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Abstract

Since thousands of years ago, the goal of cryptography has been to hide messages
from prying eyes. In recent times, cryptography two important changes: first,
cryptography itself evolved from just being about encryption to a broader class of
situations coming from the digital era; second, the way of studying cryptography
evolved from creating “seemingly hard” cryptographic schemes to constructing
schemes which are provably secure.

However, once the mathematical abstraction of cryptographic primitives started
to be too hard to break, attackers found another way to defeat security. Side channel
attacks have been proved to be very effective in this task, breaking the security of
otherwise provably secure schemes. Because of this, recent trends in cryptography
aim to capture this situation and construct schemes that are secure even against
such powerful attacks.

In this setting, this thesis specializes in the study of secret sharing, an important
cryptographic primitive that allows to balance privacy and integrity of data and also
has applications to multi-party protocols. Namely, continuing the trend which aims
to protect against side channel attacks, this thesis brings some contributions to the
state of the art of the so-called leakage-resilient and non-malleable secret sharing
schemes, which have stronger guarantees against attackers that are able to learn
information from possibly all the shares and even tamper with the shares and see
the effects of the tampering.

The main contributions of this thesis are twofold. First, we construct secret
sharing schemes that are secure against a very powerful class of attacks which,
informally, allows the attacker to jointly leak some information and tamper with
the shares in a continuous fashion. Second, we study the capacity of continuously
non-malleable secret sharing schemes, that is, the maximum achievable information
rate. Roughly speaking, we find some lower bounds to the size that the shares must
have in order to achieve some forms of non-malleability.
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Chapter 1

Introduction

Since thousands of years ago, a fight goes on between who finds ever more sophisti-
cated ways to transmit secret messages and who, instead, does whatever is possible
to violate such secrecy. Cryptography, originally meaning “hidden writings”, is the
art of constructing secure communication in the presence of adversarial behavior.
Before the modern era, “cryptography” was synonymous with encryption, the act
of transforming some readable information into some seemingly random text. This
system has been used widely in the past by many civilizations, including the Roman
Empire, the Ancient Greece and the Ancient Egypt.

Between the 9th and the 14th century, the simple ciphers developed so far started
to fall apart. For instance, by using frequency analysis of the letters1 it is possible to
crack a sufficiently long text encrypted with the Caesar’s Cipher. The ciphers started
to be more and more sophisticated: the Vigenère Cipher added a bit more complexity
by using multiple alphabetic substitutions instead of just one. Unfortunately, this
was not enough. During the Second World War, the German Army used the way
more complicated Enigma cipher to communicate confidential information, involving
spinning rotors, permutation of letters and an internal state which was constantly
changing, thus strongly mitigating the frequency analysis attacks. However, the
cipher was complex enough to need a machine, with moving parts and some simple
electronics, in order to compute a ciphertext. After a while, the cryptanalysis
techniques became sophisticated as well. The polish bomba kryptologiczna was a
special machine designed with the purpose of breaking Enigma, and so it did until the
Enigma code became stronger (more spinning rotors, more permutations, etc.). And
then, again, Alan Turing came up with the british bombe, a net improvement over
the bomba kryptologiczna, which helped the british to discover the daily configuration
of Enigma.

With the beginning of the digital revolution, thanks to the semiconductors,
computation became even faster and more automated. New challenges arose and the
old cryptosystems were not suitable anymore. In fact, a personal computer could
crack Enigma in just a few hours [SW05]. Cryptography was about to drastically
change as well, and this change was twofold.

1Frequency analysis is the technique that compares the number of occurrences of the letters in
an encrypted text with the frequency of such letters in the possible plaintexts. In english, the most
frequent letter is E; this implies that, in a substitution cipher encrypting a text which is originally
in english language, the most common letter is probably encrypting a letter E.
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First, with the development of computers and Internet, communication needed
protection against a broader class of attacks. Hiding secrets was not anymore the
only necessity, and similar techniques could also be applied to achieve authentication,
key exchange, data integrity, secure multi-party protocols and much more. This
thesis focuses on secret sharing, an important primitive used both alone, to protect
data secrecy and integrity at the same time, and inside other protocols, to make
secure computation involving multiple parties possible. A more detailed introduction
to secret sharing can be found in Section 1.3.

Second, a breakthrough change in how to study cryptography was proposed
by Goldwasser and Micali [GM82], in what is called “provable security”. This
approach uses the formalism of mathematics to show the security of a cryptographic
primitive: indeed, the security requirement is stated as a formal definition, and
then a mathematical proof is shown for the cryptographic primitive to satisfy such
definition. This makes the approach of provable security very strong, and allows to
formalize the specifications which the cryptosystems need to satisfy; however, the
formal definitions should be meaningful and should capture the real setting as close
as possible. We will tell a bit more about this topic in Section 1.1.

Finding a formal definition which is both meaningful and able to capture the real
setting can be quite challenging. Even if a primitive is perfectly secure2, computation
happens by means of physical phenomena – usually electrical signals – which are
measurable in several ways (e.g. currents, time of execution, etc.). Because of this,
it is usually more convenient to attack the actual implementation of a cryptographic
primitive rather than its mathematical abstraction. This leads to the so called
side-channel attacks, which are able to completely compromise the security of
otherwise provably secure schemes. Some more details about side-channel attacks
are in Section 1.2.

A modern research line in cryptography is aiming to fill this gap between the
mathematical abstraction and the physical implementation, constructing primitives
which are provably secure even against side-channel attacks. This thesis deals with
some of these attacks in the context of secret sharing, improving the state of the art
on this topic. In Section 1.4, we highlight the contributions of this thesis.

1.1 Provable security
We start with the following question: what does secure mean? First of all, it depends
on what we are trying to achieve. Intuitively, an encryption scheme is secure when
any ciphertext (i.e. the result of the encryption) completely “hides” the plaintext
(i.e. the original message before the encryption). Conversely, the goal of a digital
signature scheme is not to hide information3, but to certify that such information
comes from the right sender. In both cases, we need some formal specification which
such schemes need to satisfy.

2Perfect security has a precise meaning which will be shown in Section 1.1 and formalized
in Chapter 2; for now, it suffices to know that it is a very strong guarantee.

3Indeed, sometimes the signed information is even transmitted in clear along with its signature.
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Semantic security. A first step towards defining security is stating what the
adversary wants to achieve and what are their capabilities. In the case of encryption,
one may think that the adversary wants to learn the secret in full. However, more
often than not, the adversary just needs to learn some information.

“ Encrypting messages in a way that ensures the secrecy of all partial infor-
mation is an extremely important goal in Cryptography. The importance of
this point of view is particularly apparent if we want to use encryption to
play card games over the telephone. If the suit or color of a card could be
compromised the whole game could be invalid.
– Shafi Goldwasser and Silvio Micali, “Probabilistic encryption and how to
play mental poker keeping secret all partial information” [GM82]

For this reason, we would like to hide the message in such a way that not even
partial information is leaked.

Claude Shannon [Sha49] formally defined this kind of security in 1949 as perfect
secrecy. His intuition was the following: a cryptographic scheme achieves perfect
secrecy when any information on the plaintext obtained after learning the ciphertext
can also be obtained without the ciphertext. A bit more formally, let M be the
random variable of the plaintext and let C be the random variable of the ciphertext.
Shannon’s perfect secrecy states that, for all messages µ ∈ M and all ciphertexts
γ ∈ C,

P [M = µ|C = γ] = P [M = µ] .

An equivalent formulation, obtained by applying Bayes’ Theorem, is

P [C = γ|M = µ] = P [C = γ] .

From the latter, we get that, given two different messages µ0, µ1 ∈M,

P [C = γ|M = µ0] = P [C = γ|M = µ1] ,

or, with a compact notation, Encrypt(µ0) =∆ Encrypt(µ1), meaning that a cipher-
text coming from µ0 and a ciphertext coming from µ1 are identically distributed.
Unfortunately, this kind of security has two drawbacks.

First, it is impossible to achieve such level of security with small cryptographic
keys. More in detail, this result is only possible when the encryption key is as large
as the plaintext. A solution is to introduce some error in the probabilities. Namely,
instead of requiring that the quantities P [C = γ|M = µ0] and P [C = γ|M = µ1]
are equal we could just require the difference between them to be small. In this case,
we obtain what is called statistical security. However, this just reduces the length of
the key by a small factor, but the keys are still quite long.

Second, even the softened condition is impossible to achieve for several crypto-
graphic schemes. For instance, public key encryption4 would not be possible without
further assumptions. Luckily, there are some longstanding problems in mathematics
which are believed to be hard to solve even for powerful machines like supercomputers.

4Public key encryption is a form of encryption consisting of a pair of keys: a message is encrypted
using the public key and can only be decrypted using the secret key. A good analogy is to see the
public key as a lock and the private key as the key for the lock. Anyone can close the lock, but
once the lock has been closed, it can only be opened by whoever has the respective key.
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s3

0 1 0 0 ⊥ □ 0

Figure 1.1. A Turing Machine in state s3. The head of the turing machine is pointing to a
cell with symbol 0. If the rule of the Turing Machine is (s3, 0) 7→ (s5, 1, right), in the
next step s3 will be replaced with s5, the symbol 0 in the cell pointed by the machine
head will be replaced with 1, and the head moves one step to the right.

This fact allowed Whitfield Diffie and Martin Hellman [DH76], in 1976, to construct
a system to exchange secret keys without the need of a secure (encrypted) channel.
Shortly after, Ronald Rivest, Adi Shamir and Leonard Adleman invented what is
still currently one of the most used public key cryptosystems [RSA78]. However,
there was not yet an equivalent of perfect secrecy for this kind of encryption schemes.

This gap has been closed by Shafi Goldwasser and Silvio Micali in 1984 with the
notion of semantic security [GM84]. Informally, a cryptographic scheme achieves
semantic security when any information on the plaintext computed after learning
the ciphertext can also be computed without the ciphertext. The actual definition is
quite complex, but in [GM84] they show that it is possible to obtain a formulation
which is very similar to the one of perfect secrecy. Namely, they prove that a
cryptographic scheme is semantically secure if and only if Encrypt(µ0) ≈C Encrypt(µ1),
where ≈C is a special symbol that, informally, states that no machine can efficiently
distinguish between the two random variables. In other words, ≈C is a relaxation of
=∆ in the setting of computational security. A formal definition of both can be found
in Section 2.1.

Computational complexity. Now that we established what we want to achieve,
we need to formalize the environment in which we want to work. Terms like
“efficiently computable function” or “intractable problems” are great to convey the
general idea, but they are far from being formal; the goal of complexity theory is to
give these terms precise meaning.

Before talking about efficiency, we need to define what does “computing a
function” mean. Intuitively, computation happens through a sequence of steps, or
instructions, which are executed by a machine. This sequence of instructions is what
is called an algorithm; however, formally defining what is an algorithm is a hard
task [BG03] which is way beyond the scope of this thesis. Usually, the notion of
algorithm is considered to be equivalent to the notion of Turing Machines.

In short, a Turing Machine, shown in Section 1.1 is a mathematical model which
describes an abstract machine capable of computation. The way in which a Turing
Machine works can be summarized as follows. The machine is composed by two
parts, namely a head and a tape. The tape is of infinite length and divided in cells,
while the head is placed over one cell of the tape and has the ability to read from
or write onto such cell; moreover, the head has an internal state. In each step, the
head reads the cell, updates its internal state, writes back onto the cell and finally
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either stays on the same tape cell or moves one tape cell on the left or on the right.
A more detailed introduction to Turing Machines is out of the scope of this thesis,
and we refer the interested reader to, e.g., [BC94]. In Section 1.2, instead, we give a
more concrete idea of how computation happens in real life. For now, it suffices to
know that Turing Machines allows to formalize computation in an useful way.

Now we are ready to talk about efficiency. Intuitively, the faster an algorithm
outputs the correct result, the more efficient it is. The running time may depend on
several factors, including (a) the input of the algorithm, (b) the number of steps
performed by the algorithm, and (c) the execution time of each step. Items (b)
and (c) can be easily addressed by measuring the running time in number of steps,
thus leaving us to only deal with item (a). However, knowing the exact number of
steps is, more often than not, unnecessary; instead, we just aim for a good estimate.
Finally, the effort needed to perform some task usually depends on the size of the
task. Take, for instance, the textbook multiplication between two 3-digit numbers:
this operation always takes a person roughly the same time and the same number of
steps, regardless of the two numbers (except for a few special cases, like 200× 300);
on the other side, multiplying two 6-digit numbers almost always takes longer than
multiplying two 3-digit numbers. The same happens with algorithms: usually, the
(good estimate of the) running time only depends on the size of the input.5

We can now classify these execution times, thus obtaining a concrete idea of
the efficiency of an algorithm. An algorithm which runs in a number of steps
proportional to the size of the input is usually called linear-time; an example of
this is the textbook addition of two numbers. Similarly, an algorithm which runs
in a number of steps proportional to the square of the size of its input is usually
called quadratic-time; an example of this is the textbook multiplication. These kind
of algorithms are quite fast, especially for a modern computer, which is able to
perform billions of operation in one second. More in general, an algorithm running
in a number of steps proportional to a polynomial of the size of its input is usually
called polynomial-time. In complexity theory, the class of the problems which are
solvable by a polynomial-time algorithm is called P.

Sometimes, things do not go so well, and, for certain problems, polynomial-time
algorithms do not (yet) exist. Nonetheless, it may be the case that there exists a
polynomial-time algorithm which checks whether a solution to the problem is correct.
In this case, we say that such problem is verifiable in polynomial-time, and we denote
the class of such problems with NP.6 Clearly, every problem in P is also in NP:
to verify the correctness of the solution, it suffices to solve the problem again with
the same initial parameters. On the opposite, it is not yet known whether NP = P
or NP ̸= P. If NP = P, then any problem verifiable in polynomial-time is also
solvable in polynomial-time. Since this fact is quite counter-intuitive, it is commonly
assumed that NP ̸= P.

Examples of problems that are in NP but are not known to be in P are integer
5Notice that this is not always the case. To stick with the informal language, there are certain

problems which are “easy” to solve in the average case but “hard” to solve in the worst case.
6Actually, N P is defined as the class of the problems which are solvable by polynomial-time

non-deterministic algorithms (or machine). Roughly speaking, a non-deterministic machine is a
machine which is able to take multiple paths of execution at the same time. However, it has been
proven that the two definitions of N P are equivalent.
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factorization (used, for instance, in RSA) and discrete logarithm (used, for instance,
in the Diffie-Hellman key exchange).

Reductions. The last question of this section is the following: what is the role of
hard-to-solve but easy-to-verify problems?

The culprit is that some of these problems can be transformed into cryptosystems;
after that, a proof by reduction proves that, under the assumption that the underlying
problem is hard to solve, the cryptosystem is secure. Indeed, a reduction is a
polynomial-time algorithm that converts an adversary attacking the cryptosystem
into an adversary trying to solve the problem, hence showing that cracking the
cryptosystem is at least as hard as solving the underlying problem.

Actually, the proof by reduction works in a more general setting. Assume that a
cryptosystem A works by using, internally, a cryptosystem B. If B is already proven
to be secure, a proof by reduction would prove that A is at least as secure as B.7
Notice that, in this case, we did not make any computational assumption. Indeed, if
B has statistical (or even perfect) security, it is possible to use unbounded algorithms
to prove that the scheme A has a similar flavour of security.

1.2 Real life or just fantasy?
In the previous section, among the other things, we introduced the notion of Turing
Machine to describe an algorithm, and then we used this notion to discuss about
the efficiency of algorithms in terms of its number of steps.

On one side, this model is not too far from the real situation. A computer
program is simply a list of instructions which are executed by the processor. These
instructions are very basic, sometimes they are just simple arithmetics, logic, read or
write instructions or instructions which modify the flow of the program (for instance,
“go back to instruction 3 if flag ZF is 0”). The main advantage of computers over
Turing Machines is that computers are able to access very distant memory cells in
just one step, while Turing Machines need to scroll the full tape; otherwise, the
computing capability of computers and Turing Machines are pretty similar.

On the other side, however, this is not the full story.

Computer architecture. Computers are very complex machines. For the next
examples, we need to go back to the 80’s.

The very first microprocessor of the x86 family was the Intel 8086. The 8086
is a 16-bit microprocessor, meaning that it is able to process data 16 bits at a
time (or, numbers from 0 to 65535). Internally, the 8086 has a microcode which
handles almost all the instructions; however, this means that every instruction is
composed by micro-instructions and takes more than one clock cycle (think of them
as “sub-steps”) to be executed. The ADD instruction, for summing two numbers,
may take from 3 to 33 clock cycles, depending on whether the two operands are in
memory or already loaded into internal “registers”. The same ADD instruction in the
later Intel 80486 may take from 1 to 9 clock cycles, depending also on whether the

7More in detail, a proof by reduction would prove that breaking A implies breaking B, but this
is in contrast with the starting assumption that B is secure.
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Figure 1.2. The logos of the Spectre and Meltdown security vulnerabilities.

two operands have been used recently or not (i.e. it takes shorter if they are loaded
in the cache). With a completely different architecture, the Atmel atmega2560
microcontroller, from the 90’s, executes the instruction ADD in just 1 clock cycle.

Another difference between the above microprocessors and microcontroller is the
maximum allowed clock speed: for the 8086, it’s 10 MHz (i.e. 10 millions clock-cycles
in one second); for the Atmel, it’s 16 MHz; for the 80486, it’s 33 MHz (or up to
100 MHz for subsequent versions of the same processor). After 30 to 40 years, we
have now microprocessors able to run at 5 GHz, or 5000 MHz. This suggests that
quantifying the efficiency of an algorithm in actual time (e.g. seconds) may lead to
inconsistent results.

Let’s dig a bit further into the 8086. The MUL instruction, for multiplying two
numbers, may take from 70 to over 150 clock cycles depending on a number of
factors. Assume that the operands are 8-bit long and that they are already loaded
into registers. Then, the multiplication instruction takes from 70 to 77 clock cycles.
By reverse-engineering the microcode [Jen] obtained by analyzing the internal parts
of the 8086 [Shi] (the so-called die), it is possible to see that the number of clock
cycles depends on one of the inputs and, in particular, from its hamming weight.
This means that, by measuring the number of clock cycles necessary to execute the
MUL instruction, one could leak the hamming weight of one of the operands

Leakage attacks. As we can see, the harsh reality may be pretty different than
the theorized model. More sophisticated analysis than the one just performed falls
within the category of timing attack. This kind of attack aims to measure the
running time of an algorithm in order to get vital information about one of the
inputs (for instance, in the case of a cryptosystem, the secret key). Such attacks,
exploiting conditional statements, cache hits or misses, instructions duration and
any other time-dependant operation, have been proven to be very harmful [Koc96],
allowing, for instance, to completely recover the secret key of a cryptosystem. Very
recently, two security vulnerabilities have been discovered which are based on timing
attacks and affect most of the modern CPUs. The Spectre vulnerability [KHF+19]
is based on speculative execution, an optimization technique in which some tasks are
performed before even knowing whether they are needed or not; this is done in order



1.2 Real life or just fantasy? 8

to prevent delays during execution. The Meltdown vulnerability [LSG+18] is able
to break memory isolation between user and kernel space by exploiting side-effects
of out-of-order execution, another optimization technique in which instructions are,
when possible, executed in an order which is not the original; this optimization
allows the CPU to be always busy so to not waste clock cycles.

