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Abstract: The analytical-numerical evaluation of the scattering of electromagnetic waves by multiple
spheres requires the computation of numerous coefficients. For this purpose, many contributions,
available in the literature, have traditionally employed the recursion method. In the present paper,
we introduce a novel approach, based on primes and indices, which can be conveniently applied
to the computation of the Wigner 3-j symbols, the Wigner D-function, and the Gaunt coefficients.
By considering a series-expansion form, our method proves to be easily applicable to a variety of
similar problems. We provide examples of coefficient calculations and compare the results with those
retrieved from previous publications, demonstrating the advantages of our approach.

Keywords: Prime Index Method; electromagnetic scattering; Wigner 3-j symbols; Wigner D-function;
Gaunt coefficients

1. Introduction

Factorization is an age-old problem arising in various fields of pure and applied
mathematics. Due to computational limitations, the evaluation of n!, when n is very large,
remains a challenging task. In some cases, the complete calculation of the factorial function
is not necessary, as illustrated by the evaluation of the quantity 500!

499! . As we know, the value
of the ratio is 500. However, any attempt to calculate it directly using factorial functions,
available in many programming platforms such as MATLAB, is likely not to produce any
result. This type of computational problem is akin to what needs to be addressed in multi-
sphere scattering. As demonstrated in the following sections, the solutions of scattering
problems according to Mie theory are based on numerous coefficients, such as the Wigner 3-
j symbols, the Wigner D-functions, and the Gaunt coefficients. These quantities involve the
evaluation of ratios of high-valued factorial of natural numbers, numerically hindered by
limitations in the finite representation of integers and possible loss of precision. Although
several computational strategies for the evaluaton of these quantities have been proposed
in the literature [1–10], the high computational complexity relevant to the retrievement of
these quantities is still an issue deserving further investigation. The contribution presented
in [1], employing graphical techniques to the computation of Wigner 3-j symbols, suffers
from a limited extensibility to the computation of other quantities involved in the solution
of multi-sphere scattering problems. Well-established methods for the evaluation of the
Wigner 3-j symbols and the Gaunt coefficients, available in the relevant literature, are
mainly based on the exploitation of recursive computational schemes [5,6,10], optimized
by the identification of the numerous symmetry properties of the quantities to evaluate [6],
or are focused on the achievement of high numerical speed by devising efficient storage
schemes to allow for fast memorization and retrieval of the large number of values typically
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required by numerical simulations [3]. While analythical approaches are useful for the
definition of asymptotic forms in the case of high-degree coefficients [2], floating-point
arithmetic routines must find a trade-off between numerical precision and speed. The
well-documented computational strategy devised by Xu [7,8], based on the solution of a
linear system of equations, although appreciable under many aspects, is not devoid of some
level of inaccuracy and presents quite a high level of complexity, failing to provide easy
implementation in a numerical code. In this paper, we present a computational strategy for
the evaluation of the aforementioned coefficients, named the Prime Index Method (PIM).
The proposed approach leverages on the prime factorization of integers’ factorials in index
form, simplifying the computation of ratios of large factorials of natural numbers and
allowing for the solution of multi-sphere scattering problems with very high precision
and speed.

This paper is organized as follows: in Section 1, the Prime Index Method (PIM) is
explained and its main idea is illustrated by means of a simple example. In Section 2,
we provide examples of relevant applications for the proposed method and compare the
outcomes to the results available in the literature. Conclusions and further developments
are discussed in Section 3.

2. The Prime Index Method

The proposed Prime Index Method (PIM) is based on Legendre’s theorem, as described
in [11], page 8. The theorem states that the factorial contains the prime factor p exactly κ
times, the value κ being expressed by the following summation:

κ =
∞

∑
i=1

⌊
n
pi

⌋
(1)

where the symbol ⌊⌋denotes the floor function. Thus, the quantity κ provides the exponent
at which the prime factor p must be raised the prime number factorization of n!. The
infinite summation in Equation (1) may be conveniently truncated, as the quantity

⌊
n
pi

⌋
is

null if pi > n. By applying Legendre’s theorem, it is possible to achieve the prime-number
factorization of n!. All prime numbers and their respective exponents of this factorization
can be stored in two vectors pn κn, repectively. Each element pn(j) of vector pn represents
a prime factor less than or equal to n and each element κn(j) represents the exponent of
the prime pn(j) in the factorization of n!. By multiplying all factors pn(j)κn(j) toghether, the
quantity n! can be retrieved.

