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The transonic flow over a bump is studied using implicit large-eddy simulations. To replicate

rotor/stator interactions occurring in turbomachinery, harmonic forcing of the back pressure is

imposed at the outlet. Various perturbation frequencies are prescribed and encompass different

regimes, from a fully locked configuration to a decoupling between the unperturbed and forced

flows. The mean solution is however found to be independent of the perturbation. In a triple

decomposition framework, the coherent component of the flow is extracted by phase-averaging.

Organized structures of streamwise velocity and turbulence kinetic energy are highlighted.

Whereas of similar shapes beneath the shock system, their extent in the downstream boundary

layer is controlled by the frequency of the perturbation. Mean and harmonic turbulent stress

budgets are presented. A typical three-peaks distribution of mean turbulent diffusion is reported,

which is also found to appear for the coherent turbulent diffusion. Harmonic production arises

mainly from the mean shear and its modulation.

Nomenclature

𝑎 = speed of sound [m s−1]

𝐴 = amplitude

𝐵h, 𝐵l = bump height, bump length [m]

𝐶f = friction coefficient

𝐶𝑝 = pressure coefficient

𝐶𝑢𝑢 = streamwise velocity correlation coefficient

𝐶T = artificial viscosity scaling factor
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𝑑 = distance from the wall [m]

𝐷𝑖 𝑗 = dissipation tensor [m2s−3]

𝑒 = specific internal energy [m2s−2]

𝑓 = frequency [s−1]

𝑓r = reduced frequency

ℎ = specific enthalpy [m2s−2]

𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 = turbulence length scales [m]

𝐽𝑖 𝑗 ,𝑘 = diffusion flux tensor [m2s−3]

𝑘 = turbulence kinetic energy [m2s−2]

𝐿𝑥 , 𝐿𝑦 , 𝐿𝑧 = domain dimensions [m]

M = Mach number

𝑁bl = number of blocks for Welch method

𝑝 = pressure [kg m−1s−2]

𝑃𝑖 𝑗 = production tensor [m2s−3]

𝑞𝑖 = heat flux vector [kg s−3]

Re = Reynolds number

𝑠0 = shock sensor threshold

𝑠𝑖 𝑗 = strain-rate tensor [s−1]

𝑠D,0 = Ducros sensor threshold

St = Strouhal number

𝑡 = time [s]

𝑇 = temperature [K], period [s]

𝑇𝑖 𝑗 = pressure strain tensor [m2s−3]

𝑢, 𝑣, 𝑤 = velocity in 𝑥, 𝑦 and 𝑧 directions [m s−1]

𝑈 = mean streamwise velocity [m s−1]

𝑥, 𝑦, 𝑧 = spatial coordinates [m]

𝛽 = directional parameter

𝛿0 = reference boundary layer thickness [m]

𝛿𝑖 𝑗 = Kronecker delta

Δ𝑥, Δ𝑦, Δ𝑧 = grid resolutions [m]

𝜃 = boundary layer momentum thickness [m]

𝜅 = shock sensor range
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𝜆 = thermal conductivity [kg m2s−3K−1]

𝜇 = dynamic viscosity [kg m−1s−1]

𝜈 = kinematic viscosity [m2s−1]

𝜈T = kinematic eddy viscosity [m2s−1]

𝜌 = density [kg m−3]

𝜎𝑖 𝑗 = viscous stress tensor [kg m−1s−2]

𝜏 = penalty parameter

𝜙 = phase angle [◦]

Subscripts

𝑖, 𝑗 , 𝑘 = index notation

o = outlet

w = wall

∞ = free stream

Superscripts

.. = mean component

.̃. = coherent (harmonic) component

′ = incoherent component

+ = wall unit

I. Introduction

In many high-speed aeronautical applications, the shock wave/boundary layer interaction is the primary aerodynamic

performance-limiting factor. For instance, the operation of turbomachines in the transonic regime leads to the

development of a shock wave in the passage that interacts with the boundary layer on the suction side of the blade. For

strong interactions, the boundary layer separates and a massive recirculation appears, amplified by the blade curvature.

The oscillation of the back pressure produced by the periodic passage of a downstream rotating row further affects the

interaction and the turbulence in the separated region. The unsteady potential effect of this rotor/stator interaction is

enhanced as modern designs tend toward more compact engines and taking it into account at the design stage would

allow an improvement in engine efficiency.

Industry relies mostly on low-fidelity methods to design turbomachines. Besides Reynolds-Averaged Navier-Stokes

(RANS) simulations and their unsteady counterpart (URANS), frequency-domain approaches such as the Non-Linear

Harmonic (NLH) method (originally described in He and Ning [1] and implemented in commercial software by Vilmin

et al. [2]) or the Harmonic Balance [3] method are also employed. These methods indeed benefit from a drastically
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reduced cost with respect to full unsteady computations thanks to the inherent periodicity of turbomachinery flows. The

closure of the harmonic equations derived in the NLH framework requires, however, a model for the harmonic turbulent

stresses, the assumptions of which can, in some cases, degrade the accuracy of the solution [4]. The development of

better models would improve the predictions given by harmonic methods and widen their range of application.

Any modeling work is based on a good understanding of the underlying physics and consequently on reliable data.

The complex phenomena featured in transonic turbomachinery flows necessitate the use of high-fidelity approaches

including Large-Eddy Simulation (LES) or Direct Numerical Simulation (DNS) to be appropriately captured [5].

Despite their increasing affordability and popularity, high-fidelity simulations remain costly. One remedy is to consider

simpler geometries that, when suitable flow conditions are chosen, replicate most of the actual flow. For example,

two-dimensional bumps can be used to perform fundamental flow physics investigation instead of a three-dimensional

blade.

The study of transonic flow over two-dimensional bumps dates back to the experimental works of Delery [6] and

Liu and Squire [7]. The flow conditions and bump geometry of the latter study were employed by Sandham et al.

[8] to demonstrate the feasibility of high-fidelity simulations for the fully turbulent transonic flow over a bump. The

Reynolds number based on the bump length and free stream conditions Re𝐵l = 𝐵l𝑈∞/𝜈 was ≈ 2.3× 105, around 7 times

lower compared to the experiment. The boundary layer was found to separate over the bump much earlier than in the

experiment, the peak Mach number was lower, and the results featured a steady shock. Bron [9] specifically designed a

new bump to study basic flow interactions in turbomachinery and conducted both experiments and (U)RANS numerical

investigations. Other authors employed high-fidelity methods on this bump. Wollblad et al. [10] presented the results of

LES for which the conditions were similar to the experiment with the exception again of the Reynolds number which had

to be decreased by a factor of 11.25 to make the computation feasible, giving Re𝐵l ≈ 3.1 × 105. No natural large-scale

movement of the shock was observed. The effects of flow conditions and computational setup on the shock motion were

further examined in Wollblad et al. [11], in order to rule out possible explanations for the absence of shock motion.

Four additional cases were introduced, with different combinations of domain height, outlet pressure and type of top

boundary condition to examine the influence of choked/non-choked flow and/or elliptic leakage along the ceiling. The

results showed again the absence of large-scale shock motion, although its innermost part was found to oscillate in some

cases. Brouwer [12] performed a DNS but at a higher Mach number (0.79 against 0.7 in Bron [9]) and at an even lower

Reynolds number (Re𝐵l ≈ 1.7 × 105). Motion of the lower part of the shock was highlighted at low frequency. More

recently, laminar and turbulent interactions in a transonic passage were studied by Priebe et al. [13] using wall-resolved

implicit LES (ILES) on a custom geometry.

The budget of turbulence kinetic energy was analyzed in detail by Marquillie et al. [14] and Laval and Marquillie [15]

from DNS data of incompressible turbulent flow in a converging-diverging channel, previously studied experimentally

by Bernard et al. [16]. The Reynolds number Re𝜏 (based on the friction velocity and half the channel height) was
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decreased by an order of magnitude, from Re𝜏 ≈ 6500 in the experiment to Re𝜏 ≈ 395 and Re𝜏 ≈ 617 in the DNS. No

shock was found to to form, but the simulations still featured flow separation at the bump wall. A complex modification

of the balance in the adverse pressure gradient region was highlighted. In particular, turbulent transport was found to

have a significant influence in the presence of flow separation. Schiavo et al. [17] reported the results from LES for

the same configuration, at Re𝜏 ≈ 615 and Re𝜏 ≈ 950. Budgets for each individual turbulent stress were portrayed and

illustrated that their respective contribution to the turbulence kinetic energy budget varies along the wall. The turbulence

kinetic energy budget was further investigated in Schiavo et al. [18] by means of Proper Orthogonal Decomposition and

spectral analysis. Turbulent transport was shown to be poorly reconstructed when only the most energetic flow modes

are considered.