We can go even deeper. CPUs operate on group of bits, digital signals which
may only assume two values: either 0 or 1. On the physical level, this is conveyed
by electrical signal: a tension of 5 V in a 5 V microprocessor usually corresponds to
a bit with value 1, while a tension of 0 V usually corresponds to a bit with value
0.8 Operations on these signals are possible thanks to transistors, tiny electrical
switches which do not require manual interaction.9 A modern CPU has billions
of them and, being physical objects operating on electrical currents, transistors
are constantly interacting with the external environment. For instance, a CPU
computing a multiplication will consume more power than a CPU which is just idling
or updating some register. This fact allows for another class of attacks based on
power analysis [KJJ99]. Furthermore, currents create magnetic fields, and changing
currents create electromagnetic radiation, which can be detected and exploited as
well [GMO01]. In 2020, Mordechai Guri even managed to turn a computer’s RAM
into a Wi-Fi card, thus effectively allowing him to transmit data [Gur20].

Faults and tampering attacks. So far, we have only seen passive side-channel
attacks, in which secrets or partial information is leaked; however, this is not yet
the full picture. Other than influencing the environment, electrical components can
be affected by it. For instance, cosmic rays (i.e. high-energy subatomic particles)
are able to cause an unintended bit flip in memory. For this reason, usually servers
and machines in critical roles use error-correcting RAM modules, which are able
to correct one or two bit flips at the cost of some efficiency. Simulating cosmic
rays is not much efficient, but this kind of faults can be induced as well by some
attacker [GA03] in order to modify the internal state of the machine and gain access
to protected resources.

On the other side, the same can be achieved in a relatively cheap way with
lasers [BS03, CML+11, CLFT14, GGD17, CMD+18], causing serious threats to
the security of cryptographic schemes. Further attacks could be performed ex-
ploiting other physical properties or phenomena like temperature [GA03, HS14],
voltage [KJP14, BBB+10] or Eddy currents [BS03].

One way to break security of cryptographic schemes by tampering with them
relies on observing the effect of the tampering on the output of the scheme. This
has been applied successfully in related key attacks [Bih94], in which an attacker is
able to produce encryptions under different but related keys. Related key attacks
can be devastating, leading to a full key recovery by the attacker. Successful related-
key attacks have been studied for several encryption schemes and cryptographic

8Actually, it is more complex than that. In USB communication, ones are represented by a
changing signal (either 0 V to 5 V or 5 V to 0 V) while zeroes are represented by a steady signal.
The very recent GDDR6X memory modules are able to double the transmission capacity by properly
dividing the space between 0 V and maximum voltage in 4 parts instead of just 2.

9For the sake of completeness, transistors are a lot more than this. They are used both in digital
and analog circuits for several different tasks, another large use case being signal amplification.
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protocols, including DES and its variations [KSW96, KSW97], RC4 and the WEP
protocol [FMS01, SIR02], and, although still an impractical attack, AES [BK09].

1.3 Secret Sharing
In [Liu68], Chung Laung Liu considers the following problem.

“ Eleven scientists are working on a secret project. They wish to lock up the
documents in a cabinet so that the cabinet can be opened if and only if six
or more of the scientists are present. What is the smallest number of locks
needed? What is the smallest number of keys to the locks each scientist
must carry?
– Chung Laung Liu, “Introduction to Combinatorial Mathematics” [Liu68]

If the documents are physical objects, the solution can be very impractical, using
462 locks and 252 keys per scientist. On the other side, if the documents are just
data, which can be manipulated in different ways, these numbers can be made way
smaller. Indeed, Adi Shamir proved in [Sha79] that, with the use of polynomials
over finite fields, giving each scientist just one piece of information the same size of
the original data suffices to accomplish the same goal. A concurrent work of George
Blakley [Bla79] achieved a similar result with the use of hyperplanes.

The original problem. Intuitively, the goal of secret sharing is to share a piece
of secret information among a certain number of parties, in such a way that at least
t parties are able to reconstruct the message; additionally, less than t parties should
not be able to learn any information on the original message.

In the setting in which all the parties are required to reconstruct the secret
(i.e. t = n ), the first requirement can be simply achieved by splitting the original
message into n pieces, where n is the number of involved parties; however, this does
not satisfy the second requirement: each party alone would know 1

n of the original
message. Even worse, k < n colluding parties would know k

n of the original message,
even though they do not constitue an authorized subset. This is still in net contrast
with the goal of semantic security, which aims to protect the information in full, i.e.
without partial leaks.

In addition, this method does not work when t < n.

Blakley’s solution. The solution proposed by Blakley in [Bla79] uses geometry
and, in particular, intersecting hyperplanes in an n-dimensional space.

As an example, assume that n = 3. We can consider the following situations in
the tridimensional space R3. Let m ∈ R3.

• Given 3 pairwise non-parallel planes π1, π2, π3 ⊆ R3 such that m ∈ π1∩π2∩π3,
it is impossible to identify m with just two of the three planes. Indeed, the
intersection between two planes is a straight line, and, without the third plane,
m could be anywhere on such line. Giving to each party one plane, we can
obtain a scheme in which all the three parties are required to reconstruct m,
and less than three parties reveal (almost) no information about m. In this
case, t = 3 and n = 3.
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• Given 3 pairwise non-parallel straight lines r1, r2, r3 ⊆ R3 such that m ∈
r1 ∩ r2 ∩ r3, it is impossible to identify m with just one of them; however, two
of them are enough to locate m in R3. Giving to each party one line, we can
obtain a scheme in which any two of the three parties are able to reconstruct
m, and less than three parties reveal (almost) no information about m. In this
case, t = 2 and n = 3.

• The situation t = 1 and n = 3 is trivial: it suffices to give the point m to each
party.

Blakley generalizes this example to n parties: the secret message is a point m ∈ Rn,
an each party is given a t-dimensional hyperplane π ⊆ Rn. If the hyperplanes are
randomly generated so that they are pairwise non-parallel and intersecting in m,
this (almost) gives a secret sharing scheme.

The careful reader probably noticed that, to describe this setting, we used
everywhere the word “almost”. Indeed, this method has two problems.

• An (n− 1)-dimensional hyperplane in Rn can be described with one n-variate
linear equation, while a 1-dimensional hyperplane (i.e. a straight line) requires
a system of n− 1 n-variate linear equations to be described. Space efficiency
can be made better for low-dimensional hyperplanes by switching to generating
vectors instead of systems of equations; however, the problem is still there in
the case of, e.g., t = n

2 .

• From the point of view of security, this method reveals partial information
on the secret m ∈ Rn. Indeed, any hyperplanes gives a hint about which
hyperplane contains m; furthermore, any subset of hyperplanes intersect in an
hyperplane of lower dimension, which further restricts the possibilities for the
position of m.

However, with further restrictions on the planes and tweaks on the encoding system,
this scheme can be made equivalent to the following solution.

Shamir’s solution. The solution proposed by Shamir in [Sha79] uses polynomial
interpolation and evaluation. For this solution, we directly use finite fields. Let F
be a finite field with characteristic greater than n, let m ∈ F be the secret message
and let p(x) = a0 + a1x + . . . + at−1xt−1 be a (t− 1)-degree polynomial. By letting
a0 = m and, for i ∈ {1, . . . , n} ⊆ F, yi := p(i), we get n + 1 distinct points on a
plane. The first point is (0, m), which identifies the secret message. The subsequent
n points are of the form (i, p(i)), which we give to each party.

Given t such points, we obtain a solvable system with t linear equations in the t
variables a0, . . . , at−1; solving this system gives back the polynomial p, with which
is possible to get back the message by computing m = p(0).

Given t − 1 such points, we obtain a system with t − 1 linear equations in t
variables. By adding to the system a0 = m′ for m′ ∈ F, the system becomes solvable,
and solving it gives some polynomial p′. Since this could be done for any m′ ∈ F, it
means that any message in F is equally likely, hence t− 1 points still do not reveal
anything about the secret.
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Motivation. The first motivation behind secret sharing should be quite clear at
this point: it allows to spread trust among several parties without the need to trust
single parties or too small groups of parties. From the point of view of data storage,
secret sharing allows to save data in multiple places with a good compromise between
privacy and data integrity. Indeed, secret sharing allows a client using n servers to
withstand up to t− 1 data breaches before losing the privacy guarantee and n− t
server failures before losing the ability to reconstruct.

This technique could be used in the opposite sense as well: secret sharing could
be used to store, in a distributed fashion, encrypted information with a limited
lifetime and, once the lifetime expires, deleting n− t + 1 shares suffices to make the
information not available anymore. This is the idea behind the Vanish system [Van09].
Unfortunately, Vanish has been proven susceptible to Sybil10 attacks in [WHH+10],
and therefore insecure.

With additional properties, secret sharing is used in threshold cryptosystems [FP01,
KY02, LY11, BGG+18]. The goal of threshold cryptography is to allow several par-
ties to do cryptography (e.g. encryption, signatures) in a distributed way, without
the need of a trusted third party and without the need of trusting the single parties.

More in general, secret sharing has applications in secure multi-party computation
and distributed protocols in general e.g. in [BGW88, CDM00, BCG+15, Pat16].

Additional properties. Secret sharing has several flavours of security. Here, we
list some of them.

Proactive secret sharing [HJKY95] allows to refresh the shares, thus actively
protecting the secret even in case an attacker manages to steal some of the shares.

Verifiable secret sharing [CGMA85] allows the parties to check whether their
shares are consistent with the shared secret. This is often used when the dealer is
not trusted, e.g. in the context of multi-party computation.

Robust secret sharing [TW88] prevents the corruption of the shared secret caused
by a certain number of cheating parties.

A linear secret sharing scheme allows to perform linear operations on the shared
secret by just performing such operations on the shares. Using the linear properties
of polynomials, it is easy to show that Shamir’s secret sharing is a linear secret
sharing scheme.

Homomorphic secret sharing [BGI16] is an upgrade of linear secret sharing in
that it allows to perform any operation (instead of only linear operations) on the
secret through the shares.

Finally, leakage resilient [KMS18] and non-malleable [GK18a] secret sharing
schemes have the additional guarantees that they are secure against side-channel
attacks on the shares.

1.4 Thesis contributions
In the setting described in Section 1.2, it is necessary to improve the security of the
cryptographic primitives so that they are able to withstand side-channel attacks, and

10A Sybil attack is an attack in the context of distributed services in which the attacker gains
more power by creating multiple fake identities.
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secret sharing is not an exception. In the last few years, a lot of work has been done
in this direction, and the focus of this thesis is on leakage-resilient non-malleable
secret sharing.

Background. In the context of secret sharing, a tampering attack is formalized
as a function f : S → S which takes as input the original shares and produces
a new set of shares. Informally, we say that the tampering attack is successful if
the new shares reconstruct to a secret which is related to (but different from) the
original one. This relation is measured by means of a “security game” in which the
attacker tries to distinguish between the secret sharing of two arbitrary messages
by only observing the result of the tampering attack on the reconstructed message.
More in general, the attacker may be able to attack the same scheme multiple times
and see all the reconstructed values. In this case, the multiple tampering attacks
are formalized by a sequence of (adaptively chosen) functions (f1, . . . , fp) : S → S.
The details and the formal definition can be found in Section 2.3, but, intuitively,
the scheme is non-malleable if no attacker is able to distinguish between any two
messages (except with negligible advantage), meaning that the tampering attack(s)
cannot produce a related message.

Similarly, a leakage attack is formalized as a function g : S → Σ, where Σ is an
arbitrary set (usually, a set of binary strings: Σ = {0, 1}∗ ), and, in this case, the
goal of the attacker is to distinguish between the secret sharing the two messages
by only learning the output of g. Here, multiple attacks are again formalized as a
sequence of (adaptively chosen) functions g1, . . . , gq : S → Σ.

Clearly, it is impossible to protect against arbitrary attacks: for the case of tamper-
ing, the adversary could simply choose f(σ) = SS.Share

(
0n−11⊕ SS.Reconstruct(σ)

)
as a tampering function: f reconstructs the secret, flips the last bit and then
shares it again, thus creating a secret sharing of a message related to the original
one. However, by restricting the class F of the admissible tampering functions,
it is possible to achieve such security guarantee. A common restriction is that
the tampering function f is only allowed to modify each share independently (the
so-called independent tampering). A weaker restriction (thus leading to a stronger
tampering model) allows the tampering function f to partition the set of shares in
non-overlapping unauthorized subsets and then tamper jointly with all the shares in
each partition set (the so-called joint tampering). Similarly, for the case of leakage,
the adversary could simply choose the function f(σ) = SS.Reconstruct(σ) which
outputs the message in clear. The same restrictions of before hold for the leakage
function family as well, which lead to, respectively, independent leakage and joint
leakage.

First contribution. The main question we look at is how far it is possible to
push the security of secret sharing schemes. More in detail, we ask ourselves if it
is possible to withstand attacks in which the attacker is able to continuously (i.e.
without bounding the number of queries in advance) leak from and tamper with the
shares in a joint fashion.

In [BFO+20] we make a step forward towards answering this question by building
a secret sharing scheme which is able to withstand multiple tampering attempts
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against disjoint groups of shares. Our result achieves a very strong flavour of security
which we call semi-adaptive partitioning. Namely, the attacker is able to adaptively
change the partition within each tampering query, with the further restriction
that, once some of the shares have been tampered together, they are always either
considered jointly or completely ignored. Unfortunately, the number of tampering
attempts allowed to the adversary is still bounded a-priori.

Theorem (informal). Assuming the existence of one-to-one one-way functions,
there exists a secret sharing scheme satisfying k-joint p-time non-malleability under
semi-adaptive partitioning, for k ∈ O(

√
log(n)) and p > 0. Furthermore, the secret

sharing scheme is allowed to have any access structure tht can be described by a
polynomial-size monotone span program for which authorized sets have size greater
than k.

In [BFV21] we are finally able to answer positively to this question, proposing the
first secret sharing scheme which is leakage-resilient and continuously non-malleable
against adversaries which are able to jointly tamper with the shares.

Theorem (informal). Assuming the existence of one-to-one one-way functions,
there exists a secret sharing scheme satisfying k-joint leakage-resilient continuous
non-malleability under selective partitioning. The secret sharing scheme supports the
threshold t-out-of-n access structure for t > 2n/3 and has the optimal parameter of
k = t− 1.

Finally, we would also like to stress that our results hold in the plain model
(i.e. without any CRS or random oracle) and under standard assumptions (i.e. the
existence of one-to-one one-way functions).

Second contribution. Another important question is about the rate of secret
sharing schemes, that is, the proportion between the message and the size of the
resulting shares. Interestingly, our first result comes from a simple but powerful
theorem: in [BFO+20], we prove that any one-time non-malleable code has a certain
degree of leakage-resilience. A corollary of this fact is the possibility to apply a lower
bound from [NS20] which, in turns, gives a lower bound for the size of the shares of
any (statistically) non-malleable secret sharing scheme.

In [BFV21], we discover an upper bound for the rate of continuously non-malleable
secret sharing scheme with a certain degree of security.

Theorem (informal). Any continuously non-malleable secret sharing scheme for n
parties realizing a threshold access structure t-out-of-n and security against jointly
tampering with k > t/2 shares cannot achieve better asymptotic rate than ρ ≤ t− k.

In the same work, we show a compiler to get better rates. Using this compiler,
we achieve a continuously non-malleable secret sharing scheme with optimal rate.
Furthermore, we achieve the first continuously non-malleable secret sharing scheme
against independent tampering breaking the rate-one barrier. In particular, our
construction achieves rate t/2.

For comparison, when not considering leakage or tampering, Krawczyk proved
in [Kra94] that the best possible rate for secret sharing is t.
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Previous work on non-malleable secret sharing. Non-malleable secret sharing
has been introduced by Goyal and Kumar in [GK18a] against both independent
and joint tampering attacks. In a follow-up paper [GK18b], they focused on n-
out-of-n secret sharing, achieving a stronger flavour of non-malleability. These two
papers opened the way for the study of non-malleable secret sharing schemes [CL18,
ADN+19, KMS19, BS19, FV19, SV19, BFV19, GSZ20, CKOS21, CKOS22], both
in the setting of independent and joint tampering.

In the computational setting, Faonio and Venturi [FV19] obtained the first
construction which is able to resist against any (polynomial) number of tampering
attempts. They also show that such kind of security is impossible to achieve in
the information-theoretic model. Furthermore, another necessary condition is the
self-destruct feature, stating that, once a faulty reconstruction occurs, all the shares
must be erased.

Finally, Goyal, Srinivasan and Zhu [GSZ21] obtained a construction in an even
stronger model in which partitions are allowed to overlap.

Related work. The notion of non-malleable secret sharing is closely related to
the one of non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs
in [DPW10]. Intuitively, a non-malleable code allows to encode a message in a way
that makes it resist tampering attempts. The result is that, after the encoding has
been modified, either the encoded message is the same or it is a completely unrelated
one. Again, it is impossible to protect against arbitrary attacks, therefore some
tampering models are necessary.

A long line of research [DPW10, LL12, DKO13, CG14a, CG14b, ADL14, CZ14,
ADKO15a, ADKO15b, CGL16, CKR16, Li17, KOS17, ADN+19] focuses on the
so-called n-split-state tampering, in which the encoding is split into n blocks and
then the attacker is only allowed to tamper with each block independently. This
notion is closely related to the one of non-malleable secret sharing. In [ADKO15b],
Aggarwal et al. show that every 2-split state non-malleable code is also a 2-out-of-2
non-malleable secret sharing. Unfortunately, this does not hold for n ≥ 3.

Similarly, any (leakage-resilient) 2-split-state continuously non-malleable code
[FMNV14, FNSV18, OPVV18, CFV19] is a (leakage-resilient) 2-out-of-2 continu-
ously non-malleable secret sharing.

