
posed variant with Bregman layers.

Architectures compared. Given an activation operator p,
we consider the standard layer update

Z(H—1 = p(W[Z + b[)
and the proposed Bregman layer update
2D = p(p_l(MlZ( )+ WZZ + bl)

There, an additional linear operator M; to be learned has
been added to handle the general case where the dimensions
of z() and z!*1) differ. When those dimensions match, we
stick to M; = I, instead. Details and justifications are
provided in Appendix B.

5.1.1. TWO-SPIRAL DATASET

We begin by comparing the two MLPs on a 2 dimensional,
yet challenging, binary classification task which proves to
be useful for illustrating the benefits of the proposed variant.

Setting. The two-spiral dataset is a widely used benchmark
for binary classification (Chalup & Wiklendt, 2007). Here,
we reproduce a similar dataset and form 103 data points on
two intertwined spirals which cannot be linearly separated.
An illustration is reported in Figure 1. The purpose of the ex-
periments is to train MLP so that the learned representation
of the two-spiral dataset can be linearly separated. To do so,
we consider L € INT layers with arctan activations and 2
neurons per layer. MLPs are learned using a plain stochastic
gradient descent (SGD) optimizer. The batch-size, learning

thtp ://github.com/JordanFrecon/BregmaNet
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Training dataset Output of layer 1
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1 1 . %°

. &

Input 2
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Input 1 Input 1

Output of layer 2

D R

Output of layer 3

0 .

- ~':'1"«.:-...... - -Jg

-1 0 1 -1 0 1
Input 1 Input 1

Input 2
Input 2
=3

Figure 1. Two-spiral Dataset: Bregman MLP. We represent the
inputs dataset as well as the representation learned at each layer.

100-layers MLP networks

Bregman MLP (deterministic)
Standard MLP (deterministic)
Bregman MLP (random)
Standard MLP (random)

| Test accuracy

98.16 (= 1.74)
74.62 (+ 1.51))
96.36 (+ 4.85)
50.00 (+ 0.00 )

Table 2. Two-spiral Results: 100-layers MLPs. Test accuracies
are reported for two types of parameters’ initializations (random
and deterministic, see Definition D.1).

rate and number of epochs are set to 16, 1072 and 500,
respectively.

Quality of the learned representation. We first trained
simple 3-layers standard and Bregman MLP achieving train-
ing accuracy of 93.50% and 99.99%, respectively. Note that,
for the standard MLP, several rerun over multiple initial-
ization are required in order to achieve such accuracy. For
illustration purposes, we report in Figure 1 and Figure 2 the
outputs of each layer for both MLPs. Interestingly, although
the output at the third layer can almost be linearly separated
in both cases, they exhibit different behaviors. Indeed, the
Bregman MLP tends to cluster the data points on the whole
space while the Standard MLP does it on a smaller man-
ifold. Complementary results, reported in Appendix D.1,
additionally support that the Bregman MLP leads to higher
test accuracies irrespectively of the activation function.

We now consider the case where the number of hidden lay-
ers is large by setting L = 100. This setting is traditionally
known to be challenging for training feedforward neural net-
works (Glorot & Bengio, 2010). As such, many tricks and
strategies (e.g., initialization, preprocessing) have been de-
vised to train deep models (see (Hasanpour et al., 2016) and
references therein). Still, we stick to the vanilla optimization
setting with a fixed learning rate (validated on a coarse grid
in1074,...,10°), a SGD optimizer with batch-size 16 and
an early stopping strategy based on the validation accuracy.

Training dataset Output of layer 1

1 1 \
.
o o~ b
£ g .
1 -1
-1 1 -1 0 1
Input 1 Input 1
Output of layer 2 Output of layer 3
1 1
. . /
%o N 20 ~*
g ]
-1 -1

-1 0 1 -1 0 1
Input 1 Input 1

Figure 2. Two-spiral Dataset: Standard MLP. We represent the
inputs dataset as well as the representation learned at each layer.