Work was also done on forced transonic flow over a bump. Bur et al. [19] performed an experimental and numerical

study, using URANS. The perturbation was imposed downstream as a periodic pressure signal. The forcing frequencies

investigated were low, such that the flow was quasi-steady. A phase lag between the core flow and the boundary layer

was observed in the region downstream of the shock, but not in the shock oscillation region. Moroianu et al. [20]

reported the results of ILES on the same geometry, and observed the occurrence of a hysteresis cycle, during which the

shock system can vary significantly. Investigations of forced oscillations were also performed by Bron [9], again both

experimentally and by the means of URANS simulations. The perturbation frequency reached up to 500Hz (or 1000Hz

for the numerical study), giving a relatively high reduced frequency 𝑓r = 𝑓 𝐵l/𝑈∞ ≈ 0.4. This order of magnitude is also

encountered in turbomachinery flows [21] and means that convection and periodic fluctuations are two equally dominant

mechanisms. A high-fidelity simulation related to that geometry was performed by Bodin and Fuchs [22]. However, the

reduced frequencies were one or two order(s) of magnitude lower. None of these studies reported a detailed analysis of

the influence of the forcing on the turbulent stresses.

In this paper, wall-resolved ILES of the transonic flow over the bump of Bron [9] are employed. An unperturbed

configuration and three cases with different realistic forcing frequencies are considered and compared. The effect of the

forced conditions on the shock motion, the wall pressure and the separation bubble is assessed. The harmonic (coherent)

component of the flow is extracted using a phase-averaging procedure. Emphasis is given on the coherent turbulence

kinetic energy and the detailed budgets of mean and coherent turbulent stresses. Besides a clearer understanding of the

forced flow, the objective of the study is to provide better insights for turbulence modelers working in the framework of

frequency-domain methods. The paper is structured as follows. In section II, the governing equations are introduced

and the triple decomposition adopted for the harmonic analysis is presented. The high-order solver is then described and

the flow conditions are specified for the various cases in section III. The results are analyzed in section IV, first for the

unperturbed case, and then for all the forced cases. Finally, some conclusions are drawn in section V.
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II. Governing Equations

A. Compressible Navier-Stokes equations

The compressible Navier-Stokes equations are, using the convention of repeated indices, given by

𝜕𝜌

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖) = 0 (1a)

𝜕

𝜕𝑡
(𝜌𝑢𝑖) +

𝜕

𝜕𝑥 𝑗

(𝜌𝑢𝑖𝑢 𝑗 ) = − 𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝜎𝑖 𝑗

𝜕𝑥 𝑗

(1b)

𝜕

𝜕𝑡

[
𝜌

(
𝑒 + 1

2
𝑢𝑖𝑢𝑖

)]
+ 𝜕

𝜕𝑥 𝑗

[
𝜌𝑢 𝑗

(
ℎ + 1

2
𝑢𝑖𝑢𝑖

)]
=

𝜕

𝜕𝑥 𝑗

(𝑢𝑖𝜎𝑖 𝑗 ) +
𝜕𝑞 𝑗

𝜕𝑥 𝑗

(1c)

The viscous stress tensor 𝜎𝑖 𝑗 and heat flux vector 𝑞𝑖 are defined following, respectively, the Newtonian and Fourier

constitutive relations,

𝜎𝑖 𝑗 = 2𝜇
(
𝑠𝑖 𝑗 −

1
3
𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖 𝑗

)
(2)

𝑞𝑖 = −𝜆 𝜕𝑇

𝜕𝑥𝑖
(3)

with 𝑠𝑖 𝑗 the instantaneous strain-rate tensor. The molecular viscosity 𝜇 is computed using Sutherland’s law.

B. Triple decomposition for incompressible flows

To extract and analyze the harmonic component of the flow, the triple decomposition of Reynolds and Hussain [23]

is adopted. Any instantaneous quantity 𝑎 can be written as the sum of three components,

𝑎(𝑥, 𝑦, 𝑧, 𝑡;𝑇) = 𝑎(𝑥, 𝑦, 𝑧) + �̃�(𝑥, 𝑦, 𝑧, 𝑡/𝑇) + 𝑎′ (𝑥, 𝑦, 𝑧, 𝑡) (4)

where 𝑎 is the mean component, �̃� is the coherent (also called periodic or harmonic) component and 𝑎′ is the incoherent

(or random) component. Both the coherent and incoherent components depend on time but, for this decomposition to be

meaningful, their time scales must differ by several orders of magnitude. Typically, the coherent component is related to

a single low frequency, whereas the incoherent component corresponds to broadband phenomena at higher frequencies.

This criterion will be detailed later in the flow conditions section.

In this work, the main focus is on the turbulent stresses 𝑢′
𝑖
𝑢′
𝑗
, to which the triple decomposition can also be applied.

The influence of the low-frequency periodic forcing on the turbulence is quantified through the coherent turbulent stress

𝑢′
𝑖
𝑢′
𝑗
, obtained from

𝑢′
𝑖
𝑢′
𝑗
= ⟨𝑢′𝑖𝑢′𝑗⟩ − 𝑢′

𝑖
𝑢′
𝑗

(5)

with ⟨𝑢′
𝑖
𝑢′
𝑗
⟩ the phase average and 𝑢′

𝑖
𝑢′
𝑗

the usual Reynolds stress. The transport equations for the mean and coherent

components of turbulent stresses can be derived as well and, following [24], can be re-organized to highlight the
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contributions of production 𝑃𝑖 𝑗 , pressure strain 𝑇𝑖 𝑗 , dissipation 𝐷𝑖 𝑗 and diffusion flux 𝐽𝑖 𝑗 ,𝑘 . For the mean, it leads to

𝑢𝑘
𝜕𝑢′

𝑖
𝑢′
𝑗

𝜕𝑥𝑘
+ 𝑢𝑘

𝜕𝑢′
𝑖
𝑢′
𝑗

𝜕𝑥𝑘
= 𝑃𝑖 𝑗 + 𝑇 𝑖 𝑗 − 𝐷𝑖 𝑗 − 𝐽𝑖 𝑗 ,𝑘 (6)

with

𝑃𝑖 𝑗 = −
(
𝑢′
𝑗
𝑢′
𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
+ 𝑢′

𝑖
𝑢′
𝑘

𝜕𝑢 𝑗

𝜕𝑥𝑘
+ �𝑢′

𝑗
𝑢′
𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
+ 𝑢′

𝑖
𝑢′
𝑘

𝜕𝑢 𝑗

𝜕𝑥𝑘

)
(7a)

𝑇 𝑖 𝑗 =
1
𝜌

(
𝑝′

𝜕𝑢′
𝑖

𝜕𝑥 𝑗

+ 𝑝′
𝜕𝑢′

𝑗

𝜕𝑥𝑖

)
(7b)

𝐷𝑖 𝑗 = 2𝜈
𝜕𝑢′

𝑖

𝜕𝑥𝑘

𝜕𝑢′
𝑗

𝜕𝑥𝑘
(7c)

𝐽𝑖 𝑗 ,𝑘 = 𝐽
𝑇

𝑖 𝑗,𝑘 + 𝐽
𝑝

𝑖 𝑗,𝑘 + 𝐽
𝜈

𝑖 𝑗,𝑘 (7d)

and in which the three contributions to the diffusive flux include turbulent, pressure and viscous terms, given by,

respectively,

𝐽
𝑇

𝑖 𝑗,𝑘 =
𝜕

𝜕𝑥𝑘

(
𝑢′
𝑖
𝑢′
𝑗
𝑢′
𝑘

)
(8a)

𝐽
𝑝

𝑖 𝑗,𝑘 =
𝜕

𝜕𝑥𝑘

(
1
𝜌
𝑢′
𝑗
𝑝′𝛿𝑖𝑘 +

1
𝜌
𝑢′
𝑖
𝑝′𝛿 𝑗𝑘

)
(8b)

𝐽
𝜈

𝑖 𝑗,𝑘 = − 𝜕

𝜕𝑥𝑘

(
𝜈
𝜕𝑢′

𝑖
𝑢′
𝑗

𝜕𝑥𝑘

)
. (8c)