For this purpose, we define the vector pn of length jmax(n), where pn(j) (j = 1 . . . jmax(n))
contains all and only the prime numbers greater than 1 and less than or equal to n. The
symbol pn has been chosen to state that the dimension of the vector pn(j) is a function of n.
The vector pn(j) may be easily generated by using the sieve algorithm or library functions
available in many commercial software platforms, e.g., the primes function available in
MATLAB. The value jmax(n) represents the number of primes less than or equal to n:
its value (the well-known prime counting function π(n) [12]) can be easily retrieved by
evaluating the dimension of vector pn.

Secondly, we define an index vector κn(j) (j = 1 . . . jmax(n)), using Equation (1)

κn(j) =
∞

∑
i=1

⌊
n

pn(j)i

⌋
. (2)

As stated before, in the numerical implementation of the algorithm, the infinite
summation in Equation (2) can be truncated when i > imax(n), where imax(n) is the first
value for index i, for which the addend reaches zero. Having defined the index vector
κn(j), the factorization of n! can be obtained by raising all jmax(n) prime fators pn(j) to
their respective exponents κn(j) and multipying all pn(j)κn(j) factors together, i.e.,
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n! =
jmax(n)

∏
j=1

pn(j)κn(j). (3)

Thus, the value of n! can be conveniently expressed by means of two vectors of integers,
i.e., pn and κn. Equation (3) represents a more convenient expression of n!, which will be
used in the following sections. A careful inquiry would confirm that the two expressions of
n! do obtain the same results.

Consider the calculation of the following ratio:

n!
m!

=
∏

jmax(n)
j=1 pn(j)κn(j)

∏
jmax(m)
j′=1 pm(j′)κm(j′)

(4)

The fraction in Equation (4) can be reduced to its lowest terms by simplifying the com-
mon factors present in both the numerator and denominator. To illustrate the simplification
algorithm for Equation (4), we suppose that n < m: given the prime vectors pn and pm,
their respective index vectors κn and κm may be set by means of Equation (2). Supposing
n < m, it is also true that jmax(n) ≤ jmax(m), i.e., the prime factorization of m! contains
jmax(m)− jmax(n) additional prime factors, which are not included in the prime factoriza-
tion of n!. Nevertheless, it is possible to express the prime factorization of n! by means
of the prime vector pm, provided that all the jmax(m)− jmax(n) additional prime factors
contained in the prime factorization of m! (but not included in the prime factorization of
n!) are all raised to a null exponent. As a matter of fact, the introduction of further prime
factors does not affect the factorization of n!, provided all the exponents of the introduced
factors are set to zero. In order to acheive this:

• the dimension of the index vector κn must be increased to match the dimension of
vector κm by inserting jmax(m)− jmax(n) elements.

• the new elements appended to vector κn are all null.

The modified version of index vector κn will be denoted by κ′n. The new expression
for the prime factorization of n! is:

n! =
jmax(m)

∏
j=1

pm(j)κ′n(j) (5)

By inserting Equation (5) into Equation (4), we obtain:

n!
m!

=
∏

jmax(m)
j=1 pm(j)κ′n(j)

∏
jmax(m)
j′=1 pm(j′)κm(j′)

=
jmax(m)

∏
j=1

pm(j)κ′n(j)

pm(j)κm(j)
=

jmax(m)

∏
j=1

pm(j)[κ
′
n(j)−κm(j)]. (6)

Similar considerations apply if n > m. The computational strategy expressed by
Equation (6) is applicable even when the value of the factorial functions exceed the com-
putational limits allowed by the computer. We will illustrate the advantages introduced
by Equation (6) by means of a simple example: the computation of 4!

5! . In this case, the
maximum value between the two arguments of the factorial functions is 5, and the vector
pm, listing the the primes under 5, is [2, 3, 5]. According to Equation (2), the index vector for
5! is κm = [3, 1, 1], while the index vector for 4! is κ′n = [3, 1, 0]—the last element, 0, has been
added to the elements of κn = [3, 1]. Therefore, the index difference vector κ′n(j)− κm(j) in
Equation (6) is [0, 0,−1], thus:

4!
5!

