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Abstract
We propose a novel Model Order Reduction framework that is able to handle solutions
of hyperbolic problems characterized by multiple travelling discontinuities. By means of
an optimization based approach, we introduce suitable calibration maps that allow us to
transform the original solution manifold into a lower dimensional one. The novelty of the
methodology is represented by the fact that the optimization process does not require the
knowledge of the discontinuities location. The optimization can be carried out simply by
choosing some reference control points, thus avoiding the use of some implicit shock tracking
techniques, which would translate into an increased computational effort during the offline
phase. In the online phase, we rely on a non-intrusive approach, where the coefficients of
the projection of the reduced order solution onto the reduced space are recovered by means
of an Artificial Neural Network. To validate the methodology, we present numerical results
for the 1D Sod shock tube problem, for the 2D double Mach reflection problem, also in the
parametric case, and for the triple point problem.

Keywords Hyperbolic problems · Multiple travelling discontinuities · Calibration map ·
Neural network · Model order reduction
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μ The physical parameter(s)
μ μ = (t, μ) (parametric case) or μ = t (non-parametric case)
Pphys The domain of μ the physical parameter
P The domain of μ the time and physical parameters
M The number of control points
w(μ) The vector of M control points in �

w(μ) The vector M reference control points in R
α The multiindex α = (α1, . . . , αd)

wk
α The k-th coordinate of the control point w(μ)α

θ(μ) The vector of the free coordinates of the control point w(μ)−→
θ The matrix of the free coordinates.

−→
θ ∈ R

N f ew × Q, and
−→
θ [i, :] = θ(μ̃i ),

i = 1, . . . , N f ew.
T [·] The family of geometrical transformation maps. T [·] ∈ C1(�M , C1(R,�)).
ρ(·) The reference solution for the calibration in the self-similar setting
ρ̂(·) The calibrated snapshot
NPOD
few The dimension of the linear space VPOD used for the calibration in the quasi-self-

similar setting
VPOD The linear space considered in the residual function to perform the projection

error for the minimization in the quasi-self-similar case, instead of the use of the
reference solution

Mρ The original solution manifold (for the density ρ)
M̂ρ The calibrated solution manifold (for the density ρ)
{�̂i }Ni=1 The set of N reduced basis functions obtained by POD-compression of M̂ρ

ρ̂
N
(μ) The vector of the L2-projection coefficients of the calibrated snapshot ρ̂(μ) onto

the linear space spanned by {�̂i }Ni=1

1 Introduction

The goal of MOR techniques [1–3], which are particularly suited for the real-time computa-
tions and many-query context, is to obtain efficient and reliable approximations of solutions
of high dimensional systems of partial differential equations (PDEs). Let us consider the
approximate solution u(t;μ) ∈ L2(�) of a parametrized PDE, with � ⊂ R

d , with the
parameter μ ∈ Pphys ⊂ R

s and with time t ∈ [0, t f ]: for the spatial discretization one can
consider, for instance, the Finite Volume (FV) discretization. We introduce the solution man-
ifold related to this parametric PDE: M = {u(t;μ) ∈ VN , μ ∈ Pphys, t ∈ [0, t f ]}, where
VN is a suitable functional space defined by the chosen spatial discretization. The key idea
behind MOR is to representMwith a finite dimensional linear space VN , such that N � N ,
where N = dimVN and N = dimVN . To find the lower dimensional space VN , one can
use the well known Proper Orthogonal Decomposition (POD) strategy that, given in input
a set of discrete solutions (obtained, for example, with the FV method), is able to extract
a set of small cardinality N , which contains the so-called reduced basis functions that best
approximate the manifold. A pivotal aspect for the efficiency of the MOR is the ability of the
POD of compressing the discrete solution manifoldM: this concept is strictly related to the
definition of Kolmogorov N -width of M and, ultimately, to the reducibility of the problem
of interest.
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The Kolmogorov N-width dN of M is defined as

dN (M, VN ) = inf
VN⊂VN
dimVN=N

sup
f ∈M

inf
g∈VN

|| f − g||, (1)

where ||·|| is a suitable norm in VN . Definition (1) describes in a rigorous mathematical
setting the capability of finite dimensional linear subspaces VN ⊆ V of reproducing any
element in M, that is, any discrete solution of the problem of interest. Therefore, the faster
dN decays the more efficient a linear MOR will be for such a problem, as N grows. Some
rigorous bounds for dN , for particular classes of problems, are available in literature [4, 5];
as an alternative, one can look at the rate of decay of the eigenvalues λk returned by the POD
on M.

Despite the capability of standardMOR techniques to handle a vast number of applications,
problems advecting local structures still represent a challenge for the MOR community.
Indeed, for such problems the decay of the Kolmogorov N -width is slow, see for example
[6].As a result, standardMORstruggles to suitably reproduce steep features, such as solutions
with (multiple) travelling shocks. For this reason, in the last decade a great number of works
appeared in the literature, offering numerous approaches to deal with advection dominated
problems. We mention the method of freezing [7], the shifted POD [8] (also in combination
with the use of neural networks [9]), the generation of advectionmodes bymeans of an optimal
mass transport problem [10–13], L1 minimization [14], the calibration method introduced in
[15, 16], Lagrangian basedMOR techniques [17, 18], the preprocessing of the snapshots used
in [19, 20], the registration method [21–23], adaptive basis methods [24], implicit feature
tracking [25] and displacement interpolation [26, 27].Next to thesemore classical techniques,
some nonlinear approaches have been lately studied starting from convolutional autoencoders
neural network based approaches for learning the solution manifold [28, 29], passing through
graph neural networks autoencoders [30] to graph neural network to perform the limit to
vanishing viscosity [31] and entropy-stable rational quadratic manifolds [32]. Motivated by
the interest that MOR for transport dominated problems sparks in the applied mathematics
community, the goal of this work is to propose a calibration based reduced order algorithm
that can be used to gain significant speedup in the simulations of solutions of hyperbolic
PDEs. The proposed methodology will avoid the use of implicit feature tracking [25], with
the goal of not increasing the computational costs of the offline phase that is performed
explicitly. The framework is very similar to the calibration/registration approach proposed
in [15, 21, 22] with novelties in the calibration process and in the range of applicability of
the method. Indeed, our methodology has a more physical intuition as it is based on the
interpolation of some calibration points rather than on more abstract interpolation functions.
Moreover, the proposed applications range on a novel paradigm, where parametric time-
dependent solutions widely vary, with large deformations of the solutions structures. To the
knowledge of the authors, this is the first time that solutions with such a varying behavior
were successfully tackled with a model order reduction technique.

In this work, we will focus on time-dependent hyperbolic problems, whose solutions are
(quasi) self-similar: the formal definition of (quasi) self-similar solution will be given in
Sect. 1.1. In particular, we want to study problems where multiple structures travel along
the domain with different speeds. This is typical for hyperbolic problems, where shocks,
rarefactions and other discontinuities are generated and travel along the domain. The novelties
of this work, in comparison to the state of the art [22], lie in two key aspects. First, our
optimization process operates independently of the solution structure, eliminating the need
for shock detectors or similar tools. Secondly, our method demonstrates a broader range of
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applicability, encompassing problems featuring multiple shocks whose positions undergo
significant variation, sometimes nearly colliding with each other.

The rest of the manuscript is structured as follows. In Sect. 1.1, we introduce the problems
of interest and the definition of self-similarity. In Sect. 2, we define the calibration procedure
and the optimization algorithms. In Sect. 3, we present some geometrical transformations
that interpolate the calibrated points and allow to define the original problem onto a refer-
ence domain where all the structures do not move. In Sect. 4, we describe the combination
of classical MOR techniques with the calibration process. In Sect. 5, we show the good
performances of the proposed reduced order model (ROM) onto one and two dimensional
parametric time–dependent problems and, in Sect. 6, we draw some conclusions. To improve
the readibility of the manuscript, a table with the list of all the mathematical symbols used is
provided at the end of the paper.