As a consequence of the triple decomposition, additional contributions appear in the convection and production terms

compared to the transport equations arising from the typical Reynolds decomposition. For the coherent turbulent stress,

the transport equation is given by

𝜕𝑢′
𝑖
𝑢′
𝑗

𝜕𝑡
+ 𝑢𝑘

𝜕𝑢′
𝑖
𝑢′
𝑗

𝜕𝑥𝑘
+

�̃
𝑢𝑘

𝜕𝑢′
𝑖
𝑢′
𝑗

𝜕𝑥𝑘
= 𝑃𝑖 𝑗 + 𝑇𝑖 𝑗 − 𝐷𝑖 𝑗 − 𝐽𝑖 𝑗 ,𝑘 (9)
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with

𝑃𝑖 𝑗 = −
(
𝑢′
𝑖
𝑢′
𝑘

𝜕𝑢 𝑗

𝜕𝑥𝑘
− 𝑢′

𝑖
𝑢′
𝑘

𝜕𝑢 𝑗

𝜕𝑥𝑘
+ 𝑢′

𝑖
𝑢′
𝑘

𝜕𝑢 𝑗

𝜕𝑥𝑘
+ 𝑢′

𝑖
𝑢′
𝑘

𝜕𝑢 𝑗

𝜕𝑥𝑘

)
−

(�𝑢′
𝑗
𝑢′
𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
− �𝑢′

𝑗
𝑢′
𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
+ 𝑢′

𝑗
𝑢′
𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
+ �𝑢′

𝑗
𝑢′
𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘

)
(10a)

𝑇𝑖 𝑗 =
1
𝜌

©«
�
𝑝′

𝜕𝑢′
𝑖

𝜕𝑥 𝑗

+
�
𝑝′
𝜕𝑢′

𝑗

𝜕𝑥𝑖

ª®¬ (10b)

𝐷𝑖 𝑗 = 2𝜈
�𝜕𝑢′

𝑖

𝜕𝑥𝑘

𝜕𝑢′
𝑗

𝜕𝑥𝑘
(10c)

𝐽𝑖 𝑗 ,𝑘 = 𝐽𝑇𝑖 𝑗,𝑘 + 𝐽
𝑝

𝑖 𝑗,𝑘
+ 𝐽𝜈𝑖 𝑗,𝑘 (10d)

and turbulent diffusion, pressure diffusion and viscous diffusion are, respectively,

𝐽𝑇𝑖 𝑗,𝑘 =
𝜕

𝜕𝑥𝑘

( �𝑢′
𝑖
𝑢′
𝑗
𝑢′
𝑘

)
(11a)

𝐽
𝑝

𝑖 𝑗,𝑘
=

𝜕

𝜕𝑥𝑘

(
1
𝜌
𝑢′
𝑗
𝑝′𝛿𝑖𝑘 +

1
𝜌
𝑢′
𝑖
𝑝′𝛿 𝑗𝑘

)
(11b)

𝐽𝜈𝑖 𝑗,𝑘 = − 𝜕

𝜕𝑥𝑘

(
𝜈
𝜕𝑢′

𝑖
𝑢′
𝑗

𝜕𝑥𝑘

)
. (11c)

All the terms are essentially the same, with the exception of the coherent production, which contains twice more

contributions compared to the mean production.

Note that the flow has been assumed to be incompressible when deriving these equations. As the flow is transonic,

the density variation across the viscous layer is relatively low and compressibility effects are expected to be small. The

validity of this assumption will be repeatedly checked a-posteriori.

III. Computational Methodology

A. Flow solver

The compressible Navier-Stokes equations are solved using an in-house high-order solver. The discretization of

the spatial derivatives is based on the flux reconstruction (FR) approach, introduced by Huynh [25]. A particular

nodal Discontinuous Galerkin method is recovered as the correction functions chosen are the left and right Radau

polynomials. The solution points are the Gauss points. Roe’s approximate Riemann solver [26] is employed to compute

the common advective fluxes whereas the common solutions and common diffusive fluxes are evaluated using the

Local Discontinuous Galerkin approach [27] with 𝛽 = 0 and 𝜏 = 1 [28]. No subgrid-scale model is considered, that

is to say the present simulations are implicit LES. The energy dissipation from the smallest turbulent scales is left to
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the numerical scheme itself. The temporal derivative is computed with a 5-stages fourth-order low-storage explicit

Runge-Kutta scheme [29].

To deal with shock wave/boundary layer interactions, an efficient shock-capturing technique has to be used. In

this work, the Laplacian artificial viscosity method of Persson and Peraire [30] is combined with the Ducros sensor

[31]. This additional step is required to discriminate the shock from the boundary layer and ensures that artificial

viscosity is focused around shocks only. Details about the implementation can be found in Goffart et al. [32]. Besides

shock-capturing, the robustness is further enhanced by the use of a positivity-preserving limiter [33].

Turbulent fluctuations are introduced at the inlet as a boundary condition and are generated with the digital filtering

method. Instead of the original 3D filter implementation [34], the approach of a 2D filter composed of the directions

tangent to the inlet plane is adopted. The filter is from inception a 2D filter and not a convolution of two 1D filters [35],

making the approach valid for unstructured grids. This 2D slice is then correlated in time with the previous time step

following [36]. Velocity perturbations are finally scaled according to Lund’s transformation [37].

The solver was validated for canonical oblique shock wave reflection on a turbulent boundary layer [32].

B. Flow conditions and simulation setup

The case under investigation is the transonic flow over a bump, the geometry of which is taken from the experiment

of Bron [9]. The bump length 𝐵l is 0.184m and its thickness 𝐵h is 10.48mm, whereas the wind tunnel height 𝐿𝑦 is

0.12m. The upstream conditions are a total pressure of 160kPa, a total temperature of 300K and a Mach number of

0.7. The ratio 𝜌w/𝜌∞ is around 0.9 and is close enough to unity to assume that compressibility effects in the boundary

layer are negligible, as also assumed by Sartor et al. [38]. The mean outlet static pressure is 106kPa, so that a shock

wave develops in the rear part of the bump, promoting flow separation. Various cases will be considered in this work

depending on the way the back pressure evolves in time. The case with steady back pressure (𝐴𝑝o = 0) will be referred

to as the baseline case. Then, three cases with sinusoidally varying back pressure will be presented. In the context of

turbomachinery, this perturbation mimics the potential effect of a rotor/stator interaction [39]. The amplitude is fixed at

2% of the mean (𝐴𝑝o/𝑝o = 0.02) and the frequency is either 250Hz, 500Hz or 1000Hz. The triple decomposition is

valid since one period at the forcing frequency is in the worst case 4 × 10−3s whereas the characteristic time scale of the

energetic eddies in the incoming turbulent boundary layer is 𝑂 (𝛿0/𝑈∞) ≈ 3.8 × 10−5s. The Reynolds number based on

the bump length amounts to ≈ 1.9 × 105, which is 20 times lower in comparison to the experiment. The fluid is air

assumed as a perfect gas but with a dynamic viscosity multiplied by the same factor.

The computational domain is a rectangular box with the bump geometry as bottom boundary. With respect to the

bump, the beginning of which is located at 𝑥 = 0m, the domain extends from 30𝛿0 upstream to 20𝛿0 downstream. In the

spanwise direction, the domain is 4𝛿0 wide. Following the experimental measurements of Sigfrids [40], the reference

boundary layer thickness 𝛿0 is here 8.95mm, measured at 𝑥 = −0.1m. This was also considered in other numerical
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studies [10].

The mesh consists of hexahedra. Using the high-order FR approach, the target grid resolution is evaluated by

considering a uniform distribution of the solution points within the cells, here with polynomial order three. In the

streamwise direction, the grid spacing is initially constant, with Δ𝑥+ = 16, in wall units based on the upstream conditions.

Over the last 10𝛿0, the mesh is progressively coarsened to Δ𝑥+ = 160 to dampen high-frequency reflected waves. In the

spanwise direction, Δ𝑧+ = 12. The mesh is stretched in the wall-normal direction. Bottom and top boundary layers

comprise 100 solution points each, the first one targeting 𝑦+ = 1. The exact distribution of the solution points leads in

fact to 𝑦+w ≈ 0.28. From the edge of the boundary layers and in the free stream, Δ𝑦+ = 16. The total number of degrees

of freedom rises to approximately 80 million.

The inlet boundary is subsonic, with total pressure, total temperature and velocity direction imposed. These profiles,

as well as Reynolds stress profiles (needed for the turbulent inflow), are taken from the averaged solution of a precursor

ILES of a turbulent boundary layer in the same flow conditions. Turbulence length scales are 𝐼𝑥/𝛿0 = 0.5, 𝐼𝑧/𝛿0 = 0.375

and 𝐼𝑦 is varying in the wall-normal direction such that 𝐼𝑦 = 𝐼𝑧 at the edge of the boundary layer and the number of

neighbors in the filter is practically constant. The top and bottom boundaries are no-slip adiabatic walls and periodic

boundary conditions are imposed in the spanwise direction. A spatially constant static pressure is imposed along the

fully subsonic outlet boundary.