= 20 × 30 × 5−1 =
1
5

. (7)
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This is the expected result. The previous example is purely illustrative, as the presented
method does not show any advantages when both n and m have small values.

The convenience of the presented method is apparent if n and m are large: the compu-
tation of the ratio 500!

499! = 500 by prime factorization is straightforward, while any attempt of
direct computation retrieves a NaN result for the factorial function in MATLAB. Moreover,
the computational load in the calculation of 500!

499! by PIM is negligible, being of the order of
milliseconds using an average commercial laptop computer.

It is possible to address more complex situations, e.g., the computation of expressions
like n!√

m!
, or, in general, expressions in which the numerator or denominator of a fraction

consist of the product of several factorial terms, each one raised to a specific rational
exponent, e.g.,

(n1!)q1(n2!)q2 ...
(m1!)r1(m2!)r2 ...

, qi, rj ∈ Q. (8)

The presence of additional factorial factors and their rational exponents may be taken
into account, in the prime index representation of Equation (6), by the following algorithm:

• we compute the index vectors κn1 , κm1 , κn2 , and κm2 . . . , corresponding to the arguments
of the factorial functions n1, m1 , n2, and m2 . . . , respectively;

• supposing that γ = max{n1, m1, n2, m2 . . . }, we increase the dimension of vectors
κni , κmi (ni, mi ̸= γ) in order to match the dimension of vector κγ, obtaining vectors
κ′n1

, κ′m1
, κ′n2

, κ′m2
. . . , κγ,. . . , as previously described;

• we define a matrix κ(i, j), whose rows are formed by the vectors κ′n1
, κ′m1

, κ′n2
, κ′m2

. . . ,
κγ,. . . ;

• we define a vector ξ whose elements are the exponents q1, q2, . . . , , −r1, −r2. . . , thus
ξ = [q1, , q2, . . . ,−r1,−r2 . . . ].

Equation (6) becomes:

(n1!)q1(n2!)q2 . . .
(m1!)r1(m2!)r2 . . .

,=
jmax(γ)

∏
j=1

pγ(j)∑i ξ(i)κ(i,j). (9)

For convenience, in the numerical implementation of the algorithm, arguments ni, mi
of the factorial functions in Equation (9) may be represented as components of a vector x,
i.e., x = [n1, n2, . . . , m1, m2, . . . ], as previously done for the relevant exponents represented
as the elements of vector ξ.

A Matlab Code for the Evaluation of the quantity in Equation (9) is reported in the
Supplementary Materials, provided along with the present paper. In the following sections,
we will consider relevant application of Equation (9).

3. Results and Discussion

In this section, Equation (9) is applied to the evaluation of coefficients involved in the
numerical solution of multi-sphere scattering problems. The accuracy of the computational
algorithms is assessed and a comparison with previous results, available in the literature,
is provided.

3.1. The Wigner 3-j Symbols

The expression of the Wigner 3-j symbols, as available in [3] is:(
j1 j2 j3

m1 m2 m3

)
= ϵ(j1, j2, j3)∆(j1, j2, j3)δm1+m2+m3,0(−1)j1−j2−m3×√

(j1 + m1)!(j1 − m1)!(j2 + m2)!(j2 − m2)!(j3 + m3)!(j3 − m3)!×
kmax

∑
k=kmin

(−1)k

k!(j1 + j2 − j3 − k)!(j1 − m1 − k)!(j2 + m2 − k)!
× 1

(j3 − j2 + m1 + k)!(j3 − j1 − m2 + k)!
. (10)
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where kmax = min(j1 + j2 − j3, j1 − m1, j2 + m2) and kmin = max(−j3 + j2 − m1,−j3 + j1
+ m2, 0). The quantities m1, m2, and m3 represent an angular momentum quantum numbers:
to avoid ambiguity, we refer to the arguments mi of the factorial functions in Equation (9) as
components of vector x.

The triangle coefficient is defined as follows:

∆(j1, j2, j3) =

√
(j1 + j2 − j3)!(j1 − j2 + j3)!(−j1 + j2 + j3)!