Impact of the initialization. Following the common ob-
servation that MLPs trained with SGD from random ini-
tialization are performing poorly (Glorot & Bengio, 2010),
we compare the performance of both Standard and Breg-
man deep MLP trained with two initialization strategies. To
this regard, we consider the usual random initialization as
well as a deterministic initialization detailed in the appendix
(see Definition D.1). Averaged test accuracies over multiple
seeds, displayed in Table 2, confirms that the standard MLP
performs badly (i.e., up to 74.64% accuracy for a specific
initialization). On the contrary, the Bregman MLP man-
aged to achieve up to 98.16% test accuracy while being less
sensitive to the initialization.

Layer-wise behavior. Here, we stick to the determinis-
tic initialization. Once the 100-layers MLP models are
trained, we compute a posteriori the norm of the parameters
(weights and biases) obtained at each layer. Average results
over multiple seeds are reported in Figure 3 (left plot). We
observe that both methods exhibit very different layer-wise
behaviors. On the one hand, the norm of the standard MLP
parameters slowly grows with the number of layers while
the proposed Bregman variant shows different order of mag-
nitude between the parameters of the first and last layers.
This suggests that the last layers play a minor role and could
potentially be removed with a negligible impact on the per-
formance. We now turn to the norm difference between two
layers representation Figure 3 (right plot) which permits to
gain some insight about the stability of the inner dynamical
system (1). Results indicates that the standard MLP is more
prone to instabilities as suggested by the increasing behavior
from layers 50 to 100. On the contrary, the Bregman MLP
exhibits a decreasing trend which is a sign of a more stable
dynamic.
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107!

2.0 —— Bregman
g ~ 1072 —— Standard
£15 =
g —— Bregman Y1073
qé 1.0 Standard = |
& 10 Y
$05 & . .

\ 105
0.0 i
0 25 50 75 100 0 25 50 75 100
Layers Layers

Figure 3. Two-spiral Results: layer-wise behavior of 100-layers
MLP. Left: norm of the parameters (weights and biases) of each
layer. Right: average norm difference of the output of consecutive
layers.

5.1.2. MNIST DATASET

We now turn to the popular MNIST dataset which is known
to be easily classifiable by resorting to simple MLPs.

Setting. We conduct experiments similar to the setting
of (Ciresan et al., 2010). The latter is known to achieve
under 1% test accuracies with simple MLP architectures.
All details are reported in the appendix (see Section E.1).

Quality of the learned representation. In this first experi-
ment, we investigate the ability of MLPs to learn a meaning-
ful 2 dimensional representation of the MNIST dataset. To
this end, we consider sigmoid based MLPs made of 3 hidden
layers of size 784, 2 and 2, respectively. The output layer
is a linear layer used to map each 2 dimensional point to
one of the 10 labels. The learned representation is reported
in Figure 4. We observe that the Bregman MLP (left plot)
yields a more compact clustering of the data points of the
same label, hence confirming the same observation drawn
on the two-spiral dataset.

Impact of depth and activation functions. A major chal-
lenge when training neural networks is to avoid the vanish-
ing gradient phenomenon which can be caused by activation
functions having small ranges of gradient values and the
depth of the networks (Hochreiter et al., 2001). Here, we
reproduce multiple settings encompassing such scenario.
To do so, we consider MLPs with either sigmoid or scaled
hyperbolic tangent activation. The former is known to prone
very small gradient values during back-propagation while
the latter has received great success instead. We additionally
consider various number of hidden layers (2, 9) and various
number of neurons per layer (16, 128, 1024). Performances
are reported in Figure 5. We observe that both Standard and
Bregman MLP perform equally well with L = 2 layers (left
plots) with either sigmoid (top left) or scaled hyperbolic tan-
gent (bottom left) activation function. Instead, for a larger
number of layers (right plots), the Standard MLP performs
poorly with sigmoid activations (bottom right) as opposed
to the Bregman variant. We believe that the well behavior
of Bregman MLPs is due to the presence of the p~! term
which, similarly to the skip connection of residual networks

