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Short-Term Wind Speed Forecasting 
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and Wavelet Packet Decomposition 
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Abstract Wind speed is one of the most vital, imperative meteorological parameters, 
thus the prediction of which is of fundamental importance in the studies related to 
energy management, building construction, damages caused by strong winds, aquatic 
needs of power plants, the prevalence and spread of diseases, snowmelt, and air 
pollution. Due to the discrete and nonlinear structure of wind speed, wind speed 
forecasting at regular intervals is a crucial problem. In this regard, a wide variety of 
prediction methods have been applied. So far, many activities have been done in order 
to make optimal use of renewable energy sources such as wind, which have led to the 
present diverse types of wind speed and strength measuring methods in the various 
geographical locations. In this paper, a novel forecasting model based on hybrid 
neural networks (HNNs) and wavelet packet decomposition (WPD) processor has 
been proposed to predict wind speed. Considering this scenario, the accuracy of the 
proposed method is compared with other wind speed prediction methods to ensure 
performance improvement. 
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7.1 Introduction 

Energy formed a plethora of necessities of human life in the past and present, but 
it will also have a more paramount role in a future life; therefore, it is logical to 
be one of the human concerns (Blaabjerg and Liserre 2012). Fossil resources, the 
first and foremost energy source, are dwindling; moreover, their production costs, 
transmission, and distribution are enlarging. As a result, they may not be reliable 
sources of energy anymore and do not have ample potential to meet all human needs 
(Razmjoo et al. 2021). All these reasons have provoked researchers into offering 
new methods of supplying energy (Masters 2013). Of particular, new sources of 
supplying energy are solar, wind, wave, and water, but the problem faced up using 
these resources is random changes, such as changes in wind speed, water Debi, 
solar radiation intensity, which lead generated power to be partially unpredictable 
and unreliable. However, from any angle, the benefits of these clean energy sources 
outweigh the disadvantages. As has been mentioned earlier, wind is one of the most 
critical renewable sources of energy. Availability and permanency are two key factors 
leading researchers and industrial owners to replace fire with clean electrical energy 
(Erdem and Shi 2011; Jeon and Taylor 2012). This source of energy is currently 
one of the strategic products in the commercial energy markets. According to the 
collected data, about 2.3% of the world’s electricity consumption is generated using 
wind energy (Torres et al. 2005; Zhao et al. 2012; Khalid and Savkin 2012). The use 
of wind power is growing in all parts of the world, and it has been predicted that by 
2030 it will account for nearly 30% of world electricity production (Bhaskar et al. 
2012; Salonen et al. 2011; Kusiak and Li 2010). 

Thus, the use of advanced methods in maintaining the health of wind turbines, 
including predicting changes in wind speed, is an integral part of studies in this field. 

Not only does a wind turbine failure increase maintenance costs, but also it reduces 
power generation. In order to generate effective power, the performance of the wind 
turbine must be checked by the status monitoring system. One of the critical perfor-
mance parameters along power and step screw is wind speed, according to which 
Condition Monitoring System (CMS) results should be analyzed (Ackermann 2005; 
Heydari et al. 2021a). Some reasons representing the importance of wind speed 
prediction are the maintenance of wind turbine units, power generation schedule, 
and energy recovery and storage plan. 

In (Torres et al. 2005), the Autoregressive Moving Average (ARMA) model has 
been presented in order to predict the hourly average wind speed. In (Bhaskar et al. 
2012), the adaptive and wavelet neural network model has been provided in order 
to predict wind speed based on NWP information. Zhang et al. developed a new 
combined intelligent forecasting model based on multivariate data secondary decom-
position approach and deep learning method in order to predict wind speed (Zhang 
et al. 2021). Heydari et al. presented a novel combined short-term wind forecasting 
model using metaheuristic optimization algorithm and deep learning neural network 
(Heydari et al. 2021b). Neshat et al. (2021) provided a machine learning-based model
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in order to predict short-term wind speed. The model is applied for the Lillgrund 
offshore wind farm in Sweden. 

In this research, we have used the HNN method and WPD processor to predict 
wind speed. Three types of neural networks have been used in HNN neural network 
training based on three different algorithms which include Levenberg–Marquardt 
(LM), Broyden–Fletcher–Goldfarb–Shanno (BFGS), and Bayesian Regularization 
(BR) algorithms. 