However, non-malleable codes do not have “shares” which need to be sent to dif-
ferent parties. This makes non-malleable codes more suitable for other classes of tam-
pering attacks such as decision-tree tampering [BDKM18, BGW19, BFMV22], tam-
pering in AC0 [BDKM18, BGW19], tampering via bounded-depth circuits [BDKM16,
CL17, BDG+18, BFMV22], tampering via partial functions [KLT18], space-bounded
tampering [FHMV17, CCHM19], and many others.

Structure. The structure of the thesis is as follows.
• In Chapter 2 we establish the basic notation and we define the cyrptographic

primitives that we are using in our results.

• Chapter 3 is focused on how to achieve the stronger flavours of non-malleable
secret sharing described above, pointing out the challenges and highlighting
the main ideas.
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• In Chapter 4, we start by showing that a non-malleable secret sharing scheme
has a certain degree of leakage resilience. Then, we prove the aforementioned
upper and lower bounds. Finally, we show how to achieve optimal rate.
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Chapter 2

Preliminaries

In this chapter, we establish the foundations for the next chapters, introducing the
basic tools that we are going to use in the remainder of the thesis.

In Section 2.1, we establish the basic notation and the necessary mathematical
notions. Then, we introduce the notation for algorithms and cryptographic scheme
and we give an overview on security games.

In Section 2.2, we state the formal definitions of all the cryptographic primitives
that we are going to use in the rest of the thesis.

Finally, in Section 2.3 we give an overview on leakage resilience and non-
malleability applied to secret sharing schemes and we establish the specific definitions
and notations to talk about this topic.

2.1 Notation
Basic notation. Let N,Z,R be respectively the set of natural numbers, the set of
integers and the set of real numbers. If n ∈ N and n ≥ 1, we write [n] for the set
{1, . . . , n}. If a, b ∈ R, with a ≤ b, we write [a, b] for the interval {x : a ≤ x ≤ b}.
If p ∈ N is a prime number, we denote by Fp the finite field of size p, or we simply
write F when p is clear from the context. For any other set, we use the calligraphic
uppercase letters A,B, I, . . .. The cardinality of a set S is the number of its elements,
which we denote as #S.

For n ∈ N, if x = (x1, . . . , xn) ∈ X1 × . . . × Xn is a tuple of n elements and
I ⊆ [n] is a set of indices, we write xI as a shorthand for (xi)i∈I , that is, the tuple
of length #I formed by the elements in position i ∈ I of the original tuple x.

If S is a finite and non-empty set, we can consider S to be an alphabet. A string
of length ℓ ∈ N over the alphabet S is an element x ∈ Sℓ. Sometimes, it’s simpler to
just consider the set of all the strings over S: we denote this set by S∗ := ∪n∈NSn.
In any case, it is always defined the length of a string x ∈ S∗, which is the value
|x| ∈ N such that x ∈ S |x|. If x = (x1, . . . , xm) ∈ Sm and y = (y1, . . . , yn) ∈ Sn are
two strings, we define their concatenation as x||y = (x1, . . . , xm, y1, . . . , yn) ∈ Sm+n.

For a function f with domain in X and codomain in Y, we write f : X → Y,
or f : X → Y : x 7→ f(x) if we want to explicit the name of the variable or the
function map. As an example for the latter case, the function which maps x ∈ R
to its square can be written as f : R→ R : x 7→ x2. Finally, in some cases we may
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need to use some function without giving it an explicit name, domain or codomain;
in that case, we simply write the last part, e.g. x 7→ x2, or simply the expression x2

if the variable is clear from the context.

Asymptotic notation. Some times we are not interested in the exact value of a
function, but only in how “big” or “small” its values are compared to other functions.
Let f, g : R→ R be two arbitrary functions. We say that:

• f ∈ O(g) if there exist constants c, x0 ∈ R, with c > 0, such that

∀x > x0, f(x) ≤ c · g(x).

Intuitively, f ∈ O(g) if f is bounded by g from above, up to a constant factor.

• f ∈ o(g) if, for all c ∈ R, c > 0, there exists a constant x0 such that

∀x > x0, |f(x)| ≤ c · |g(x)| .

Intuitively, f ∈ o(g) if f is asymptotically dominated by g.

• f ∈ Ω(g) if g ∈ O(f), that is, if there exist constants c, x0 ∈ R, with c > 0,
such that

∀x > x0, f(x) ≥ c · g(x).
Intuitively, f ∈ Ω(g) if f is bounded by g from below, up to a constant factor.

• f ∈ ω(g) if g ∈ o(f), that is, for all c ∈ R, c > 0, there exists a constant x0
such that

∀x > x0, |f(x)| ≥ c · |g(x)| .
Intuitively, f ∈ ω(g) if f asymptotically dominates g.

• Finally, we say that f ∈ Θ(g) if f ∈ O(g)∩Ω(g), that is, if there exist constants
c1, c2, x0 ∈ R, with c1, c2 > 0, such that

∀x > x0, c1 · g(x) ≤ f(x) ≤ c2 · g(x).

Intuitively, f ∈ Θ(g) if f and g have the same asymptotic behavior, up to
constant factors.

A common abuse of notation is to replace the symbol ∈ with =. This is indeed
very useful, in that it allows to compose large statements without adding too much
notation.

In cryptography it is also common to use two other classes of functions:

• A function f : N→ R : n 7→ f(n) is polynomially bounded if there exists c ∈ N
such that f ∈ O(nc). In this case, we write f ∈ Poly(n), or f ∈ Poly if the
variable is clear from the context.

• A function f : N→ R : n 7→ f(n) is negligible if, for all c ∈ N, f ∈ o(n−c). In
this case, we write f ∈ Negl(n), or f ∈ Negl if the variable is clear from the
context.

These two classes of functions are closed under sum and product, meaning that, if f
and g are in one of these classes, then both f + g and f · g are in the same class.
Moreover, it is easy to show that, for all f ∈ Poly and g ∈ Negl, f · g ∈ Negl.
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Probabilities and random variables. We denote random variables with up-
percase bold face letters. For a random variable X ∈ X , we denote by P [X = x]
the probability that X assumes the value x. The corresponding distribution will
be denoted as pX ; in particular, for all x ∈ X , pX(x) = P [X = x]. If Y ⊆ X ,
we use a slight abuse of notation for the probability that X ∈ Y by writing
pX(Y) := P [X ∈ Y]. Unless stated otherwise, we reserve the bold face letter UX for
the uniform random variable over X , that is, the random variable with the constant
distribution pUX (x) = 1

#X for all x ∈ X . When it is clear from the context, we omit
the set X and we simply write U . Sometimes, we need to sample multiple times
from the same distribution pX . In this case, we mark the different random variables
with a superscript number in parenthesis: X(1), X(2), X(3), . . ..

The (total variation) statistical distance between two random variables X, Y
over the same set X is the quantity

∆ (X, Y ) := 1
2
∑
x∈X
|P [X = x]− P [Y = y]| .

We say that the two random variables are identically distributed if ∆ (X, Y ) = 0 or,
equivalently, pX = pY , and we denote this fact by writing X =∆ Y .

Min-entropy and conditional average min-entropy. The min-entropy of a
random variable X is, intuitively, a measure of its unpredictability. More formally,
it is defined as

H∞ (X) := − log
(

max
x∈X

P [X = x]
)

.

For conditional distributions and random variables, we use the notion of conditional
average min-entropy from [DORS03].

H̃∞ (X|Y ) := − logEy←$ Y

[
2−H∞(X|Y =y)

]
= − logEy←$ Y

[
max
x∈X

P [X = x|Y = y]
]

.

The lemma below is sometimes known as the “chain rule” for conditional average
min-entropy.

Lemma 2.1 ([DORS03], Lemma 2.2). Let X, Y , Z be random variables. If Y has
at most 2ℓ possible values, then

H̃∞ (X|Y , Z) ≥ H̃∞ (X, Y |Z)− ℓ ≥ H̃∞ (X|Z)− ℓ.

In particular,
H̃∞ (X|Y ) ≥ H̃∞ (X, Y )− ℓ ≥ H̃∞ (X)− ℓ.

Algorithms. We denote algorithms in sans-serif CamelCase. If an algorithm
Algorithm computes a function f : X → Y, we identify the algorithm with the
function and we just write y = Algorithm(x) for the computation of Algorithm of
f(x). However, we write y← Algorithm(x) if we want to make explicit the fact that
y is obtained by running the algorithm Algorithm.
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So far, we only talked about deterministic functions and algorithms. A proba-
bilistic or randomized function f : X → Y is a function whose output depends on
internal randomness; this is equivalent to writing f : X ×R → Y, where the values
from R are sampled in an uniformly random fashion. Unless specified otherwise, we
assume all algorithms to be randomized (notice that this is without loss of generality,
since a deterministic algorithm can be seen as a randomized algorithm with #R = 1).
When sampling an output from a randomized algorithm, we write y←$ Algorithm(x).
Similarly, we write x←$ X for a uniformly sampled value from X and x←$ X for
sampling a value x ∈ X distributed as the random variable X. When we need to
make explicit the randomness of the algorithm, we pass it as the last argument of
the algorithm, preceeded by a semicolon: y← Algorithm(x; ρ) for some ρ←$R.

An algorithm computes a function by executing a certain number of steps.
Moreover, an algorithm operates on encodings, and the input set X is usually
encoded in a suitable way (e.g. binary); however, in order to simplify notation, we
commit a slight abuse of notation and, unless specified, identify X with its (binary)
encoding. Let X be a set and let λ := ⌈log(#X )⌉; sometimes, we refer to λ as the
size or length of (the encoding of) the set X . We say that an algorithm is efficient or
PPT (probabilistic polynomial-time) if it terminates in a number of steps bounded
by Poly(λ); if this requirement is not needed, we usually say that the algorithm is
unbounded.

For an algorithm D : X → {0, 1} and two random variables X, Y over the same
set X we call advantage of D the quantity

Adv[D](X, Y ) := |P [D(X) = 1]− P [D(Y ) = 1]| .

Let λ ∈ N, let Xλ be of size λ and let Xλ, Xλ random variables over Xλ. If, for all
efficient algorithms Dλ : Xλ → {0, 1}, Adv[Dλ](Xλ, Yλ) ∈ Negl(λ), we say that Xλ

and Yλ are computationally close, and we denote this fact by writing Xλ ≈
C

λ Yλ; we
can simply use ≈C instead of ≈C λ if λ is clear from the context.

It is easy to show that if, for a parameter ε ∈ [0, 1] and for all (even unbounded)
algorithms D : X → {0, 1}, Adv[D](X, Y ) ≤ ε, then X and Y are ε-statistically
close. By introducing again the parameter λ referred to the size of the set Xλ, we
denote by Xλ ≈

∆
λ Yλ (again, replacing ≈∆ λ with ≈∆ if λ is clear from the context ) the

fact that ελ ∈ Negl(λ). Furthermore, if ελ = 0, we write Xλ =∆ λ Yλ (or Xλ =∆ Yλ);
notice that this is not in contrast with the previous definition of =∆ .

Oracles. Sometimes, we need to grant some algorithm A the ability to compute a
particular function f . However, such function cannot be computed by the algorithm
A because either A does not have enough information (the function may embed a
private key from some encryption scheme) or A does not have enough computational
power, or f may be some kind of an ideal function (for instance, a truly random
function). In these cases, we construct what is called an oracle, that is, an algorithm
Of which is either initialized with the inaccessible data or has the capabilities to
compute f . Then, A can interact with Of in a black-box way, meaning that A runs
Of with some input and gets the corresponding output, but is unable to see how the
computation happens inside the oracle. We denote the fact that A has oracle access
to Of by writing AOf , or, e.g., AOf(x,·) if we need to be more explicit, for instance
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when f is the function f : (x, y) 7→ z, x needs to stay secret and y is chosen by A.
Sometimes, when querying on some value y an oracle with pre-initialized values like
Of (x, ·), we write Of (y) as a shorthand for Of (x, y).

Schemes. A cryptographic scheme is a tuple of algorithms meeting some specifi-
cations. For instance, a public key encryption scheme needs three algorithms: an
algorithm KGen which generates a pair of keys, an algorithm Encrypt which uses
a key to encrypt a plaintext, and an algorithm Decrypt which uses another key to
decrypt a ciphertext. If we denote the public key encryption scheme as PKE, the
respective algorithms are PKE.KGen, PKE.Encrypt and PKE.Decrypt. In this way, if
we have more than one scheme of the same type, say PKE1 and PKE2, we are able
to identify the respective algorithms by writing PKE1.KGen and PKE2.KGen.

Usually, cryptographic schemes have a few additional parameters, which we can
either state in the definition (es. PKE has security ε) or carry in the name of the
scheme (es. PKE[n] for some parameter n). Sometimes, there are many parameters,
and keeping them implicit or anonymous may be confusing. In these cases, we
summarize them in a table:

Scheme PKE
KeySize : λ

SecurityClass : IndCPA

SecurityError : Negl(λ)

If we then need to address some parameters of the scheme PKE or add new parameters,
we use the same notation used for the algorithms: PKE.KeySize = n.

Security games. We define security by means of an interactive protocol with the
adversary A. Namely, we define an interactive experiment in which the adversary
A is allowed to make certain kinds of queries and, at the end of the interaction,
outputs some value. More formally, a security experiment is formalized as a random
variable ExperimentA[λ, . . .] which is parametrized by the adversary A and takes
as input the security parameter λ and, if necessary, any other parameter needed to
run the experiment. Internally, ExperimentA[λ, . . .] runs the adversary A (that is
formalized as one or more algorithms), answers to its queries and finally outputs
some value. Security is then defined by establishing two different experiments and
requiring that these are closely distributed (either computationally or statistically,
depending on the kind of security).

In simulation based security, there is usually one experiment RealA[λ, . . .] in
which the adversary interacts with the real scheme and one experiment SimA[λ, . . .],
in which the adversary interacts with some dummy values and the real protocol is
computed by a (simulated) trusted third party. In this case, the security requirement
is that, for instance, RealA[λ, . . .] ≈C SimA[λ, . . .].

The notion of game based security is further divided into two categories. In game
based indistinguishability, the goal of the adversary is to distinguish between two
values, say m0, m1. The experiment is then parametrized by a bit b which denotes
what value has been used in the experiment. In this case, the security requirement
is that, for instance, ExperimentA[λ, m0, m1, 0] ≈C ExperimentA[λ, m0, m1, 1]. In
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game based unpredictability, the goal of the adversary is to produce a value satisfying
some condition (e.g. a valid signature for a message). The output of the experiment,
in this case, will be 1 if the adversary manages to output a valid value and 0 if
instead the value does not meet the condition. The security requirement will then be
that P [ExperimentA[λ, . . .] = 1] is small enough or, with a slight abuse of notation,
ExperimentA[λ, . . .] ≈C 0.

Finally, sometimes security cannot be proven directly, and it is necessary to
introduce some hybrid experiment representing an intermediate step between the
starting experiment and the final one. Then, security is shown by showing the
relations

StartA[λ, . . .] ≈C Hyb1
A[λ, . . .] ≈C Hyb2

A[λ, . . .] ≈C FinishA[λ, . . .] .

2.2 Standard cryptographic primitives
In this chapter, we define the standard cryptographic primitives which we are going
to use in the rest of the thesis.

Symmetric Encryption. A secret-key encryption scheme SKE allows to encrypt
and decrypt a message with the same key, which is thus needed to kept secret. As
introduced in Section 1.1, the desiderable property for an encryption scheme is that
no information about the message can be obtained through its encryption.

More formally, let λ ∈ N be a parameter and let K,M, C be sets, where K = Kλ

is implicitly parametrized by λ. Let SKE be a scheme consisting of the following
two algorithms.

• Randomized algorithm SKE.Encrypt: upon input a key κ ∈ K and a message
µ ∈M, output a ciphertext γ ∈ C.

• Deterministic algorithm SKE.Decrypt: upon input a key κ ∈ K and a ciphertext
γ ∈ C, output a message µ ∈M∪ {⊥}.

Consider the following oracles.

Oracle: OEnc
Input: (κ, µ) ∈ K ×M

γ←$ SKE.Encrypt(κ, µ)
Output: γ

Oracle: ODec
Input: (κ, γ) ∈ K × C

µ←$ SKE.Decrypt(κ, γ)
Output: µ

Let A = (A1, A2) be an adversary where

• A1 takes as input the parameter λ, has oracle access to OEnc,ODec and outputs
two messages µ0, µ1 ∈M and an auxiliary state α;
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• A2 takes as input the auxiliary state α and a ciphertext γ, has oracle access to
OEnc and outputs a bit b′.

Consider the following experiment parametrized by the adversary A, the parameter
λ and a bit b ∈ {0, 1}.

Experiment: IndCCA2
A [λ, b]

κ←$K
(µ0, µ1, α)←$ AOEnc(κ,·),ODec(κ,·)

1 (1λ)
γ←$ SKE.Encrypt(κ, µb)
b′←$ AOEnc(κ,·),ODec(κ,·)

2 (α, γ)
Output: b′

Definition 2.2 (Security against chosen-ciphertext attacks). The scheme SKE
defined above is a symmetric encryption scheme with indistinguishability against
(adaptively) chosen ciphertext attacks if, for all PPT adversaries A,

IndCCA2
A [λ, 0] ≈C IndCCA2

A [λ, 1] .

Remark 2.3. Further notions of security exist for symmetric key encryption
schemes.

• By removing oracle ODec access from A2, we obtain a weaker notion of chosen
ciphertext attacks; the corresponding experiment is IndCCA.

• By entirely removing the oracle ODec, A only has access to an encryption oracle.
This is an even weaker security requirement called indistinguishability against
chosen plaintext attacks, denoted by experiment IndCPA.

Non-Interactive Commitment. A commitment scheme [Blu81] is a two-party
protocol that allows one party to commit to a value x and reveal x in a later time.
Intuitively, the two requirements satisfied by a commitment scheme are the following.

• A commitment scheme should be binding, meaning that the committed value
x cannot be changed later for the same commitment.

• A commitment scheme should be hiding, meaning that the committed value x
should remain secret until it is revealed at a later point.

Non-interactive commitment schemes have the additional properties that no interac-
tion between the two parties is required.

More formally, let M, C be two sets and let λ ∈ N be a parameter. Let Com be
a scheme consisting of the following algorithm.

• Randomized algorithm Com.Commit: upon input a message µ ∈M, output a
commitment value ζ ∈ C.