Final layer

Final layer

O‘?).O 0.2 0.4 0.6 0.8 1.0 0'%0 0.2 0.4 0.6 0.8 1.0
Output 1 Output 1

Figure 4. MNIST Dataset: learned 2D representation. We re-
port in the left plot (resp. right plot) the learned representation
through a Bregman MLP (resp. standard MLP) achieving a train
accuracy of 100% (resp. 99.70%) and test accuracy of 94.74%
(resp. 94.40%). Each color stands for a different label.
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Figure 5. MNIST Results: impact of the architecture. We con-
sider MLPs with scaled hyperbolic tangent activation function
(top) or sigmoid activation function (bottom). For both, we report
the test accuracies of both standard and Bregman MLP with L = 2
(left) or L = 9 (right) layers, and several numbers of neurons per
layer (i.e., 16, 128 or 1024).

(ResNets), allows to mitigate vanishing gradient issues.

5.2. Bregman Residual Neural Network

Following the discussion done in Section 4.2, the proposed
Bregman layer exhibits some similarities with ResNet since
the skip connection is reminiscent of our added p~! term.
By hinging on the resemblances, we introduce and compare
the following BregmanResNet.

Architectures compared. Our proposed variant differs
from classical ResNet solely by the architecture of the resid-
ual blocks used. To this purpose, we recall below its stan-
dard form where the convolutional layers usually also en-
capsulate batch normalizing layers.

z < ReLu (z + ConVZ[ReLu(ConVI [z])] ) (17)

Our proposed variant is defined for any invertible activation
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Test accuracy | {oo-Robust accuracy | £2-Robust accuracy

BregmanResNet20 (atan)
BregmanResNet20 (tanh)
BregmanResNet20 (sigmoid)
BregmanResNet20 (softplus)
ResNet20

89.11 (+ 0.20)
89.28 (+ 0.28)
89.75 (+ 0.23)
90.82 (+ 0.12)
90.80 (+ 0.18)

33.86 (= 0.68)
35.29 (+ 1.51)
33.26 (+ 1.47)
42.46 (+ 1.25)
40.84 (+ 0.71)

50.56 (+ 0.52)
51.68 (+ 1.42)
50.40 (+ 1.46)
53.13 (+ 1.68)
51.65 (+ 1.32)

BregmanResNet110 (softplus)
ResNet110

91.52 (+ 0.89)
90.39 (+ 1.07)

4824 (= 1.51)
47.78 (+ 1.66)

58.09 (+ 1.92)
56.29 (+ 1.76)

Table 3. CIFAR-10 Results. We compare the performance of ResNet20 and ResNet110 as well as its proposed Bregman variant trained
on CIFAR-10. Test accuracies are averaged over 10 random initializations.

function p as follows
Z p(p_l(z)+C0nv2[p(C0nv1[z])]). (18)

There, the residual term is replaced by p~!(z) while p is
used in placed of the ReLu activation function.

5.2.1. CIFAR-10 DATASET

We now conduct experiments on the CIFAR-10 dataset
which consists of 50k training images and 10k testing im-
ages in 10 classes (Krizhevsky & Hinton, 2009).

Setting. We follow the original training data augmentation:
4 pixels are padded on each side, a 32x32 crop is randomly
sampled from the padded image or its horizontal flip, and
the pixels intensity are rescaled. Our implementation is
based on a rework of (Idelbayev, 2018). Concerning the
optimization, we use the same setting as in the original
ResNet paper (He et al., 2016), namely a learning rate of
1071, weight decay of 10™%, momentum of 0.9. In addition,
the optimization is done over 182 epochs with a decreasing
of the learning by a factor 10 at the 91" and 136" epochs.