1.1 Motivation

We begin by introducing the problem of interest that we will tackle in this manuscript: we
focus here on hyperbolic time–dependent conservation laws. As an example, we turn our
attention to Euler equations, but the same framework can be applied to other conservation
and balance laws. Let � ⊂ R

d , d � 1, be our physical domain. We restrict ourselves
to rectangular domains of the type � = [a1, b1] × · · · × [ad , bd ], with ai , bi ∈ R for
i = 1, . . . , d . The generalization for more complex domains can be performed as in [33].
Let [0, t f ] ⊂ R be the time span of the problem and let μ ∈ P ⊂ R

s+1, s � 0, be the
collection of all parameters (including time). From now on, we will assume that s = 0 in
the non parametric regime, i.e., μ = t and P = [0, t f ], or s � 1 in the parametric regime,
i.e., μ = (μ, t) and P = Pphys × [0, t f ]. The parameteric Euler equations of gas dynamics,
in conservative form, read as follows: find the density ρ : P × � �→ R, the momentum
m : P × � �→ R

d and the total energy E : P × � �→ R such that
⎧
⎪⎪⎨

⎪⎪⎩

∂tρ + ∇x · m = 0 in P × �,

∂tm + ∇x ·
(
m⊗m

ρ
+ p I

)
= 0 in P × �,

∂t E + ∇x ·
(
m
ρ

(E + p)
)

= 0 in P × �,

(2)

where ∇x · is the divergence with respect to x ∈ �, I ∈ R
d×d is the identity matrix and the

pressure p is defined through the following equation of state p = (γ − 1)(E − 0.5|m|2/ρ),
with γ = 1.4 being the adiabatic constant. System (2) is then completed by some proper
initial conditions (IC) and boundary conditions (BC). We will consider as IC some Riemann
problems both in one and two dimensional problems: the Sod shock tube problem [34], the
2D double Mach reflection problem [35] and the triple point problem. In these examples, the
solution of (2) turns out to be self-similar, with features as shocks, contact discontinuities
and rarefaction waves traveling in the physical domain.

Definition 1 LetR ⊂ R
d be a reference domain, which is time (and parameter) independent.

We call self–similar a solution manifold M for which there exists a reference solution ū :
R → R

d and a transformation T−1[μ](·) : � → R such that we have u(μ)(T−1[μ](x)) ≈
ū(x) for all μ ∈ P, ∀x ∈ R. When this condition is not satisfied, but still all solutions in
M = {u(μ)}μ∈P present the same features, with different values of the solution in between
these features, we will call such manifold quasi–self–similar. More precisely,M is quasi–
self–similar if there exists a transformation T such that the transformed solution manifold
M̂ := {u(μ)(T−1[μ](·))} has a fast decay of the Kolmogorov N -width.
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Fig. 1 The density ρ, solution of the Sod shock tube problem at different timesteps, and the corresponding
POD modes (right)

We start by considering a simple 1D Sod shock tube problem, in the non–parametric
regime. Here, � = [0, 1], and the following initial data is considered:

[
ρ u p

]
(t = 0) =

{ [ 1 0 1 ]T if x < 0.5,
[ 0.1 0 0.125 ]T if x > 0.5,

where u : � �→ R
d is the velocity. The initial conditions in conservative variables m and

E can be derived using m = ρu and E = p/(γ − 1) + 1/2|m|2/ρ. Figure1 shows the
density ρ(μ) for the Sod shock tube problem (left), and the corresponding modes (right),
obtained by running a POD on the solution manifold Mρ : the solution of the Sod shock
tube problem is exact, and its analytical expression has been taken from [34]. The density
presents a shock, a contact discontinuity and a rarefaction wave that travel in the domain: as
a consequence, the PODmodes exhibit an highly oscillatory behavior, struggling to correctly
capture the position of themoving features. Still, the solutions are self-similar aswe just need
to transport each feature onto reference positions to make the solutions essentially linearly
dependent. Indeed, as observed in [11], the optimal transport for the density of the Sod 1D
problem would lead to the exact solution, without the need for further ROM techniques.
Nevertheless, we are interested also in higher dimensional problems with more complicated
discontinuity structures. Hence, we will not proceed in the optimal transport direction.

2 Calibration of the Snapshots

We now present the calibration technique that we use to align the different features of our
snapshots, to obtain a solution manifold with a faster decaying Kolmogorov N -width. The
key of the proposed calibration is that it can be used to align different travelling features
(shocks, contact discontinuities, rarefaction waves), without the need to know explicitly the
exact location of these features, as opposed to, for example, what is assumed in [20, 22].
Moreover, we assume to calibrate the density ρ of the Euler system (2), other scalar quantities
depending on the system unknowns, e.g., the entropy, can be equivalently used.

Let R be the reference domain, similarly to what is used in the Arbitrary Lagrangian
Eulerian (ALE) formalism [36], and let� be the physical domain. For everyμ ∈ P ⊂ R

s+1,
we introduce a grid of M = ∏d

i=1 Mi control points that are collected in the vector w(μ) ∈
�M that we use for the calibration. These control points should lead the transformation to
align the different features at different μ. Let α = (α1, . . . , αd) ∈ N

d be a multi-index with
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Fig. 2 Example of a control point grid in 2D with M1 = 3 and M2 = 4 on the reference domain (left) and on
the physical domain (right). Note that the coordinates of the reference control points are the tensor product of
unidirectional control points. We highlight in red the free coordinates of these control points

αi = 1, . . . , Mi .We consider the control pointwα to be tensor product of points in the interval
[ai , bi ] for every dimension i = 1, . . . , d , for example in 2D:wα=(α1,α2) = (w1

α1,α2
,w2

α1,α2
),

see Fig. 2. Each control point w(μ)α can either belong to the physical domain, i.e., w(μ)α ∈
�̊, or to the boundary of the domain, namely w(μ)α ∈ ∂�. If w(μ)α ∈ ∂�, then this point
is constrained for all μ to the boundary hyperplanes where it belongs: this, in turn, sets a
constraint on one (or both) of the coordinates (w1

α1,α2
,w2

α1,α2
). The constrained coordinates

are, hence, not to be optimized and we can discard them in the set of coordinates that we
will optimize. Motivated by this, we introduce θ(w(μ)) ∈ R

Q , that is the row vector of the
Q free coordinates of the control points, with Q � d × M . This vector represents all the
coordinates of the control points that are free tomove during the calibration. In Fig. 2, the free
coordinates of the control points are highlighted in red. We remark that there is a bijection
between w and θ , by definition.

In order to align different features of our set of snapshots, we look for a geometrical
transformation map T : �M × R �→ �, such that the following properties hold true:

• T [·] ∈ C1(�M , C1(R,�));
• ∀μ ∈ P and ∀w(μ) ∈ �M , ∃T−1[w(μ)] : � �→ R such that

T−1[w(μ)](T [w(μ)](x̂)) = x̂ ∀x̂ ∈ R,

T [w(μ)](T−1[w(μ)](x)) = x, for all x ∈ �;
• T−1[·] ∈ C1(�M , C1(�;R)).

The properties are imposed to setup an ALE formulation [21, 36]. Some possibilities for the
geometrical transformation T have been presented in the literature over the past years: among
the others we mention here translation maps, dilatation maps, polynomials and Gordon-
Hall maps, see [15, 21, 36]. We will use some transformations based on Piecewise Cubic
Hermite Interpolation Polynomials (PCHIPs) carefully described in Sect. 3. In order to use
the transformation map T , one needs to find the calibration map w : P �→ �M , such that:

• w(·) ∈ C1(P;�M );
• ρ(μ)(T [w(μ)](x̂))≈ρ(x̂), for all x̂ ∈ R, t ∈ [0, t f ] and for all μ ∈ P , where ρ(·) is a

reference solution of choice.

We are now ready to present a general calibration technique: the ultimate goal is to transform
the solution manifold Mρ so that the POD, applied to the transformed manifold, is more
efficient. In order to achieve this goal, we need to perform the following steps. First of all,
we introduce the reference density ρ, namely a solution of problem (2) for some μ ∈ P .
Once ρ has been chosen, we select M control points w ∈ RM . Now, for any μ ∈ P and
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w(μ) ∈ �M , we can define a geometrical transformation map T [w(μ)] : R �→ � that maps
the reference control points in the reference domain onto the (parametric) control points in
the physical domain, i.e.,

T [w(μ)](wα) = wα(μ) ∀ α.

Once T [w(μ)] has been defined, we can introduce the calibrated snapshot, which is the
pullback of a solution ρ(μ) to the reference domain, i.e.,

ρ̂(μ;w(μ))(·) := ρ(μ)(T [w(μ)](·)) : R → R.

Wewant to stress that, numerically, we rely on twomeshes, one on the physical and one on
the reference domain. In our simulations, these two domains will coincide; this does not mean
that each transformation map leads to a one-to-one correspondence between the degrees of
freedom on the two domains. Hence, we will perform an interpolation of ρ to evaluate ρ̂ at
its degree of freedom. In the numerical simulations, this procedure will bring an error of the
first order of accuracy (as we will use FV approximations).

The map T [w(μ)] is identified by the control points w(μ), which are sought in order to
minimize the following residual function:

R(ρ(μ), θ(w(μ)), ρ) =||ρ̂(μ;w(μ)) − ρ||2L2(R)
+ δ

2

∥
∥∂μw(μ)

∥
∥2

�2(P)

+ α

2
max
x∈�

(
max

{∥
∥∇T [w(μ)](x̂)

∥
∥ ,

∥
∥∇T−1[w(μ)](x)

∥
∥
})

,

(3)

where α and δ are two penalty parameters user defined, and ∂μw(μ) will be defined more
in detail in the algorithmic section. The first term is the one we aim at minimizing, while
the other two are regularization terms that penalizes discontinuities in time of the calibration
points and that regularize the geometrical transformations. We are now ready to present the
calibration technique in two different cases: the self-similar setting, and the quasi self-similar
one.

