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CrossMark
Abstract

The gravitational-wave (GW) detector data are affected by short-lived instru-
mental or terrestrial transients, called ‘glitches’, which can simulate GW sig-
nals. Mitigation of glitches is particularly difficult for algorithms which target
generic sources of short-duration GW transients (GWT), and do not rely on
GW waveform models to distinguish astrophysical signals from noise, such
as coherent WaveBurst (¢WB). This work is part of the long-term effort to
mitigate transient noises in cWB, which led to the introduction of specific
estimators, and a machine-learning based signal-noise classification algorithm.
Here, we propose an autoencoder neural network, integrated into cWB, that
learns transient noises morphologies from GW time-series. We test its perform-
ance on the glitch family known as ‘blip’. The resulting sensitivity to generic
GWT and binary black hole mergers significantly improves when tested on
LIGO detectors data from the last observation period (O3b). At false alarm
rate of one event per 50 years the sensitivity volume increases up to 30% for
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signal morphologies similar to blip glitches. In perspective, this tool can adapt
to classify different transient noise classes that may affect future observing
runs, enhancing GWT searches.

Keywords: gravitational-wave bursts, autoencoder neural network,
transient noises

(Some figures may appear in colour only in the online journal)
1. Introduction

Gravitational-wave (GW) interferometers detected 90 astrophysical signals originating from
the coalescence of compact objects, mainly black holes (BH) but also neutron stars [1-3].
These exceptional observations have been achieved thanks to Advanced LIGO detectors [4]
and Advanced Virgo [5], that together with KAGRA [6] and GEO600 [7] constitute the global
network of GW detectors of the LIGO-Virgo-KAGRA (LVK) collaboration.

One of the major challenges for both detector and data-analysis experts is represented by
short-duration disturbances, usually referred to as glitches, that are present in GW data with
both high signal-to-noise ratio (SNR) and high rate. Short-duration noises are particularly con-
cerning because they can mimic GWTs originated for example by the coalescence of compact
binaries, especially in the case of high mass binary BH (BBH) mergers, or other sources still
not-detected as supernovae [8], isolated neutron stars [9, 10], cosmic strings [11] GW non-
linear memory [12] and radiation-driven BBH capture events [13]. Moreover, transient noises
might overlap with true astrophysical signals and affect the estimation of the parameters of
the GW signals [14], their sky localization [15] and the studies performed to test the General
Relativity [16]. These transients noises are caused by the instrument itself or by its interac-
tion with the environment [17, 18]. Ideally, the best strategy to reduce their impact is to track
back their origin and remove the causes [19]. When it is not possible to resolve the root cause,
but the coupling between the noise source and the detector output is known and reproducible,
periods of data on the order of seconds or hours can be excluded. On the other side, if the
coupling has not completely been identified, the transient noises cannot be vetoed safely, and
data analysis algorithms design specific methodologies to minimize their impact (see section 2
and appendix A).

In this work we focus on model-agnostic algorithms, which do not assume any GW tem-
plates and are open-wide to generic GWTs in multiple detectors data, and so are more affected
by transient noises. We introduce a deep-learning algorithm to classify specific glitch morpho-
logies and mitigate their impact in generic GWT searches. The algorithm proposed consists
of a neural network architecture, called autoencoder, that learns the morphology of a specific
class of glitch from the time-series. When it is applied to a generic detected event, it estimates
the similarity between the tested event and the noise class learned. We test this methodology
on blip glitches, the family which most affected the GWT search for advanced detectors [1,
17]. A crucial aspect of this methodology is that the network is trained only on examples of
transient noises present in the detector data, and no GW signal model needs to be considered.
This requirement is determined by the desire to apply the proposed method to generic GWT
searches.
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Here, we implement the autoencoder neural network on coherent WaveBurst (cWB) [20,
21], a weakly—modelled algorithm used also by LVK collaboration for generic GWT detec-
tion and reconstruction [22-29]. Over the years, different strategies to mitigate the impact of
transient noises have been integrated into cWB: two estimators, called Qvetoy and Qvetoy,
have been designed to pinpoint short-duration glitches, and recently cWB has been enhanced
by a signal-noise classification with the decision-tree learning algorithm XGBoost [30]. This
latter methodology exploits a set of summary statistics computed by cWB, and has shown
to increase the search sensitivity for compact binary coalescence and generic GW searches
[30-32]. Here, we propose an additional estimator, computed using the autoencoder neural
network, that can be straightforwardly included in the statistics used to build the XGBoost
model, further enhancing the discrimination of glitches.