Test accuracy. We report in Table 3 the test accuracies
of ResNet20 as well as its Bregman variants obtained for
various choices of activation functions. Interestingly, solely
the variant with the SoftPlus activation, which is a smooth
approximation of ReL.u, managed to match the performance
of the standard ResNet20. In order to further contrast
these results, we additionally compare the top-2 test ac-
curacies: 97.05% =+ 0.24 (BregmanResNet20 with SoftPlus)
and 95.86% =+ 0.27 (ResNet20). The latter unveil a signif-
icant improvement with the Bregman variant. In addition,
we compare the performance of a deeper residual network,
namely the ResNet110. Note that we did not resort to the
optimization heuristic from (He et al., 2016) but stick to the
same setting, instead. Test accuracies are reported in Ta-
ble 3 and show a significant improvement over the baseline.
We believe this is due to the better training behavior of the
proposed variant when dealing with deep layers.

Adversarial robustness. We additionally compare the ro-
bustness of both ResNet models against adversarial attacks.
Adversarial attacks are quasi imperceptible perturbations,

| Test accuracy

ResNet18 65.10 (+ 0.36)
BregmanResNet18 65.25 (+ 0.13)
ResNet110 71.45 (+ 0.04)
BregmanResNet110 | 72.28 (+ 0.12)

Table 4. CIFAR-100 Results. Test accuracies are averaged on 10
random initializations. The Bregman variant is devised with the
softplus activation function.

which added to the original image, manage to fool the pre-
diction of the model. To this regard, we consider both
{.-attacks and €,-attacks. Concerning the former, we resort
to the popular fast gradient sign method (Goodfellow et al.,
2015) with a maximal perturbation of ¢ = 8/255. Concern-
ing the latter, we make use of the PGD attack of (Madry
et al., 2018) with a maximum ¢,-perturbation of ¢ = 0.5.
For both architectures, we see that the proposed variant is
more robust than its standard counterpart. More interest-
ingly, altough the test accuracies on ResNet2( are compara-
ble, the Bregman variant shows a significant improvement
in terms of robust test accuracies. In order to complement
the added robustness, we additionally quantify the margins
to the decision boundaries through the distance between the
two largest outputs of the last layer. Results, averaged over
the multiple seeds, read 14.6 (BregmanResNet20 with Soft-
Plus) and 9.35 (ResNet20). Hence, they do support that the
Bregman variant benefits from a higher separation between
the classes as previously observed in Figure 4.

5.2.2. CIFAR-100 DATASET

We turn to the more challenging CIFAR-100 dataset made
of 500 training images and 100 testing images per each of
the 100 classes (Krizhevsky & Hinton, 2009).

Setting. We follow the same pre-processing used for the
CIFAR-10 dataset and reproduce the experimental proce-
dure of (Zhang et al., 2019). Namely, we train the model
during 200 epochs with batches of 128 images and decay
the learning rate by a factor of 5 at the 60th, 120th, and
160th epochs. We also resort to a SGD optimizer with initial
learning of 0.05, momentum of 0.9 and weight decay of
1073
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Performance. We report in Table 4 the averaged test accu-
racies. Once again, we observe a minor improvement over
the baseline. More interestingly, putting these results into
perspective with the corresponding train accuracies (being
respectively 99.94% and 99.92% for BregmanResNet110
and ResNet100) suggests that the proposed variant benefits
from slightly better generalization properties.

6. Conclusion

The present paper framed the learning of a representation
mapping as a multi-layered bilevel optimization. We have
shown that for some quadratic distances, the learning frame-
work boils down to the training of a feedforward neural
network. In addition, by elaborating on more general dis-
tances, we proposed the Bregman layer which includes an
additional term defined as the inverse of the activation func-
tion. Intuitively, this term plays a similar role as the skip
connections introduced in the ResNet (He et al., 2016) by
linking one layer to the previous ones. In addition, it en-
sures that whenever the weights and biases are zero the
layer reduces to the identity. We have shown experimen-
tally that two interesting aspects follow from this property.
First, the training of deep architectures is eased. Second,
after some depth all layers parameters are almost zero and
thus subsequent layers could potentially be removed with-
out hampering the prediction performance. We believe, this
may reduce the memory needed to store very deep archi-
tectures. Future works should further study both aspects in
very deep architectures and investigate how the presence of
the inverse activation mitigates vanishing gradients issues.
In addition, following up on the connection (16) with neural
ordinary differential equations, an extension of Bregman
neural networks to continuous-depth and continuous-time
latent variable is under study.
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A. Legendre Functions

We recall below the definition of a Legendre func-
tion (Bauschke et al., 1997).