2.1 Calibration in the Self–Similar Setting

To keep the presentation as general as possible, we consider here the parametric case,
hence μ = (μ, t) ∈ P = Pphys × [0, t f ]. We select a training set of physical parame-
ters {μ1, . . . , μNtrain} = P train

phys ⊂ Pphys and a training set of times {t1, . . . , tNμ} for each

μ ∈ P train
phys . We then denote P train := {μ = (μ, t) : μ ∈ P train

phys and t ∈ [t1, . . . , tNμ ]} ⊂ P .

For each μ ∈ P train, we compute the full order model solution ρ(μ). We then choose as
reference solution ρ = ρ(μ̄): in our numerical tests we will choose μ̄ = (μNtrain , t f ). In
addition to this, we also fix theM reference control pointsw ∈ RM as specified above. Before
introducing the constrained minimization problem, let us recall that there exist a bijection
between θ(w(μ)) and w(μ). For this reason, in order to keep the notation light, from now
on we will denote with θ(μ) the free coordinates θ(w(μ)) of the control points w(μ).
Now, for all μ in the training set, we solve the following constrained minimization problem:

θopt(μ) := min
θ∈RQ

R(ρ(μ), θ; ρ), (4)

subject to the following constraints:

• all the control points are within our physical domain: wα(μ) ∈ � for all α and for all
training parameters μ ∈ P train;
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• det J [w(μ)] > 0, where J [w(μ)] is the Jacobian of the map T [w(μ)]. This constraint
must be checked on a quite fine grid of the physical domain �, we have used the mesh
grid;

• for i = 1, . . . , d: if α j = β j for all j = i and αi < βi , then wi
α < wi

β (see Fig. 2), i.e.,
we never switch the order of the control points on each grid line.

We approximate ∂μ in (3) with the discrete derivative Dμw(μ) defined as:

Dμwi
α(μ) =

⎧
⎨

⎩

0 if wi
α(μ) is not a free coordinate of w(μ);

θq (μ)−θ
opt
q (μneigh(μ))

μ−μneigh(μ)
with q s.t. wi

α(μ) = θq(μ).

In the previous equation, the neighboring parameter μneigh is defined as follows:

μneigh(μ,S) = argmin
ν∈S ||μ − ν||�2(Rp+1),

where S ⊂ P train will contain the parameters for which we have already computed the
optimal θ . If the minimum is not unique, we take one of the minimizers. The definition of the
discrete spatial gradient ∇T in (3) will be specified in Sect. 3 for the specific transformation
map we use.

Problem (4) is solved with the Sequential Least SQuares Programming (SLSQP) method
that is available within the scipy.optimize.minimize library. We solve Problem (4)
for the physical parameter μ ∈ P train

phys for which the solution has more developed structures
(the last in our tests): we start from the final timestep tNμ and we proceed backwards in time.
We then move onto solving Problem (4) for the neighboring parameters. In both physical and
temporal parameters, the rationale is the following: we proceed form the solutions where the
structures that we want calibrate are more developed and we proceed with nearest parameters
until we solve the problem for all the training set P train

phys . The initial guess θ (0)(μ(�, j)) for

μ(�, j) = (μ�, t j ) ∈ P train is the optimal output of the minimization for the closest parameter
already performed. In our tests it will be defined as:

θ (0)(μ(�, j)) =
{

θopt(μ(�, j+1)) if j = 1, . . . , Nμ�
− 1,

θopt(μ(�+1, j)) if j = Nμ�
.

(5)

Algorithm 1 shows the details of the procedure.

Algorithm 1 Calibration for Self–Similar Solution Manifold

1: Input: the reference solution ρ, the control points w ∈ RM and the training solution manifold on the
physical domain {ρ(μ�, t j ) for � = 1, . . . , Ntrain, j = 1, . . . , Nμ�

}.
2: for � = Ntrain, . . . , 1 do
3: for j = Nμ�

, . . . , 1 do
4: Set the initial guess θ (0)(μ(�, j)) as in (5).
5: Solve Problem (4).
6: end for
7: end for
8: Output: the optimal control points wopt(μ(�, j)).

The chosen strategy is not trivially favorable with respect to other ones and it is quite
arbitrary. We have performed different trials in the tests that we have carried out, and we
noticed differences in the sensitivity to this choice. Overall, taking as initial guess the optimal
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Fig. 3 The density ρ(t = 0) for
three different values of the
parameter μ =
[0.8943, 0.1075, 1.0906, 0.0572]
(blue), μ =
[1.0286, 0.1031, 0.7358, 0.0706]
(orange), and μ =
[1.2253, 0.1157, 1.1172, 0.1094]
(green)

solution of a parameter close to the one we want to optimize is always a good strategy, but
open questions remain on which reference configuration ρ to choose and on how spread can
the parameter of the training set be.

For the 1D test cases, the change in the choice of the initial guess was less relevant than
for the 2D cases. Indeed, we could use initial guesses that are quite far away from the exact
one and still obtain very accurate results. For the 2D cases, the choice of the initial guess, and
how spread the training space can be is more relevant. For example, the timesteps used for
the calibration and, hence, the distance between two consecutive parameters and the initial
guess, had a strong impact. We therefore had to calibrate on timesteps that are not too far
away one from the other, in order to obtain smooth and continuous results.

For the 1D test, we perform an analytical study of this choice where the exact solution is
available: the outcome of this study is presented in Sect. 5.1.1.

2.2 Calibration in the Quasi–Self–Similar Setting

To motivate the need of a different algorithm for quasi–self–similar solutions, we focus now
on the parametric version of the 1D Sod shock tube problem (2). In this example, the physical
parameter μ = (μ0, . . . , μ3) ∈ Pphys ⊂ R

4 represents the IC for the Euler problem:

[
ρ u p

]T
(t = 0;μ) =

⎧
⎪⎨

⎪⎩

[

μ0 0 μ1
]T

if x < 0.5,
[

μ2 0 μ3
]T

if x > 0.5.

In Fig. 3, we show some analytical solutions for the parametric 1D Sod shock tube, for
different values of μ. Looking at Fig. 3 it is clear there is no straightforward choice for the
reference solution ρ that would lead to reasonable minimization problems, similar to the one
presented in Algorithm 1. Indeed, we would minimize the L2 error between two solutions (ρ
and ρ̂(μ)) that may have very different heights at the boundaries. When different boundaries
behaviors are present, the calibration procedure needs to be reformulated in a different way.
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Instead of fixing a reference solution ρ, we consider a suitable linear reduced space VPOD,
thus introducing a new residual for the minimization problem:

min
θ(μ)∈RQ

‖ρ̂(μ;w(μ)) − VPOD ρ̂(μ;w(μ))‖L2(R) + δ

2
‖∂μw(μ)‖2

�2(P)

+ α

2
max
x∈�

(
max

{∥
∥∇T [w(μ)](x̂)

∥
∥ ,

∥
∥∇T−1[w(μ)](x)

∥
∥
})

,

(6)

where we recall that θ(μ) = θ(w(μ)) ∈ R
Q is the vector of the free coordinates of the

control points, and Q � d × M is the total number of free coordinates in the calibration
step. In Problem (6), θ is constrained as in the previous section and VPOD is the orthogonal
projection onto a linear space VPOD obtained through a preliminary procedure that we will
describe now shortly.

This minimization allows to overcome the issue of quasi–self–similar solutions thanks to
the projection onto a reduced space. To carry out this projection, we first need to build a priori
a suitable linear space VPOD, which needs to capture the minimal amount of information on
the solution manifold: we want to be able to approximate the solution manifold with a linear
space of very low dimension.

We therefore introduce the matrix of the free coordinates
−→
θ ∈ R

Nfew×Q :

−→
θ [i, :] = θ(μ̃i ), i = 1, . . . , Nfew,

where we recall once again that θ(μ̃i ) is the vector of the free coordinates of the control
points w(μ̃i ) associated to the parameter μ̃i . The free coordinates can be selected through

another optimization process carried out in the same spirit of (6) on the whole matrix
−→
θ ,

minimizing the projection error over all the parameters μ̃1, . . . , μ̃Nfew
, while updating the

space VPOD(
−→
θ ) obtained by compressing the solutions on the reference domain for these

parameters transformed using the calibration points given by
−→
θ . Therefore, we solve the

following constrained minimization problem:

min−→
θ ∈RNfew×Q

Nfew∑

i=1

‖ρ̂(μ̃i ;w(μ̃i )) − 
VPOD(

−→
θ )

ρ̂(μ̃i ;w(μ̃i ))‖L2(R), (7)

with VPOD := POD({ρ̂(μ̃i )}Nfew
i=1 , NPOD

few ). This optimization process is of larger dimension
with respect to the previous ones and it requires, for each residual evaluation, the computation
of a POD over the Nfew calibrated snapshots ρ̂(μ̃i ;w(μ̃i )), with a user defined number of
modes NPOD

few . The choice of NPOD
few is, in general, not simple. In our numerical tests, we

adopted the following heuristics: we want to take into account all the different travelling
features. For this reason, in the Sod test case, we have chosen NPOD

few = 3 to keep into
account the different values that there might be between the rarefaction and the contact
discontinuity and between the contact and the shock. NPOD

few should be kept as low as possible
not to overload the minimization process. In the Sod test case, we performed a few tests
with increasing NPOD

few and 3 was the first value where the minimization process was giving
successful results. While this is an heuristic argument, it still provides a valid starting point
for the numerical simulations. A more in depth analysis on the role of NPOD

few and on how to
choose it in an automated way is envisioned as a future research direction. Again, we solve
problem (7) with SLSQP using the same constraints defined in the previous section. This
extra optimization step can be skipped when other techniques to detect interesting features
can be used [22]. One possibility is the use of classical shock detection procedures to find
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the steepest points of the solutions and calibrating them [25]. We summarize the steps of the
whole procedure in Algorithm (2).