The content of the following sections is the following: section 2 describes in more detail
short-duration glitches and the investigation performed to find their origins, section 3 intro-
duces cWB and reviews the strategy adopted so far to mitigate transient noises. Section 4
outlines the autoencoder neural network, its architecture, and the training and test datasets.
The results obtained with the introduction of this methodology on ad-hoc waveforms and on
BBH simulations are reported in section 5.

2. Transient noises in gravitational-wave data

During the third observing run (O3), which took place from April 2019 to March 2020, the
median rate of glitches with SNR > 6.5 was about 0.3 min~! in LIGO Hanford, 1 min~! in
LIGO Livingston and 0.8 min~! in Virgo, with an increase from November 2019 to January
2020 due to adverse weather conditions [2, 3].

Several methods based on machine-learning techniques have been developed in the latest
years to characterize and mitigate transient noises [33]. Many studies propose glitch classific-
ation into families according to their morphology in time-series [34, 35] or in time-frequency
representations [36, 37]. Classification is crucial to characterize transient noises and identify
their root causes: it allows ranking by quantity and characteristics, improving the production
of specific vetoes. A successful citizen-science project for supervised classification of GW
transient (GWT) noises is GravitySpy [38], which couples a neural network together with
human classification performed by citizen scientists. Recently, it has been joined by the pro-
ject GWitchHunter, more oriented to Virgo glitches [39].

These studies indicate blip glitches as one of the most concerning classes [40-43]: typically,
they have a sub-second duration O(10) ms and a large frequency bandwidth O(100) Hz. Their
rate during the second observing run (02) was typically of 2 per hour in LIGO, increased to
4 per hour in LIGO Livingston during the third observing run (O3) [17]. Blip glitches appear
to have multiple subclasses that might have different origins. Despite automated algorithms
that correlate the detector output with the auxiliary channels, used to monitor the state of the
instruments and their environment [44], their origin is still largely unknown. Four subsets
of blip have been found correlated respectively with humidity, laser intensity stabilization,
computer errors and power recycling cavity controls, but these correlations regard a minority
of the total number of classified blip (~8% in LIGO Hanford and ~2% in LIGO Livingston
during the first and second observing runs) [40]. Possible correlations with cosmic rays or
errors in the data acquisition system have also been investigated, but no evidence was found
[17].
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Blip glitches are responsible for a major fraction of the unvetoed high SNR triggers, redu-
cing the effectiveness of GW searches. Thus, specific techniques have to be adopted by each
GW data analysis algorithm. For example, the template-based algorithm PyCBC [45] has
implemented a specific methodology to mitigate the impact of blip glitches on the search for
high mass BBH mergers: while the GW models for these sources might not be distinguishable
from blip at first sight, blips actually have an excess of power at middle to high frequencies,
which is not belonging to the GW template. To highlight this discrepancy, a consistency test
between the high mass BBH waveforms and the transient noises has been introduced in PyCBC
[46], leading to a significant improvement in the algorithm performance.

In the next sections, we discuss the strategies implemented in cWB to mitigate the
impact of transient noises, and we propose a deep-learning algorithm which targets blip
glitches.

3. Transient noises mitigation in coherent WaveBurst

CWSB is an algorithm widely used by the LVK collaboration for detection and reconstruction
of generic GWT, including signals from compact binary coalescences. cWB combines coher-
ently the detector network time-frequency maps, computed with multi-resolution Wilson—
Daubechies—Meyer wavelet transform [47], and maximizes a likelihood ratio statistic over all
sky directions. To characterize each detected event, several summary statistics are estimated,
as the coherence across the detector network, the signal strength, the peak frequency and the
duration. cWB also provides a reconstructed waveform of the detected events for each detector.

To reject the events arising from non-stationary detector noise, cWB computes the coherent
energy Ec in the detector network and the residual noise energy Ey;, estimated subtracting the
reconstructed waveform from the data [20]. The events with network correlation coefficient
cc = Ec/(Ec + En) below a certain threshold are rejected. However, due to the high rate of
single detector glitches, there is a non-negligible probability of having accidental coincidences
in multiple detectors between independent transient noises. Moreover, glitches which occur in
a single detector could match part of the noise in the other detectors, especially in the case
of glitches with a simple morphology, as blips. An example of the reconstruction provided by
cWB of a noise event is reported in figure 1.