According to previous studies, with the proper selection of perceptron neural 
network training methods, the HNN neural network can be trained better than a 
single neural network. The best results for related neural networks are those that use 
the LM algorithm on the first step. LM is a fast training algorithm, so this algorithm 
should be selected as the first neural network in the hybrid neural network. On the 
second step of the HNN neural network, in order to identify better weights and biases 
in the search space, the BFGS algorithm was used to train the neural network, which 
caused the BFGS algorithm to start the training process from a suitable point, and 
was able to find the appropriate and minimal answers in the search space. In the 
proposed method, it is better to use the BR algorithm as the last neural network in 
order to adjust the parameters and obtain the maximum training efficiency. 

7.2 Methods 

7.2.1 Neural Network 

In recent years, the use of artificial intelligence to solve complex and nonlinear prob-
lems such as classification and prediction has expanded. Artificial neural networks 
can identify the nonlinear relationships between variables through the training 
process (Yu 2010). In general, methods based on artificial intelligence are more 
accurate than conventional statistical methods. 

One of the most well-known neural networks is the multilayer perceptron (MLP) 
neural network, which usually has a feedforward architecture. The MLP network 
consists of input and output layers and at least one hidden layer. Each of these 
layers has several neurons and includes processing units, and each unit is completely 
connected to the units of the next layer by weight (Wij) (Alavi et al.  2010). Y output 
is obtained by transferring the sum of previous outputs and mapping by an activation 
function. 

7.2.2 Wavelet Packet Decomposition 

Wavelet packet analysis can be seen as a particular type of wavelet analysis. WPD 
is a classic signal processing method, which can break down the signal into suitable
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components. The level of wavelet analysis can profoundly affect WPD performance. 
WPD consists of two types: continuous wavelet transform and discrete wavelet trans-
form. In this method, the general stage divides the approximation coefficients into 
two parts. After dividing the approximation coefficient vector and the detail coeffi-
cient vector, we obtain both on a large scale. Missing information is taken between 
two consecutive approximations in detail coefficients. Then, the next step involves 
dividing the vector of the new coefficient. Sequential details are never reanalyzed. 
However, in the corresponding wavelet packet, each detail coefficient vector is also 
decomposed into two parts using the same approximation vector approach. 

7.2.3 Proposed Intelligent Forecasting Model 

In this study, a suitable combination of MLP neural networks is utilized to design the 
prediction model. The HNN prediction model can significantly improve the training 
capability of neural networks in modeling a complex process (including wind speed 
prediction). In addition, the use of several structures (parallel and consecutive) to 
combine neural networks with more capabilities is described in (Amjady et al. 2010). 

This study proposes a new prediction model to wind speed forecasting based 
on neural networks and noise reduction data. Since wavelet transform works as a 
preprocessing method, the data are decomposed by using wavelet transform in the 
first step. In the following step, decomposed data feed into neural networks as input 
data. 

Figure 7.1 shows the process of the wind speed prediction according to the 
proposed method. As shown in the figure, each level of the HNN prediction model 
has been arranged by particular types of neural networks. Since all neural networks 
have the same number of input data, layers, and neurons in the proposed method, 
they can use the weights and biases values of the previous. Therefore, each neural 
network improves the knowledge gained from the previous one. In addition, the 
second set of outcomes transmitted between neural networks is the predicted value 
of the target variable. The second and third neural networks also receive the initial 
predicted value of the target variable as input, which increases the neural network 
prediction accuracy.

In the prediction models using wavelet transform as a noise reduction method, 
the process of noise reduction has three phases (see Fig. 7.2).

The first step of the noise reduction process is converting the raw data to decom-
posed layers by wavelet, called function analysis. Each part of the decomposed signal 
can be considered as a wavelet coefficient and a scale factor. By applying wavelet and 
scaling filters to the main time series at each step, wavelet and scaling coefficients 
are obtained, which are repeated in the form of the following pyramidal algorithm 
(Fig. 7.3).

In fact, in wavelet analysis, data are divided into two subsets of high-frequency 
and low-frequency data. The sparse-frequency data obtained by applying the father 
wavelet wave over the main series reflect the main features of the series. Much data
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Fig. 7.1 Flowchart of the proposed method

Fig. 7.2 Noise reduction by wavelet transform
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Fig. 7.3 Pyramidal algorithm for wavelet analysis, S: main data; A[i] is the low-pass approximation 
coefficients, D[i] is the high-pass detail coefficients

are also generated by applying the mother wavelet on the main series, often called 
noise. The main purpose of wavelet decomposition is to isolate the main features of 
the series from the noise. 

7.3 Case Study 

To evaluate the proposed model, 365 days of wind speed data from 1/3/2019 to 
28/3/2020 were collected, all of which had a 5-min interval. Collected data consist 
of 12 samples per hour which mean 288 samples per day. On average, one data is 
extracted and used as the representative of that day. Collected data were divided into 
two categories: training and test. About 30% (120 days) of data are allocated for the 
test. Test data are used to evaluate the model performance. 