We start by formalizing the binding property.
Let A be an adversary that takes as input the parameter λ, a message µ ∈M

and random coins ρ ∈ R = Rλ and outputs another message µ′ ∈M and random
coins ρ′ ∈ R. Consider the following experiment parametrized by the adversary A,
the parameter λ, a message µ ∈M and random coins ρ ∈ R.
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Experiment: BindingA[λ, µ, ρ]
(µ′, ρ′)←$ A(1λ, µ, ρ)
b∗← 1
IF Com.Commit(µ; ρ) ̸= Com.Commit(µ′; ρ′) :

b∗← 0
IF µ′ = µ : b∗← 0

Output: b∗

Definition 2.4 (Binding property). A scheme Com has the binding property if, for
all adversaries A, all messages µ ∈M and all random coins ρ ∈ R,

BindingA[λ, µ, ρ] ≈ 0,

where ≈ is one of the following.

• If ≈ is ≈C and A is PPT, we say that Com is computationally binding.

• If ≈ is ≈∆ , we say that Com is statistically binding.

• If ≈ is =∆ , we say that Com is perfectly binding, meaning that each commitment
can only be opened in a single way.

Formalizing the hiding property should be easier.

Definition 2.5 (Hiding property). A scheme Com has the hiding property if, for
all pairs of messages µ0, µ1 ∈M,

Com.Commit
(
1λ; µ0

)
≈ Com.Commit

(
1λ; µ1

)
where ≈ is one of the following.

• If ≈ is ≈C , we say that Com is computationally hiding.

• If ≈ is ≈∆ , we say that Com is statistically hiding.

• If ≈ is =∆ , we say that Com is perfectly hiding.

A scheme Com is a commitment scheme if it has both the binding and the hiding
property.

Remark 2.6. It is easy to show that a commitment scheme cannot be both perfectly
(or statistically) binding and perfectly (or statistically) hiding. Indeed, if a commit-
ment scheme is perfectly binding, there exists only one valid opening (µ, ρ) for a
given commitment ζ; therefore, ζ uniquely identifies µ.

For this reason, the commitment schemes considered are usually either com-
putationally binding/statistically hiding or statistically binding/computationally
hiding.
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Secret Sharing. We introduced secret sharing informally in Section 1.3; here, we
give the formal definition.

The information on the authorized parties is conveyed by the so-called access
structure.

Definition 2.7 (Access structure). Let n ∈ N. An access structure A for n parties
is a monotone class of subsets of [n]. In other words, if I1 ∈ A and I1 ⊆ I2, then
I2 ∈ A. We call authorized or qualified all the sets I ∈ A, and we call unauthorized
any other subset U /∈ A.

The most common example of access structure is the threshold access structure.
In this case, it is defined a parameter t ∈ [n], which is called reconstruction threshold.
The t-out-of-n access structure is then defined as the class of all the subsets of A
with at least t elements:

Threshold(t, n) := {I ⊆ [n] : #I ≥ t}.

Now we are ready to state the requirements for a secret sharing scheme. Let
n, λ ∈ N be parameters and letM,S1, . . . ,Sn be sets. Let SS be a scheme consisting
of the following algorithm.

• Randomized algorithm SS.Share: upon input a message µ ∈M, output shares
(σ1, . . . , σn) ∈ S1 × · · · × Sn.

• Deterministic algorithm SS.Reconstruct: upon input (I, (σi)i∈I), where I ∈ A
and, for all i ∈ I, σi ∈ Si, output a message µ ∈M∪{⊥}, where ⊥ is a special
symbol denoting that the reconstruction failed due to invalid shares.

Definition 2.8 (Correctness). A scheme SS has the correctness property if, for all
messages µ ∈M and all authorized subsets I ∈ A,

SS.Reconstruct(I, (SS.Share(µ))I) = µ

with probability 1 over the randomness of SS.Share.

Definition 2.9 (Privacy). A scheme SS has the privacy property if, for all pairs of
messages µ0, µ1 ∈M and all unauthorized subsets U ⊆ [n],U /∈ A,

(SS.Share(µ0))U ≈ (SS.Share(µ1))U ,

where ≈ is one of the following.

• If ≈ is ≈C , we say that SS has computational privacy.

• If ≈ is ≈∆ , we say that SS has statistical privacy.

• If ≈ is =∆ , we say that SS has perfect privacy.

A scheme SS is a secret sharing scheme if it has both the correctness and the
privacy.

Finally, we can argue about the space efficiency of a secret sharing scheme.
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Definition 2.10 (Information rate). For a scheme SS, let s := maxi∈[n] log #Si.
Notice that s = s(|µ|, λ), since #Si depends on both the size |µ| of the message and
the security parameter λ. The rate of the secret sharing scheme SS is the quantity

SS.Rate := inf
λ∈N

|µ|
s(|µ|, λ) .

The asymptotic rate of the secret sharing scheme SS is the quantity

SS.AsymptoticRate := inf
λ∈N

lim
|µ|→+∞

|µ|
s(|µ|, λ) .

Intuitively, the rate of the secret sharing scheme captures the proportion between
the size of the message and the size of a share, while the asymptotic rate captures
how this rate behaves when messages are very large.

Information Dispersal. When the privacy property is not needed anymore,
things can be more space-efficient.

An information dispersal scheme ID consists of the following algorithms.

• Randomized algorithm ID.Share: upon input a message µ ∈M, output shares
(σ1, . . . , σn) ∈ S1 × · · · × Sn.

• Deterministic algorithm ID.Reconstruct: upon input (I, (σi)i∈I), where I ∈ A
and, for all i ∈ I, σi ∈ Si, output a message µ ∈M∪{⊥}, where ⊥ is a special
symbol denoting that the reconstruction failed due to invalid shares.

Furthermore, ID satisfies the same correctness property of a secret sharing scheme.

2.3 Leakage and tampering attacks
The main take of Section 1.2 is that side-channel attacks can be devastating, both
via hardware and via software. Nonetheless, due to their nature, formalizing such
attacks can be quite challenging. In this section, we give an overview of the main
leakage and tampering models in the context of secret sharing.

Partitioning. Leakage resilience and non-malleability in the context of secret
sharing usually come in two flavours. In the case of independent leakage or tampering,
each share is considered independently, and no partition of the shares is needed. In
the stronger case of joint leakage or tampering, the adversary partitions the set of
the shares into non-overlapping subsets and operates jointly on the shares within
each subset.

Definition 2.11 (partition). Let k, m, n ∈ N be parameters and let B = (B1, . . . ,Bm)
be a tuple of subsets of [n]. We say that B is a k-sized partition if

•
⋃

i∈[m] Bi = [n], i.e. the partition covers all [n];

• ∀i1, i2 ∈ [m] such that i1 ̸= i2, Bi1 ∩ Bi2 = ∅, i.e. the subsets are pairwise
disjoint;
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• ∀i ∈ [m], #Bi ≤ k, i.e. each subset has at most k elements.

We denote the set of the k-sized partitions of [n] as Bn(k).
The case of joint tampering can be further divided depending on when this

partitioning happens. The simplest model is the one in which the partition is fixed at
the beginning of the security experiment and the adversary only uses the established
partition. Another model allows the adversary to choose a possibly different partition
for each query, in an adaptive fashion.

Finally, we introduce the notion of semi-adaptive partitioning, which is between
the two notions of selective and adaptive partitioning. In this model, we distinguish
between two types of partitions, namely L and T, and two tables PartL and PartT
are kept. The tables are initially empty; however, every time the adversary leaks
from or tampers with the shares, the tables are updated. More in detail, every time
the adversary leaks from the shares using partition B = (B1, . . . ,Bm), the table
PartL is updated by adding in it the sets Bi that are missing. Similarly, every time
the adversary tampers with the shares, the table PartT is updated instead. Then,
the adversary is constrained to maintain the following invariant.

• For all B1,B2 ∈ PartT, either B1 = B2 or B1 ∩ B2 = ∅.

• For all BT ∈ PartT,BL ∈ PartL, either BL ⊆ BT or BL ∩ BT = ∅.

Intuitively, this allows the adversary to “construct”, step-by-step, a selective partition
for tampering queries, while retaining the ability to perform adaptive leakage from
any share that is not tampered.

An adversary AP following a partitioning rule P is said to be P-partition
admissible, or admissible if P is given from the context.

Bounded leakage resilience. As we said, a secret sharing scheme is leakage-
resilient when, even after learning some information from possibly all the shares,
still the adversary is not able to learn anything about the shared secret. However,
how do we measure such information?

The simplest way to do it is to model leakage as a binary string Λ ∈ {0, 1}∗, and
allowing the adversary to only get strings up to a certain length ℓ. This is the idea
behind the bounded leakage model, which we formalize with the following oracle.

Let n ∈ N and let S := S1× . . .×Sn be a share space for n shares. For a partition
B = (B1, . . . ,Bm) of [n], we define the following set.

LB :=
{

g = (g1, . . . , gm)
∣∣∣ ∀i ∈ [m], ∃ℓi ∈ N : gi : SBi → {0, 1}ℓi

}
.

Informally, this is the set of all the bounded leakage functions for n parties using
the partition B.
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Oracle: OBL
Input: (σ,B, g) ∈ S ×Bn(k)× LB

(σ1, . . . , σn) := σ // Parse σ into the tuple of shares.
(B1, . . . ,Bm) := B // Parse the partition B.
(g1, . . . , gm) := g // Parse the function tuple g.
∀ i ∈ [m] :

Λi← gi(σBi) // Compute the leakage.
Λ = (Λ1, . . . , Λm) // Compose the leakage string.

Output: Λ

Any algorithm making queries to OBL and obtaining an overall string of length up
to ℓ is called ℓ-leakage admissible (in the bounded leakage model), or admissible if ℓ
is given from the context.

Now we just need to define the leakage experiment. Let µ0, µ1 ∈ M be two
messages, let P ∈ {Selective,SemiAdaptive,Adaptive} be a partitioning and let
A be a P-partitioning ℓ-leakage admissible adversary with oracle access to OBL(σ, ·, ·),
where σ is given by the following experiment.

Experiment: LeakBounded
A [λ, µ0, µ1, b]

σ←$ SS.Share(µb)
b∗←$ AOBL(σ,·,·)(1λ)

Output: b∗

We are finally ready for the formal definition.

Definition 2.12. Let λ, n, ℓ ∈ N be parameters. Let SS be a secret sharing scheme
for n parties. We say that SS is ℓ-bounded leakage-resilient under partitioning rule
P if, for all admissible adversaries A,

LeakBounded
A [λ, µ0, µ1, 0] ≈ LeakBounded

A [λ, µ0, µ1, 1] ,

where ≈ is one of the following.

• If ≈ is ≈C and A is PPT, we say that SS has computational leakage-resilience.

• If ≈ is ≈∆ , we say that SS has statistical leakage-resilience.

Furthermore, when needed, we denote by SS.Partitioning = P the fact that A is
P-partitioning admissible. Finally, we denote by SS.LeakageModel = Bounded(ℓ)
the fact that AOBL is ℓ-leakage admissible or, equivalently, SS supports up to ℓ bits of
bounded leakage.

Noisy leakage resilience. A more complex, but more realistic and powerful, way
to measure leakage is through the notion of conditional average min-entropy. Let
X be a random variable and let Λ be some information on X. We say that Λ is
ℓ-noisy-leakage of X if

H̃∞ (X|Λ) ≥ H∞ (X)− ℓ.

Intuitively, this notion captures the fact that the leakage could be a large chunk
of information which is “noisy” and, therefore, contains small effective information
about the leaked value.
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Let n ∈ N and let S := S1× . . .×Sn be a share space for n shares. For a partition
B = (B1, . . . ,Bm) of [n], we define the following set.

GB := {g = (g1, . . . , gm) | ∀i ∈ [m], gi : SBi → {0, 1}∗} .

Informally, this is the set of all the binary functions for n parties using the partition
B. We now define the oracle for the noisy leakage. In this case, we stick with selective
partitioning since (1) our results achieving or requiring noisy leakage are against
selective partitioning and (2) defining noisy leakage against adaptive partitioning
poses a new set of challenges which is beyond the scope of this thesis.

Oracle: ONL
Input: (σ,B, g) ∈ S ×Bn(k)×GB

(σ1, . . . , σn) := σ // Parse σ into the tuple of shares.
(B1, . . . ,Bm) := B // Parse the partition B.
(g1, . . . , gm) := g // Parse the function tuple g.
∀ i ∈ [m] :

Λi← gi(σBi) // Compute the leakage.
Λ = (Λ1, . . . , Λm) // Compose the leakage string.

Output: Λ

Let A be an algorithm with oracle access to ONL and let, for i ∈ [m], Λ∗i be the
random variable of the total leakage obtained by A from subset Bi. If A is such that

∀i ∈ [m], H̃∞ (ΣBi |Λ∗i ) ≥ H∞ (ΣBi)− ℓ,

we say that A is ℓ-leakage admissible (in the noisy leakage model) or admissible if ℓ
is given from the context.

Since an algorithm is never given access to OBL and ONL at the same time, the
notion of admissible adversary should not cause any ambiguity.

By replacing LeakBounded with LeakNoisy, SS.LeakageModel = Bounded(ℓ) with
SS.LeakageModel = Noisy(ℓ) and OBL with ONL in Definition 2.12, we get automat-
ically the definition of ℓ-noisy leakage-resilience.

Non-malleability. At this point, modelling tampering should be a bit more
straightforward. First of all, we establish the function family. This time, since the
tampering functions need to produce shares, they are of the form fi : SBi → SBi .

Let n ∈ N, let M be the message space and let S := S1 × . . . × Sn be a share
space for n shares. For a partition B = (B1, . . . ,Bm) of [n], we define the following
set.

TB := {f = (f1, . . . , fm) | ∀i ∈ [m], fi : SBi → SBi} .

All the schemes in this thesis have a self-destruct feature and can resist against
a number p ∈ N ∪ {∞} of tampering queries, where ∞ means that no bound is set
except for the one implicitly posed by the computational limitations of the attacker.
Therefore, our tampering oracle is defined as follows.
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Oracle: Op
T

Input: ((µ0, µ1), σ, T ,B, f) ∈M2 × S ×A×Bn(k)× TB
Initial
state:

p∗ := 0, SD := 0

IF SD = 1 : // If a self-destruction
RETURN ⊥ // occurred, return ⊥.

IF p∗ = p : // If query limit has been
RETURN ⊥ // reached, return ⊥.

p∗← p∗ + 1 // Count the queries.
(σ1, . . . , σn) := σ // Parse σ.
(B1, . . . ,Bm) := B // Parse the partition B.
(f1, . . . , fm) := f // Parse the function tuple f .
∀ i ∈ [m] :

σ̃Bi ← fi(σBi) // Compute the tampering.
µ̃← SS.Reconstruct(T , σ̃T ) // Reconstruct.
IF µ̃ = ⊥ : // If the reconstruction is

SD← 1 // invalid, self-destruct.
IF µ̃ ∈ {µ0, µ1} : // If the original message is

µ̃←♡ // reconstructed, hide it.
Output: µ̃

Let p ∈ N ∪ {∞} be a parameter, µ0, µ1 ∈ M be two messages, let P ∈
{Selective,SemiAdaptive,Adaptive} be a partitioning and let A be an admissible
adversary with oracle access to Op

T((µ0, µ1), σ, ·, ·, ·), where σ is given by the following
experiment.

Experiment: TamperA[λ, p, µ0, µ1, b]
σ←$ SS.Share(µb)
b∗←$ AO

p
T((µ0,µ1),σ,·,·,·)(1λ)

Output: b∗

Definition 2.13. Let λ, n ∈ N, p ∈ N∪{∞} be parameters. Let SS be a secret sharing
scheme for n parties. We say that SS is p-time non-malleable, or continuously non-
malleable if p = ∞, under partitioning rule P if, for all admissible adversaries
A,

TamperA[λ, p, µ0, µ1, 0] ≈ TamperA[λ, p, µ0, µ1, 1] ,

where ≈ is one of the following.

• If ≈ is ≈C and A is PPT, we say that SS has computational non-malleability.

• If ≈ is ≈∆ , we say that SS has statistical non-malleability.

Finally, several schemes achieve both leakage-resilience and non-malleability. By
granting either OBL or ONL oracle access to A in Definition 2.13, we get the notion
of leakage-resilient non-malleability, with all the different flavours given by mixing
the various parameters. More formally, we get the experiments



2.3 Leakage and tampering attacks 30

Experiment: TamperBL
A [λ, p, µ0, µ1, b]

σ←$ SS.Share(µb)
b∗←$ AO

p
T((µ0,µ1),σ,·,·,·),OBL(σ,·,·)(1λ)

Output: b∗

Experiment: TamperNL
A [λ, p, µ0, µ1, b]

σ←$ SS.Share(µb)
b∗←$ AO

p
T((µ0,µ1),σ,·,·,·),ONL(σ,·,·)(1λ)

Output: b∗

In both cases, the tampering oracle Op
T and the leakage oracle OBL,ONL share

the internal state p∗, SD. Whenever the tampering oracle cannot answer anymore
(for instance, because a self-destruction occurred or the maximum number of queries
has been reached), the leakage oracle stops answering as well. This also means that,
if p ̸=∞ and the adversary makes p tampering queries, no leakage can happen after
the last tampering query.

For p = 1, it actually makes sense to split the adversary into two parts, namely,
the leakage phase and the tampering phase. Therefore, for p = 1 and A = (A1, A2)
and for all L ∈ {BL, NL}, the above experiments are equivalent to the following.

Experiment: TamperL
A[λ, 1, µ0, µ1, b]

σ←$ SS.Share(µb)
(α; T ,B, f)←$ AOL(σ,·,·)

1 (1λ)
µ̃←$O1

T((µ0, µ1), σ, T ,B, f)
b∗←$ A2(α, µ̃)

Output: b∗

Augmented leakage resilience. Finally, we also define a seemingly stronger
variant of leakage-resilient secret sharing, in which the adversary A is allowed
to obtain the shares within a subset of an admissible partition B at the end of
the experiment. In particular, in the case of selective partitioning, an augmented
admissible adversary is an attacker A+ := (A+

1 , A+
2 ) such that:

• A+
1 is an admissible adversary in the sense of Definition 2.12 (or its variant in

the noisy leakage model), the only difference being that A+
1 outputs a tuple

(α;B, i∗) where α is an auxiliary state, B is an admissible partition and i∗ is
the index of a subset Bi∗ of B;

• A+
2 takes as input the state α and all the shares σBi∗ and outputs a decision

bit.

This flavour of security is called augmented leakage resilience. The theorem
below, established by [BFV19, KMS19] for the case of independent leakage, shows
that any leakage-resilient secret sharing scheme secure against joint leakage is also
an augmented leakage-resilient secret sharing scheme at the cost of an extra bit of
leakage.
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Theorem 2.14. Let n, k, ℓ, λ ∈ N, ε ∈ [0, 1] be parameters, let A be an access
structure over n parties and let P be a partitioning strategy. Let SS be a k-joint
(ℓ + 1)-leakage resilient secret sharing scheme realizing access structure A under
partitioning P with security ε = ε(λ). Then SS is an augmented k-joint ℓ-leakage
resilient secret sharing scheme realizing the same access structure A, under the same
partitioning P and with the same security ε.