For these reasons, model-agnostic methods are strongly affected by short-duration disturb-
ances and the requirement on the correlation coefficient cc is not enough to mitigate tran-
sient noises. To reduce the false alarm rate an extra step is necessary. In cWB a separation
between GW signal and noise was implemented based on two statistics, referred to as Qvetog
and Qvero;, computed from the reconstructed waveforms (appendix A).

Recently, to automate the signal-noise separation and avoid the application of hard
thresholds, a procedure based on a decision tree learning algorithm, called XGBoost [48], has
been implemented. XGBoost performs a binary classification between GW signals and noise
learning the differences between the population of the signal and of the noise from a list of
eight cWB summary statistics that do not depend on the waveform morphology [30-32]. The
signal population is modeled using generic white noise burst (WNB) waveforms, which are
basically random noise constrained in a certain time-frequency range sampled from a random
distribution. To represent the noise population we employ the time-shift analysis: the data of
one detector is shifted with respect to the other detector so that the coincident events by con-
struction do not have an astrophysical origin, but they are solely due to non-stationary detector
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Figure 1. Example of the spectrograms (top) and respective time-series (bottom) of a
noise event detected by cWB in LIGO time-shifted data (see section 3). The spectrogram
on the left (LIGO Livingston) shows clearly a blip glitch with reconstructed SNR = 12.
On the right (LIGO Hanford) the spectrogram shows a weaker disturbance (SNR = 6)
with multiple low frequency spots (note that the colour scales are different for the two
spectrograms). In both cases, the reconstructed time-series show a blip-like morphology.

noises. The cWB events detected on time-shifted data are referred to as background events.
The XGBoost model computes a penalty factor which ranges from 0O for noise and 1 for signal,
and it updates the cWB ranking statistic p [31].

4. Further discrimination of transient noises by an autoencoder neural
network

We implement an autoencoder neural network to classify transient noises from cWB recon-
structed waveforms. An autoencoder is an unsupervised learning neural network that com-
presses the input data into a lower dimensional space, called latent space, and then re-
constructs an output with the original dimension. Performing the compression, the autoencoder
highlights the presence of structures in the input data, and disregards redundancies in the data.
The autoencoder architecture is used in GW physics for features extraction, data denoising and
anomaly detection [49-53].

Here, the autoencoder performs an anomaly detection task: the training dataset contains
time-series examples belonging to a single class, so that the network learns that specific mor-
phology. Once the autoencoder is applied to a time-series with a different signature, the anom-
aly, the network struggles to reconstruct it properly. The goodness of the reconstruction is
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evaluated through the mean square error (MSE) between the input time-series (X; jypy) and the
one reconstructed by the autoencoder (X; 4 ):

n

MSE =~ (Xi input — Xie)’ (1)
i=0

where n is the time-series length. The MSE is computed for each detector, and when searching
for GWTs it is weighted according to the SNR square of the event in each detector. In the
following, the weighted MSE estimator will be referred to as the autoencoder statistics.

4.1. The architecture

An autoencoder network learns the key features of the input data, which in this case is a time-
series x; with n data points. The network consists of two parts: an encoder f;(-) that compresses
the input representation into a lower dimension latent space, and a decoder gp(-) that converts
the latent representation to the original format. The encoder and decoder weights, E and D, are
found by minimizing the difference between the input x; and the autoencoder output gp (fi; (x;)).
The error function J is the mean square errors between the input and the output:

1 n
JEDsx) = 3 llg (o)) — i P- @
i=1

At the beginning of the training procedure the weights are set randomly, then they are updated
minimizing equation (2) for each x; present in the training dataset. In other words, the weights
are updated so that gp(fg(x;)) ~ x;: the network searches for an approximation to the identity
function but, as the latent space has a lower dimension than the input data, the algorithm is
forced to learn a compressed representation. The autoencoder performs a dimensional reduc-
tion, but differently from common tools as principal component analysis [54], can learn non-
linear and complex features.