7.4 Results and Discussion 

The correlation of the obtained values by a model with the observed values (referred 
to as model evaluation or validation) is usually done by double comparisons between 
the simulated values and the observed values. There is the efficiency of the models 
and their validation, which can be determined by the Root Mean Square Deviation 
(RMSE), Mean Absolute Error (MAE), and Index of Agreement (IA). 

RMSE =
/Σn 

i=1(Pi − Oi )
2 

n 
(7.1)
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Table 7.1 Specifications of the artificial neural network 

Input method Hidden layers Neurons Learning steps Learning rate 

Neural network 2 10 150 0.001 

MAE =
Σn 

i=1|yi − xi | 
n 

(7.2) 

IA = 1 −
Σn 

i=1(oi − pi )2Σn 
i=1

(||Pi − O|| + ||Oi − O||)2 (7.3) 

First, we normalized the data to [0–1] range. After applying WPD, we used a 2db 
wavelength to convert the wavelet. We took three wavelet steps from the data. 

Wavelet steps: in the first step, we took the wavelet from the main data, which has 
two output signals including upper bound and lower bound. In comparison with the 
original signal, these two signals are completely brand-new ones. 

In the next step, the first step instrument applies two times on the output signals 
of the previous step. As a result, we have eight signals after step two, and in the third, 
the neural networks were trained using 8% of data for the testing phase. 

Each neural networks have two hidden layers with up to ten neurons in each layer. 
The characteristics of the artificial neural network are given in Table 7.1. 

We trained neural networks with three various algorithms: BR, BFG, and LM 
(Table 7.2). Finally, we reversed the output network results from wavelet transform 
and measured the coefficients of determination (R2), mean squared error (RMSE), 
absolute mean error (MAE), and agreement index (IA) using real data. 

In the presented tables, the values related to different scales are calculated and 
displayed to examine the proposed combinations of networks and their performance 
differences according to the activation function. As shown in Table 7.3, using  the  
TANSIG activation function, considering the order of placement of the networks, 
the lowest amount of RMSE was related to HNN2, which had the best performance 
with the proposed order. As can be seen, the best arrangement of the networks was 
1-10-10-1 and had an equal value of 2.432. Considering the corresponding values of

Table 7.2 Different 
proposed HNNs for review in 
research 

First MLP + LM, then MLP + BR, and finally MLP 
+ BFG 

HNN(1) 

First MLP + LM, then MLP + BFG, and finally 
MLP + BR 

HNN(2) 

First MLP + BFG, then MLP + BR, and finally MLP 
+ LM 

HNN(3) 

First MLP + BR, then MLP + BFG, and finally MLP 
+ LM 

HNN(4) 

MLP + LM only HNN(5) 
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Table 7.3 Comparison of the proposed method with RMSE 

Activation function Network sequence HNN(1) HNN(2) HNN(3) HNN(4) HNN(5) 

Tansig 1-3-3-1 3.822 2.801 5.989 4.448 4.182 

1-5-5-1 3.551 2.799 6.062 4.430 4.224 

1-10-10-1 3.101 2.432 5.745 4.210 4.099 

1-15-15-1 3.220 2.501 5.920 4.220 4.120 

Logsig 1-3-3-1 3.534 2.821 5.997 4.966 4.228 

1-5-5-1 3.618 3.027 6.066 4.413 4.210 

1-10-10-1 3.321 2.643 5.832 4.401 4.110 

1-15-15-1 3.401 2.765 5.899 4.409 4.102 

the LOGSIG function, the same result is true and this network had the lowest value of 
RMSE in the same order. The corresponding value for this arrangement was 2.643. 

Table 7.4 shows the MAE scales. The figures obtained from these calculations 
show the same results as the scale in Table 7.3. The corresponding MAE values for 
the HNN2 network with the TANSIG activation function are the lowest at 1.743. 
Also, using the LOGSIG activation function has the best efficiency and an equal 
value to 1.899 compared to other suggested items. As a result, the best-case scenario 
is HNN2 with the order 1-10-10-1 and using the TANSIG function. 

The calculation of the determination coefficient values is given in Table 7.5. As  
expected from the review of the previous tables, the highest value for this scale was 
equal to 0.863 and was related to HNN2 with the order of 1-10-10-1 and the TANSIG 
function. In the continuation of the values, it can be seen that in the calculations 
related to the LOGSIG activation function, the corresponding values in the coefficient 
of determination for the two sequences 1-10-10-1 and 1-15-15-1 were similar and 
equal to 0.853. The lowest value was related to HNN3 with TANSIG activation 
function and the proposed order was 1-3-3-1.