Proof. By reduction to the non-augmented leakage. Suppose towards contradiction
that there exist two distinct messages µ0, µ1 ∈M and an adversary A+ = (A+

1 , A+
2 )

which is able to cause a statistical difference of more than ε between the experiments
Leak+

A+ [λ, µ0, µ1, 0] and Leak+
A+ [λ, µ0, µ1, 1], where the experiment Leak+ is the

same as Leak except that it additionally supports the augmented property.
Consider the following reduction R.

1. Run (α;B, i∗)← A+,R
1 , forwarding each leakage query to the actual oracle and

returning back the answer.

2. Parse B = (B1, . . . ,Bm).

3. Let gi(·) = A+
2 (α; ·) and, for i ∈ [m] such that i ̸= i∗, let gi be the function

that returns the empty string.

4. Query b←OL(B, g), where g = (g1, . . . , gm).

5. Output b.

Intuitively, what R does is to use A+
2 as a leakage function returning one bit and

then outputting the same bit. For the analysis, the reduction is perfect and R
outputs the same distinguishing bit of A+, thus retaining the same advantage of
A+. Furthermore, R just uses an additional leakage query leaking one bit, hence
is (ℓ + 1)-admissible. Finally, R uses the same computational resources of A+. In
particular, if A+ is efficient, the leakage query (B, g) is efficiently computable and,
therefore, R is efficient. This concludes the proof.
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Chapter 3

Achieving security against
stronger adversaries

In this chapter, we study non-malleability in the context of stronger adversaries.
In Section 3.1, we focus on the attack model, and we construct a non-malleable

secret sharing scheme that is secure against an adversary that is able to jointly leak
from and tamper with the shares. In this model, the partition of the shares can be
chosen by the adversary in an adaptive, but restricted, way.

In Section 3.2, we show how to extend the above result in the case of multiple
tampering attempts. Namely, we show a technique transforming a generic one-time
non-malleable secret sharing scheme into a secret sharing scheme that supports
multiple tampering attempts that are bounded a priori. Unfortunately, this technique
alone is not able to produce a continuously non-malleable secret sharing scheme.

Finally, in Section 3.3, we use a workaround for the above technique and show
the first continuously non-malleable secret sharing scheme which is secure against
joint partitioning. Furthermore, our construction also achieves leakage-resilience.

3.1 Non-malleability against semi-adaptive partitioning
In this section, we construct a leakage-resilient non-malleable secret sharing scheme
which is able to withstand one tampering attempt and many leakage queries. Our
scheme is secure in the information-theoretic model (i.e. without computational
assumptions) and in the model of semi-adaptive partitioning.

Informally, the idea behind our construction is to first share the message µ into
two non-malleable shares (σ0, σ1), and then share each σi into the desired number
of leakage-resilient shares. Then, the shares (σ0, σ1) are protected from leakage
attempts by the outer leakage-resilient schemes. Furthermore, the two leakage-
resilient secret sharing schemes have different access structure, so that the tampering
attack can be “split” into two subsets of shares that affect σ0 and σ1 independently,
thus allowing us to reduce to the security of the non-malleable scheme.

The security analysis of this construction is quite technical. We show the details
of our construction in Section 3.1.1, then we give an overview of the security proof
in Section 3.1.2 and we give the actual security analysis in Section 3.1.3. Finally,
the details on the instantiation can be found in Section 3.1.4.
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Algorithm: SS.Share
Input: µ ∈M

(σ̂0, σ̂1)←$ SS2.Share(µ)
(σ0,1, . . . , σ0,n)←$ SS0.Share(σ̂0)
(σ1,1, . . . , σ1,n)←$ SS1.Share(σ̂1)
∀ i ∈ [n] :

σi := (σ0,i, σ1,i)
Output: (σ1, . . . , σn)

Algorithm: SS.Reconstruct
Input: (I, σI) ∈ A× S

∀ i ∈ I :
(σ0,i, σ1,i) := σi

{i1, . . . , i#I} := I
Jk1 := {i1, . . . , ik1}
σ̂0← SS0.Reconstruct(I, σ0,I)
σ̂1← SS1.Reconstruct

(
Jk1 , σ1,Jk1

)
µ← SS2.Reconstruct([2], (σ̂0, σ̂1))

Output: µ

Figure 3.1. The Share and Reconstruct algorithms of our construction.

3.1.1 Our construction

Let λ, n ∈ N be respectively the security parameter and the number of parties. Let
M the set of possible messages. First, we need a 2-out-of-2 one-time non-malleable
secret sharing scheme1 SS2 to share the message µ ∈ M. Then, we need to share
each output of SS2 in n parts. The full algorithm is depicted in Fig. 3.1.

For what concerns the parameters of our scheme, let A be an access structure for
n parties. Let s0 = s0(λ) ∈ N. Let ℓ = ℓ(λ) ∈ N and ℓ0 := ℓ + 1, ℓ1 := ℓ + n · s0 be
leakage parameters. Let k = k(λ) ∈ N and let k1 := ⌊

√
k⌋. Finally, let S0,1×. . .×S0,n

be a share space such that, for all i ∈ [n], log #S0,i ≤ s0.
We obtain the following.

Theorem 3.1. Let n, k, s0, ℓ ∈ N, ε0, ε1, ε2 ∈ [0, 1] be parameters and let A be an
access structure over n parties. Let ℓ0 := ℓ + 1, ℓ1 := ℓ + n · s0, k1 := ⌊

√
k⌋,

ε := 2(ε0 + ε1) + ε2. Finally, let S0,1 × . . .× S0,n be a share space such that, for all
i ∈ [n], log #S0,i ≤ s0. In the construction depicted in Fig. 3.1, assume that

• SS2 is a 2-out-of-2 one-time non-malleable secret sharing scheme with statistical
security ε2, message space M and share space Ŝ0 × Ŝ1;

• SS0 is a ℓ0-bounded leakage resilient secret sharing scheme for access struc-
ture A over [n] parties, with statistical security ε0 against k-sized adaptive
partitioning, message space Ŝ0 and share space S0,1 × . . .× S0,n;

1Or, a 2-split-state one-time non-malleable code [ADKO15b].
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• SS1 is a ℓ1-bounded leakage resilient secret sharing scheme for k1-out-of-n
access structures, with statistical security ε1 against (k1 − 1)-sized adaptive
partitioning, message space Ŝ1 and share space S1,1 × . . .× S1,n.

Then, SS is a ℓ-bounded leakage resilient one-time non-malleable secret sharing
scheme for access structure A over [n] parties, with statistical security ε against
(k1 − 1)-sized semi-adaptive partitioning.

Remark 3.2. In the above theorem, the scheme SS has the same access structure
of SS0 and must contain the access structure of SS1 as well in order to guarantee
reconstruction for all the authorized subsets; however, the latter condition does not
appear in the theorem and, indeed, we can show that is always satisfied. Notice that
SS0 is secure against k-sized partitioning, which means that every set I ∈ A is such
that #I > k (otherwise, the adversary could choose a partition with one of the sets
being authorized). Since the reconstruction threshold for SS1 is k1 = ⌊

√
k⌋ ≤ k, this

means that every I ∈ A is also authorized for SS1.

3.1.2 Proof overview.

In order to prove Theorem 3.1, we first make some considerations on the tampering
query (T ,B, f) performed by the adversary at the end of the experiment. In
particular, we construct two disjoint sets T ∗0 , T ∗1 that are the union of subsets from
the partition B. More in detail, we want that the following holds.

1. T ∗0 ∩T contains at least k1 elements, so that it can be used as a reconstruction
set for SS1.

2. Each subset Bi of the partition B intersects at most one between T ∗0 and T ∗1 ,
so that both leakage and tampering queries can be computed independently
on T ∗0 and T ∗1 .

After constructing these sets, we answer the leakage and tampering queries, in the
original experiment, as follows.

Leakage queries:

(σ0,i

σ1,i

)
i∈T ∗

0

,

(
σ0,i

σ1,i

)
i∈T ∗

1


Tampering queries:

(σ0,i

σ1,i

)
i∈T ∗

0

,

(
σ0,i

σ1,i

)
i∈T ∗

1


Then, we proceed by hybrid arguments and, in particular, we construct the following
hybrid experiments.

First Hybrid: In the first hybrid experiment, we change how the tampering query is
answered. Namely, after the leakage phase we replace all the shares (σ0,r)r∈T ∗

1
with shares (σ∗0,r)r∈T ∗

1
that are valid shares of the same message σ̂0 and are

consistent with the leakage. The situation becomes the following.
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Leakage queries:

(σ0,i

σ1,i

)
i∈T ∗

0

,

(
σ0,i

σ1,i

)
i∈T ∗

1


Tampering queries:

(σ0,i

σ1,i

)
i∈T ∗

0

,

(
σ∗0,i

σ1,i

)
i∈T ∗

1


This change does not affect the view of the adversary, since both (σ0,r)r∈T ∗

1
and

(σ∗0,r)r∈T ∗
1

come from the same distribution and the only thing that changes is
when they are sampled.

Second Hybrid: In the second hybrid experiment, we replace all the shares
(σ0,i)i∈[n] with “dummy” shares (σ′0,i)i∈[n] of something else. The situation
becomes the following.

Leakage queries:

(σ′0,i

σ1,i

)
i∈T ∗

0

,

(
σ′0,i

σ1,i

)
i∈T ∗

1


Tampering queries:

(σ′0,i

σ1,i

)
i∈T ∗

0

,

(
σ∗0,i

σ1,i

)
i∈T ∗

1


A reduction to the leakage-resilience of SS0 proves that this new experiment
is ε0-close to the previous one. The key idea here is to forward the leakage
queries to the respective oracle during the leakage phase and, once the adversary
outputs its tampering query, obtain all the shares within T ∗0 thanks to the
augmented property. After obtaining such shares, the reduction can sample
the remaining shares (σ∗0,r)r∈T ∗

1
as in the previous experiment and can thus

compute the tampering query.

Third Hybrid: In the third hybrid experiment, we change again how the tampering
query is answered. Namely, after the leakage phase we replace all the shares
(σ1,r)r∈T ∗

0
with shares (σ∗1,r)r∈T ∗

0
that are valid shares of message σ̂1 and are

consistent with the leakage. Furthermore, we require that these new shares
do not affect the outcome of the tampering query. The situation becomes the
following.

Leakage queries:

(σ′0,i

σ1,i

)
i∈T ∗

0

,

(
σ′0,i

σ1,i

)
i∈T ∗

1


Tampering queries:

(σ′0,i

σ∗1,i

)
i∈T ∗

0

,

(
σ∗0,i

σ1,i

)
i∈T ∗

1


This is required in order to make the step to the last hybrid possible. As
before, this change does not affect the view of the adversary.

Fourth Hybrid: In the fourth hybrid experiment, we replace again all the shares
(σ1,i)i∈[n] with “dummy” shares (σ′1,i)i∈[n] of something else. The situation
becomes the following.
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Leakage queries:

(σ′0,i

σ′1,i

)
i∈T ∗

0

,

(
σ′0,i

σ′1,i

)
i∈T ∗

1


Tampering queries:

(σ′0,i

σ∗1,i

)
i∈T ∗

0

,

(
σ∗0,i

σ′1,i

)
i∈T ∗

1


A reduction to the leakage-resilience of SS1 proves that this new experiment is
ε1-close to the previous one. The key idea here is to simulate the tampering
query via a leakage query that yields the result of the tampering on all the
shares (σ0,i)i∈T ∗

0 ∪T
∗

1
. This is allowed thanks to the restriction to the size of

the shares of SS0. After the tampering query, the reduction will still be able to
produce the shares (σ∗1,r)r∈T ∗

0
: this happens because (1) T ∗0 is authorized for

SS1 and thus there is no need for other shares to check consistency and (2) as
we said before, the modification introduced in the third hybrid does not affect
the outcome of the tampering query. This allows to compute the tampering
query offline and, in turns, to complete the reduction.

Since the above defined hybrid experiments are all statistically close, it only remains
to show that the last hybrid with bit 0 is statistically close to the same hybrid with
bit 1. The situation of how the queries are computed is now the following.

Leakage queries:

(σ′0,i

σ′1,i

)
i∈T ∗

0

,

(
σ′0,i

σ′1,i

)
i∈T ∗

1


Tampering queries:

(σ′0,i

σ∗1,i

)
i∈T ∗

0

,

(
σ∗0,i

σ′1,i

)
i∈T ∗

1


In particular, the shares σ̂0 and σ̂1 are now tampered independently. Indeed, the
tampering on the share σ̂0 is computed through

(
σ∗0,i

)
i∈T ∗

1
(and the “dummy” shares(

σ′0,i

)
i∈T ∗

1
), while the tampering on the shares σ̂1 is computed through

(
σ∗1,i

)
i∈T ∗

0

(and the “dummy” shares
(
σ′1,i

)
i∈T ∗

1
). Because of this, a straightforward reduction

to the non-malleability of SS2 concludes the security proof.

3.1.3 Security analysis.

Before proceeding with the analysis, we introduce some useful notation.
Recall that, after the leakage phase, the adversary sends a single tampering query

(T ,B, f). Let t := #T and let T := {r1, . . . , rt}. For i ∈ [t], consider the function
β(T ,B, i) such that ri ∈ Bβ(T ,B,i). When T and B are clear from the context, we
simply write β(i). In other words, β(i) is the index of the function in (f1, . . . , fm)
such that the i-th share is tampered by fβ(i).

Starting from the set T , we define the following subsets. Let Tk1 := {r1, . . . , rk1},
and let

T ∗0 :=
⋃

r∈Tk1

Bβ(r) and T0 := T ∗0 ∩ T .
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Intuitively, T ∗0 is the set of all the shares that are tampered with the first k1 shares
of the reconstruction set T , while T0 is simply the set of the shares in T ∗0 that are
used to reconstruct the message.

For the remaining shares, we can define
T1 := T \ T0 and T ∗1 :=

⋃
r∈T1

Bβ(r).

In this way, T1 is the set of the remaining shares in the reconstruction set, and T ∗1 is
the set of all the shares that are tampered together with the shares in T1.

This notation is useful because it allows to partition the set of the shares in a
good way. More in detail, the set T0 has at least k1 shares (indeed, {r1, . . . , rk1} ⊆ T0
) and the sets T ∗0 and T ∗1 are such that T ∗0 ∩ T ∗1 = ∅. Indeed, if T ∗0 ∩ T ∗1 ̸= ∅,
then there exists r ∈ T ∗0 ∩ T ∗1 and, therefore, some Bi such that r ∈ Bi. Since the
sets T ∗0 and T ∗1 are defined as unions of sets Bj , this implies that Bi ⊆ T ∗0 ∩ T ∗1 .
However, this is impossible, because it implies that there exists r′ ∈ Tk1 ∩ T1 such
that Bi = Bβ(r′), against the definition of T1 = T \ T0 that makes T1 and Tk1 ⊆ T0
disjoint.

For the sake of completeness, we rewrite the experimet TamperBL, expanding
the definition of SS.Share.

Experiment: TamperBL
A [λ, 1, µ0, µ1, b]

(σ̂0, σ̂1)←$ SS2.Share(µb) // Share the message.
(σ0,1, . . . , σ0,n)←$ SS0.Share(σ̂0)
(σ1,1, . . . , σ1,n)←$ SS1.Share(σ̂1)
∀ r ∈ [n] : σr := (σ0,r, σ1,r)
σ := (σ1, . . . , σn)
(α; T ,B, f)←$ AOBL(σ,·,·)

1 (1λ) // Leakage phase.
(B1, . . . ,Bm) := B
(f1, . . . , fm) := f
∀ i ∈ [m] : σ̃Bi ← fi(σBi) // Tampering phase.
µ̃← SS.Reconstruct(T , σ̃T )
IF µ̃ ∈ {µ0, µ1} : µ̃←♡
b∗←$ A2(α; µ̃)

Output: b∗

The first hybrid experiment. We define the experiment Hyb1
A[λ, µ0, µ1, b] to

be the same as TamperBL
A [λ, 1, µ0, µ1, b], except for how the tampering query is

answered.
Namely, after the leakage phase, Hyb1

A samples the shares (σ∗0,r)r∈T ∗
1

such that
(σ0,r)r∈T ∗

0
, (σ∗0,r)r∈T ∗

1
is a valid secret sharing of σ̂0 and, moreover, it is consistent

with the leakage performed by A during the leakage phase. Then, Hyb1
A answers to

A’s queries as follows.

Leakage queries:

(σ0,r

σ1,r

)
r∈T ∗

0

,

(
σ0,r

σ1,r

)
r∈T ∗

1


Tampering queries:

(σ0,r

σ1,r

)
r∈T ∗

0

,

(
σ∗0,r

σ1,r

)
r∈T ∗

1


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In the following lemma, we show that the two experiments are equivalent.

Lemma 3.3. For all b ∈ {0, 1}, TamperBL
A [λ, 1, µ0, µ1, b] =∆ Hyb1

A[λ, µ0, µ1, b].

Proof. Let, for i, j ∈ {0, 1}, (Σi,r)r∈T ∗
j

be the random variable for the value

(σi,r)r∈T ∗
j

, and let
(
Σ∗0,r

)
r∈T ∗

1
be the random variable for the value

(
σ∗i,r

)
r∈T ∗

j

.

For a string s, let Es be the event that (Σ0,r)r∈T ∗
1

= s, and let E∗s be the event

that
(
Σ∗0,r

)
r∈T ∗

1
= s. Then, P [Es] = P [E∗s]. This is because

(
Σ∗0,r

)
r∈T ∗

1
is sampled

from the same distribution of (Σ0,r)r∈T ∗
1

and consistently with (Σ0,r)r∈T ∗
0

and the
leakage performed by A.

With that in mind, we can conclude the lemma by writing

P
[
TamperBL

A [λ, 1, µ0, µ1, b] = 1
]
− P

[
Hyb1

A[λ, µ0, µ1, b] = 1
]

=
∑

s

P [Es]P
[
TamperBL

A [λ, 1, µ0, µ1, b] = 1
∣∣∣Es

]
−
∑

s

P [E∗s]P
[
Hyb1

A[λ, µ0, µ1, b] = 1
∣∣∣E∗s]

=
∑

s

P [Es]
(
P
[
TamperBL

A [λ, 1, µ0, µ1, b] = 1
∣∣∣Es

]
(3.1)

− P
[
Hyb1

A[λ, µ0, µ1, b] = 1
∣∣∣E∗s])

= 0, (3.2)

where Eq. (3.1) comes from the above reasoning and Eq. (3.2) holds because, once
fixed s, if both Es and E∗s happen, then (Σ0,r)r∈T ∗

0
= s =

(
Σ∗0,r

)
r∈T ∗

0
and the two

experiments are identical.