Algorithm 2 Calibration for quasi–self–similar solution manifold
Input: the training solution manifold on the physical domain {ρ(μ�, t j ) for � = 1, . . . , Ntrain, j =
1, . . . , Nμ�

} and the number of modes NPOD
few .

Select few parameters μ̃1, . . . , μ̃Nfew .

Find optimal
−→
θ ∈ R

Nfew×Q by (7) for the few parameters μ̃1, . . . , μ̃Nfew .
for � = Ntrain, . . . , 1 do

for j = Nμ�
, . . . , 1 do

Set the initial guess θ (0)(μ(�, j)) as in (5).
Solve Problem (4).

end for
end for
Output: the optimal control points wopt(μ(�, j)).

As an alternative to the whole projection onto VPOD we would also like to remark that,
whenever shock detection techniques can be used, the quasi-self-similar setting can be
efficiently handled by the convex displacement interpolation (CDI) [37].

3 The Geometrical TransformationMap

We now present the geometrical transformation map T [wopt(μ)] : R �→ � used to define
the calibrated snapshots. We start with the simpler case, namely the 1D setting, and later we
consider the 2D case.

3.1 The 1D Setting

Let wopt(μ) be the control points whose free coordinates are the solution to Problem (4): to
interpolate the values {(wα(μ),w

opt
α (μ))}α , we usemonotone cubicC1 splines. These are the

so-called PCHIPs (Piecewise Cubic Hermite Interpolating Polynomials) interpolators, avail-
able in the scipy Python library under the interpolate classes and the built-in function
is called PchipInterpolator. By employingmonotone cubic splines, we obtain a trans-
formation function that preserves the monotonicity of the calibration mapw(·), guaranteeing
its bijectivity andC1 smoothness if the calibration points are in the “right order”, as prescribed
in Sect. 2. In Fig. 4, we can see an example of a PCHIP transformation applied to one of the
snapshot calibrated on the detected features. On the right of the figure, the transformation is
depicted and we can observe that it interpolates the points, it is C1 and it is very close to the
identity on the boundaries, because we introduce two extra interpolation points outside the
boundaries of the domain. This helps to keep the regularity of the transformation in the ALE
formulation [21].

In this work, we do not focus on the ALE formulation on R, nevertheless the PCHIPs
allow to easily compute all the necessary ingredients. Indeed, they are polynomials and their
derivatives and the inverse of their derivative is easy to compute. Moreover, the inverse of the
transformation exists and it is unique in each point, hence, with a simple Newton method,
we can easily recast the inverse function.
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Fig. 4 Example of PCHIP calibration: solution on physical domain with calibration control points (left),
solution on reference domain with reference control points (center) and PCHIP transformation with all control
points (right)

3.2 The 2D Setting

In the 2D setting we use tensor product of one dimensional PCHIPs, in order to exploit
their properties for Cartesian geometries. We refer again to Fig. 2 to better understand the
transformation map. We need to compute T [wopt(μ)] : R �→ �, such that

T [wopt(μ)](w1
α1,α2

,w2
α1,α2

) = (w
1,opt
α1,α2(μ),w

2,opt
α1,α2(μ)) for αi = 1, . . . , Mi , i = 1, 2.

Let x̂ ∈ R be a point with coordinates x̂ = (x̂, ŷ). We define the map:

T [wopt(μ)](x̂, ŷ) := (T x [wopt(μ)](x̂, ŷ), T y[wopt(μ)](x̂, ŷ)), with

T x [wopt(μ)](x̂, ŷ) :=
M2∑

�=1

γ
y
� (ŷ)Px

� (x̂), T y[wopt(μ)](x̂, ŷ) :=
M1∑

k=1

γ x
k (x̂)Py

k (ŷ).

In the previous equations, we made use of the following quantities:

1. Px
� is a PCHIP interpolating the points {w1

α1,�
,w

1,opt
α1,�

(μ)}M1
α1=1, where the control points

w1
α1,�

for α1 = 1, . . . , M1 are on horizontal lines ŷ = ȳ� in the reference domain, see

Fig. 2, namely for all α1 = 1, . . . , M1 we have Px
� (w1

α1,�
) = w

1,opt
α1,�

(μ);
2. Py

k is a PCHIP interpolating the points {w2
k,α2 ,w

2,opt
k,α2

(μ)}M2
α2=1, where the control points

w2
k,α2 for α1 = 1, . . . , M1 are on vertical lines x̂ = x̄k in the reference domain, see Fig. 2,

namely for all α2 = 1, . . . , M2 we have Py
k (w2

k,α2(μ)) = w
2,opt
k,α2

(μ);
3. γ

y
� (·) is a PCHIP interpolating the points {w2

α1,α2
, δα2,�}M2

α2=1, being δα2,� the Kronecker

delta. By doing so, we obtain that T x [wopt(μ)] is a convex combination of the {Px
� (·)}M2

�=1
such that T x [wopt(μ)](x̂, ŷ = w2

α1,α2
) = Px

α2
(x̂);

4. γ x
k (·) is a PCHIP interpolating the points {w1

α1,α2
, δα1,k}M1

α1=1, as before, leading to the

property T y[wopt(μ)](x̂ = w1
α1,α2

, ŷ) = Py
α1(ŷ).

Notice that, ultimately, it holds that

T [wopt(μ)](w1
α1,α2

,w2
α1,α2

) = (Px
α2

(w1
α1,α2

), Py
α1

(w2
α1,α2

)) = w
opt
α1,α2(μ).

Also in the 2D case, the Jacobian of the transformation, which is needed in the ALE
formulation, is easily accessible, since all the terms are polynomials. Similarly to the 1D
case, we can compute the Jacobian of the inverse of the transformation, using the inverse of
the Jacobian of the transformation, provided that we can invert the map T .
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Fig. 5 Calibration points (M1 = 5, M2 = 4) on the physical domain � = [0, 4] × [0, 1] (left) and the
transformation of horizontal and vertical lines on the physical domain (right). On the top calibration points
that lead to an invertible map, on the bottom calibration points that respect the monotonicity in each line
(left), but whose transformed horizontal and vertical lines cross multiple times (right) and, hence, whose
transformation is not invertible

3.2.1 Invertibilty of T

The computation of the inverse of T is fundamental in many aspect of the algorithm: to
display the function on the physical domain, to compute quantities and errors on the physical
domain and to compute the inverse of the Jacobian for the ALE formulation.

Unfortunately, the so defined map T cannot be proven to be invertible, as it might hap-
pen that some of the vertical and horizontal lines cross each other multiple times in the
physical domain, see Fig. 5 second line. To avoid this, we impose, in the optimization pro-
cedure for the calibration, to have positive determinant of the Jacobian of the transformation
on the meshpoints of the reference domain, see the constraints in Sect. 2.1. This typically
guarantees invertibility. We recall that, being PCHIPs polynomials, the computation of the
Jacobian can be performed explicitly in each point. To compute the inverse of the trans-
formation, we perform the following steps. We first apply the transformation map T to
the elements of the Cartesian meshgrid of R: these will be mapped to quadrilateral ele-
ments in �. Now, given a point x ∈ �, we can easily find to which of these quadrilaterals
it belongs and with a Projective transformation (see the python module transform of
the package skimage) we pull it back onto R. Then, we use the found point as initial
guess to find the solution of T [wopt(μ)](x̂) = x through a Newton type nonlinear solver
(scipy.root).