Once trained, the weights £ and D are fixed and the network is able to reconstruct properly
a time-series only if it has a morphology similar to the examples present in the training dataset.
The goodness of the reconstruction is estimated with the MSE (equation (1)): GW time-series
with low MSE values are similar to Blip glitches, while higher MSE values indicate differ-
ent morphologies. Other anomaly detection methodologies, that can be considered for future
developments, exploit directly the latent space distribution learned by the autoencoder. This
could be accomplished either by clustering the latent space [55] or by studying the latent space
distribution with normalizing flows [56].

We build the network using the deep-learning application programming interface Keras
[57]. The autoencoder is made of multiple convolutional layers, one of the most recognized
machine-learning algorithm to extrapolate relevant features in time-series and images. More
details on the architecture of the network are reported in the appendix B.

A crucial aspect of the architecture is the latent space dimension: the lower the dimension,
the stronger the compression of the input, and the less information is retained by the network.
Test at different compression factors showed that for higher compression the network learns
only loud blip-like morphology, and it struggles when the combination of the glitch with the
detector noise leads to slightly different morphology, resulting in a poor ability to mitigate the
background events.
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4.2. The autoencoder input data

The inputs x; of the autoencoder are cWB reconstructed time-series which, thanks to the
whitening procedure’ and the selection of the most energetic wavelets in the time-frequency
maps, appear much cleaner than the raw GW detector data. Before being processed by the
autoencoder, each cWB reconstructed time-series, sampled at 2048 Hz, is windowed to 416
data points (corresponding to ~0.2 s), and centred around the absolute maximum value.
Several window lengths have been tested from about 200 to 800 data points, but this choice
is a good compromise between containing the entire blip-like evolution and minimizing the
information to be learnt. Next, the time-series is normalized in amplitude between [0, 1], as
suitable for neural networks. Some examples of cWB reconstructed waveforms processed to
be input to the autoencoder are shown in figure 2.

4.3. The training dataset

The training dataset is made of blip glitches according to the GravitySpy [38, 43] classification.
To retrieve the blip time-series as observed by cWB, we run the pipeline in each single detector,
obtaining a list of detected events, glitches and eventually GW signals, in each detector. Next,
we select blip glitches comparing the GPS time of cWB single detector events and GravitySpy
blip GPS time. We employ two similar glitch families classified by GravitySpy, nominally blip
and tomte.

Deep-learning methods benefit from the largest possible training dataset, and in order to col-
lect more training samples several strategies have been developed, usually referred to as data
augmentation techniques. In this work, we double the amount of the training dataset includ-
ing also the vertical flip of each time-series. Moreover, we add gaussian noise to each input
data to improve the capability of the autoencoder network to pinpoint also low SNR glitches.
The resulting training dataset is composed of 4608 glitches occurred during the second period
of the third observing run (O3b). Additional 512 classified samples constitute the validation
dataset, which tests that the neural network is not over-fitting. We retrieve blip glitches from
the two LIGO detectors, but there is evidence for the presence of such glitches also in Virgo
detector [40], whose transient noises are also classified by GravitySpy. Figure 2 shows two
examples of time-series present in the validation dataset and the reconstruction achieved by
the autoencoder.

4.4. Signal models for testing

We test the autoencoder neural network on three sets of waveforms. The first is made of ad-hoc
signals, generally used in generic GWT searches to evaluate the sensitivity of a weakly mod-
elled pipeline over a wide parameter space [29]. They include Sine-Gaussian (SG), Gaussian
pulse (GA) and WNB. The SG waveforms are characterized by the central frequency, and the
quality factor Q. SG refers to circularly polarized Sine-Gaussian, while SGE are elliptically
polarized. The GA signals are characterized by the duration, and the WNB by their bandwidth,
duration and lower frequency bound.

7 https://gwburst.gitlab.io/documentation/latest/html/faq.html#the-whitening.
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Figure 2. Two examples of blip time-series according to the GravitySpy classification
detected by cWB in LIGO Hanford. In blue the autoencoder inputs x;, that are cWB
reconstructed waveforms windowed and normalized as described in section 4.2). In
orange the autoencoder reconstructions gp (fi (xi))-

The second set of waveforms contains cosmic strings simulations, potential burst sources
supposed to originate after a spontaneous phase transition in the early Universe [11]. Here, we
inject cosmic strings from cusps [58], which are characterized by the amplitude, and frequency
range of [1 Hz, 1500 Hz]. These waveforms have been included to test the robustness of the
proposed methodology on potential GW signals with a morphology similar to blip glitches.
The results achieved cannot be compared directly to the LVK search [11], because the detection
efficiency is parametrized differently.