The explicit time step is 4× 10−8s and corresponds to a Courant-Friedrichs-Lewy (CFL) number of around 2.5. The

parameters of the shock-capturing technique (see Goffart et al. [32]) are 𝑠0 = -4.5, 𝜅 = 1.5, 𝐶T = 0.01 and 𝑠D,0 = 0.2.

Density is used as the sensor variable.

The simulation is first restarted from an initial RANS solution for a duration of around 45 convective time units

(1 CTU = 𝐵l/𝑈∞) to set up the flow for the baseline case. For the forced cases, the perturbation is then applied for

30 additional CTUs so that the periodic flow can develop. The duration of the transient phases was checked to be

sufficiently long by monitoring the shock location at its mid-height. The data extraction starts after the transient phase(s).

All the cases are run over the same physical time which corresponds to exactly 10 periods at 500Hz or approximately 25

CTUs. Each computation employed 960 central processing units (CPU) and the estimated cost rises to around 8500

CPUh/CTU.

C. Data acquisition and reduction

The data for this study are collected, after the transient phase(s), every 50 iterations at the bump wall and on a slice

at mid-span. Both instantaneous data and instantaneous span-averaged data are available. The latter is employed to

benefit from flow homogeneity, which greatly helps to improve the convergence of the results. Finally, probes are placed

at various locations and record the primitive variables at every iteration.

Two averaging operators are needed when using the triple decomposition. Time-averaging is performed to obtain

10



the mean component of the flow and phase-averaging is employed to extract the mean and the coherent components

together. The difference between the two therefore allows to isolate the coherent component. In this work, each period

is decomposed into ten bins of equal width.

IV. Results

A. Baseline flow

To start with an overall description of the flow field, figure 1 shows instantaneous contours of density gradient

magnitude at mid-span and streamwise velocity near the bump wall, at 𝑦+ ≈ 10. A fully turbulent boundary layer

is observed upstream of the bump, with its characteristic streaks. Approaching the bump, the flow decelerates on

the concave part and then quickly accelerates as it evolves on its convex part. The boundary layer undergoes partial

re-laminarization due to the favorable pressure gradient there, which is also witnessed as the structures are widening in

the spanwise direction. An oblique compression wave is generated when the flow separates and forms a large lambda

pattern as it joins the normal shock standing downstream, responsible for the remaining compression. The separated

shear layer is unstable, breaks down to turbulence and as a consequence, additional weak oblique compression waves

are observed at the root of the normal shock. Finally, the boundary layer slowly recovers its initial, unperturbed state

while reaching the end of the domain as thin and elongated structures appear again.
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Fig. 1 Instantaneous density gradient magnitude at mid-span (top) and instantaneous streamwise velocity 𝑢/𝑈∞
near the bump wall, 𝑦+ ≈ 10 (bottom).

A sanity check of the computational setup is first performed, starting with an assessment of the grid resolution.

Figure 2 shows the streamwise evolution of Δ𝑥+, Δ𝑧+ (assuming for both an equidistant distribution of the solution

points) and the exact wall distance of the first solution point 𝑦+w, in wall units evaluated at the bottom wall. Upstream of
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the bump, the resolution is close to the target values Δ𝑥+ = 16, Δ𝑧+ = 12 and 𝑦+w ≈ 0.3. The resolution remains around

the target values or below, exception made of a short part of the bump over which it slightly worsens. At maximum,

Δ𝑥+ ≈ 30, Δ𝑧+ ≈ 20 and 𝑦+w ≈ 0.5, which is still adequate for wall-resolved ILES.
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Fig. 2 Mesh resolution at the bump wall - Δ𝑥+, Δ𝑧+ and 𝑦+w, respectively, solid, dashed and dashdot. The thin
dashed line represents the bump geometry.

The sanity check is pursued by looking at the quality of the boundary layer upstream of the bump. Figure 3 shows

the mean velocity and Reynolds stress profiles in wall units, at the station 𝑥/𝛿0 = −15. The results are compared with

DNS data for incompressible boundary layers [41] at the same Re𝜃 . The dashed black line indicates the Van Driest

transformed velocity profile and is in perfect agreement with the incompressible normalization (solid blue line) in the

viscous sub-layer and the logarithmic layer. However, a slight difference is observed in the defect layer, leading to a free

stream velocity 1.4% lower with the incompressible normalization. The same agreement is found with respect to the

DNS data but with a free stream velocity 1.9% lower. The Reynolds stresses show a very good fit. The overestimation of
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Fig. 3 Boundary layer profiles at 𝑥/𝛿0 = −15 - Streamwise velocity, incompressible (solid blue) and Van Driest
normalization (dashed black) (left) and Reynolds stresses (right), with DNS data from Schlatter and Örlü [41] at
Re𝜃 = 1000 (symbols).

the peak 𝑢′𝑢′ is an effect of the under-resolution [42]. These results show that the upstream boundary layer is properly

developed and has recovered from the unrealistic treatment at the inlet plane, but also that compressibility effects are
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small in this case. The latter was also highlighted by Wenzel et al. [43] by performing DNS of compressible turbulent

boundary layers. The assumption of incompressibility is finally supported by considering the turbulence Mach number,

defined by Mt = 𝑢′
𝑖
𝑢′
𝑖

1/2/𝑎. In the upstream boundary layer, it does not exceed 0.1, while it can reach 0.4 very locally on

the downstream part of the bump. With the latter value, the difference between Favre and Reynolds averages for an

adiabatic flat plate is of a few percents only [44].

Another aspect to check when simulating statistically two-dimensional turbulent flows is the spanwise extent

of the domain, which should be sufficient to accommodate even the widest flow structures. Figure 4 shows the

two-point streamwise velocity correlation coefficient in the spanwise direction at two stations, one upstream of the bump

(𝑥/𝛿0 = −15) and one downstream of the interaction (𝑥/𝛿0 = 16.67). For both stations, the streamwise velocity is taken

at a distance 𝑦/𝛿0 = 0.5 off the bottom wall. The correlation coefficient quickly drops to zero for the upstream station,

at a distance Δ𝑧/𝐿𝑧 ≈ 0.08. Downstream of the interaction, larger structures are expected because of the thickening of

the boundary layer. The zero-crossing point of the correlation coefficient then lies at a further distance, Δ𝑧/𝐿𝑧 ≈ 0.25.

In any case, this occurs within half the domain width, which is therefore deemed to be sufficiently large.
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Fig. 4 Two-point streamwise velocity correlation coefficient in the spanwise direction at 𝑦/𝛿0 = 0.5 - stations
𝑥/𝛿0 = −15 (solid) and 𝑥/𝛿0 = 16.67 (dashed).

Figure 5 (left) depicts the mean friction coefficient. It first steadily decreases before getting influenced by the

potential effect of the bump, further confirming that the inflow is far enough from the bump for the turbulence to develop

properly. Over the bump, the friction coefficient reaches its maximum in the favorable pressure gradient region. The

flow then separates slightly downstream of the section throat and reattaches on the downstream part of the bump. In

between, the distribution is typical of thin separated zones [8] with first a short region over which the skin friction is

barely negative, and a second, longer region with larger negative values. The superimposed PDF, shown only for the

unperturbed case, further illustrates that the first part is associated with a low variance. It is actually referred to as the

region of stable recirculation [12]. On very rare occasions, the flow almost reattaches. The second part exhibits a much

higher variance that is linked to the vortex shedding occurring at the breakdown of the shear layer. A similar description

can be found in previous studies on the same bump geometry, even though the flow conditions were different [10, 12] but
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also for other configurations with [8] or without shock wave interaction [15, 17, 18]. Regarding the pressure coefficient

on the bump wall (see figure 5, right), the upstream influence of the bump is observed too. The favorable pressure

gradient region starts shortly downstream the beginning of the bump and extends up to the location of minimum 𝐶𝑝,

right after the section throat. Downstream of the throat, pressure first rises as the flow undergoes compression from the

weak oblique wave and reaches a plateau that corresponds to the region of stable recirculation. Further downstream,

pressure rises again due to the effect of the normal shock and finally recovers to reach the imposed outlet value.
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Fig. 5 Mean 𝐶f with superimposed PDF from the unperturbed case, 8 equally-spaced contours between 0.02
and 0.40 (left), and mean 𝐶𝑝 (right) on the bump wall. The thin dashed line represents the bump geometry.