(j1 + j2 + j3 + 1)!
, (11)

ϵ(j1, j2, j3) =
{

1 if (j1, j2, j3) form a triangle
0 otherwise

, (12)

δm1+m2+m3,0 =

{
1 when m1 + m2 + m3 = 0
0 otherwise

. (13)

Although the expression may seem rather complex, we will focus on the numerical
evaluation of the ratio of factorial functions. We define the x-vector components as follows:

x(1) = j1 + j2 − j3, x(2) = j1 − j2 + j3, x(3) = −j1 + j2 + j3,

x(4) = j1 + m1, x(5) = j1 − m1, x(6) = j2 + m2, x(7) = j2 − m2,

x(8) = j3 + m3, x(9) = j3 − m3

x(10) = j1 + j2 + j3 + 1, x(11) = k, x(12) = j1 + j2 − j3 − k, x(13) = j1 − m1 − k,

x(14) = j2 + m2 − k, x(15) = j3 − j2 + m1 + k, x(16) = j3 − j1 + m1 + k.

The correspondent ξ vector is as follows:

ξ = [1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2,−1/2,−1,−1,−1,−1,−1,−1].

The numerical results can be compared to those presented in a previous work by
Xu [7]. In [7], the values of the Wigner 3-j symbols are obtained by applying an iterative
method, which is much more complex than the one presented here.

To provide an example of the convenience of the proposed algorithm, we consider the
following computation: (

260 280 j3
228 268 −496

)
, (14)

where j3 ranges from 496 to 540, and the results are presented in Figure 1. In Figure 1a,
values of the Wigner 3-j symbol in (14), retrieved by means of the PIM (solid line), are
plotted versus values of j3 and compared with those retrieved by Xu’s method [7] (circle
markers): the two sets of plotted values match with a high precision. Figure 1b reports
values of the maximum relative error between the results reported in Figure 1a, retrieved
by the two methods, plotted versus values of j3: the relative error keeps very low in
the interval of values of j3 under analysis. A Matlab Code for the Evaluation Wigner 3-j
symbols is reported in the Supplementary Materials, provided along with the present
paper. Regarding the computational speed, Xu’s method is still hindered by the necessity to
retrieve the factorial of large numbers. The results of Wigner3-j coefficients, presented in his
papers, are retrieved by implementing a very complex algorithm in FORTRAN code running
on a workstation. Xu points out that the computational time, when jmax(n) approaches the
value of 80, results in approximately 30 h. When applying the PIM, the computational load
is extremely reduced.The typical evaluation times do not exceed a tenth of a second on a
commercial PC running interpreted-language MATLAB code, even for orders jmax(n) much
larger than 80. Such an improvement in numerical performance can be reasonably claimed,
even taking into consideration the technological evolution of computers in 25 years.
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(a) (b)
Figure 1. Comparison of the computation of the Wigner 3-j symbol using different algorithms.
(a) Values of the Wigner 3-j symbol in (14), obtained by means of the PIM (solid line), are plotted
versus values of j3 and compared to those retrieved by Xu’s method (circle markers). (b) Values of
the relative error between the results reported in (a), retrieved by the two methods, are plotted versus
values of j3: the relative error keeps less than 5 × 10−9.

3.2. Winger D-Function

The expression of the Wigner D-function, available in [13], is as follows:

dS
mn(θ) =

√
(s + m)!(s − m)!(s + n)!(s − n)!

×
kmax

∑
k=kmin

(−1)k

(
cos 1

2 θ
)2s−2k+m−n(

sin 1
2 θ

)2k−m+n

k!(s + m − k)!(s − n − k)!(n − m + k)!

(15)

where kmin = max(0, m − n), and kmax = min(s + m, s − n).
To apply the proposed algorithm, we define a x vector, as previously obtained:

x(1) = s + m, x(2) = s − m, x(3) = s + n, x(4) = s − n,

x(5) = k, x(6) = s + m − k, x(7) = s − n − k, x(8) = n − m + k,

and define a correspondent ξ vector:

ξ = [1/2, 1/2, 1/2, 1/2,−1,−1,−1,−1].