The third set of waveforms is composed of BBH coalescences with quasi circular orbits, as
they represent the GW signals mainly observed so far. Their waveforms include both preces-
sion and higher order modes, and they are computed using SEOBNRv4PHM model [59].

5. Results

We compute the autoencoder statistic, defined in equation (1) as the MSE between the cWB
reconstructed waveform of each detected event and the corresponding time-series reconstruc-
ted by the autoencoder, for the background events and the injected signals. A low MSE sug-
gests that the event considered has a blip-like signature, while a high MSE indicates a different
morphology. We include the obtained MSE in the list of summary statistics used by XGBoost
to perform the signal-noise separation in cWB. This configuration will be referred as XGBoost
+ AE model, while the configuration without the autoencoder statistic will be referred simply
as XGBoost model. The cWB pipeline’s set up and the hyperparameters employed for the
XGBoost tuning are equal for the two configurations, and the same used for the generic GWT
search performed with cWB enhanced by XGBoost, which provides the most stringent con-
straints on the isotropic emission of GW energy from burst sources to date [32]. Using these
two configurations, we analyse 40 days, between February and March 2020, of coincident data
between the LIGO detectors. We accumulate about 380 years of background using the time-
shift analysis (section 3), 70% of which is used to train the XGBoost model and the remaining

8
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Figure 3. (Left) Background events versus the ranking statistic p for the XGBoost model
(blue) and the XGBoost + AE one (orange). (Right) IFAR versus the ranking statistic
for the background events for the two models. The XGBoost + AE model reduces the
number of background events at p > 5, so that at a fixed IFAR threshold the correspond-
ing p is lower. The gray lines mark the IFAR thresholds for which the search sensitivity
is reported in figures 4 and 5.

30% for testing. Similar results are obtained also with different percentages dedicated to the
training and the testing.

First, we discuss the impact of the autoencoder statistic on the background events distribu-
tion (section 5.1), then we report the search sensitivity achieved on ad-hoc waveforms, cosmic
strings, and BBH simulations (section 5.2).

5.1. Background events distribution

The background events distribution is crucial to assess the significance of the detected events
in terms of the inverse false alarm rate (IFAR), where IFAR = 1/FAR. The FAR of a detected
event with ranking statistic py is:

N(Pk) 3)

where N(py) is the number of background events with p > p; and T the accumulated back-
ground time. So, the fewer the background events and the lower their p, the more sensitive
the search for GWT will be. In figure 3 (left) the background events are shown versus the
c¢WB ranking statistic p. The autoencoder further mitigates the background distribution, with
28 events at p > 5 using the XGBoost + AE model, rather than 47 events with the XGBoost
model. This enhancement can be appreciated in figure 3 (right), which shows the IFAR versus
the ranking statistics for the background distribution for the two models considered. At a fixed
p, the inclusion of the autoencoder’s statistic increases the corresponding IFAR, meaning that
a potential GW signal detected by cWB with a certain p can have a higher significance with
the XGBoost + AE model, or in other words that using the autoencoder we can assing the
same IFAR to weaker GW signals.
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Figure 4. Sensitivity volume obtained with cWB with autoencoder feature included in
the XGBoost model (XGBoost + AE) in orange, and without it (XGBoost) in blue,
at IFAR = 50 years. The values next to each bar show the percentage improvement
w.r.t to the volume obtained with XGBoost model. From bottom to top, the waveforms
are: cosmic strings, Gaussian Pulse (GA) characterized by the duration 7, then ordered
according to frequency Sine Gaussian (SG) and SG elliptically polarized (SGE) char-
acterized by central frequency f, and the quality factor Q and white noise burst (WNB)
with bandwidth Af, duration 7 and lower frequency bound f.

5.2. Search sensitivity for ad-hoc waveforms and BBH simulations

To evaluate the sensitivity of generic searches, simulated signals are injected into the detector
data. The root-squared-sum (rss) strain amplitude of the signal is defined as:

Puss = \/ /_ +oo[hi(t) + B3 (1))dr (4)

where hy and hy are the plus and cross polarization of the GW signal. Varying the injection
amplitude, it is possible to compute the detection efficiency €(/,s) as the ratio between the
signals detected with an IFAR over a certain threshold and the total amount of injections.
From the latter, it is possible to compute the 50, i.€. the strain amplitude at which 50% of
the injections are recovered, which is a typical metric to express the sensitivity in GW bursts
searches.