Definition A.1 (Legendre Function). Let X' be a Hilbert
space and @ € [)(X'). Then D is called

differentiable
— 400 as

e essentially smooth if @ s
on intdom® = @ and |[VO(v)
v — boundarydom®,

e essentially strictly convex if @ is strictly convex on
every convex subset of dom o®,

* Legendre if @ is both essentially smooth and essentially
strictly convex.

B. Extension to Varying Number of Neurons

So far, we have assumed that the number of neurons is
identical throughout the layers. In the following, we remove
such hypothesis and denote by d; the number of neurons
at layer /. In addition, we consider that both D¢ and g,
hereafter denoted Dy, and gj, can also vary at each layer.

In order to extend the proposed framework to the scenario
where two consecutive layers’ representations have different
dimensions, we consider the following inner dynamical
system:

(0) _
Zi =X;
forl=0,1,...L -1

1+1 . 1 1
zg - argmin fl(z,Mle )) + Do, (Z,Mlzi- )) +g1(2),

ze]Rle
19)
where f; € F(RA+1 x Ri1), g € I(R%+1) and M; €
R%+1%41 s additional term permitting to match the dimen-
(1 (1+1)

sions of z; and z;

The main difference with respect to the dynamical system
in (3) is the presence of the matrices {M] }IL:_(}. The latter are
not prescribed but have to be learned in the same way as

parameters of the functions {f, }ZL:_(}.

In order to shed some light on the space of admissible ma-
trices M;, we first recall from the definition of Bregman
distances (see Definition 4.1), that one needs to ensure that

1 . . . .
Mlzg ) € int dom ®;. To to do, we devise a sufficient condi-
tion in the next proposition.

Proposition B.1. Suppose that each Legendre function @)
are built from an elementary Legendre function ¢; such that

1+1
Q:ue R+ Z‘Pl(”j)r with dom¢; =1,
j=1

where I denotes a convex interval. Then vV € dom®;_,
implies that My € dom @, for any M, € A;H where

d
M e [0, 1]%%% | (Vi € [dp,,]), ZMi,j =1
j=1

I+1 _
AT =

Proof. Let ul) = M;v\!). Then, for every i € [d},1], the i-th
component of u!) can be seen as a convex combination of
v e, (ul); = 27’:1 Mi,j(u(l))j. Therefore, since each
(v(l))j € T, with Z convex, then so does (u();. O

The assumption in B.1 is actually pretty standard. In the
context of Bregman neural networks, it translates into the
hypothesis that all the activation functions present in the
network have the same range.

Remark B.1. By elaborating on Proposition B.1, one can re-
cursively ensure that forevery [ € {1,...,L}, zgl) € dom®;_,
on the condition that so does the input data points zio) =X;.

This can always be enforced in practice by shifting and
rescaling the input data.

We are now left with deriving the closed-form solutions of
(19), i.e.,

I+1 . 1 1
zg D _ argmin fl(z,Mle )) + Dq)l(Z,Mlzg )) +g1(2)

ze]Rle

= proxgl (V@l(Mlzgl)) -Vifi(z, Mlzgl)))

_ proxg’l(VcD(Mlzi.”)—A,Ml A+ b,) (20)
—_——
L,

where we have introduced the variable W, € R4+1%41 We
finally end up with the following multilayered bilevel prob-
lem.