The question whether the shock exhibits a large-scale motion is always of interest in shock wave/boundary layer

interactions. For this purpose, the shock position has been monitored during the simulation. For each horizontal gridline,

it is taken as the location of the maximum of pressure gradient magnitude. The mean shock position is illustrated in

figure 6 (left) on averaged static pressure contours to show the range of height for which the shock detection is successful.

The weighted pre-multiplied Power Spectral Density (PSD) map of shock motion, obtained from Fast Fourier Transform

(FFT) and further normalized by its global maximum, is shown in figure 6 (right). This representation allows to

emphasize the frequencies contributing the most to the variance of the signal. Dominant contributions are observed at

St𝛿0 ≈ 0.0077 and St𝛿0 ≈ 0.0135 (200Hz and 350Hz, respectively). The emergence of two distinct low-frequency peaks

is an artifact due to the relatively short simulation time with respect to those frequencies. Another, weaker, contribution

is captured at St𝛿0 ≈ 0.03 (800Hz) near the edges. Especially, its influence starts to rise below 𝑦/𝐿𝑦 ≈ 0.3, which

correlates well with the weak compression waves.

To further comment on the major contributions to the shock motion, figure 7 shows their amplitude and their phase

as a function of the height. The contributions at 200Hz and 350Hz exhibit a steadily increasing amplitude. For the

higher frequency contribution at 800Hz, amplitude first decreases to reach a plateau from 𝑦/𝐿𝑦 ≈ 0.3 to 𝑦/𝐿𝑦 ≈ 0.6.

Then, amplitude sharply rises. The evolution of phase indicates that the shock behaves differently below and above

𝑦/𝐿𝑦 ≈ 0.5. All the contributions have a more or less constant phase in the lower part, meaning that the shock is moving

as a whole. From 𝑦/𝐿𝑦 ≈ 0.5, the phase first decreases to reach a minimum around 𝑦/𝐿𝑦 ≈ 0.75 and then finally
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Fig. 6 Mean shock position superimposed on mean 𝑝/𝑝∞ contours (left) and weighted pre-multiplied PSD map
of shock motion for the baseline case (right).

increases. This is more marked at 800Hz. The result is a global oscillatory motion of the shock. This different behavior

is due to the oblique compression wave joining the normal shock at around mid-height, which brings additional stability

through the mean flow gradients.
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Fig. 7 Shock motion amplitude (left) and phase (right) of dominant contributions for the baseline case.

Figure 8 shows the weighted pre-multiplied PSD maps of static pressure at the bottom and top walls. The PSDs are

evaluated using the Welch periodogram method [45] using 7 blocks and a 50% overlap, and are then normalized by the

global maximum. Various locations are highlighted by vertical lines to ease the analysis. Solid lines refer to geometrical

stations whereas dashed lines are related to physical phenomena. These locations are, from left to right, the beginning of

the bump, the bump throat, the end of the region of stable recirculation, the reattachment point and the end of the bump.

The upstream boundary layer is characterized by a ridge centered at St𝛿0 ≈ 1. A broadband low-frequency energetic

contribution is observed at both walls, around St𝛿0 = 0.01. At the bottom wall, this contribution starts from the

separation point and is consequently associated to the front leg of the lambda shock. It is moreover contained within

the region of stable recirculation. At the top wall, this contribution is located at 𝑥/𝐵l ≈ 0.45, and it is therefore

related to the normal shock (see figure 1). These results, together with the analysis made for figure 6, indicate that
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the entire shock system is naturally oscillating. Actually, low-frequency unsteadiness at a Strouhal number that is two

orders of magnitude lower than the incoming boundary layer is typical for shock wave/boundary layer interactions with

separation [46]. At the bottom wall, the upstream ridge is progressively shifted toward St𝛿0 ≈ 0.1 in the interaction

region. These intermediate frequencies develop as a consequence of the vortex shedding occurring at the breakdown of

the shear layer, and persist in the downstream boundary layer from the reattachment point onward. Some contributions

at intermediate frequencies are also captured at the top wall, downstream of the interaction, but most of the variance of

the signal is due to the barely perturbed boundary layer.
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Fig. 8 Weighted pre-multiplied PSD maps of bottom (left) and top (right) wall pressure for the baseline case.
The vertical lines indicate from left to right the beginning of the bump, the bump throat, the end of the region of
stable recirculation, the reattachment point and the end of the bump.

Finally, time history of separation and reattachment point locations have been obtained, using span-averaged wall

data. Not shown here but FFT reveals that the separation point mainly responds at 200Hz and 800Hz, whereas finding a

dominant contribution for the reattachment point is much less obvious. The amplitude of the separation point motion

(≈ 0.055𝛿0) is one order of magnitude lower than for the reattachment point. The latter lies indeed in a region which

exhibits a high variance of friction coefficient as it has been described in figure 5.

B. Forced flow

To mimic the presence of rotor/stator interaction as in the blade passage of a turbomachine, the flow has been forced

by imposing a sinusoidally fluctuating static pressure at the outlet boundary. To assess the effectiveness of the forcing,

the FFT of the pressure signal acquired by a probe located at the center of the outlet cell, in the free stream (𝑦/𝐿𝑦 = 0.5),

is performed. In all cases, the deviation in amplitude is of a few percents at maximum and the second most energetic

contribution represents less than 0.04% of the total energy content. It is therefore concluded that the forcing is effective.

Various flow features are now analyzed in order to highlight the effects of the forcing. First, a comparison of mean

friction and pressure coefficients is provided in figure 5. No distinction can be made between the baseline and the three

forced cases. It indicates first that the harmonic disturbance has no effect on these mean quantities, which is explained
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by the low perturbation amplitude that has been prescribed. A marginal variation in the reattachment point location is

observed when the flow is forced and could be attributed to the high variance in that region.

The response of the shock is assessed hereafter. In a similar manner as for the baseline case, figure 9 displays

the weighted pre-multiplied PSD maps of the shock position. In all the cases, the forcing frequency clearly stands

out at all heights as the main contributor to the variance of the signal. The influence of higher-order harmonics is

slightly felt above 𝑦/𝐿𝑦 ≈ 0.65. Furthermore, a modification of the behavior is observed for the lower part of the shock.

For the 1000Hz case, a low-frequency contribution at St𝛿0 ≈ 0.01 comes at play, whereas nothing is highlighted for

the lower perturbation frequency cases. It acts in the range 𝑦/𝐿𝑦 ≈ 0.2 − 0.6, which corresponds rather well to the

extent of the lambda shock. This low-frequency contribution was already pointed out for the natural motion of the

shock. Its appearance at high forcing frequency could be explained by the diminished sensitivity of shock waves to high

frequencies. A decoupling between the natural and the forced motions therefore occurs if the perturbation frequency

increases. This would be in agreement with the limit case of an infinitely high forcing frequency, to which the shock

would not be able to adapt and would therefore oscillate at its natural frequency.
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Fig. 9 Weighted pre-multiplied PSD maps of shock motion for the forced cases - 250Hz (left), 500Hz (center)
and 1000Hz (right).

The amplitude and phase at the forcing frequencies as a function of height are depicted in figure 10. The evolution

of amplitude occurs differently depending on the frequency. At 250Hz, amplitude first increases and reaches a plateau

above 𝑦/𝐿𝑦 ≈ 0.6. At higher frequencies, the amplitude grows almost monotonically. At 1000Hz, this growth is,

however, very slow below 𝑦/𝐿𝑦 ≈ 0.6 and the amplitude is of the same order of magnitude as for the baseline case.

Globally, the amplitude is less at higher forcing frequency, which is an expected result [9, 47]. The inset on the left

figure further illustrates the decrease of amplitude at 𝑦/𝐿𝑦 = 0.4 as a function of frequency. The evolution of phase

confirms the change of dynamics above a certain height as it was demonstrated in the baseline case, except when the

flow is forced at 250Hz. At that frequency, the shock system is much more disturbed and the upper part of the shock is

actually vanishing during a short part of the oscillation period. The shock detection is then not successful and it is

believed to be the cause of the discrepancy.
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Fig. 10 Amplitude (left) and phase (right) of shock motion at the forcing frequencies for the forced cases.