A cumulative metric is the sensitivity volume V [22, 32], defined as:

> dh
V =47 (s 010 / o

0 1SS

€(hss), )

where h. o is a reference amplitude value at a nominal distance rg. This metric, having a factor
i to the denominator, emphasizes the contribution to the sensitivity of the weaker signals.
Figure 4 shows the results for a wide set of ad-hoc waveforms and cosmic strings with
an IFAR >50 years. The sensitivity volume obtained with the inclusion of the autoencoder
is higher for all the waveforms tested: for cosmic strings the improvement is 33%, for GA

waveforms between 22%-37%, for SG is 8%—-44% and for WNB is 1.4%—-4.7 %. Moreover,

10



Class. Quantum Grav. 40 (2023) 135008 S Bini et al
1.2
16 . Cosmic Strings SG. 361Hz, Q9
g L l GA.70.1s SGE. 554Hz. Q9
Et" 11 SGE, 70Hz, Q3 SGE, 70Hz, Q100
gl 14 +|2 SG, 100Hz, Q9 SGE, 849Hz, Q100
+|2 | ° * 2|2
Za i 215 .
gR12 L) |
g2 . ] o : ¢ 2
9 . ) x| 2 e {
=™ 10 ? 1 2|2 ¥
af b zI< 4 ’
S

0.9

(=]
o«
20—

TR TR 1060 % e 50 100

IFAR [year] IFAR [year]

Figure 5. Ratio between the sensitivity volume V (left) and /50 (right) obtained includ-
ing the autoencoder (XGBoost -+ AE) and without using it (XGBoost) at different IFAR
thresholds (10, 30, 50, 100 years). Data points are slightly shifted around the IFAR
thresholds to avoid overlaps. The waveforms are: cosmic strings, Gaussian Pulse (GA)
characterized by the duration 7, then Sine Gaussian (SG) characterized by central fre-
quency f, and the quality factor Q and white noise burst (WNB) with bandwidth Af,
duration 7 and lower frequency bound f.

we investigate the performance of the two XGBoost models considered over different IFAR
thresholds (10, 30, 50, 100 years) in figure 5.8 The improvement in sensitivity volume and in
hyss50 obtained with the autoencoder statistic is remarkable also at lower IFAR thresholds, and
it is more evident on the waveforms that have a morphology similar to blip glitches, as GA,
cosmic strings and low frequency SG. At IFAR >100 years, the search sensitivities obtained
by the two models are comparable. This regime corresponds to the background distribution
region with p > 13 (figure 3), where there is a single loud glitch which is not affected by the
inclusion of the autoencoder. Such background events are rare, and the methodological scope
of this work does not justify the computational cost of accumulate more statistic to discuss
further this regime. Instead, we consider relevant the improvement achieved at lower IFAR
thresholds, as that is the region where most of the GW signals detected so far lies.

In addition, we report the sensitivities achieved for BBH mergers injections in terms of the
observed volume V (figure 6) [2]. Given a local merger rate density R, this metric is computed
counting the number of detections above a certain IFAR threshold Ny, and considering Ngee =
VTR where T is the observing time. The volume obtained including the autoencoder is sightly
enhanced for all [FAR thresholds, due to the reduction of the background distribution shown
in figure 3.

6. Conclusions

In this work, we propose an autoencoder neural network to mitigate the impact of short-
duration transient noises, which constitute a major concern for generic GWT searches. The
neural network is integrated in cWB, a weakly-modeled algorithm widely adopted in the GW

8 The error bars on the hyso values are computed from the detection efficiencies at each injected amplitude. The
error on the ratio /450, xGBoost + AE /hmso’ XGBoost 1S propagated assuming the errors on the two terms of the ratio
independent or, in other words, neglecting their strong positive correlation. This results in a very conservative choice
as the majority of the events is detected by both XGBoost models. The error bars on the sensitivity volume are
computed from the ones on /1, and by propagating equation (5).