Table 7.6 examines the values corresponding to IA. The values calculated for this 
parameter are in line with the previous findings. The highest value is related to HNN2

Table 7.4 Comparison of the proposed method with the MAE 

Activation function Network sequence HNN(1) HNN(2) HNN(3) HNN(4) HNN(5) 

Tansig 1-3-3-1 2.221 1.945 3.131 2.908 2.593 

1-5-5-1 2.135 1.944 3.273 2.955 2.395 

1-10-10-1 2.111 1.743 3.023 2.899 2.274 

1-15-15-1 2.104 1.867 3.100 2.903 2.145 

Logsig 1-3-3-1 2.151 1.913 3.303 2.965 2.409 

1-5-5-1 2.110 1.982 3.361 2.937 2.452 

1-10-10-1 2.132 1.899 3.198 2.910 2.346 

1-15-15-1 2.134 1.901 3.143 2.910 2.345 
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Table 7.5 Comparison of the proposed method with the R2 

Activation function Network sequence HNN(1) HNN(2) HNN(3) HNN(4) HNN(5) 

Tansig 1-3-3-1 0.798 0.805 0.594 0.696 0.755 

1-5-5-1 0.749 0.804 0.693 0.721 0.753 

1-10-10-1 0789 0.863 0.701 0.756 0.769 

1-15-15-1 0.788 0.834 0.699 0.765 0.771 

Logsig 1-3-3-1 0.731 0.843 0.645 0.698 0.735 

1-5-5-1 0.716 0.821 0.690 0.681 0.718 

1-10-10-1 0.728 0.853 0.687 0.702 0.727 

1-15-15-1 0.734 0.853 0.698 0.703 0.733

Table 7.6 Comparison of the proposed method with IA 

Activation function Network sequence HNN(1) HNN(2) HNN(3) HNN(4) HNN(5) 

Tansig 1-3-3-1 0.916 0.954 0.892 0.893 0.915 

1-5-5-1 0.912 0.954 0.906 0.909 0.904 

1-10-10-1 0.943 0.994 0.918 0.911 0.921 

1-15-15-1 0.940 0.992 0.911 0.908 0.922 

Logsig 1-3-3-1 0.912 0.954 0.896 0.908 0.900 

1-5-5-1 0.915 0.946 0.906 0.904 0.897 

1-10-10-1 0.921 0.967 0.910 0.909 0.919 

1-15-15-1 0.919 0.966 0.911 0.908 0.918 

with TANSIG activation function and order 1-10-10-1 and shows a value equal to 
0.994. After that, the best and highest value of this index is related to the same 
network with the order of 1-15-15-1 and has a difference of 0.002. The lowest value 
in the calculations of this scale was similarly related to HNN3 with other TANSIG 
activation functions and the proposed order of 1-3-3-1. 

Comparison of the output results of various neural network arrangements with 
error measurement criteria shows that the proposed model has the acceptable ability 
to predict wind speed. As shown in Tables 7.3, 7.4, 7.5, and 7.6 the most effective 
ANN model in terms of performance is the arrangement (1-10-1), sigmoid tangent 
function, and HNN hybrid algorithm (1) on Kerman time series data. 

Different criteria were used to measure the model: coefficient of determination 
(R2), squared mean square error (RMSE), absolute mean error (MAE), and agreement 
index (IA). All the results showed that the proposed method performed very well. 
In particular, the excellent performance of this method in long-range forecasting 
will be a clear vision for the Condition Monitoring System (CMS) to prevent sudden 
events and damage to wind turbines and ensure the health of the turbine. This reduces 
turbine shutdown and reduces costs and increases production capacity.
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7.5 Conclusions 

At first, wind speeds are predicted for future using a new combined intelligent model. 
For this purpose, three feedforward networks have been used. This type of wind 

speed prediction can be very efficient in the Iranian wind energy industry, and this 
research in this field is not similar in the world. The proposed model was evaluated 
with various network models, functions, and different numbers of neurons to extract 
optimal network structure. Furthermore, training and validation data were used to 
evaluate and compare diverse network structures’ performance. The proposed model 
also was trained with training algorithms BFGS, LM, and BR. As the results show, 
with the right Perceptron neural network training methods, the HNN neural network 
can be trained better than a single neural network. As been explained before, the 
best results for class neural networks are those using the first-class LM algorithm. 
Training a Perceptron neural network with an LM algorithm leads training error to 
reduce quickly since the LM algorithm is reasonably fast. Therefore, it is logical to 
select as the training algorithm of the first level neural network in the hybrid model. 
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