4 Model Order Reduction with Calibration

We are now ready to perform the model order reduction step. In what follows the procedure
is similar for the non parametric and the parametric setting: we will therefore present it for
the latter case, for the sake of generality.
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Fig. 6 Example of the architecture of an ANN

4.1 Learning the CalibrationMap

Once the calibration procedure presented in Sect. 2 has been carried out, the mapw : P �→ �

is known only through the sample values wopt(μ), for μ ∈ P train. To learn the calibration
map w(·) for any parameter μ, we employ an Artificial Neural Network (ANN) composed
by several layers: an input layer μ ∈ Y(0) = P where we pass the parameters of the problem
of interest, L hidden layers Y( j), j = 1, . . . , L , and an output layer Y(L+1), see Fig. 6. As
output layer, we would like to obtain θ ∈ R

Q , from which we can extract the calibration
points w. Keeping in mind the monotonicity constraints applied to the control points in the
constrained minimization problems (4) and (6), we try to enforce this constraint in the ANN.
It is not easy to strongly enforce such constraints, but we can force the output to be positive,
using as final activation function a Softplus. Hence, we take as output layer of our ANN not
directly θ , but the vector v ∈ R

Q of the differences of the free coordinates with the previous
ones (in 2D it is referred to the same line). Doing so, the positivity of v is equivalent to the
monotonicity in each line of points. In one dimension, it is defined as vi = wi − wi−1 for
i = 2, . . . , M1 − 1, while in two dimensions this operation is done in each horizontal or
vertical line.

Each layer Y( j), j = 1, . . . , L is connected to the next and to the previous ones through
affinemaps δ( j) : Y( j) �→ Y( j+1) and at every node a nonlinear activation function ζ ( j) : R �→
R is applied component–wise. We used the hyperbolic tangent in all the ANN except in the
output layer where the Softplus function is used for the positivity of the outputs. On a training
set, the learning process changes the weights δ(k) minimizing the error between the output
and the optimal calibration points.

To build and train the ANN, we used a Python based library EZyRB [38] that uses Adam
method [39] to perform the minimization. More details on the architecture of the ANN for
the different test cases will be provided in the numerical section.

4.2 POD-NN

In Sects. 2.1 and 2.2, we presented the calibration algorithm in the self-similar and in the
quasi self-similar setting. Thanks to the calibration of the snapshots, we obtain the calibrated
manifold M̂ρ = {ρ̂(μ)(·), μ ∈ Ptrain}, where ρ̂(μ)(·) is the calibrated snapshot defined
in Sect. 2. We now proceed with the compression of M̂ρ by means of the Proper Orthogonal
Decomposition (POD): we refer to [2] for more details. The dimension of the reduced basis
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can be chosen either setting a maximum number of basis Nmax
POD or choosing the most relevant

modes such that the discarded energy is smaller than a certain tolerance τPOD. Once the POD
has been carried out, we obtain a linear space V ρ

N spanned by the N orthonormal reduced
basis functions {�̂i }Ni=1 on the reference domain R. V ρ

N should now represent with a good
accuracy any element of the calibrated solution manifold M̂ρ .

4.3 Online Solution byMeans of ANN

In this work, we mainly focus on the calibration procedure and the offline phase. Hence, we
will use a non–intrusive approach for the reconstruction of the online solutions. Letμ ∈ P be
a parameter of choice: the goal is to construct a linear approximation ρN (μ) of the snapshot
ρ(μ). It should be clear by now that, sincewe are dealingwith advection dominated problems,
this is not a simple task within the standard MOR setting. However, in Sects. 2 and 3, we
presented a calibration technique that allows us to obtain a linear space V ρ

N that approximates
with good accuracy the calibrated manifold M̂ρ : we are therefore able to construct a linear
approximation of the calibrated solution of interest ρ̂(μ) in the reference domain R. This
means that we can approximate ρ̂(μ) with

ρ̂(μ) ≈ ρ̂N (μ) :=
N∑

i=1

ρ̂
i
N
(μ)�̂i ,

where ρ̂
i
N
(μ) = (ρ̂(μ), �̂i )L2(R) for i = 1, . . . , N , being (·, ·)L2(R) the L2 scalar product

on the reference domain. In order to find the vector ρ̂
N
(μ) one can adopt two alternative

ways: an intrusive approach, by means of a Galerkin projection of the high order algebraic
system onto the reduced space, or a non-intrusive approach by means of an ANN. If the
standard Galerkin projection setting is adopted, the online system and the reconstruction of
the online solution is carried outwithin anALE formalism [21, 36, 40]: the original problemof
interest, formulated over�, has to be re-written into a problem formulated over the reference
domainR. In this approach, a hyper-reduction procedure [41, 42] will be necessary to tackle
the nonlinearities of the problem and of the transformation map. This approach is currently
under investigation, and it will be part of a future extensions.

An alternative to the intrusive approach is represented by the use of ANN, in the spirit of
Sect. 4.1. We consider the map N : P �→ R

N

N (μ) := ρ̂
N
(μ) = [ρ̂1

N
(μ), . . . , ρ̂

N
N
(μ)]T .

Wemake use of an ANN to learn the L2 projection mapN : to train the map, we employ the
set of input samples μ for μ ∈ P train, and the set of output samples {ρ̂

N
(μ) for μ ∈ P train}.

In this algorithm, we do not use the optimal calibrated points obtained with the optimization
process, but we use the ones predicted by the ANN of Sect. 4.1. Doing so, any systematic
error in the online calibration should be already taken into account while performing the
L2 projection and automatically corrected by this approach. Moreover, it is also possible
to use different training sets for the calibration optimization procedure and the model order
reduction ones. More details on the architecture of the ANN employed will be provided in
the numerical section.
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Table 1 Test details for the 1D Sod shock tube problem, non parametric (Nonparam) and parametric (Param)
setting

Quantity Nonparam Param Quantity Nonparam Param

ρL 1 [0.7, 1.3] ρR 0.1 [0.1, 0.15]
uL 0 0 uR 0 0

pL 1 [0.7, 1.3] pR 0.125 [0.05, 0.15]
t f 0.2s 0.2s Nh 1500 1500

4.4 Offline–Online Splitting

We summarize in this section the operations that should be performed in the offline part
(i.e. only once for every new parametric problem one wishes to consider) and the online
operations that should be performed to predict the solution for a new parameter.
Offline phase: FOM simulations for all parameters in the training set, choice of the reference
calibration points, optimization procedure to find the calibration points for a training set,
learning of the regression map for the calibration points for all parameters, transformation
of the FOM solutions onto the reference domain, computation of the RB, learning of the
regression for the coefficients-to-(reduced coefficient) map.
Online phase: given a new parameter evaluate the regression of the calibration points to
know the geometrical transformation, evaluate the regression for the RB coefficients to get
the solution on the reference domain, combine the twomaps to get the solution on the physical
domain.

5 Numerical Results

We now present some numerical results to validate the proposed methodology. We
will consider different time dependent test cases: the Sod shock tube problem in 1D,
in the non parametric and in the parametric setting, already introduced in Sects. 2.1
and 2.2, respectively. To further test the performance of our methodology, we subse-
quently consider a 2D problem, namely the double Mach reflection (DMR) problem,
again in the non parametric and in the parametric setting. To conclude, some numeri-
cal results for the non parametric triple point problem will be shown. For all presented
tests, the FOM consists of high order solutions obtained with an explicit Finite Vol-
ume discretization with WENO reconstruction of order 5, with explicit time discretiza-
tion given by the optimal SSPRK54, with CFL coefficient 0.8 and Rusanov numerical
flux.

5.1 Non-Parametric Sod Shock Tube Problem in 1D

We consider Problem (2) introduced in Sect. 1.1, where the physical domain is � = R =
[0, 1]. The number of spatial degrees of freedom is 1500 and this leads to computational
costs of around 2min using a Fortran code [43] on a Intel(R) Xeon(R) CPU E3-1245 v5 @
3.50GHz. In both cases, we use Dirichlet BC as the waves do not exit the domain before the
final time. The details of all the relevant quantities are presented in Table 1.
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Fig. 7 FOM simulation of Sod 1D problem non parameteric at times 0.04 (green), 0.1 (orange) and 0.16 (blue),
on the original domain (top) and calibrated on the reference domain (bottom)

Table 2 Calibration of the 1D Sod shock tube problem, non parametric and parametric setting

Quantity Nonparam Param Quantity Nonparam Param

δ 10−6 10−6 α 0. 0.

ρ ρ(t = 0.16) – M1 6 6

Max. iter 100 100 minim. alg SLSPQ SLSPQ

Ntrain 1 16 Nμ 25 25

Nfew – 10 NPOD
few – 3

Figure 7 shows some snapshots for the density ρ, the momentm and the energy E at three
different times of the simulation: it is clear that the structures of all three the components of
the solution present discontinuities that travel in the domain at the same locations.