Problem B.1. Given some training data set {x;, y;}"; made
of n samples, where {x;,;} € R? x R¢ for every i € [1], and
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| Ir=0.01 | Ir=0.1 | Ir=1 |
Bregman (sigmoid) | 91.60 (+ 6.70) | 99.44 (+ 0.38) | 94.32 (+ 7.07)
Bregman (atan) 98.74 (£ 0.36) | 96.00 (+ 6.99) | 98.06 (+ 2.27)

Bregman (tanh) 96.18 (£ 0.88) | 99.18 (= 0.64) | 83.06 (+9.52)

Standard (sigmoid) | 64.36 (x 13.64) | 77.38 (+ 5.57) | 79.84 (+ 3.33)
Standard (atan) 84.04 (+ 11.16) | 86.20 (+9.15) | 77.74 (+ 4.25)
Standard (tanh) 78.60 (+ 9.23) | 75.00 (+5.55) | 73.00 (+ 1.15)

Table 5. Additional Two-spiral Results: 3-layers MLP. We report the test mean accuracies (over 5 realizations) obtained for various
learning rate (Ir).

| Ir=0.001 |
93.24 (+ 9.48)
74.68 (+ 1.64)
72.98 (+ 15.21)
50.00 (+ 0.00 )

Ir=001 |
98.16 (+ 1.74)
74.62 (+ 1.51)
96.36 (+ 4.85)
50.00 (+ 0.00 )

r=01 |
94.98 (+ 3.64)
68.02 (+ 7.13)
93.08 (+ 4.75)
50.00 (+ 0.00 )

Bregman (non-informative)
Standard (non-informative)
Bregman (random)
Standard (random)

Table 6. Additional Two-spiral Results: 100-layers MLP. Results are reported for two types of parameters’ initializations (random and
non-informative, see Definition D.1) and for three learning rates (Ir).

C. Interpretation in terms of layer-wise
objective

—— Bregman
Euclidean

As previously discussed in Section 4.2, a large variety of
activations V@1 can be equivalently written as the proxim-
ity operator of g =@ — %Il -|I? (see Proposition 3.1) or as a
Bregman projection with respect to the Legendre function
@ (see Proposition 4.1).

-1.0 -0.5 0.0 0.5 1.0

Figure 6. Comparison of layer-wise objectives (2) for f; = 0. From the point of view of (1), each case results in minimiz-

On the one hand, in Euclidean case, the objective reads z —

(D(2) - %I|z||2) ||2 On the other hand, for Bregman
(l))

distances it solely reads z > Do (z, 2;

ing different layer-wise functions £;(-, zi.l)) recalled below

2||z z

* (Standard) z > fi(z,z ")+ d(z)- Szl + Sz Z I,

* (Bregman) z +— fi(z, zgl)) + Dy (z, zgl)).

. L-1
I-strongly convex Legendre functions {®},Z,, solve For illustration purposes, we report in Figure 6 the two

objectives in the particular case where f; = 0 for ¢: t —
—1t/21og(cos(7ct/2)). For both, the behavior near —1 and
1 confine the solution to lie within the bounds [1,1]. In

minir?ize Z o L ),vi) where Vie[n], addition, we observe that, for the Bregman variant, the
W b‘f’fg(?ﬂ{i{;) Ri)L i=1 minimizer coincide with zgl) when f; = 0, thus bringing
1,91 X . .
(M dexit Al another view on the observation (15).
0 _ . .
Zi =X D. Additional Results on Two-Spiral Dataset
for/=0,1,...,L-1

In this section, we provide additional results complementing

(I+1) o O] (O]
[ z;=proxg (VO (Myz; )+ Wiz, +by) the experiments done in Section 5.1.1.

1

D.1. 3-layers MLPs

Compared to Problem 4.1, Problem B.1 has the drawback
of requiring to learn the extra matrices {M;}. In practice, we
do learn them in the same way we learn the weights {W;}.
The only difference is that we further need to project them
into A;*l.

In order to complement the experiments done in Sec-
tion 5.1.1, we report in Table 5 additional results for 3
layers based MLPs made of 2 neurons per layer. Test accu-
racies are averaged over 5 independent realizations and are
reported for various activation functions and learning rates.
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Irrespectively of the activation function and the learning
rate, we observe that the proposed variant yields higher test
accuracies.