Figure 11 shows the weighted pre-multiplied PSD maps of static pressure at the bottom and top walls, for each forced

case. As for the baseline case, the PSDs are obtained by the Welch method, with 𝑁bl = 9 for the 250Hz and 500Hz

cases, 𝑁bl = 7 for the 1000Hz case and a 50% overlap. When the flow is perturbed at 250Hz or 500Hz (respectively, left

and center figures), strong influence of the forcing is evident right past flow separation at the bottom wall. In particular,

the region of stable recirculation only receives a contribution corresponding to the forcing frequency. This influence

persists further downstream and at some locations it conceals the contribution from the intermediate frequencies related

to vortex shedding. At the top wall, the perturbation frequency is virtually the sole contributor in the region downstream

of the interaction. The extent of the gap between the ridges corresponding to the upstream and downstream boundary

layers (the latter being barely detectable) is larger at lower forcing frequency, and is directly reflecting the amplitude

of the shock motion. When the flow is forced at 1000Hz (see right figures), the similarity with the baseline case is

striking (see figure 8). At the bottom wall, the contribution from the forcing frequency is almost indistinguishable

from the vortex shedding contribution. Approaching the separation bubble, its influence vanishes and the broadband

low-frequency energetic region is retrieved at St𝛿0 ≈ 0.01, in the region of stable recirculation. At the top wall, the

perturbation frequency stands out but the contribution from the natural shock oscillation is also detected.

The streamwise evolution of the bottom wall pressure amplification factor (𝐴𝑝w/𝐴𝑝o) at the forcing frequencies

is illustrated in figure 12, left. For all the cases, the three first local extrema are co-located. The first and second

amplification peaks are positioned at 𝑥/𝐵l ≈ 0.3 and 𝑥/𝐵l ≈ 0.4 and are caused by the oscillation of the weak oblique

compression wave emanating from the separation point and of the normal shock, respectively. In between, the first

attenuation peak is related to the end of the region of stable recirculation (𝑥/𝐵l ≈ 0.35). Further downstream, in the

subsonic boundary layer, a succession of lobes is observed. With increasing frequency, these lobes are shrunk and

shifted toward more upstream locations, indicating upstream traveling waves. The ratio between the size of the first

lobe (equal to half of the wavelength) and the period is constant for all frequencies and gives a propagation velocity of

≈ 87.5m/s. The frequency insensitivity of the pattern under the shock region compared to the downstream boundary
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Fig. 11 Weighted pre-multiplied PSD maps of top (top) and bottom (bottom) wall pressure for the forced cases -
250Hz (left), 500Hz (center) and 1000Hz (right). The vertical lines are defined as in figure 8.

layer is in line with the conclusions of Bur et al. [19]. Acoustic waves are damped as they propagate upstream, because

of viscous effects, and therefore the strong pressure amplification is due to the oscillation of the shock system in the

region beneath. The shock system position being, on average, independent of the frequency, so are the locations of the

three first extrema.

As a comparison, the results of URANS simulations are shown. The simulations are performed using Cadence

FINE™/Turbo flow solver, initially developed by Rizzi et al. [48]. The trends predicted from the URANS corroborate

qualitatively those provided by ILES. However, large discrepancies are noticed in terms of amplitude, and the first

extrema are not correctly located, which can be explained as a shortcoming of URANS in resolving time-dependent

phenomena. The available experimental results from Bron [9] at the reference Reynolds number are reported as well.

Because of the different shock structure and separation bubble topology, no agreement is expected for the first extrema

which are related to these features. Nonetheless, the first downstream lobe is reasonably well captured, revealing that the

upstream propagation of pressure waves inside the boundary layer is not subject to Reynolds number effects. These

comparisons give further confidence in the computational setup for the investigation performed in this work.

While the pattern beneath the shock region is independent of the frequency, the magnitude of the amplification

factor is strongly affected and clearly decreases with increasing frequency. It actually reflects the extent of the shock

system displacement. For a larger displacement (and therefore for a lower forcing frequency, see figure 10), a bigger
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Fig. 12 Bottom wall pressure amplification factor - ILES (solid), URANS (dashed) and experiments from Bron
[9] (symbols). The vertical lines are defined as in figure 8.

portion of the pressure gradient will be felt by a fixed point on the wall, resulting in a higher pressure amplitude.

Finally, but not illustrated here, the separation and reattachment points are mainly responding to the perturbation

frequency when the flow is forced at 250Hz or 500Hz. At higher frequency, this influence is completely absent but the

separation point shows a contribution from St𝛿0 ≈ 0.01, as in the unperturbed case. These observations are in line with

the description of the wall pressure made from figure 11. Moreover, the amplitude of motion decreases with increasing

frequency, similarly to the shock motion or the wall pressure amplitudes.

C. Coherent flow

1. Reference oscillator

Phase-averaging requires first the definition of a reference oscillator. For the 250Hz and 500Hz cases, a reference

oscillator is obtained by reconstructing the signal of the separation point location with the sole contribution of the forcing

frequency, its magnitude and phase being obtained from FFT of the original signal. The resulting reconstructed signals

are illustrated in figure 13 on top of the original ones. The choice of the separation point location as a reference for these

cases is justified first by the fact that the dominant contribution to that signal is at the forcing frequency. In addition, it

seems more natural because the separation point is expected to be the point of formation of coherent structures, if they

exist. This methodology does, however, not apply for the 1000Hz case since the separation point does not respond to the

forcing. To allow a comparison, the prescribed outlet static pressure will be therefore used for that case. Using the

outlet static pressure as a reference led to negligible changes in the results for the 250Hz and 500Hz cases, exception

made of a shift in the bin number due to the phase difference between the two references. The computation of amplitude

and phase is not affected by this change and these quantities can therefore be compared between the different cases.
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(thick blue) for the 250Hz (top) and 500Hz (bottom) cases.

2. Streamwise velocity

Figure 14 shows the time history of the coherent streamwise velocity (that is to say �̃� for each bin arising from the

phase average) for the 500Hz case. With respect to the reference oscillator, bin 2 corresponds to the most downstream

position of the separation point, and bin 7 to its most upstream one. In the free stream, an upstream propagating wave is

clearly discerned, which is the result of the forcing. This wave is of opposite sign compared to the pressure wave. The

momentum equation in the streamwise direction for the coherent motion can be indeed simplified such that pressure

forces balance convection, in the same way as for the mean flow. Starting from the separation point, a massive coherent

structure develops in the line of the shear layer, and is further convected downstream as it changes of sign. When the

separation point location is at the most downstream (bin 2), this structure exhibits highly positive values and changes

sign as the separation point moves upstream. The weak oblique compression wave emanating from the separation point

behaves in the same way.

Any coherent quantity �̃� can be described by the amplitude and phase of the successive Fourier modes obtained by

Fourier transform of the phase-averaged data. Figure 15 compares the amplitude and the phase of the first harmonic of �̃�

for the three forced cases. At the lowest frequency, a single structure is highlighted. It starts from the separation point,

develops following the shear layer and then goes down to the bump wall further downstream. An analogous structure is

also observed at 500Hz. With increasing frequency (or decreasing wavelength), the structure extent is smaller and the

amplitude drops to zero at 𝑥/𝐵l ≈ 0.75. A second structure therefore shows up at 𝑥/𝐵l ≈ 1.1 which, at 250Hz, lies

outside the figure. The amplitude is larger at lower frequencies. The maximum value of �̃�/𝑈∞ at 500Hz is around 0.1,

which corresponds to a large portion of the structure at 250Hz, as illustrated by the dashed contour. For the forced

case at 1000Hz, coherent structures can be guessed at regularly-spaced intervals on the bump wall and in the shear

layer, at 𝑥/𝐵l ≈ 0.65, 𝑥/𝐵l ≈ 0.875 and finally 𝑥/𝐵l ≈ 1.1, while no structure is found near the separation point. The

convergence of the results is rather poor for this case, even though the data have been acquired over twenty periods. In

contrast, convergence is good at 250Hz and 500Hz, with a lower number of periods. Because the downstream boundary

layer is less sensitive to higher perturbation frequencies, the harmonic content at the forcing frequency diminishes as the
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forcing frequency increases. When the flow is perturbed at 1000Hz, the harmonic content is not significant enough

and the phase average actually highlights non-converged statistics. The resemblance between the time history in figure

14 and the amplitude at 500Hz (figure 15, center) further demonstrates that the first mode corresponds to most of the

harmonic energy content for that case. More than 90% of the total harmonic energy content is actually at the forcing

frequency.
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Fig. 15 Amplitude (left) and phase (right) of the first harmonic of �̃�/𝑈∞ - 250Hz (top), 500Hz (center) and
1000Hz (bottom). Amplitude is bounded between 0 and, respectively, 0.3, 0.1 and 0.05.