The second hybrid experiment. We define experiment Hyb2
A[λ, µ0, µ1, b] to be

the same as Hyb1
A[λ, µ0, µ1, b], except for the fact that leakage is performed on fake

shares of σ0.
Namely, let Resample0 be the algorithm that takes as input the value σ0, the

shares (σ0,r)r∈T ∗
1

and the leakage Λ from the leakage phase and outputs the shares(
σ∗0,r

)
r∈T ∗

1
as defined in Hyb1

A[λ, µ0, µ1, b]. Then, we highlight the differences

between Hyb1
A[λ, µ0, µ1, b] and Hyb2

A[λ, µ0, µ1, b] in the following table. Here, we
make A output the performed leakage Λ as well.
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Differences: Hyb1
A[λ, µ0, µ1, b] Hyb2

A[λ, µ0, µ1, b]
(σ̂0, σ̂1)←$ SS2.Share(µb)
(σ0,1, . . . , σ0,n)←$ SS0.Share(σ̂0)
(σ̂′0, σ̂′1)←$ SS2.Share(0)
(σ′0,1, . . . , σ′0,n)←$ SS0.Share(σ̂′0)
(σ1,1, . . . , σ1,n)←$ SS1.Share(σ̂1)
∀ r ∈ [n] : σr := (σ0,r, σ1,r)
∀ r ∈ [n] : σr := (σ′0,r, σ1,r)
σ := (σ1, . . . , σn)
(α, Λ; T ,B, f)←$ AOBL(σ,·,·)

1 (1λ)(
σ∗0,r

)
r∈T ∗

1
←$ Resample0

(
σ̂0, (σ0,r)r∈T ∗

1
, Λ
)

(σ0,r)r∈T ∗
1
←
(
σ∗0,r

)
r∈T ∗

1(
σ∗0,r

)
r∈T ∗

1
←$ Resample0

(
σ̂0,

(
σ′0,r

)
r∈T ∗

1
, Λ
)

(
σ′0,r

)
r∈T ∗

1
←
(
σ∗0,r

)
r∈T ∗

1

(B1, . . . ,Bm) := B
(f1, . . . , fm) := f
∀ i ∈ [m] : σ̃Bi ← fi(σBi)
µ̃← SS.Reconstruct(T , σ̃T )
IF µ̃ ∈ {µ0, µ1} : µ̃←♡
b∗←$ A2(α, Λ; µ̃)

Output: b∗

In other words, Hyb2
A answers to A’s queries as follows.

Leakage queries:

(σ′0,r

σ1,r

)
r∈T ∗

0

,

(
σ′0,r

σ1,r

)
r∈T ∗

1


Tampering queries:

(σ′0,r

σ1,r

)
r∈T ∗

0

,

(
σ∗0,r

σ1,r

)
r∈T ∗

1


In the following lemma, we show that the two experiments are statistically close.

Lemma 3.4. For all b ∈ {0, 1}, Hyb1
A[λ, µ0, µ1, b] ≈∆ ε0(λ) Hyb2

A[λ, µ0, µ1, b].

Proof. By reduction to leakage-resilience of SS0. Suppose towards contradiction
that there exist messages µ0, µ1, a bit b ∈ {0, 1} and an adversary A which is able
to cause a statistical difference between Hyb1

A[λ, µ0, µ1, b] and Hyb2
A[λ, µ0, µ1, b] of

more than ε0(λ).
Let (σ̂0, σ̂1)← SS2.Share(µb) and let (σ̂′0, σ̂′1)← SS2.Share(0). Consider the fol-

lowing reduction ROBL((σtarget
0,r )r∈[n],·,·).

1. Sample (σ1,1, . . . , σ1,n)←$ SS1.Share(σ̂1).
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2. Construct the oracle O′BL((σtarget
0,r , σ1,r)r∈[n], ·, ·) that, upon input a leakage

query (B, g), hard-wires values (σ1,1, . . . , σ1,n) into g, queries the oracle
Λ←$OBL

(
(σtarget

0,r )r∈[n],B, g
)

and finally outputs Λ.

3. Run (α, Λ; T ,B, f)←$ AO
′
BL(σ,·,·)

1 (1λ).

4. Construct the sets T0, T1, T ∗0 , T ∗1 from T ,B, as described at the beginning of
this section.

5. Use 1 bit of leakage to apply the augmented property, using Theorem 2.14,
thus obtaining shares

(
σtarget

0,r

)
r∈T ∗

0
.

6. For all j ∈ T0, compute (σ̃0,r, σ̃1,r)r∈Bβ(j) = fβ(j)

((
σtarget

0,r , σ1,r

)
r∈Bβ(j)

)
.

7. Sample
(
σ∗0,r

)
r∈T ∗

1
←$ Resample0

(
σ̂0, (σ0,r)r∈T ∗

0
, Λ
)
.

8. For all j ∈ T1, compute (σ̃0,r, σ̃1,r)r∈Bβ(j) = fβ(j)

((
σ∗0,r, σ1,r

)
r∈Bβ(j)

)
.

9. Compute σ̃0← SS0.Reconstruct (T , (σ̃0,r)r∈T ).

10. Compute σ̃1← SS1.Reconstruct
(
Tk1 , (σ̃1,r)r∈Tk1

)
.

11. Compute µ̃← SS2.Reconstruct ([2], (σ̃0, σ̃1)); if µ̃ ∈ {µ0, µ1}, replace µ̃←♡.

12. Output the same as A2(α, Λ; µ̃).

The analysis is as follows.

Correctness. R perfectly simulates Hyb1 if (σtarget
0,r )r∈[n]←$ SS0.Share(σ̂0) and

perfectly simulates Hyb2 if (σtarget
0,r )r∈[n]←$ SS0.Share(σ̂′0). Furthermore, R always

outputs the same as A2, thus retaining the same distinguishing advantage.

Admissibility. The leakage queries performed by R are the same performed by
A, which is admissible for ℓ bits of leakage and the same partitioning.2 Furthermore,
in step 5, R performs one bit of leakage to apply the augmented property of leakage-
resilient secret sharing schemes and obtain all the challenge shares in T ∗0 ; since
T ∗0 comes from the union of at most k1 sets of at most k1 − 1 elements each,
#T ∗0 ≤ k1(k1 − 1) ≤ k2

1 ≤ k, hence the augmented property can be applied. Since
no other leakage is performed, this makes R admissible for ℓ0 = ℓ + 1 bits of leakage
and for Adaptive(k) partitioning. The lemma follows.

2It is easy to show that any adversary that is admissible for semi-adaptive partitioning is
admissible for adaptive partitioning as well.
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The third hybrid experiment. We define the experiment Hyb3
A[λ, µ0, µ1, b] to

be the same as Hyb2
A[λ, µ0, µ1, b], except for how the tampering query is answered.

Namely, after the leakage phase, Hyb1
A samples the shares (σ∗1,r)r∈T ∗

0
such that

the following conditions are met.

1. SS2.Reconstruct
(
(σ∗1,r)r∈T ∗

0

)
= σ̂1 and, moreover, it is consistent with the

leakage performed by A during the leakage phase.

2. For all j ∈ T0, let (
σ̃∗0,r

)
r∈Bβ(j)

= fβ(j)

((
σ′0,r, σ∗1,r

)
r∈Bβ(j)

)
,

(σ̃0,r)r∈Bβ(j)
= fβ(j)

((
σ′0,r, σ1,r

)
r∈Bβ(j)

)
.

Then, (σ̃∗0,r)r∈Bβ(j) = (σ̃0,r)r∈Bβ(j) . In other words, applying the tampering
function to (σ∗1,r)r∈Bβ(j) or to (σ1,r)r∈Bβ(j) leads to the same shares for the
scheme SS0.

Then, Hyb3
A answers to A’s queries as follows.

Leakage queries:

(σ′0,r

σ1,r

)
r∈T ∗

0

,

(
σ′0,r

σ1,r

)
r∈T ∗

1


Tampering queries:

(σ′0,r

σ∗1,r

)
r∈T ∗

0

,

(
σ∗0,r

σ1,r

)
r∈T ∗

1


The following lemma holds.

Lemma 3.5. For all b ∈ {0, 1}, Hyb2
A[λ, µ0, µ1, b] =∆ Hyb3

A[λ, µ0, µ1, b].

The proof of this lemma is almost the same of the proof of Lemma 3.3, and thus
omitted.

The fourth hybrid experiment. We define experiment Hyb4
A[λ, µ0, µ1, b] to be

the same as Hyb3
A[λ, µ0, µ1, b], except for the fact that leakage is performed on fake

shares of σ1.
Namely, let Resample1 be the algorithm that takes as input the value σ1, the

leakage Λ from the leakage phase and the output (σ̃0,r)r∈T ∗
0 ∪T

∗
1

of the tampering

query and outputs the shares
(
σ∗1,r

)
r∈T ∗

0
as defined in Hyb3

A[λ, µ0, µ1, b]. Then, we

highlight the differences between Hyb3
A[λ, µ0, µ1, b] and Hyb4

A[λ, µ0, µ1, b] in the
following table. Here, we make A output the performed leakage Λ as well.
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Differences: Hyb3
A[λ, µ0, µ1, b] Hyb4

A[λ, µ0, µ1, b]
(σ̂0, σ̂1)←$ SS2.Share(µb)
(σ̂′0, σ̂′1)←$ SS2.Share(0)
(σ′0,1, . . . , σ′0,n)←$ SS0.Share(σ̂′0)
(σ1,1, . . . , σ1,n)←$ SS1.Share(σ̂1)
∀ r ∈ [n] : σr := (σ′0,r, σ1,r)
(σ′1,1, . . . , σ′1,n)←$ SS1.Share(σ̂′1)
∀ r ∈ [n] : σr := (σ′0,r, σ′1,r)
σ := (σ1, . . . , σn)
(α, Λ; T ,B, f)←$ AOBL(σ,·,·)

1 (1λ)(
σ∗0,r

)
r∈T ∗

1
←$ Resample0

(
σ̂0,

(
σ′0,r

)
r∈T ∗

1
, Λ
)

(
σ′0,r

)
r∈T ∗

1
←
(
σ∗0,r

)
r∈T ∗

1
(B1, . . . ,Bm) := B
(f1, . . . , fm) := f
∀ i ∈ [m] : σ̃′Bi

← fi(σBi)(
σ∗1,r

)
r∈T ∗

0
←$ Resample1

(
σ̂0, Λ,

(
σ̃′0,r

)
r∈T ∗

0 ∪T
∗

1

)
(σ1,r)r∈T ∗

0
←
(
σ∗1,r

)
r∈T ∗

0(
σ′1,r

)
r∈T ∗

0
←
(
σ∗1,r

)
r∈T ∗

0

∀ i ∈ [m] : σ̃Bi ← fi(σBi)
µ̃← SS.Reconstruct(T , σ̃T )
IF µ̃ ∈ {µ0, µ1} : µ̃←♡
b∗←$ A2(α, Λ; µ̃)

Output: b∗

In other words, Hyb4
A answers to A’s queries as follows.

Leakage queries:

(σ′0,r

σ′1,r

)
r∈T ∗

0

,

(
σ′0,r

σ′1,r

)
r∈T ∗

1


Tampering queries:

(σ′0,r

σ∗1,r

)
r∈T ∗

0

,

(
σ∗0,r

σ′1,r

)
r∈T ∗

1


Lemma 3.6. For all b ∈ {0, 1}, Hyb3

A[λ, µ0, µ1, b] ≈∆ ε1(λ) Hyb4
A[λ, µ0, µ1, b].

Proof. By reduction to leakage-resilience of SS1. Suppose towards contradiction
that there exist messages µ0, µ1, a bit b ∈ {0, 1} and an adversary A which is able
to cause a statistical difference between Hyb3

A[λ, µ0, µ1, b] and Hyb4
A[λ, µ0, µ1, b] of

more than ε1(λ).
Let (σ̂0, σ̂1)← SS2.Share(µb) and let (σ̂′0, σ̂′1)← SS2.Share(0). Consider the fol-

lowing reduction ROBL((σtarget
0,r )r∈[n],·,·).

1. Sample (σ′0,1, . . . , σ′0,n)←$ SS0.Share(σ̂′0).
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2. Construct the oracle O′BL((σ′0,r, σtarget
1,r )r∈[n], ·, ·) that, upon input a leakage

query (B, g), hard-wires values (σ′1,1, . . . , σ′1,n) into g, queries the oracle
Λ←$OBL

(
(σtarget

1,r )r∈[n],B, g
)

and finally outputs Λ.

3. Run (α, Λ; T ,B, f)←$ AO
′
BL(σ,·,·)

1 (1λ).

4. Construct the sets T0, T1, T ∗0 , T ∗1 from T ,B, as described at the beginning of
this section.

5. Sample
(
σ∗0,r

)
r∈T ∗

1
←$ Resample0

(
σ̂0,

(
σ′0,r

)
r∈T ∗

0
, Λ
)

. Notice that this can be

done because R sampled the values
(
σ′0,r

)
r∈T ∗

0
in step 1.

6. Set σ∗∗0,r := σ′0,r for all r ∈ T ∗0 and σ∗∗0,r := σ∗0,r for all r ∈ T ∗1 . Notice that this
is well defined since T ∗0 ∩ T ∗1 = ∅.

7. For all i ∈ [m], construct the following leakage function. ĝi

Function: ĝi

Input:
(
σtarget

1,r

)
r∈Bi

(σ̃0,r, σ̃1,r)r∈Bi
← fi

((
σ∗∗0,r, σtarget

1,r

)
r∈Bi

)
Output: (σ̃0,r)r∈Bi

8. Query (σ̃0,r)r∈T ∗
0 ∪T

∗
1
←OBL

(
(σtarget

1,r )r∈[n],B, (g1, . . . , gm)
)
.

9. Sample
(
σ∗1,r

)
r∈T ∗

0
←$ Resample1

(
σ̂1, Λ, (σ̃1,r)r∈T ∗

1

)
.

10. For all j ∈ T0, compute (σ̃0,r, σ̃1,r)r∈Bβ(j) = fβ(j)

((
σ∗∗0,r, σ1,r

)
r∈Bβ(j)

)
.

11. Compute σ̃0← SS0.Reconstruct (T , (σ̃0,r)r∈T ).

12. Compute σ̃1← SS1.Reconstruct
(
Tk1 , (σ̃1,r)r∈Tk1

)
; recall that Tk1 ⊆ T0, and we

obtained the shares (σ̃1,r)r∈T0 in step 10.

13. Compute µ̃← SS2.Reconstruct ([2], (σ̃0, σ̃1)); if µ̃ ∈ {µ0, µ1}, replace µ̃←♡.

14. Output the same as A2(α, Λ; µ̃).

The analysis is as follows.

Correctness. R perfectly simulates Hyb3 if (σtarget
1,r )r∈[n]←$ SS1.Share(σ̂1) and

perfectly simulates Hyb4 if (σtarget
1,r )r∈[n]←$ SS1.Share(σ̂′1). Furthermore, R always

outputs the same as A2, thus retaining the same distinguishing advantage.
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Admissibility. The leakage queries performed by R are the same performed by
A, plus the amount necessary to obtain the values (σ̃0,r)r∈T ∗

0 ∪T
∗

1
in step 8. Therefore,

the total amount of leakage performed by R is bounded by

ℓ1 = ℓ +
∑

r∈T ∗
0 ∪T

∗
1

|σ̃0,r| ≤ ℓ + n · s0,

hence R is ℓ1-leakage admissible.
Furthermore, R uses the same partitioning of A, that is SemiAdaptive(k1 − 1);

hence, R is also Adaptive(k1− 1) and, therefore, admissible. The lemma follows.

The final step. Now it only remains to show the following lemma in order to
conclude.

Lemma 3.7. Hyb4
A[λ, µ0, µ1, 0] ≈∆ ε2(λ) Hyb4

A[λ, µ0, µ1, 1].

Proof. By reduction to non-malleability of SS2. Suppose towards contradiction that
there exist messages µ0, µ1 and an adversary A which is able to cause a statistical
difference between Hyb4

A[λ, µ0, µ1, 0] and Hyb4
A[λ, µ0, µ1, 1] of more than ε2(λ).

Let (σ̂′0, σ̂′1)←$ SS2.Share(0) and let, for i ∈ {0, 1}, (σ′i,1, . . . , σ′i,n)←$ SSi.Share(σ̂′i).
Consider the following reduction RO1

T((σ̂target
0 ,σ̂target

1 ),·,·,·).

1. Let σ′ = ((σ′0,1, σ′1,1), . . . , (σ′0,n, σ′1,n)).

2. Run (α, Λ; T ,B, f)←$ AOBL(σ′,·,·)
1 (1λ).

3. Construct the sets T0, T1, T ∗0 , T ∗1 from T ,B, as described at the beginning of
this section.

4. Compute, for j ∈ T1,
(
σ̃′0,r, σ̃′1,r

)
r∈Bβ(j)

← fβ(j)

((
σ′0,r, σ′1,r

)
r∈Bβ(j)

)
5. Construct the following functions.

Function: f̂0
Input: σ̂target

0(
σ∗0,r

)
r∈T ∗

1
←$ Resample0

(
σ̂target

0 ,
(
σ′0,r

)
r∈T ∗

0
, Λ
)

∀ j ∈ T0 : (σ̃0,r, σ̃1,r)r∈Bβ(j)
← fβ(j)

(
σ′0,r, σ′1,r

)
r∈Bβ(j)

∀ j ∈ T1 : (σ̃0,r, σ̃1,r)r∈Bβ(j)
← fβ(j)

(
σ∗0,r, σ′1,r

)
r∈Bβ(j)

σ̃0← SS0.Reconstruct
(
(T , σ̃0,r)r∈T

)
Output: σ̃0
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Function: f̂1
Input: σ̂target

1(
σ∗1,r

)
r∈T ∗

0
←$ Resample1

(
σ̂target

1 , Λ,
(
σ̃′1,r

)
r∈T ∗

1

)
∀ j ∈ T0 : (σ̃0,r, σ̃1,r)r∈Bβ(j)

← fβ(j)
(
σ′0,r, σ∗1,r

)
r∈Bβ(j)

σ̃1← SS1.Reconstruct
(
(Tk1 σ̃0,r)r∈Tk1

)
Output: σ̃1

6. Query µ̃←O1
T

(
(σ̂target

0 , σ̂target
1 ), T ,B, f

)
.