We carry out the calibration technique proposed in Algorithm 1: we choose as reference
solution ρ the density ρ(t = 0.16). We then choose M = 4 control points w1 = 0.2, w2 =
0.4, w3 = 0.6, w4 = 0.8 equispaced in the reference domain R = [0, 1]. The calibrated
solutions (using the ANN to forecast the calibration points) are shown in Fig. 7: the main
features of the solutions, namely the shock, the contact discontinuity and the rarefaction wave
are well aligned with the reference solution. The details of the quantities required to carry
out the calibration step are listed in Table 2. We point out that the calibration step and the
training of the ANN have been carried out on the training setP train ⊂ [0.01, 0.16] ⊂ [0, 0.2]
sampled with 25 equispaced parameters. The reason for excluding the first timesteps from
the training is that the minimization is tricky during the first timesteps: indeed we have a
transition phase, during which all the features are in the same point, leading to non invertible
maps. An alternative way to overcome this difficulty could be to restore to local reduced basis
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Fig. 8 Sod1D:Eigenvalue decay of the PODs (normalized to haveλ1 = 1) non parametric (left) and parametric
(right)

Fig. 9 Sod 1D non parametric: The first modes obtained by compressing the original manifolds (Eulerian on
the top) and the calibrated manifolds (ALE on the bottom) for ρ (left), m (center) and E (right), with POD
with τPOD = 10−4 and Nmax

POD = 7

spaces [44], or to use a FOM approach for the first timesteps. The final times are excluded
to test the extrapolatory performances of the ROM.

Figure 8 (left) shows the eigenvalue decay of the POD for both calibrated (ALE, in blue)
and original (Eulerian, in red) approaches. We can see that, differently from the Eulerian
approach, for the calibrated approach the first eigenvalue is much more relevant than all the
others and the Kolmogorov n–width decay is much faster. Figure 9 shows the behavior of
the first modes obtained by compressing with a POD the non-calibrated manifolds, for the
three conservative variables ρ, m and E . We remark that also here we consider the FOM
solutions for t ∈ P train, thus excluding the initial and the final times from the compression.
The modes are highly oscillatory, because they struggle to correctly represent the positions
of the three discontinuities in the domain. Figure 9 also shows the POD modes obtained
by running a POD on the calibrated manifolds: after the calibration the oscillations in the
modes are much milder and focused on the discontinuity locations. Figure 10 shows some
POD-NN results with N = 7, without calibration, for the density ρ at different times t
(including the extrapolatory regime at t = 0.2). The comparison is made between the FOM
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Fig. 10 Sod 1D non parametric: Online approximation of the density ρ at times 0.04, 0.12 and 0.2 (left to
right). Top row: Eulerian ROM simulations with N = 7 modes on �. Central row: ALE ROM simulations on
� with N = 3 modes. Bottom row: ALE ROM simulations onR with N = 3 modes

solution ρ, its L2 projection onto the reduced space generated by the first N = 7 modes of
the non-calibrated manifold (Eulerian modes) and the online reconstruction obtained using
a linear combination of said modes, with coefficients that are predicted by an ANN. We can
see that the Eulerian approach fails to correctly reproduce the calibrated FOM solutions: in
particular, the standard MOR struggles to capture the correct position of the discontinuities,
and it shows some oscillations in the online approximation that are most likely due the highly
oscillating nature of the Eulerian modes themselves. Figure 10 also shows some POD-NN
simulations obtained after the calibration procedure (computational cost of prediction of both
calibration points and ROM coefficients below 0.001s); here we use N = 3 modes as the
POD algorithm stops earlier for the imposed tolerance. We can see that we obtain a very
good approximation of the calibrated snapshots in the reference configurationR, i.e., ρ̂, and
in the physical domain �, i.e. ρ, with the main features correctly reproduced by the online
solution. We stress the fact that t = 0.2 is outside the training interval P train: in this case, the
positions of the shock, the contact and the rarefaction wave have been slightly misplaced by
the online model, hence, the approximation is not as great as in the interpolatory regime. All
the details on the architecture of the ANN used to learn the calibration map and to predict
the online solution are summarized in Table 3.

5.1.1 Validation of the Calibration Strategy

In this section, we focus on the two following aspects: the initial guess considered in the
calibration, for each parameter, and the order of the parameters for the calibration. To validate
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Table 3 Architecture and details of the calibration-NNand the POD-NN in both non parametric and parametric
setting

Parameter Non parametric case Parametric case
Calibration-NN POD-NN Calibration-NN POD-NN

L 4 4 4 4

Neurons per layer 16 16 16 16

Max. epochs 20000 10000 20000 10000

Loss fun. tol 10−6 10−5 10−6 10−5

ζ̃ Tanh/Softplus Tanh Tanh/Softplus Tanh

τPOD – 10−4 10−4 10−4

Nmax
POD – 7 3 7

our methodology, we perform two types of tests, described in the following paragraphs. We
recall that, since we are in the non-parametric case here, the parameter μ represents only the
time t . Again, we also remark that we focus here on the density ρ.
Reference solution choice in the calibration
Weare interested in performing the calibration for every parameter, by changing the reference
calibration points w̄ through the free coordinates θ̄ , the reference solution ρ̄ = ρ(μ̄) and the
initial guess θ (0)(μ) in the minimization problem (4). We then evaluate the calibration error:
the chosen measures for estimating this error will be clarified later on in this paragraph.
Exact characteristics calibration reference points. For this test, we know the exact solution
of the problem (2), and therefore the exact location of the rarefaction and the discontinuities
of the density function. To perform the calibration, we choose a reference parameter μ̄ ∈ P ,
and we consider ρ = ρ(μ̄) and θ̄ = θex (μ̄), where θex (μ̄) ∈ R

4 is the vector of the
exact locations of the beginning and end of the rarefaction wave, the contact and the shock
discontinuities for ρ(μ̄). We then carry on the calibration, for every μ ∈ P train : the initial
guess θ (0)(μ) will be θex (μ̄). We study what happens if we change μ̄: the measure that we
consider to estimate the calibration error in this case is the 1-norm of the difference between
θex (μ) (the vector of exact locations of beginning and end of the rarefaction wave, the contact
and the shock discontinuities for the ρ(μ)) and θopt (μ) (the output of the calibration for the
parameter μ), namely

||θopt (μ) − θex (μ)||1. (8)

This choice allows us to measure how far our output is from the actual location of the
discontinuities and rarefaction of the solution. The result is reported in Fig. 11 (left). Using
the initial guess close to the final time results in the largest errors when calibrating early
time solutions, while the opposite seem less problematic and optimally one could choose
a reference solution close to the initial time to have the least amount of error for all the
considered optimized parameters. It is also clear from this test that the best choice would
be to choose the initial guesses close to the parameter that we are calibrating minimizes the
error, i.e. staying close to the diagonal. And this is what we are actually doing in presented
strategy in Sect. 2.1 in (5).
Equispaced calibration reference points. For this second test, we assume we do not know
the exact solution, nor the wave locations. In this case, we choose as reference calibration
points θ̄ = {0.2, 0.4, 0.6, 0.8} equispaced points in [0, 1]: these points will be fixed for all
the reference parameters μ̄ we will use and they will also be used as initial guess of the
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Fig. 11 Calibration error for Sod 1D at different times (parameter μ) using different initial guess times
(parameter μ̄), for the FV solutions. Left: ρ = ρ(μ̄), w(0)(μ) = wex (μ̄), error measure (8). Right: ρ = ρ(μ̄)

and w̄ = w(0)(μ) = {0.2, 0.4, 0.6, 0.8} for all μ, error measure (9)

Table 4 Details for the order calibration test, where we analyze the calibration output according to the order
(in time) in which we perform it

Strategy Reference sol Order Initial guess

T2B Final time From last time to first Last parameter computed

T2B10 Final time From last time to first, every 10 steps Last parameter computed

B2T Initial time From first time to last Last parameter computed

B2T10 Initial time From first time to last, every 10 steps Last parameter computed

Fixed Final time From first time to last Final time

calibration process. We then choose ρ = ρ(μ̄), and we analyse the results of the calibration
when we change μ̄. The measure chosen to study the error of the calibration (since we do
not know θex (μ)) is the following:

||ρ̂(μ,w(θopt (μ))) − ρρ̂(μ,w(θopt (μ)))||22, (9)

where ρ is the projection onto the linear space spanned by the chosen reference solution.
The results are reported in Fig. 11: again, we can see that choosing a reference solution close
to the parameter of interest leads to smaller errors and that using one reference solution the
optimal choice would be something close to μ̄ ≈ 0.1.
Order in which we perform the calibration
Motivated by the results shown in Fig. 11, we now use as initial guess the calibration points
found for the closest parameter already computed. We will compare the different orders
described in Table 4. In particular, we will try to start from the final time or the initial one and
we will use either all 100 timesteps we have in the training set or only one every 10 of these.
Finally, we also compare it with a fixed initial guess strategy. As we can observe in Fig. 12,
starting with the final solution as reference solution, we obtain considerably lower errors all
along the time domain, almost independently on how many parameters we sample (this will
not be true for more complicated tests in 2D), with respect to using the initial solution as a
reference one. The authors are anyway surprised by how the error using the initial solution
as reference is not too large. Also the fixed initial guess at the final time produces interesting
results.
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Fig. 12 Calibration error for Sod 1D at different times (parameters) using different calibration strategies, for
the FV solutions. Left: exact waves calibration as initial guess and right for equispaced initial guess calibration
points. Error measure: (8) (left) and (9) (right)

In 2D tests, we cannot perform similar comparison, as no exact calibration could be
performed. We can undoubtedly say that in 2D being close to the initial guess is of more
importance than in 1D, hence, in general, it is better to have a large enough training set.