1
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Figure 6. Observed volume at different IFAR for BBH simulations. The volume
obtained with the inclusion of the autoencoder (orange) is compared with the model
without the autoencoder (blue).

community. Over the years, cWB has designed two estimators to recognize short-duration
glitches, and recently it has implemented a more efficient separation of GW signals from noises
based on the machine-learning algorithm XGBoost [32]. This work constitutes a further step
of this development, and shows to improve generic GWT searches in real operating conditions.

Here, we focus on blip glitches, one of the most common transient noise family in GW data,
whose origin is still unknown. We include the autoencoder statistic in the XGBoost model, and
we perform injections of ad-hoc waveforms, cosmic strings and BBH simulations in GW data.
We report the sensitivity achieved both in terms of sensitivity volume and /50. The inclusion
of the autoencoder statistic enhances ad-hoc waveforms and cosmic strings at different IFAR
thresholds, in particular the most evident enhancement is achieved for the waveforms which
have a morphology similar to blip glitches, as short-duration gaussian pulses, sine gaussians
and cosmic strings. The search sensitivity for BBH simulations is also slightly enhanced by
the addition of the autoencoder statistic.

Here, the methodology is applied to the LIGO detector network, but it could be easily exten-
ded to multiple GW detectors. In addition, the autoencoder statistic could be exploited by other
signal-noise classification procedures, as the one based on Gaussian Mixture Model recently
proposed for cWB [60, 61].

With respect to previous deployed methods, as the Qveto parameters, the autoencoder neural
network is able to learn also different transient noise classes, if present in the training dataset.
This flexibility will be highly valuable as new glitch classes appear in the future GW observing
periods.

Data availability statement
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Appendix A. Qveto parameters

cWB calculates several summary statistics to characterize the detected events. Here we focus
on two of them, called Qveto, introduced to pinpoint short-duration glitches and reviewed here
for the first time®.

The first, Qvetoy, estimates the ratio between the energies far and near the maximum peak
of the signal. More precisely, once computed the absolute maximum amplitude Apax, Nta
samples before and after the maximum peak are selected. Their amplitudes are indicated with
A per and A; ,5. Further relative amplitudes A, ;i are selected if |A; re1| > |Amax|/ATn. Figure 7
shows the cWB reconstructed waveform of a transient noise with the relevant amplitudes for
the estimation of the Qvetoy highlighted. Qvetoy is then defined as:

2

Qvetoy = — ZA”ICIZ )
Amax + ZAi,bef/aft
The lower the Qvetoy, the strongest the peak amplitude compared to the surrounding fluctu-
ations, suggesting a blip-like morphology. Nty and Aty are hard thresholds which are empir-
ically selected looking at glitches reconstructed waveforms. Default values are Nty = 1, and
Aty = 7.6. This procedure is applied to each detector independently, then the minimum value
is selected. The second parameter, Qvero|, models approximately the reconstructed waveform
with a CosGaussian function:

(6)

. (—wt)?
CosGaussian(w, Q) = cos(wt) * exp - )
2 Qveto;
and the Qveto, factor is estimated as:
—m? Abef +Aaft
toy=4/ ———, WwithR= —— 8
Qveto, 210g(R)’ wi A 8)

where Aper (Aun) 1s the absolute value of the maximum peak before (after) the main peak.
The Qveto, is computed for each detector and weighted according to the SNR square of the
detected event in each detector.

On LVK publications based on the data from the first, second and third observing runs (O1-
02-03) [62-64], Qveto parameters were employed in cWB to split the detected events into
multiples bins: a ‘clean’ bin and one or more ‘dirty’ bins. Dirty bins were populated by short-
duration blip-like events, while the clean bin contains only triggers with Qveto parameters
above a certain threshold (as an example for the O3 generic GW burst search [29] Qvero; < 3.4
for the first dirty bin, Qvero; < 3.4 and Qvetoy = 0 for the second dirty bin, and Qvero; > 3.4

9 See also in the c(WB documentation: https://gwburst.gitlab.io/documentation/latest/html/faq.html#the-qveto.
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Figure 7. Reconstructed waveform of a transient noise passing in cWB in LIGO
Hanford. The coloured dots show the amplitudes used to estimate the Qvetog accord-
ing to equation (6). The green lines correspond to the threshold +Amax /Ay over which
A, re1 amplitudes are chosen.

for the clean one). Then, each event was ranked in each bin independently, leading to the
introduction of a trial factor equal to the number of bins. Thus, Qvero parameters played a key
role during the signal-noise separation process.