7. Output the same as A2(α, Λ; µ̃).

The analysis is as follows.

Correctness. For b ∈ {0, 1}, R perfectly simulates Hyb4
A[λ, µ0, µ1, b] whenever

(σ̂target
0 , σ̂target

1 )←$ SS2.Share(µb). Furthermore, R always outputs the same as A2,
thus retaining the same distinguishing advantage.

Notice that the leakage is performed by R on the fake shares ((σ′0,1, σ′1,1),
. . . , (σ′0,n, σ′1,n)), hence, R is 0-leakage admissible in the sense that does not perform
leakage from the target shares. The lemma follows.

Proof of Theorem 3.1. The theorem follows from the above lemmas and the trian-
gular inequality. Indeed, for b ∈ {0, 1},

TamperBL
A [λ, 1, µ0, µ1, b] =∆ Hyb1

A[λ, µ0, µ1, b]
≈∆ ε0(λ) Hyb2

A[λ, µ0, µ1, b]
=∆ Hyb3

A[λ, µ0, µ1, b]
≈∆ ε1(λ) Hyb4

A[λ, µ0, µ1, b]

implies that

TamperBL
A [λ, 1, µ0, µ1, b] ≈∆ ε0(λ)+ε1(λ) Hyb4

A[λ, µ0, µ1, b] ,

and, by applying Lemma 3.7,

∆
(
TamperBL

A [λ, 1, µ0, µ1, 0] , TamperBL
A [λ, 1, µ0, µ1, 1]

)
≤ 2 (ε0(λ) + ε1(λ)) + ε2(λ).

3.1.4 Instantiation

Using an existing construction of bounded leakage-resilient secret sharing scheme
against joint leakage under adaptive partitioning, we obtain the following.
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Corollary 3.8. For every ℓ, n, λ ∈ N, every k1 ∈ O(
√

log(n)) and every access
structure A for n parties that can be described by a polynomial-size monotone span
program for which authorized sets have size greater than k = k2

1 + 1, there exists a
secret sharing scheme with the following parameters, where the message space M is
such that #M∈ Ω (λ/ log(λ)).

Secret sharing scheme SS
Parties : n

AccessStructure : A
MessageSpace : M
LeakageModel : Bounded(ℓ)

NonMalleability : Statistical, 2−Ω(λ/ log(λ))

TamperingAttempts : 1
Partitioning : SemiAdaptive(k1)

Proof. It suffices to instantiate SS0, SS1, SS2 in Theorem 3.1. Using [KMS19, Theo-
rem 1] and [KMS19, Corollary 2], we can instantiate SS0 and SS1 with parameters
ε0(λ) = ε1(λ) = 2−Ω(λ/ log(λ)), k ∈ O(log(n)), s0 = Poly(λ) and any ℓ0, ℓ1 ∈ N, which
also allows for k1 ∈ O(

√
log(n)). As for SS2, we can use the split-state non-malleable

code in [Li17, Theorem 1.12], which achieves error 2−Ω(λ/ log(λ)).

3.2 A technique for multiple tampering attempts
In Section 3.1, we constructed a non-malleable secret sharing scheme that is able to
withstand a single tampering attempt. In this section, we see how to extend the
security of any one-time non-malleable secret sharing scheme against joint tampering
into a scheme that is secure against multiple tampering attempts. Here, we revisit a
compiler from [OPVV18] in the setting of non-malleable secret sharing against joint
tampering.

The basic idea is as follows. First, we commit to the message µ using random
coins ρ, thus obtaining a cryptographic commitment γ. Then, we secret share
the string µ||ρ using an auxiliary secret sharing scheme SS0, thus obtaining shares
σ1, . . . , σn. The final shares are of the form σ∗i := (γ, σi). The reconstruction
procedure first checks that all the commitments are equal, then uses the shares σ∗i
to recover µ||ρ and finally verifies that µ||ρ opens to γ; if any of these checks fails,
the reconstruction procedure outputs ⊥.

The original analysis in [OPVV18] shows that if SS0 is a bounded leakage-resilient
statistically one-time non-malleable secret sharing scheme satisfying additional
properties, then the resulting scheme SS is continuously non-malleable. A follow up
work [BFV19] shows that the aditional properties can be avoided if SS0 satisfies a
stronger notion of noisy leakage, and further extends the original analysis to any
number of parties and to arbitrary access structures.

However, both the proofs in [OPVV18, BFV19] are for the setting of independent
tampering. The main idea behind the proof is to reduce the security of SS to the one of
SS0 by using bounded leakage to simulate multiple tampering queries. Unfortunately,
this requires a small amount of leakage for each tampering query, and thus the
analysis only works in case the number of tampering queries is bounded a priori.
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Algorithm: SS.Share
Input: µ ∈M

ρ←$R
γ← Com.Commit(µ; ρ)
(σ1, . . . , σn)←$ SS0.Share(µ||ρ)
∀ i ∈ [n] : σ∗i := (γ, σi)

Output: (σ∗1, . . . , σ∗n)
Algorithm: SS.Reconstruct

Input: (I, σ∗I) ∈ A× S
∀ i ∈ I : (γi, σi) := σ∗i
IF ∃i1, i2 ∈ I : γi1 ̸= γi2 : RETURN ⊥
γ := γi

µ||ρ← SS0.Reconstruct(σI)
IF µ||ρ = ⊥ : RETURN ⊥
IF Com.Commit(µ; ρ) ̸= γ : RETURN ⊥

Output: µ

Figure 3.2. The Share and Reconstruct algorithms of our construction.

We show the compiler in Fig. 3.2, and we prove its security in the theorem below.

Theorem 3.9. Let λ, ℓ, p ∈ N be parameters and let A be an arbitrary access
structure for n parties without singletons. In the construction depicted in Fig. 3.2,
assume that

• Com is a perfectly binding and computationally hiding non-interactive commit-
ment scheme;

• SS0 is a ℓ-bounded leakage resilient one-time non-malleable secret sharing
scheme realizing access structure A with statistical security against k-joint
semi-adaptive partitioning and message space M such that #M∈ ω(log(λ)).

Then, SS is a p-time non-malleable secret sharing scheme realizing access structure
A with computational security against k-joint semi-adaptive partitioning, as long as
ℓ = p · (log #C + n), where C is the space of the commitments.

The proof of privacy was already given in [BFV19]; in what follows, we focus on
showing non-malleability against joint tampering and semi-adaptive partitioning.

The proof strategy is to construct an hybrid experiment in which we replace the
secret sharing of µ||ρ with a secret sharing of a random and independent µ̂||ρ̂←$M×
R. Both the original and the hybrid experiments are depicted in Fig. 3.3, in which
we also expanded the definition of SS. We first prove that the above experiments
are computationally close by induction over the number p′ ≤ p of tampering queries
asked by A; then, a final reduction to the computationally hiding property of Com
concludes the proof. The lemma below constitutes the basis of the induction.
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Differences: TamperBL
A [λ, p, µ0, µ1, b] HybA[λ, p, µ0, µ1, b]

ρ←$R
γ← Com.Commit(µb; ρ)
(σ1, . . . , σn)←$ SS0.Share(µb||ρ)
µ̂||ρ̂←$M×R
(σ1, . . . , σn)←$ SS0.Share(µ̂||ρ̂)
∀ i ∈ [n] : σ∗i := (γ, σi)
σ∗ := (σ∗1, . . . , σ∗n)
b∗←$ AOL(σ,·,·),Op

T((µ0,µ1),σ,·,·,·)

b∗←$ AOL(σ,·,·),Op,⋆
T ((µ0,µ1),σ,·,·,·)

Output: b∗

Differences: Op
T((µ0, µ1), σ, T ,B, f) Op,⋆

T ((κ̂, κ), (µ0, µ1), σ, T ,B, f)
Initial
state:

p∗ := 0, SD := 0

IF sd = 1 : RETURN ⊥
IF p∗ = p : RETURN ⊥
p∗← p∗ + 1
∀ i ∈ I : (γi, σi) := σ∗i
IF ∃i1, i2 ∈ I : γi1 ̸= γi2 : RETURN ⊥
γ := γi

µ||ρ← SS0.Reconstruct(σI)
IF µ||ρ = ⊥ : RETURN ⊥
IF Com.Commit(µ; ρ) ̸= γ : RETURN ⊥
IF µ̃ ∈ {µ0, µ1} : RETURN ♡
IF µ̃ = µ̂ :

IF γ̃ = γ : RETURN ♡
ELSE : RETURN ⊥

Output: µ̃

Figure 3.3. The differences between the original experiment TamperL and the hybrid
experiment Hyb.
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Lemma 3.10. For all µ0, µ1 ∈M and all b ∈ {0, 1},

TamperBL
A [λ, 1, µ0, µ1, b] ≈∆ HybA[λ, 1, µ0, µ1, b]

Proof. By reduction to the statistical leakage-resilient one-time non-malleability
of the underlying scheme SS0. Suppose towards contradiction that there exist
two distinct messages µ0, µ1 ∈ M and an unbounded adversary A which is able
to cause a non-negligible (in λ ) statistical difference between the experiments
TamperBL

A [λ, 1, µ0, µ1, b] and HybA[λ, 1, µ0, µ1, b]. By an averaging argument, this
means that there must exist values ρ ∈ R and µ̂||ρ̂ ∈ M×R such that A causes
the non-negligible statistical difference between the experiments when we fix these
particular values in the experiments described in Fig. 3.3. Let µ̂0 := µb||ρ, µ̂1 := µ̂||ρ̂
and γ = Com.Commit(µ0; ρ). Finally, let σ = (σ1, . . . , σn) be the target secret
sharing of either µ̂0 or µ̂1. Without loss of generality, we can assume that A is
deterministic.3

Consider the following reduction R.

1. Run b∗←$ AR(1λ), simulating the oracles as follows.

• Tampering oracle: upon input (T ,B, f):
(a) Parse (B1, . . . ,Bm) = B and (f1, . . . , fm) = f .
(b) For i ∈ [m], construct the following leakage function.

Function: ĥi

Input: σBi

(γ̃j , σ̃j)j∈Bi ← fi ((γ, σj)j∈Bi)
IF ∃j1, j2 ∈ Bi : γ̃j1 ̸= γ̃j2 : RETURN ⊥
γ̃ := γ̃j

Output: γ̃

(c) Query γ̃[m]←OBL
(
B, ĥ

)
, where ĥ = (ĥ1, . . . , ĥm).

(d) If there exist i1, i2 ∈ [m] such that γ̃i1 ̸= γ̃i2 , return ⊥.
(e) Let γ̃ = γ̃i for some i ∈ [m].
(f) Hard-code the value γ in f .
(g) Query µ̃||ρ̃←O1

T(T ,B, f); then:
– if µ̃||ρ̃ = ⊥ or γ̃ ̸= Com.Commit(µ̃; ρ̃), return ⊥;
– if µ̃ ∈ {µ0, µ1}, return ♡;
– if µ̃ = µ̂, return ♡ if γ̃ = γ and return ⊥ otherwise;
– otherwise, return µ̃.

2. Output b∗.

For the analysis, we claim that our reduction is perfect with overwhelming
probability. More in detail, we only need to check that the answer to A’s tampering
query is simulated correctly with all but negligible probability. Indeed:

3It is always possible to fix the random coins of A in order to maximize its distinguishing
advantage.
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• If SS0.Reconstruct(T , σT ) = ⊥, both the real and the hybrid experiment would
return ⊥, which is perfectly emulated by the reduction.

• If SS0.Reconstruct(T , σT ) = ♡, then the inner secret sharing σT reconstructs
to either µ̂0 = µ0||ρ or µ̂1 = µ̂||ρ̂. Let γ̃ be the value of the commitment in the
tampered shares. Notice that this value is well defined since all the tampered
shares agree on a single commitment; if it was not the case, then the output
of the reconstruction would have been ⊥. Then, there are 4 possible cases:
either both experiments output the same µ̂0 or µ̂1, or one of the experiments
outputs µ̂0 and the other one outputs µ̂1.
We can further reduce the number of cases by considering the fact that the
view of A in the original experiment is independent of the value µ̂, except with
negligible probability 2−ω(log(λ)) = 1/#M. Therefore, we just consider the
following two cases:

1. Both the real and the hybrid experiment return µ̂0 = µ0||ρ.
2. The real experiment returns µ̂0 = µ0||ρ and the hybrid experiment returns

µ̂1 = µ̂||ρ̂.

In both cases, the output of the two experiment is equal to ♡ if γ̃ = γ and
is equal to ⊥ otherwise. However, this situation is perfectly captured by the
reduction, hence the simulation in this case is perfect except with negligible
probability.

• If SS0.Reconstruct(T , σT ) = µ̃||ρ̃ /∈ {♡,⊥}, it means that, in particular, µ̃||ρ̃ /∈
{µ̂0, µ̂1}. In this case, both experiments return ⊥ in case the reconstructed
commitment γ̃ does not match the opening µ̃, ρ̃ and, if not, it means that A
produced valid shares of a message µ̃ ∈M. In the latter case, both experiments
would output ♡ if µ̃ ∈ {µ0, µ1} and µ̃ otherwise, which is perfectly captured
by the adversary.

It only remains to discuss the admissibility of R.
The reduction R only performs leakage in step 1c, for a total of m · |γ̃| bits.

However, it is possible to make R slightly more leakage-efficient in the following way:
instead of leaking the value of γ̃ from each subset, the reduction fixes a particular
index i∗ and only outputs the value of γ̃ from the shares in Bi∗ . Then, R performs a
leakage query of 1 bit from each other subset Bi, obtaining, e.g. 1 if the reconstructed
commitment in Bi matches γ̃, and 0 otherwise. With this optimization, R only leaks
|γ̃|+ (m− 1) bits to compute step 1c and, since m ≤ n, R is leakage admissible for
|γ̃|+ n− 1 bits of leakage. The lemma follows.

The lemma below constitutes the induction step.

Lemma 3.11. For p′ < p, all µ0, µ1 ∈M and all b ∈ {0, 1}, assume that

TamperBL
A
[
λ, p′, µ0, µ1, b

]
≈∆ HybA

[
λ, p′, µ0, µ1, b

]
.

Then,
TamperBL

A
[
λ, p′ + 1, µ0, µ1, b

]
≈∆ HybA

[
λ, p′ + 1, µ0, µ1, b

]
.
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Proof. Again, by reduction to the statistical leakage-resilient one-time non-malleabili-
ty of the underlying scheme SS0. Suppose towards contradiction that there exist
two distinct messages µ0, µ1 ∈ M and an unbounded adversary A which is able
to cause a non-negligible (in λ ) statistical difference between the experiments
TamperBL

A [λ, p′ + 1, µ0, µ1, b] and HybA[λ, p′ + 1, µ0, µ1, b]. By an averaging argu-
ment, this means that there must exist values ρ ∈ R and µ̂||ρ̂ ∈ M×R such that
A causes the non-negligible statistical difference between the experiments when we
fix these particular values in the experiments described in Fig. 3.3. Let µ̂0 := µb||ρ,
µ̂1 := µ̂||ρ̂ and γ = Com.Commit(µ0; ρ). Finally, let σ = (σ1, . . . , σn) be the target
secret sharing of either µ̂0 or µ̂1. Without loss of generality, we can assume that A
is deterministic.

Consider the following reduction R.

1. Run b∗←$ AR(1λ), simulating the oracles as follows.

• Tampering oracle, query q ≤ p′: upon input (T (q),B(q), f (q)):

(a) Parse (B(q)
1 , . . . ,B(q)

m(q)) = B(q) and (f (q)
1 , . . . , f

(q)
m(q)) = f (q).

(b) For i ∈ [m(q)], construct the following leakage function.

Function: ĥ
(q)
i

Input: σB(q)
i

(γ̃j , σ̃j)
j∈B(q)

i

← fi

(
(γ, σj)

j∈B(q)
i

)
IF ∃j1, j2 ∈ B(q)

i : γ̃j1 ̸= γ̃j2 : RETURN ⊥
γ̃ := γ̃j

Output: γ̃

(c) Query γ̃[m(q)]←OBL
(
B(q), ĥ(q)

)
, where ĥ(q) = (ĥ(q)

1 , . . . , ĥ
(q)
m ).

(d) If there exist i1, i2 ∈ [m(q)] such that γ̃
(q)
i1
̸= γ̃

(q)
i2

, return ⊥.

(e) Let γ̃(q) = γ̃
(q)
i for some i ∈ [m(q)].

(f) Find by brute force the only opening µ̃(q), ρ̃(q) of γ̃(q).
(g) Replace µ̃(q) as follows:

– if µ̃(q) ∈ {µ0, µ1}, replace µ̃(q)←♡;
– if µ̃(q) = µ̂, replace µ̃(q)←♡ if γ̃(q) = γ and µ̃(q)←⊥, triggering

a self-destruct, otherwise;
– otherwise, leave µ̃(q) as it is.

(h) Return µ̃(q).
• Tampering oracle, query q = p′ + 1: upon input (T (q),B(q), f (q)):

(a) Parse (B(q)
1 , . . . ,B(q)

m(q)) = B(q) and (f (q)
1 , . . . , f

(q)
m(q)) = f (q).

(b) Check that the simulation up to the first p′ queries did not cause any
inconsistency due to the fact that the outcome of the q′-th tampering
query should have been ⊥ because the result σ̃T (q′) of the tampering
was not a valid secret sharing.

i. Without loss of generality, assume that 1 ∈ T (p′+1) (it is always
possible to permute the indices) and that A outputs 0 whenever
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it believes that the target secret sharing is distributed as in the
real experiment.

ii. Define the special set Ŝ ⊆ S1 × . . . × Sn such that Ŝ contains
all the possible secret sharings of µ0 and µ1 that are compatible
with the answer to the tampering queries being µ̃(1), . . . , µ̃(p′).

iii. Define the following special leakage function ĥcheck : S1 → {0, 1}.
– The function hard-wires a description of A, the values γ, µ0, µ1,

a description of the final tampering query (T (p′+1),B(p′+1),
f (p′+1)), the answer to all the previous queries µ̃(1), . . . , µ̃(p′)

and the set Ŝ.
– Let σ̂∗ := ((γ, σ1), (γ, σ̂2) . . . , (γ, σ̂n)) be the target secret shar-

ing for each of the possible set of compatible shares (σ1, σ̂2, . . . ,
σ̂n) ∈ Ŝ.