5.2 Parametric Sod Shock Tube Problem in 1D

We now consider the parametric version of the Sod problem, already introduced in Sect. 2.2.
We recall that we consider μ = (ρL , ρR, pL , pR) ∈ Pphys ⊂ R

4. All the details for the
numerical simulations are provided in Table 1. Also in this case, the FOM solutions have
been obtained employing the same FV discretization. In the parametric setting, we generate
the training space P train

phys using Ntrain = 16 randomly selected parameters μ from Pphys.
Again, we consider the training time interval [0.01, 0.16] discretized with around 45 times
for each physical parameter.

Figure 13 shows the first modes for the three components ρ,m and E , without calibration
(Eulerian approach) andwith calibration (ALEapproach), respectively.Also in the parametric
case, we can notice that the Eulerian modes are highly oscillating, similarly to the non-
parametric test case: the calibration helps to significantly mitigate this phenomenon. To
further validate this, we show in Fig. 8 (right) a comparison between the rate of decay of the
eigenvalues obtained with a POD on the non-calibrated (red) and calibrated (blue) manifolds.
The calibration results in an improvement in the rate of decay and we clearly observe that, in
comparison to the non parametric case, the decay is slower and we need more basis functions
to represent our solution manifold. All the details for the numerical implementation of the
calibration procedure are summarized in Table 2.

Figures 14 and 15 represent theFOM, the L2 projectionon the reduced space and thePOD–
NN online approximation for ρ, for two parameters in the test set. We plot both the Eulerian
ROM and the ALE one, for the latter both in the physical � and in the reference domain R.
The online approximations are obtained with N = 4 modes. As we can see, in both cases the
Eulerian ROM is struggling to correctly capture the positions of the discontinuities, and it
provides an approximated solution that exhibits some non-negligible oscillations, most likely
due to the oscillating nature of the Eulerian modes themselves. The results provided with the
calibration are much more accurate, since the MOR is now able to correctly represent the
positions of the discontinuities, and it does not present any oscillations in the approximations.
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Fig. 13 Sod 1D parametric: The first modes obtained by compressing the original manifolds (Eulerian on the
top) and the calibrated manifolds (ALE on the bottom) for ρ (left), m (center) and E (right), with POD with
τPOD = 10−4 and Nmax

POD = 7

Fig. 14 Sod 1D parametric: Online approximation of the density ρ at times 0.04, 0.12 and 0.2 (left to right), for
ρL = 1.047937, ρR = 0.122810, pL = 1.203980, pR = 0.144468. Top row: Eulerian ROM simulations
on � with N = 7 modes. Central row: ALE ROM simulations on � with N = 4 modes. Bottom row: ALE
ROM simulations onR with N = 4 modes
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Fig. 15 Sod 1D parametric: Online approximation of the density ρ at times 0.04, 0.12 and 0.2 (left to right),
for ρL = 1.08827, ρR = 0.149654, pL = 1.193154, pR = 0.078459. Top row: Eulerian ROM simulations
on � with N = 7 modes. Central row: ALE ROM simulations on � with N = 4 modes. Bottom row: ALE
ROM simulations onR with N = 4 modes

There are minor flaws in the extrapolatory regime and in the early times, still keeping the
quality of the reduced solution very high.

All the details on the architecture of the ANN used to learn the calibration map and to
predict the online solution are summarized in Table 3.

5.3 Non-Parametric DMR Problem in 2D

We now consider a 2D test case, namely the Double Mach Reflection (DMR) problem [35].
Let � = [0, 4] × [0, 1]: we consider the Euler Eq. (2), in the time interval [0, 0.25], with the
following IC

{
(ρL , uL , vL , pL ) = (8, 8.25 cos(β),−8.25 sin(β), 116.5) x ∈ �L(β, t = 0)

(ρR, uR, vR, pR) = (1.4, 0, 0, 1) x ∈ �R(β, t = 0)
(10)

�L(β, t) =
{

x ∈ � : x <
1

6
+ tan(β)y + 10

cos(β)
t

}

, �R(β, t) = � \ �L(β, t),

(11)
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Fig. 16 DMR: Eigenvalue decay of the PODs (normalized to have λ1 = 1), non parametric on the left,
parametric on the right

Fig. 17 FOM solution for ρ for DMR non parametric at times 0.05 (top), 0.15 (center) and 0.25 (bottom) in
the physical domain � (left) and, after calibration, in the reference configuration R (right). We mark on the
plots the control points and the Cartesian grid that links them in the reference domain and its image through
T on the physical one. We plot in white 20 contour lines at equispaced values between 1 and 25

with β = π
6 . The BCs are assigned through ghost cells as

(ρ, u, v, p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ρL , uL , vL , pL ), if x = 0 or (y = 1 and x ∈ �L(β, t)),

(ρR, uR, vR, pR), if y = 1 and x ∈ �R(β, t),

(ρin, uin,−vin, pin), if y = 0 (wall BC),

(ρin, uin, vin, pin), if x = 4 (outflow),

(12)

where ·in denotes the value inside the domain at the corresponding boundary cell.
Figure 17 (left column) represents the FOM snapshots for the density ρ at three different

times of the numerical simulation; here, the same FV scheme has been employed at the FOM
level on a mesh of 2400 × 600 cells (computational time of 5 days), then downsampled to
a mesh of 240 × 60 cells to perform the offline phase (including calibration) in reasonable
computational times. We retain 500 time samples in [0, 0.25] of which we include 100 in the
training set of the calibration procedure (every �t = 0.0025) and 45 in the training set of
the reduced algorithms all in [0.02, 0.2].

Figure 16 (left) shows the rate of decay of the eigenvalues returned by the POD on Mρ

(red): also for this test case we have a solution manifold with a slowly decaying Kolmogorov
n–width, due to the fact that the shock moves inside �. We therefore perform a calibration
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Table 5 Calibration of the 2D DMR problem, non parametric and parametric setting

Quantity Nonparam Param Quantity Nonparam Param

ρ ρ(t = 0.2) – α 10−4 10−4

M1 7 7 δ 10−2 10−1

M2 6 6 minim. alg SLSPQ SLSPQ

Ntrain 1 16 max. iter 100 100

Nμ 180 23

Fig. 18 DMR non parametric: Error in time of reduced methods with different number N of modes

procedure, using Algorithm 1 and the 2D geometrical transformation map T introduced
in Sect. 3.2: all the details for the calibration step are summarized in Table 5. Figure 17
(right column) shows the outcome of the calibration for the density ρ, at different times:
here the snapshots are represented in the reference configuration R (computational time for
forecasting the calibration points around 0.05s). With the calibration procedure, we obtain
an improvement in the rate of decay of the eigenvalues, as it is shown in Fig. 16 (blue line).
To conclude, in Fig. 18 we show the behavior in time of the approximation error, between the
FOM solution and the online solution (computational time to evaluate the NN for the ROM
coefficients 0.001s), with or without calibration, according to the number N of modes used.
Both errors have been computed in the physical domain � and are defined as:

||ρ(t) − ρN (t)||L2(�)

||ρ(t)||L2(�)

and
||ρ(t) − ρ̂N (t) ◦ T−1[wopt(t)]||L2(�)

||ρ(t)||L2(�)

. (13)

As we see in Fig. 18, the error of the online approximation (with calibration) does not go
below a certain lower bound, even increasing the number of bases. We recall that, in the
calibrated setting, we are interpolating the solutions to perform the transformations: for this
reason, we believe that, after a certain number N of modes, the interpolation error dominates
the global error, and this leads to the plateau that one can observe in the figure. We notice
that with around 30 basis for the POD in the Eulerian framework we achieve errors that are
comparable with the ALE solutions.

Nevertheless, the qualitatively comparison of the Eulerian and ALE approach at the ROM
level with N = 2 for the ALE approach and N = 30 for the Eulerian approach depicted in
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Fig. 19 DMR non parametric: ROM solutions for ρ in � at times 0.05 (top), 0.15 (center) and 0.25 (bottom).
Left column: ALE ROM solution with N = 2. Right column: Eulerian ROM solution with N = 30. We plot
in white 20 contour lines at equispaced values between 1 and 25

Fig. 19 is still in favor of the ALE approach. Indeed, the Eulerian ROM shows an oscillatory
behavior that deteriorates the shape of the solution, the shock position and the flat areas,
which are not anymore flat. On the contrary, the ALE ROM solutions are very similar to
the FOM ones and they preserve all the original features even with a much smaller reduced
basis. So, even if the L2 errors of the two approaches are comparable, the quality of the two
solutions is very different.