D.2. 100-layers MLPs

In order to train a deep MLPs, we suggest to resort to the
following non-informative initialization.

Definition D.1 (Non-informative initialization). Given
some layer with d € IN input and output dimensions, we let

e (Bregman) W; = 04,4 and b; = 0y,
* (Standard) W; =1, and b; = 0,.

This change of treatment between standard and Bregman
MLPs can be understood through the prism of Remark 4.1.
Indeed, we recall that, for any Legendre function @, each
layer update can be written as

21 = prox® (vqa(z/’) Wi+ bl). @1
In particular, for ® = %Il -|12, we recover

2+ = prox, (z(l) + le(l) + bl). (22)

i i

Henceforth, by i) applying a change of variable W; « W) +
I; and ii) identifying prox, with some activation operation,
we recover the standard MLP layer Section 3.1, i.e.,

Z(l+1) = p(WlZEI)-i-bl). (23)

Therefore, having W; = 0 for Bregman MLP translates to
W; =1, for Standard MLP due to the change of variable.

In order to complement the discussion done Section 5.1.1,
we provide additional results in Table 6 for various learning
rates and for different initializations.

E. Additional Results on MNIST Dataset

In this section, we detail the experimental setting of Sec-
tion 5.1.2 and provide additional experiments further illus-
trating the vanishing gradient problem.

E.1. Experimental setting of Section 5.1.2

We report below how we have tried to reproduce the same
experimental setting as in (Ciresan et al., 2010) with the
available information.

Data preprocessing. The 50k samples of the training set
undergo random affine transformations keeping the center
invariant. To this effect, we use random rotations between
(=11.25,+11.25) degrees and a random scaling selected in
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Figure 7. Additional MNIST Results: impact of architecture.
We report additional results for sigmoid-based MLPs with varying
number (1, 2, 4, 8), represented from top left to bottom right, and
several number of neurons per layer (i.e., 2, 4, 8, 16 and 32). As the
number of layers grows the performance of Bregman MLP remains
constant while those of its standard counterpart drop significantly.

(—0.825,+0.825). Then, each 32 x 32 pixels images are
flatten into 784 dimensional vectors pre-processed so that
the pixel intensity lie within the activation range. The orig-
inal un-deformed training dataset is then use as validation
set to perform early stopping. Both validation and test sets
are flatten and rescaled in the activation range.

Note that, as opposed to (Ciresan et al., 2010), we do not
perform data augmentation with elastic deformations.

Optimizer. All MLPs are trained using a stochastic gra-
dient descent with batch size 100 with a decreasing step
learning linearly decreasing of a factor 1073 over 103
epochs. The initial learning rate is cross-validated over
{1073,1072,1071}. For sigmoid-based MLP (resp. scaled
hyperbolic tangent), we have found the best value to be
107! (resp. 10’3).

E.2. Additional experiments on sigmoid-based MLPs

In order to further highlight the vanishing gradient effect oc-
curing with sigmoid-based MLPs, we investigate the impact
of various architectures on the performance.

More specifically, we compare the test accuracies achieved
by both standard and Bregman MLPs with sigmoid activa-
tion function and several hidden layers sizes and 1 to 8 hid-
den layers. This experiment is repeated over 5 different data
splits. Average test accuracies are reported in Figure 7. For
a single hidden layer (top left figure) we observe that both
standard and Bregman MLP perform equally well. How-
ever, as the number of hidden layers grows (from top left to
bottom right), the performances of standard MLP drastically
drop while those of Bregman MLP remain constant.
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Figure 8. Additional CIFAR-100 Results: Training behavior.
Left: ResNet18-based models. Right: ResNet110-based models.

F. Additional Results on CIFAR-100 Dataset

In order to complement the CIFAR-100 experiments con-
ducted in Section 5.2.2, we additionally report in Figure 8
the averaged training loss for ResNet18, ResNet110 and
their respective Bregman variant. Both standard and Breg-
man ResNets exhibit the same learning behaviour with a
slightly lower training error for the Bregman versions.