3. Turbulence kinetic energy

In a similar manner, figure 16 compares the amplitude and the phase of the first harmonic of turbulence kinetic

energy, for the three forced cases. Focusing first on the 250Hz case, various structures are easily noticed. Starting

from the separation point, two layers are discerned. The outer layer consists of a single, elongated and strong structure,

following the shear layer, whereas below, the inner layer develops as several, smaller and weaker structures, located at

𝑥/𝐵l ≈ 0.33, 𝑥/𝐵l ≈ 0.38 and 𝑥/𝐵l ≈ 0.46. The first of these is actually better seen on the phase. The phase moreover

indicates that these inner layer structures are of alternating signs, the second being in phase with the outer layer structure.

At 500Hz, this two-layers pattern is also discernible. Interestingly, the cores of those structures are co-located with the

ones described at 250Hz, reminding the frequency insensitivity of the wall pressure amplification factor pattern beneath

the shock system. The outer layer structure and the third inner layer structure are nevertheless shrunk because of the

reduced wavelength. As a consequence, an additional structure is found in the shear layer downstream (at 𝑥/𝐵l ≈ 0.9).

At 1000Hz, convergence is poorer. The shear layer shows, however, a succession of structures which recalls the ones
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highlighted for the streamwise velocity.

0.0

0.1

0.2

0.3

y/L
y

0.0

0.1

0.2

0.3

y/L
y

0.2 0.4 0.6 0.8 1.0
x/Bl

0.0

0.1

0.2

0.3

y/L
y

0.2 0.4 0.6 0.8 1.0
x/Bl

0

Fig. 16 Amplitude (left) and phase (right) of the first harmonic of �̃�/𝑈2
∞ - 250Hz (top), 500Hz (center) and

1000Hz (bottom). Amplitude is bounded between 0 and, respectively, 0.05, 0.02 and 0.005.

Once again, the amplitude of the modulation is seen to increase as the frequency decreases, and the coherent

turbulence kinetic energy is actually not negligible. At some stations, �̃�/𝑘 can amount to about 60% at 250Hz and

to about 20% at 500Hz, when comparing the maximum values. Comparing the local values, these ratios can be even

higher. Indeed, because of the periodic forcing, mean and harmonic components of turbulence kinetic energy do not

necessarily peak at the same distance off the wall.

4. Turbulent stress budgets

The budgets of the different turbulent stresses are presented here for the 500Hz case first. Figure 17 depicts the

budgets of the mean turbulence kinetic energy 𝑘 and the mean turbulent normal stresses 𝑢′𝑢′, 𝑣′𝑣′ and 𝑤′𝑤′. Two

stations are defined such that they cross the cores of the first coherent structures. The left column refers to the station

𝑥/𝐵l = 0.33 and the right one to 𝑥/𝐵l = 0.38. The budgets are shown as a function of the distance from the bump wall

(𝑑+, in upstream wall units).

At the first station, the budget of 𝑘 is dictated only by 𝑢′𝑢′ since the terms for the other normal stresses are two

orders of magnitude lower. The main area of activity is the shear layer. Production is the dominant source term and

peaks at 𝑑+ ≈ 34. The corresponding sink terms are convection, with the side contributions of dissipation, viscous

diffusion and turbulent diffusion. Only pressure diffusion is inactive. Regarding 𝑣′𝑣′, pressure strain and pressure

diffusion are balancing each other from the wall up to the mixing layer. Further away from the wall, previously inactive
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terms such as advection and turbulent diffusion come at play, whereas pressure strain drops to zero. Finally, the budget

of 𝑤′𝑤′ shows two areas of activity. In the near-wall region, pressure strain, dissipation and viscous diffusion are the

only actors, whereas in the shear layer, viscous diffusion vanishes and convection comes to prominence. Last but not

least, pressure strain is a sink term for 𝑢′𝑢′ (even though barely apparent) and redistributes the energy to 𝑣′𝑣′ and 𝑤′𝑤′,

where it appears as a source term. It therefore plays the same role as typically observed in attached boundary layers [49].

Further downstream, at the second station, the behavior is modified regarding different points. First, the redistribution

of energy due to the pressure strain term occurs differently. In the near-wall region, energy is transferred from 𝑣′𝑣′ to

𝑢′𝑢′ and 𝑤′𝑤′. In the mixing layer, the classical behavior is recovered, where 𝑢′𝑢′ acts as the only provider for the

other normal stresses. Moreover, terms from 𝑣′𝑣′ and 𝑤′𝑤′ play now a role in the budget of 𝑘 . In particular, near-wall

dissipation comes equally from 𝑢′𝑢′ and 𝑤′𝑤′ and pressure diffusion from 𝑢′𝑢′ and 𝑣′𝑣′. Finally, a second area of

activity appears near the wall for 𝑢′𝑢′, which is also affecting the budget of 𝑘 . Production is, however, again the

dominant term by far and peaks further away from the wall, at 𝑑+ ≈ 74, following the development of the shear layer.

The maximum peak is actually located slightly more downstream, at the minimum of friction coefficient (𝑥/𝐵l ≈ 0.4),

and rises to 6.2 (normalized by 𝑈3
∞/𝐵𝑙).

The budget of 𝑘 was also reported in Marquillie et al. [14], Laval and Marquillie [15], Schiavo et al. [18] on a

bump without shock wave interaction, at the location of minimum 𝐶f . Although the configurations are different, a very

good agreement is noted with respect to the second station here, which is indeed very close to the minimum 𝐶f , at

𝑥/𝐵l ≈ 0.41 (see figure 5). Of particular interest is the three-peaks distribution of turbulent diffusion, showing two

positive peaks (and therefore a gain of energy) around the production peak and acting as the main sink term (a negative

peak) where production is at its maximum. This was also highlighted experimentally in boundary layers subjected to

strong adverse pressure gradients [50]. Finally, the near-wall equilibrium between pressure strain and pressure diffusion

in the budget of 𝑣′𝑣′ was also reported in Vyas et al. [51] for an oblique shock wave/boundary layer interaction.

The budget of −𝑢′𝑣′ is shown in figure 18 at the same two locations. The first station depicts mainly two contributors,

that is to say pressure strain and pressure diffusion, balancing each other regardless of the distance from the wall. Smaller

contributions of convection and production are seen in the mixing layer. At the second station, terms involving pressure

are still present and balance each other almost perfectly. Again, this was documented in Vyas et al. [51]. Furthermore,

in the shear layer, production is now taking the lead and turbulent diffusion, up to now benign, becomes active in this

region. It exhibits a similar threefold pattern as in the budget of 𝑘 , with one peak counterbalancing the maximum of

production and two surrounding peaks of opposite sign.

The sum of all terms (or the balance) is equivalent to the temporal derivative in the turbulent stress equations and

should in principle be zero for the mean stresses. This is verified at 𝑥/𝐵l = 0.33 but it is not necessarily the case at

𝑥/𝐵l = 0.38. The same unbalance was noted in Schiavo et al. [17, 18] for an incompressible flow over a bump, with

a similar grid resolution (Δ𝑥+ ≈ 16 − 21, 𝑦+w ≈ 0.11 − 0.17 and Δ𝑧+ ≈ 15 − 21). Consequently, it is an effect of the
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mesh, and not of the neglected compressibility effects. The mesh is slightly under-resolved and dissipation is therefore

under-estimated at the second station.

To close the analysis of the mean budgets, the additional convection and production terms arising from the triple

decomposition (see equations 6 and 7a) were found to be two orders of magnitude smaller and, as a consequence, are

negligible. This constitutes another proof that the forcing has no effect on the mean flow and, more specifically here, on

the mean turbulent stresses. The budgets in the baseline case were checked and are identical. They are, however, not

shown here for the sake of brevity. Consequently, the distribution of mean turbulent stresses is the same whether the

flow is forced or not.

Coherent turbulent stresses budgets have also been computed from the data. Figure 19 illustrates the budgets of �̃� ,

𝑢′𝑢′, 𝑣′𝑣′ and �𝑤′𝑤′ at the two stations defined previously. The results are shown only for bin 2, corresponding to the

most downstream location of the separation point, and for the case at 500Hz.