5.4 Parametric DMR Problem

In this section, we consider the parametric version of the 2D DMR problem: the physical
parameter is the angle β introduced in Sect. 5.3; the physical parameter interval is Pphys =
[0.1, 0.675], and the time interval is [0, 0.2]. Also in this case, the FOM snapshots have been
obtained with the same FV scheme, on a mesh 600 × 150 (computational time of 2h each)
then downsampled to 200 × 50 for reduction of computational time of the offline phase. In
the training set, we include for each physical parameter 51 snapshots every �t = 0.004, and
we use all the snapshots for the calibration.

Figure 20 shows some snapshots, for two different values ofβ and at different times, before
and after the calibration: all the details for the calibration procedure are summarized inTable 5.
We also depicted the control points grid on the reference domain and its transformation onto
the physical one, showing how the tracking of the interesting point is done and how much
distortion we can get with such transformations. As we can see from Fig. 16, also in the
parametric case the calibration procedure improves significantly the rate of the decay of
the eigenvalues returned by the POD and hence, ultimately, the Kolmogorov n-width of the
problem under consideration. In Fig. 21, we plot the behavior of the relative error on the
physical domain, as explained in Sect. 5.3 in (13), varying time and for different number of
modes used in the reduced spaces. On the left, we plot the error between the FOMsolution and
the L2 projection onto the reduced space; on the right, we have the error obtained using the
POD-NN to predict the online solution.We see that both the Eulerian and the ALE projection
errors improve as we increment the number of POD modes, with the Eulerian being always
much larger. In the POD-NN error, on the other side, the decay of the error is slower and it
seems to stagnate at some bottleneck values, in particular for the ALE case. That is why we
aim at extending this work in the future with a hyper-reduced Galerkin projection approach,
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Fig. 20 DMR parametric FOM solution for ρ at times t = 0.096, t = 0.148 and t = 0.2 (top to bottom) in the
physical domain � (left) and, after calibration, in the reference configurationR (right). We mark on the plots
the control points and the Cartesian grid that links them. Parameter values β = 0.225 (top) and β = 0.675
(bottom). We plot in white 20 contour lines at equispaced values between 1 and 25

Fig. 21 DMR parametric: Error in time of reduced methods with different number N of modes. Parameter in
test set β = 0.675

123



Journal of Scientific Computing           (2024) 101:60 Page 29 of 34    60 

Fig. 22 POD-NN solutions with N = 6 of ρ for DMR parametric at times t = 0.096, t = 0.148 and t = 0.2
(top to bottom) in the physical domain �. Left column: with the calibration of the manifold. Right column:
without calibration. Parameter values β = 0.225 (top) and β = 0.675 (bottom). We plot in white 20 contour
lines at equispaced values between 1 and 25

to reintroduce somemathematical rigorousness hoping to decrease the online error. Finally, in
Fig. 22we represent the online solutions forβ = 0.225 andβ = 0.675, bothwith the Eulerian
and the ALE approachwith N = 6. Similarly to what happens in the non parametric test case,
the Eulerian approach struggles to reproduce the FOM solution, providing an approximation
that sometimes even loses the main features (the shape of the solution, the shocks, the flat
areas). On the contrary, with the ALE approach, the online approximation preserves all these
features. The two parameters shown validate the ability of this ROM approach to work in
strongly nonlinear parametric context, where the parameters changes the solution’s feature
geometry, the values of the solution and vaguely the structure of the features. On the other
hand, we remark that this approach works only for quasi-self-similar solutions, where we
can recognize a similar structure along the parameter domain.

5.5 Triple Point Non Parametric

The applications of the proposed algorithm are various, we have showed some self-similar
solutions, but this class includes a huge amount of test problems: for example, many hyper-
sonic problems where a shock or multiple shocks are present in the solution as airfoil
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Fig. 23 FOM (first and second line), ALE POD-NN (third line) and Eulerian POD-NN (bottom) solutions
with N = 7 of ρ at times t = 0.1275 (left) and t = 0.25 (right) in the physical domain �. The first line shows
also the calibration points. We plot in white 20 contour lines at equispaced values between 1 and 15

simulations, water waves propagation or acoustic waves. We want to solve another test here
that involves a more complicated solution structure, which is a triple point shock interaction
test. We consider a physical domain � = [0, 7] × [0, 3]. The initial conditions are:

⎧
⎪⎨

⎪⎩

(ρW , uW , vW , pW ) = (1, 20, 0, 1) x ∈ [0, 1] × [0, 3],
(ρNE , uNE , vNE , pNE ) = (0.125, 0, 0, 0.1) x ∈ [1, 7] × [1.5, 3],
(ρSE , uSE , vSE , pSE ) = (1, 0, 0, 0.1) x ∈ [1, 7] × [0, 1.5].

(14)

Boundary conditions are transmissive on the right, Dirichlet with state (ρW , uW , vW , pW )

on the left and reflective at the top and bottom of the domain. Final time is set to t f = 0.25.
We solve the problem on a grid 2800 × 1200 and then we downsample it to 280 × 120 for
the reduction of computational time in the offline phase. We have used in the training set of
both calibration and reduced algorithms Nμ = 100 snapshots at �t = 0.0025.

In Fig. 23, we show the solutions of the calibration points, FOM, ALE ROM and Eulerian
ROM at times t = 0.1275 and t = 0.25. The ROM solutions are obtained with a reduced
basis of dimension N = 7. In the first FOM plots, we also plot the M1 · M2 = 8 · 6 optimal
calibration points (the one at the final time are essentially the reference one) that vaguely
surround the most dynamical area. Again, the ALE ROM performs much better than the
Eulerian ROM in catching the right position of the waves and to sharply represent them. On
the other side, there is a slight mistake in the calibration in catching the most right shock that
is represented by a vertical contour line, which is not perfectly represented in the ALE ROM.
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Fig. 24 Triple point non parametric: Error in time of reduced methods with different number N of modes

In Fig. 24, we observe that also here the error of the ALE approach is much smaller than
the Eulerian, but that the interpolation error is probably a lower bound for the ALE ROM that
keeps it from decreasing with the increasing of the reduced basis dimension. On the other
side, for the Eulerian ROM the error decays increasing the reduced basis dimensions, even
if with irregularity due to the spurious oscillations. All the parameters not specified are as in
the DMR non-parametric case.

6 Conclusions

We presented a novel, optimization-based calibration technique suited for hyperbolic conser-
vation laws with (quasi) self-similar solutions that present multiple travelling structures, such
as discontinuities. We combined the calibration technique with an ANN based Model Order
Reduction, in order to obtain a non intrusive approximation setting that is able to provide
satisfying results both in the non parametric and in the parametric framework, without the use
of implicit shock tracking techniques, which additionally translates into a much more limited
computational effort during the offline phase. To test the proposed methodology and to show
its broad range of applicability, we considered three time-dependent problems of interest:
the 1D Sod shock tube problem (non parametric and parametric), the 2D DMR problem (non
parametric and parametric) and the non parametric triple point problem. In all of our tests, we
have shown the benefits of using the proposed calibration based MOR: this is confirmed not
only by the comparison on the rate of decay of the eigenvalues returned by the PODs, but also
by the behavior in time of the relative L2-errors (in the physical domain �) obtained with
the two approaches. To conclude, a qualitative comparison on the FOM solutions and the
ROM solutions (with and without the calibration approach) is provided, in order to highlight
that, by using a smaller number of modes, our proposed methodology is able to correctly
capture all the important features of the full order solutions. Indeed, classical ROMs produce
oscillations, smear the shocks and cannot preserve flat areas, while the presented calibrated
version does, even in the context of multiple intersecting shocks and waves (such as in the
triple point test).
We also showed the robustness of the calibration algorithm with respect to the choice of
the reference solution ρ, the initial guess θ (0)(μ) and the order with which we perform the
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calibration: all the tests have been performed for the 1D problem, for which an analytical
solution is available. The results show that the calibration algorithm provides good results,
almost independently on the choice of the reference control points. Nevertheless, we are
aware that a more in depth study has to be carried out on the number of control points to
choose: we envision this as a future development of the proposed work. The replacement of
the Neural Networks with a purely ALE approach for the online system is a work in progress
and a future extension of this present work. At the time being, the strongest limitations of
our method to get more physically complicated solutions are two: the fact that the domain
� needs to be rectangular, and the fact that the configuration of the features should not vary
too much, in a topological sense. We intend to address both points in the future, introducing
techniques that can map non-polyhedral shapes into rectangles [33], and using local ROMs
for different parameter/time zones.
The proposed approximation setting is based on the use of piecewise cubic Hermite interpo-
lating polynomials (or on some tensorial product of them), and works well with rectangular
domains and Cartesian meshes: the extension of this approach to more complex geometries
and other kinds of meshes (i.e. triangular ones) is envisioned as another future direction
of this work. We also remark that, so far, we only worked with FV approximations of the
full order solution. We expect to generalize the whole methodology to other discretization
techniques.
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