However, this procedure depends on hard thresholds that had to be tuned manually accord-
ing to the performance on some set of simulations, and it cannot be generalized to different
transient noise morphology that may arise in next observing runs. For these reasons, it has been
substituted with a machine-learning based algorithm [30-32] which learns the population of
the signal and of the noise from a list of cWB summary statistics. Among the others, this list
includes the Qvero parameters through the following definitions:

B B Qveto
Cu=/Queo, &= e ) v

where E. is the coherent energy in the detector network (section 3).

Appendix B. More details on the autoencoder neural network

We report here more details on the methodology implemented. The algorithm is based on deep-
learning, a subset of machine-learning, in which a task is learned from a large amount of data.
Deep-learning methods consist of a network, i.e. a sequence of layers of algorithms, each of
which extrapolate information of the data it is applied to. These networks are usually referred
as neural network because they are inspired by the human brain processing. The neural network
proposed in this works consists of two parts, an encoder that compress the input into a lower
dimensional space and a decoder that returns the compressed representation into the original
shape. Both the encoder and the decoder are made of multiple layers. The neural networks
with this structure are called autoencoders. The first layer learns a representation of the input
data, and the subsequent layers receive the representation learned by the preceding layers,

14
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Table 1. Autoencoder neural network architecture. Each line represents a layer of
algorithm. On the right, there is the output shape of each layer, which is also the input
shape for the subsequent layer. For example: the input data is a time-series with 416
data points. Then, a convolutional layer with k = 128 filters is applied. The time-series
sample rate is 2048 Hz.

Output shape

Layer (length, dimension)

Encoder
Input (416, 1)
Convolutional (416, 128)
Max pooling (208, 128)
Convolutional (20, 816)
Max pooling (104, 16)
Convolutional (52, 16)
Flatten (832)
Dense (200)

Decoder
Dense (832)
Reshape (52, 16)
Convolutional (52, 16)
Up pooling (10, 416)
Convolutional (10, 416)
Up pooling (208, 128)
Convolutional (208, 128)
Up pooling (416, 128)
Convolutional 416, 1)

revealing more and more complex features. The main layers used are briefly introduced below
and summarized in table 1. A review can be found in reference [65].

e Convolutional layer: it computes the convolution between the input x and the filters, or ker-
nels. Multiple kernels are present in each convolutional layers, and have dimension equal to
(m x k), being m the length of the stride and k the number of kernels applied. The convo-
lutional layer calculates the dot product between the input and the weight W* and transmits
the result of the multiplication to an activation function f. The output of the convolutional
layer is:

.y = fIWex + b) (10)

where b is a bias term, typically equal to 1. Here, f is a ReL.U function [66], which converts
the input to positive numbers:

fz) = max(0,z). (11)

The kernels are assigned randomly at the beginning of the training process and are updated
minimizing the error function (equation (2)). The filter length m is equal to 3 and slides over
the entire input. Usually, multiple filters are used to acquire more complex kinds of features.

e Max pooling layer: after a convolutional layer typically there is a pooling layer, that down-
samples the convolutional output Ay picking the maximum value over a spatial window
considered. In this case, we have a window equal to 2, meaning that we take the maximum
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values between two adjacent values. The combination of convolutional layers and max pool-
ing layers is repeated multiple times to extract the most relevant features.

e Dense layer: it consists of several basic units, called neurons, in which a weight is applied as
in equation (10). Each neuron is fully connected to all neurons of the previous layers. In this
autoencoder architecture a dense layer is used to compress the output of the decoder layers
to the desired latent space dimension, equal to 200 in this case.

e Up sampling layer: opposite to max pooling layer up-sample the representation repeating
the data by 2.

e Flatten and reshape: the first flatten the inputs from a shape x** to x
the inputs into the given shape.

axb_the second reshapes

The main settings used to train the network are: the epochs, i.e. the number of iterations over
the entire training dataset, sets to 75, the bach size, i.e. the number of training samples per
weights update, that is 16, and the optimization algorithm which updates the network weights
minimizing the loss function that is ADAM [67]. The total number of network parameter is
349 513. The training time is about 22 min and the execution time in case of single time-series
evaluation is about 0.0032 s using 16-core AMD opteron 6376 CPU.
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