The results of PIM can be compared with the analytical results from [14].

d4
0,0(θ) =

1
8

(
3 − 30 cos2 θ + 35 cos4 θ

)
(16)

d4
2,2(θ) =

1
4
(1 + cos θ)2

(
1 − 7 cos θ + 7 cos2 θ

)
(17)

d4
2,−2(θ) =

1
4
(1 − cos θ)2

(
1 + 7 cos θ + 7 cos2 θ

)
(18)

The results are presented in Figure 2. In Figure 2a, the values of Wigner d4
0,0, d4

2,2, and
d4

2,−2 functions retrieved by numerical computations (solid line) are plotted versus values
of θ and compared with the analytical results (circle markers). Figure 2b reports the values
of the maximum relative error between the results reported in Figure 2a, retreived by the
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two methods, plotted versus the values of θ: the relative error remains very low in the
interval of values of θ under analysis.

(a) (b)
Figure 2. Comparison of the computation of the Wigner D-function using different algorithms.
(a) Values of Wigner d4

0,0, d4
2,2, and d4

2,−2 functions obtained by means of the PIM are plotted versus
the values of θ and compared with corresponding values retrieved by the analytical results. (b) Values
of the relative error between the results reported in (a), retrieved by the two methods, are plotted
versus values of θ. The relative error remains less than 1 × 10−15.

3.3. Gaunt Coefficient

The expression of the Gaunt coefficient, available in [8], is as follows:

a(m, n, µ, ν, p) =(−1)m+µ(2p + 1)
[
(n + m)!(ν + µ)!(p − m − µ)!
(n − m)!(ν − µ)!(p + m + µ)!

]1/2

×
(

n ν p
0 0 0

)(
n ν p
m µ −m − µ

)
,

(19)

In Equation (19), the evaluation of the two Wigner 3-j symbols and the factor in square
brackets may be performed according to the procedure explained previously. The results
are presented in Figure 3. In Figure 3a, the values of the Gaunt coefficient retrieved by the
PIM are plotted versus the values of n = ν and compared with those retrieved by Xu’s
method. The values of other parameters are m = 1, µ = −1, and p = n + ν. In Figure 3b,
the values of the relative error between the results reported in Figure 3a, retrieved by the
two methods, are plotted versus values of n = ν: the relative error remains very low for
the interval values of n = ν under analysis.

3.4. Vector Translation Coefficients

The expression of the Vector Translation Coefficients, available in [7], is as follows:

Al j
−mnµν =(−1)m (2ν + 1)(n − m)!(ν − µ)!

2n(n + 1)(n + m)!(ν + µ)!
exp

[
i(µ + m)ϕl j

]
×

qmax

∑
q=0

ip[n(n + 1) + ν(ν + 1)− p(p + 1)]aq

×

 h(1)p

(
kdl j

)
jp

(
kdl j

) Pµ+m
p

(
cos θl j

) (
r ≤ dl j
r > dl j

)
,

(20)
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Bl j
−mnµν =(−1)m+1 (2ν + 1)(n − m)!(ν − µ)!

2n(n + 1)(n + m)!(ν + µ)!
exp

[
i(µ + m)ϕl j

]
×

Qmax

∑
q=1

ip+1
{[

(p + 1)2 − (n − ν)2
][
(n + ν + 1)2 − (p + 1)2

]}1/2

× b(m, n, µ, ν, p + 1, p)

 h(1)p+1

(
kdl j

)
jp+1

(
kdl j

) Pµ+m
p+1

(
cos θl j

) (
r ≤ dl j
r > dl j

)
,

(21)

where

Qmax =min[n, ν, (n + ν + 1 − |m + µ|)/2],

b(m, n, µ, ν, p + 1, p) =(−1)µ+m(2p + 3)
[
(n + m)!(ν + µ)!(p − m − µ + 1)!
(n − m)!(ν − µ)!(p + m + µ + 1)!

]1/2

×
(

n ν p + 1
m µ −m − µ

)(
n ν p
0 0 0

)
.

(22)

(a) (b)
Figure 3. (a) Values of the Gaunt coefficient a(m, n, µ, ν, p), retrieved by PIM, are plotted versus the
values of n = ν and compared with those retrieved by Xu’s method. The values of other parameters
are m = 1, µ = −1, and p = n + ν. (b) Values of the relative error between the results reported in (a),
retrieved by the two methods, are plotted versus the values of n = ν: the relative error keeps less
than 5 × 10−11.