At the first station, the budget of �̃� is controlled by 𝑢′𝑢′, as terms involved in the other normal stresses budgets

are one order of magnitude lower. For 𝑢′𝑢′, production is again the most dominant contribution with two peaks of

opposite sign (the maximum being located at 𝑑+ ≈ 25 and the minimum at 𝑑+ ≈ 42), instead of a single peak. The

modulation accounts for around 25% of the local mean production. In between, coherent production is null at the

distance from the wall at which the mean production is maximum (see figure 17). Most of the production is either

transported as the convection term is of importance or diffused by viscous or turbulent effects. Turbulent diffusion

shows four peaks of alternating signs, which can actually be seen as two overlapping three-peaks distributions, one

around each production extremum. Finally, dissipation and pressure strain give modest contributions. In the case of 𝑣′𝑣′,

terms involving pressure are found to be prominent. Finally, the budget of �𝑤′𝑤′ is commanded by dissipation, pressure

strain and viscous diffusion at the wall. Further away from the wall, convection and pressure strain are the active terms.

Moving to the second station, two areas of activity are discerned. In the near-wall region, the budget of �̃� is
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dominated by dissipation, pressure diffusion and viscous diffusion. The former comes from 𝑢′𝑢′ but also, and more

importantly, from �𝑤′𝑤′. Pressure diffusion finds its origin in the budget of 𝑣′𝑣′. The second area is the shear layer.

Production displays this time a single peak, coming only from 𝑢′𝑢′ and located slightly further away from the wall

compared to the location of the mean peak production (𝑑+ ≈ 84 for the coherent against 𝑑+ ≈ 74 for the mean).

Compared to the first station, viscous diffusion is absent for the benefit of turbulent transport and convection. Turbulent

diffusion shows again a three-peaks pattern. The peak modulation of turbulent diffusion is very high and reaches nearly

50% of the local mean value.

The budgets of −𝑢′𝑣′ are depicted in figure 20 for the two same stations. At the first station, pressure strain and

pressure diffusion are the main contributions and cancel each other almost perfectly. The nodes correspond to the

anti-nodes of the same contributions in the mean budget. Further downstream, terms involving pressure balance each

other in the near-wall region. Away from the wall, production and turbulent diffusion become major contributors as well.

Production shows again a single peak, co-located with the positive peak of turbulent diffusion at 𝑑+ ≈ 78. As for the

mean budgets, two other peaks of turbulent diffusion are surrounding the production peak.
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The results are provided here for the forced case at 500Hz. The mean budgets were found to be independent of the

forcing frequency, in agreement with previous observations. The coherent budgets at 250Hz show the same distributions

(not illustrated here for the sake of brevity) at 𝑥/𝐵l = 0.33 and 𝑥/𝐵l = 0.38, but the modulation is stronger. For example,

the production peaks of 𝑢′𝑢′ and 𝑢′𝑣′ at 𝑥/𝐵l = 0.38 are both 2.5 times higher. At 1000Hz, nothing comparable could

be highlighted and the modulation is low.

5. Turbulence production

As in simple shear flows, the noticeable production terms originate from the shear, which is the most significant

velocity gradient. For the mean production, these are due to the mean shear and the dominant contributions are
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−2𝑢′𝑣′𝜕𝑢/𝜕𝑦 and −𝑣′𝑣′𝜕𝑢/𝜕𝑦 for 𝑢′𝑢′ and 𝑢′𝑣′, respectively. The production of 𝑢′𝑢′ is caused by the mean shear and

its modulation, and mainly comes from two terms (out of eight), −2𝑢′𝑣′𝜕�̃�/𝜕𝑦 and −2𝑢′𝑣′𝜕𝑢/𝜕𝑦. They are representing,

respectively, the action of the coherent flow upon the mean component of the shear stress and the action of the mean flow

upon the coherent component of the shear stress. These terms are compared all together in figure 21 for the two stations

𝑥/𝐵l = 0.33 and 𝑥/𝐵l = 0.38. The sum of the two dominant terms alone is also represented in dashed blue to allow a

direct comparison with the total production, in solid black. Whereas the agreement is very good for the second station,

some information is missing at the first station if one wants to recover the total production more accurately. Taking into

account the contributions from compressive/extensive strain, namely −2𝑢′𝑢′𝜕�̃�/𝜕𝑥 and −2𝑢′𝑢′𝜕𝑢/𝜕𝑥, helps in that

direction. Nevertheless, they remain one order of magnitude lower. Even though these results have been obtained in a

separated flow, they are in agreement with experimental observations on attached turbulent boundary layers subjected to

oscillatory shear [24]. Regarding production of −𝑢′𝑣′, two contributions (out of sixteen) are found to be dominant.

These are 𝑣′𝑣′𝜕�̃�/𝜕𝑦 and 𝑣′𝑣′𝜕𝑢/𝜕𝑦.
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Fig. 21 Coherent production of 𝑢′𝑢′ for bin 2 at 𝑥/𝐵l = 0.33 (left) and 𝑥/𝐵l = 0.38 (right) for the 500Hz case -
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The fact that only these two contributions are sufficient to represent the production is an important finding regarding

turbulence modeling in the NLH method. Considering an eddy viscosity model, the coherent turbulent stress can be

written as the sum of two terms,

𝑢′
𝑖
𝑢′
𝑗
= −𝜈T �̃�𝑖 𝑗 − �̃�T𝑠𝑖 𝑗 (12)

where 𝜈T is the eddy viscosity evaluated with the mean flow while �̃�T accounts for the effect of the harmonic flow. Since

the strain-rate tensor reduces to 𝜕𝑢/𝜕𝑦, the two dominant production terms can actually be associated to the two terms

modeling the coherent turbulent stresses. For forced flows involving a massive separation, both contributions were

shown to be essential when using frequency-domain approaches [4]. The present results demonstrate the ability of

the methodology employed to capture the two effects and therefore the data generated to be used to improve harmonic
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turbulence models.

V. Conclusion
Wall-resolved implicit large-eddy simulations of the transonic flow over a bump have been performed performed.

The flow conditions are chosen to reproduce features encountered in transonic turbomachines: a shock wave develops in

the passage and interacts with the boundary layer, and the potential effect of a rotor/stator interaction is accounted for by

imposing a back pressure that is fluctuating in time periodically. Various realistic forcing frequencies are investigated.

The unperturbed case highlights a large lambda shock system with a massive flow separation on the downstream

part of the bump. The shock system is found to oscillate naturally at a frequency corresponding to St𝛿0 ≈ 0.01.

When the flow is subjected to a periodic forcing, no difference is observed between the mean unperturbed and the

mean perturbed solutions. However, unsteady aspects are considerably modified and the sensitivity of the flow is shown

to be higher for lower forcing frequencies. At 250Hz and 500Hz, the baseline behavior is completely obscured and

the entire flow responds mainly to the perturbation. At the highest frequency (1000Hz), the influence of the forcing

diminishes. In particular, the separation bubble acts as in the baseline case and a decoupling between the natural and the

forced shock oscillation is observed.

A complex pattern of wall pressure amplification factor is pointed out and reveals a twofold response of the

downstream boundary layer. The three first extremum locations - beneath the shock region - are independent of the

frequency. Their amplitude is nevertheless related to the sensitivity of the shock system to the forcing. Downstream

lobes are linked to the upstream propagating pressure wave and their spatial extent is ruled by the wavelength of the

signal. These lobes are moreover damped as the wave is traveling upstream.

To extract the harmonic component of the flow, phase-averaging has been carried out using a reference oscillator

based on the separation point. Because of the higher sensitivity of the flow at low frequency, this is especially successful

for the 250Hz and 500Hz cases. Coherent structures of streamwise velocity and turbulence kinetic energy are emphasized.

Their layout is independent of the frequency in the region of influence of the shock system. More specifically, coherent

turbulence kinetic energy is organized in a two-layers pattern starting from the separation point, with a single and strong

outer-layer structure following the development of the shear layer and an inner-layer comprising smaller structures with

alternating sign.

Mean and coherent turbulent stress budgets have been obtained and are analyzed at various stations. Convection,

production and turbulent diffusion stand out as the major contributors to the budget of turbulence kinetic energy whereas

pressure strain and pressure diffusion are prominent in the shear stress budget. A typical pattern of mean turbulent

diffusion for boundary layers in adverse pressure gradient is reproduced, that is to say a three-peaks distribution around

the production peak. Results show that this can be extended to the coherent turbulent transport regardless of the number

of coherent production peaks.
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The decomposition of the coherent production terms allows to isolate only two dominant contributions, coming

from the mean and harmonic shears. It further confirms the necessity of considering a mean and a harmonic eddy

viscosity when simulating massively separated flow using frequency-domain approaches. The current methodology is

able to capture both effects and, as a future step, the database generated will serve to improve coherent turbulent stress

modeling in that framework.
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