In Equations (20) and (21), k is the wavenumber and dij, θij, ϕij are the spherical
coordinates of the origin of the jth coordinate system in the lth coordinate system. Note that
Equation (22) involves the use of the Gaunt coefficient. A comparison can be carried out
between Xu’s results, presented in [7], where (kdij, θij, ϕij) = (2, 0.5, 0.5), results are reported

in Table 1. In particular, when m = −µ and n = ν, values Bl j
mnµν(kdij, θij, ϕij), obtained by

our method, are different from Xu’s. In [9], Xu reported a difference between the results of
his method and the results retrieved by other methods, without indicating which results
are correct: yet, the author points out that his method evidently failed to retrieve the value
of coefficient B for some specific values of the parameters (m, n, µ, ν). Computing the
Vector Translation Coefficients B, in cases in which Xu’s method cannot provide the correct
answer, e.g., when (m, n, µ, ν) = (0, 10, 0, 10), PIM still retrieves reasonably reliable values,
although we could not perform a comparison with the previous results, owing to the small
amount of publications on this specific topic. It is worth noting that the incorrect results
for A and B, reported in the literature, were due to errors in the calculation methods of
the Wigner 3-j symbol. Although the values of the parameters under consideration may
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be relatively small, the accumulation of small errors may jeopardize the reliability and
stability of the numerical solution of complex scattering problems, typically relying on the
computation of a very large amount of such coefficient values.

Table 1. Comparison between the values of the Vector Translation Coefficients retreived by Xu’s
method [7] and the PIM for (kdij, θij, ϕij) = (2, 0.5, 0.5) and different values of m, n, µ, and ν parameters.

Alj
mnµν(kdij, θij, ϕij)

XU PIM
m n µ ν Real Imag Real Imag
8 10 −9 12 3.663964990 × 1034 −2.762412192 × 1034 3.663965099 × 1034 −2.762412274 × 1034

0 10 0 10 2.969682019 × 10−1 −1.928601440 × 1017 2.969682108 × 10−1 −1.928601498 × 1017

−2 11 3 9 7.726121583 × 1011 1.034255820 × 1012 7.726121813 × 1011 1.034255850 × 1012

10 18 15 22 −6.206840651 × 1035 −8.308775621 × 1035 −6.206840836 × 1035 −8.308775868 × 1035

36 36 −38 38 4.146334728 × 10190 −4.931584782 × 10190 4.146334852 × 10190 −4.931584929 × 10190

Blj
mnµν(kdij, θij, ϕij)

XU PIM
m n µ ν Real Imag Real Imag
8 10 −9 12 −8.370892023 × 1031 −1.110285257 × 1031 −8.370892272 × 1031 −1.110285290 × 1032

0 10 0 10 0.000000000 × 100 0.000000000 × 100 −7.341232630 × 10−4 −1.492552121 × 10−18

−2 11 3 9 1.222239141 × 1010 9.130398908 × 109 1.222239177 × 1010 −9.130399180 × 109

10 18 15 22 −3.610252125 × 1034 2.696938836 × 1034 −3.610252233 × 1034 2.696938917 × 1034

36 36 −38 38 0.000000000 × 100 0.000000000 × 100 0.000000000 × 100 0.000000000 × 100

4. Conclusions

In this paper, we present a novel approach for the solution of many numerically chal-
lenging computational problems in which the presence of high-valued factorial functions,
in the numerator and denominator of an expression, exceed any reasonable computational
limit, resulting in a computer-memory overflow or the loss of numerical precision. The
proposed PIM approach, based on the evaluation of the series expansions, is applicable to
the calculation of ratios of factorial terms, each one raised to a specific rational exponent
and, which is proven to be extremely useful for the computation of the Wigner 3-j symbols,
the Wigner D-function, and the Gaunt coefficient. The method is fast, reliable, and easily
implementable in code, with the key code requiring only around 30 lines. Computational
times are extremely reduced even in the evaluation of more complex functions, such as
Vector Translation Coefficients A and B. Advantages are apparent in many other cases,
such as the evaluation of the spherical Hankel functions, finding its straightforward ap-
plication in the numerical solution of electromagnetic scattering problems. In this case,
the series-expansion truncation criterion imposes a heavy computational toll when the
length of the incident wave is much smaller than the size of the scatterer. By applying the
proposed method, computational limitations may be easily overcome, achieving a very
high numerical precision [15].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/photonics11121155/s1, S1.1: Matlab Code for the Evaluation of
the quantity in Equation (9); S1.2: Matlab Code for the Evaluation of the Wigner 3-j symbols.
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