– The output of ĥcheck is a bit b̃ such that b̃ = 1 if and only if
A(µ̃(1), . . . , µ̃(p′), µ̃∗) = 0 more often when σ̂∗ is a valid secret
sharing of the message µ0, where

µ̃∗←OT
(
(µ0, µ1), σ̂∗, T (p′+1),B(p′+1), f (p′+1)

)
.

iv. Query b̃←OBL
(
({1}, . . . , {n}), (ĥcheck, ϵ, . . . , ϵ)

)
, where ϵ is the

empty string.
(c) For i ∈ [m(q)], construct the leakage function ĥ

(q)
i as in the previous

tampering queries.
(d) Query γ̃[m(q)]←OBL

(
B(q), ĥ(q)

)
, where ĥ(q) = (ĥ(q)

1 , . . . , ĥ
(q)
m ).

(e) If there exist i1, i2 ∈ [m(q)] such that γ̃
(q)
i1
̸= γ̃

(q)
i2

, return ⊥.

(f) Let γ̃(q) = γ̃
(q)
i for some i ∈ [m(q)].

(g) Hard-code the value γ in f (q).
(h) Query µ̃(q)||ρ̃(q)←O1

T

(
T (q),B(q), f (q)

)
; then:

– if µ̃(q)||ρ̃(q) = ⊥ or γ̃(q) ̸= Com.Commit
(
µ̃(q); ρ̃(q)

)
, return ⊥;

– if µ̃(q) ∈ {µ0, µ1}, return ♡;
– if µ̃(q) = µ̂, return ♡ if γ̃(q) = γ and return ⊥ otherwise;
– otherwise, return µ̃(q).

(i) Return µ̃(q).

2. If b̃ = 1, output b∗; else output 0.
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The reduction R runs in exponential time. For the analysis, we get that∣∣∣P [TamperBL
R [λ, 1, µ0, µ1, 0] = 1

]
− P

[
TamperBL

R [λ, 1, µ0, µ1, 1] = 1
]∣∣∣

=
∣∣∣P [TamperBL

R [λ, 1, µ0, µ1, 0] = 1 ∧ b̃ = 1
]

(3.3)

−P
[
TamperBL

R [λ, 1, µ0, µ1, 1] = 1 ∧ b̃ = 1
]∣∣∣

≥ 1
Poly(λ)

∣∣∣P [TamperBL
R [λ, 1, µ0, µ1, 1] = 1

∣∣∣b̃ = 1
]

(3.4)

−P
[
TamperBL

R [λ, 1, µ0, µ1, 1] = 1
∣∣∣b̃ = 1

]∣∣∣
≥ 1

Poly(λ)

( 1
Poly(λ) −Negl(λ)

)
, (3.5)

where:

• (3.3) follows because when b̃ = 0 the reduction R always returns 0 uncondi-
tionally, and this cancels its distinguishing advantage.

• (3.4) holds for the following reason. The induction hypothesis states that A is
not able to cause a non-negligible difference between the two experiments in
p′ queries, while the contradiction hypothesis states that A is able to cause
a non-negligible difference between the two experiments in p′ + 1 queries.
This implies that b̃ = 1 with non-negligible probability: otherwise, A would
cause a self-destruction earlier in the experiment, thus causing a non-negligible
difference in less than p′ + 1 tampering queries.

• (3.5) holds because an analysis identical to the one in Lemma 3.10 shows that
the view of A is perfectly simulated (except with negligible probability) when
b̃ = 1, and thus R retains essentially the same advantage of A.

In order to conclude the proof, it remains to show that R is ℓ-leakage admissible, for
ℓ as in the statement of the theorem, and that R is SemiAdaptive(k)-admissible.

For the leakage, notice that R makes leakage queries in steps 1c, 1(b)iv, 1d.
The leakage queries of steps 1c and 1d are the same used to obtain the tampered
commitment in Lemma 3.10 and hence the same optimization can be applied; since
there are p′ + 1 such queries, R performs (p′ + 1)(|γ̃| + n − 1) bits of leakage.
Furthermore, R performs 1 bit of leakage in the query in step 1(b)iv.

Finally, R converts all the tampering queries from A into leakage queries using
the same partition, except that R performs no leakage from the subsets that do
not intersect the reconstruction set T (q). Therefore, if A is SemiAdaptive(k)-
admissible, for any two B(q)

i ,B(q′)
i′ , either B(q)

i = B(q′)
i′ or B(q)

i ∩ B
(q′)
i′ = ∅, and the

same holds when converting the tampering queries into leakage queries; hence, R is
SemiAdaptive(k)-admissible as well. This concludes the proof of the lemma.

Finally, the lemma below allows to conclude the proof of Theorem 3.9.

Lemma 3.12. For all µ0, µ1 ∈M,

HybBL
A [λ, p, µ0, µ1, 0] ≈C HybA[λ, p, µ0, µ1, ] .
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Proof. By reduction to the computationally hiding property of Com. Suppose
towards contradiction that there exist two distinct messages µ0, µ1 and a PPT
adversary A which is able to cause a non-negligible difference between the experiments
HybBL

A [λ, p, µ0, µ1, 0] and HybA[λ, p, µ0, µ1, ].
Let b ∈ {0, 1}, ρ ∈ R and let γ̂ = Com.Commit(µb; ρ) be the target commitment.

Consider the following reduction R.

1. Compute (σ1, . . . , σn)←$ SS0.Share(µ̂||ρ̂), where µ̂||ρ̂←$M×R.

2. Run b∗←$ AR(1λ), simulating the oracles as follows.

• Tampering oracle, query q: upon input (T (q),B(q), f (q)):

(a) Parse (B(q)
1 , . . . ,B(q)

m(q)) = B(q) and (f (q)
1 , . . . , f

(q)
m(q)) = f (q).

(b) For all i ∈ [m(q)], compute

σ̃∗Bi
= (γ̃j , σ̃j)j∈Bi ← f

(q)
i ((γ̂, σj)j∈Bi)

and let µ̃(q)||ρ̃(q)← SS.Reconstruct (σ̃T (q)).
(c) If there exist i1, i2 ∈ T (q) such that γ̃i1 ̸= γ̃i2 , return ⊥ triggering

self-destruct.
(d) If µ̃(q) = ⊥ or γ̃1 ̸= Com.Commit

(
µ̃(q), ρ̃(q)

)
, return ⊥ triggering

self-destruct.
(e) If µ̃(q) ∈ {µ0, µ1}, return ♡.
(f) If µ̃(q) = µ̂, return ♡ if γ̃(q) = γ̂ and return ⊥ triggering self-destruct

otherwise.
(g) Else, return µ̃(q).

3. Output b∗.

For the analysis, note that the simulation done by R is perfect. In particular,
depending on the value γ̂ being either a commitment to µ0 or to µ1, the view of A is
identical to the one in either experiment HybBL

A [λ, p, µ0, µ1, 0] or HybA[λ, p, µ0, µ1, ].
Therefore R distinguishes with the same advantage of A.

Proof of Theorem 3.9. The proof follows by the following chain.

TamperBL
A
[
λ, p′, µ0, µ1, 0

]
≈∆ HybA[λ, p, µ0, µ1, 0]
≈C HybA[λ, p, µ0, µ1, ]
≈∆ TamperBL

A
[
λ, p′, µ0, µ1, 1

]

3.3 Achieving continuous non-malleability
The same technique used in Section 3.2 can be used to achieve the even stronger
notion of continuous non-malleability. By taking a closer look at the proof technique,
we just need a way to extract the common commitment γ from each subset of
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tampered shares. Unfortunately, this cannot be achieved in the bounded leakage
model, nor without further assumptions on the scheme SS0 in Fig. 3.2. However,
by “opening” the black-box, it is possible to overcome this difficulty and obtain the
first secret sharing scheme achieving joint noisy leakage resilience and continuous
non-malleability in the plain model.

More in detail, we use a modified version of a construction by Goyal, Srinivasan
and Zhu [GSZ20], in which we are able to obtain noisy-leakage resilience and two
additional properties that are necessary to the proof of security. The details of our
construction can be found in Section 3.3.1, while an intuition of the proof can be
foun in Section 3.3.2. Finally, the formal proof appears in Section 3.3.3 and an
instantiation appears in Section 3.3.4

3.3.1 Our construction

The modified version uses, internally, a 2-split-state non-malleable code (a.k.a.
2-out-of-2 non-malleable secret sharing scheme) SS2 with asymmetric shares (i.e.
#S2,0 ̸= #S2,1 ) and two additional properties, listed below.

1. There exists σ̂0 ∈ S2,0 such that, for all µ ∈ M, there exists σ1 ∈ S2,1 such
that SS2.Reconstruct([2], (σ0, σ1)) = µ.

2. There exists d ∈ N such that, for all µ ∈M and all i ∈ {0, 1},

H̃∞ (Σi|Σ1−i) ≥ H∞ (Σi)− d,

where Σi is the random variable for share σi. Intuitively, d is a bound on how
much does the left (resp. right) share reveal on the right (resp. left) share.
This notion is usually known as d-conditional independence.

Furthermore, we require the leakage parameters of SS2 to be different for the two
shares, i.e. there exist ℓ2,0, ℓ2,1 ∈ N such that given a leakage string Λ from an
admissible adversary, it must hold that, for all i ∈ {0, 1},

H̃∞ (Σi|Λ) ≥ H∞ (Σi)− ℓi.

The construction uses two other secret sharing schemes SS1 and SS3. We
will instantiate both these schemes as Shamir’s secret sharing with extended shares.
Namely, let µ ∈ F be the shared secret and let p be the randomly sampled polynomial
for the sharing procedure. Then, a share σi ∈ Si = F2 is the pair (i, p(i)) instead of
just p(i), and we define the function Party that, upon input σi = (i, p(i)), returns i.

We are now ready to describe our construction. We describe the scheme SS0
in Fig. 3.4. Our construction is the one in Fig. 3.2 instantiated with the scheme
SS0. The theorem below proves that this construction achieves continuous non-
malleability.

Theorem 3.13. Let n, t, ℓ∗, ℓ1, ℓ2 ∈ N be parameters with t > 2n/3. In the construc-
tion depicted in Fig. 3.4, assume that

• SS1 is a t-out-of-n Shamir’s secret sharing with extended shares.
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Algorithm: SS0.Share
Input: µ ∈M

(σ1, . . . , σn)←$ SS1.Share(µ)
∀ i ∈ [n] : (σi,0, σi,1)←$ SS2.Share(σi)
∀ i ∈ [n] : (σi,1,1, . . . , σi,1,n)←$ SS3.Share(σi,1)
∀ i ∈ [n] : σ∗i := (σi,0, (σ1,1,i, . . . , σn,1,i))

Output: (σ∗1, . . . , σ∗n)
Algorithm: SS0.Reconstruct

Input: (I, σ∗I) ∈ A× S
∀ i ∈ I : (σi,0, (σ1,1,i, . . . , σn,1,i)) := σ∗i
∀ i ∈ I : σi,1← SS3.Reconstruct(I, σi,1,I)
∀ i ∈ I : σi← SS2.Reconstruct([2], (σi,0, σi,1))
IF ∃i1, i2 ∈ I : Party(σi1) = Party(σi2) : RETURN ⊥
µ← SS1.Reconstruct(I, σI)

Output: µ

Figure 3.4. The Share and Reconstruct algorithms of our construction.

• SS2 is an asymmetric 2-out-of-2 (ℓ1, ℓ2)-noisy leakage resilient t-time non-
malleable secret sharing scheme with statistical security and satisfying the
additional properties 1 and 2.

• SS3 is a t-out-of-n Shamir’s secret sharing with extended shares.

Then, the scheme SS depicted in Fig. 3.2, instantiated with the scheme SS0 depicted
in Fig. 3.4, is a t-out-of-n ℓ∗-noisy-leakage resilient continuously non-malleable code
against (t− 1)-joint selective partitioning, as long as

ℓ1 ≥ (t− 1) · ℓ∗ + log #M+ log #C + d + 1 + log(λ),
ℓ2 ≥ ℓ∗ + n · (t− 1) · log #S2,1 + log #C + d + 1 + log(λ).

3.3.2 Proof overview

Intuitively, we would like to prove our scheme to be secure by using the results
in Section 3.2. Unfortunately, this is not possible in a straightforward way, because
our proof strategy requires some additional properties from the underlying schemes.
Instead, we open the black-box of SS0 and we reduce to the security of one of its
components. Namely, we would like to reduce to the security of SS2.

Clearly, this cannot be done with a single hybrid experiment; instead, we construct
n hybrid experiments in which we gradually replace the original shares with dummy,
randomly sampled shares. Now, when stepping from one hybrid to the next one, we
can finally reduce to the security of SS2 and use the same technique as in Section 3.2.

In this case, continuous non-malleability is made possible by the conditional
independence property. Roughly speaking, conditional independence says that one
of the shares does not reveal too much information on the other share. Here we use
the fact that the commitment to the message is prepended to each share: if the
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commitment values are different, then the secret sharing is invalid; otherwise, it means
that the tampered commitment γ̃ leaked from Σr,0 can also be deterministically
computed from Σr,1. This reasoning can be extended to several commitments
γ̃(1), γ̃(2), γ̃(3), . . .: indeed, until the commitments satisfy γ̃

(q)
0 = γ̃(q), all of them

can be deterministically computed from Σr,0, therefore they do not reveal much
information from Σr,0 as well.

Finally, the last reduction to the computationally hiding property of the com-
mitment scheme is identical to the one in Section 3.2.

3.3.3 Security analysis

In what follows, we make the simplifying assumption that the partition B used by
the attacker only contains two subsets B1,B2. Notice that this restriction is without
loss of generality whenever t > 2n/3, as in the hypothesis of Theorem 3.13. Indeed,
for any partition B = (B1, . . . ,Bm), it is always possible to find a set I ⊆ [m] such
that

t

2 ≤ #
⋃
i∈I
Bi ≤ t

and then consider the two subsets to be B̂1 :=
⋃

i∈I Bi, containing less than t elements
by construction, and B̂2 :=

⋃
i/∈I Bi, containing at most n−#B̂1 < 3t/2− t/2 = t

elements.
For r ∈ [n], p ∈ N, we consider the auxiliary hybrid experiment Hybr[λ, p, µ0,

µ1, b], described in Fig. 3.5 along with the original experiment in which we expanded
the applications of SS and SS0. Namely, in Hybr we replace the first r shares
(σ1, . . . , σr) from SS1 with random and independent values (σ′1, . . . , σ′r), letting the
remaining shares σ′r+1, . . . , σ′n be the same as in the original experiment. Notice
that, when r = 0, no shares are replaced and, therefore, Hybr = TamperNL.

Similarly to the proof in Section 3.2, we will prove by induction that the two
experiments are statistically close. The lemma below constitutes the basis of the
induction.

Lemma 3.14. For all µ0, µ1 ∈M, all b ∈ {0, 1} and all r ∈ [n],

Hybr−1[λ, 1, µ0, µ1, b] ≈∆ Hybr[λ, 1, µ0, µ1, b] .

Proof. The difference between the two hybrid experiments lies in the distribution
to which is sampled the share σ′r. Namely, σ′r is uniformly random in Hybr and it
comes from the real share σr in Hybr−1. For j ∈ [n], let β(j) ∈ {1, 2} be the index
such that j ∈ Bβ(j). The proof proceeds by reduction to leakage-resilient t-time
non-malleability of SS2. Assume that there exists an adversary A which is able to
cause a non-negligible difference between the experiments Hybr and Hybr−1.

Let σr and σ′r be the challenge messages for SS2 as sampled in Hybr, and let
γ←$ Com.Commit(µb). Consider the reduction R defined as follows.

• Shared randomness. For every i ∈ [n] \ {r}, sample σi,0, (σi,1,j)j∈[n] as in
Hybr. Then, let i0 = β(r) and i1 = 3− i0 (i.e. r ∈ Bi0 and the other subset is
Bi1 ). Let J be any set of at least t− 1 indices such that Bi0 ⊆ J ⊆ [n]. For
all j ∈ J , sample the shares σr,1,j uniformly at random. Finally, sample the
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Differences: TamperNL
A [λ, p, µ0, µ1, b] Hybr

A[λ, p, µ0, µ1, b]
ρ←$R
γ← Com.Commit(µb; ρ)
(σ1, . . . , σn)←$ SS1.Share(µb||ρ)
(σ′1, . . . , σ′n)←$ S1,1 × . . .× S1,n

∀ i > r : σ′i← σi

∀ i ∈ [n] :
(σi,0, σi,1)←$ SS2.Share(σi)
(σi,0, σi,1)←$ SS2.Share(σ′i)
(σi,1,1, . . . , σi,1,n)←$ SS3.Share(σi,1)
σ∗i := (γ, σi,0, (σ1,1,1, . . . , σn,1,1))

σ∗ := (σ∗1, . . . , σ∗n)
b∗←$ AOL(σ,·,·),Op

T((µ0,µ1),σ∗,·,·,·)

b∗←$ AOL(σ,·,·),Op,⋆
T ((µ0,µ1),σ∗,·,·,·)

Output: b∗

Differences: Op
T((µ0, µ1), σ, T ,B, f) Op,⋆

T ((µ0, µ1), σ, T ,B, f)
Initial
state:

p∗ := 0, SD := 0

IF SD = 1 : RETURN ⊥
IF p∗ = p : RETURN ⊥
p∗← p∗ + 1
(B1, . . . ,Bm) := B
(f1, . . . , fm) := f

∀ i ∈ [m] : σ̃∗Bi
= fi

(
σ∗Bi

)
∀ i ∈ T : (γ̃, σ̃i,0, (σ̃1,1,1, . . . , σ̃n,1,1)) := σ̃∗i
IF ∃i1, i2 ∈ I : γ̃i1 ̸= γ̃i2 : SD← 1; RETURN ⊥
γ̃ := γ̃i

∀ i ∈ T : σ̃i,1← SS3.Reconstruct(T , σ̃i,1,T )
∀ i ∈ T : σ̃i← SS2.Reconstruct([2], (σ̃i,0, σ̃i,1))
IF ∃i1, i2 ∈ T : Party(σ̃i1) = Party(σ̃i2) :

SD← 1; RETURN ⊥
∀ i1, i2 ∈ T : σ̃i1 = σ′i2 : σ̃i1 ← σi2

µ̃||ρ̃← SS0.Reconstruct(σ̃I)
IF µ̃||ρ̃ = ⊥ : SD← 1; RETURN ⊥
IF Com.Commit(µ̃; ρ̃) ̸= γ̃ : SD← 1; RETURN ⊥
IF µ̃ ∈ {µ0, µ1} : RETURN ♡

Output: µ̃

Figure 3.5. The differences between the original experiment TamperNL and the hybrid
experiment Hybr.
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left share σ̂0 given by property 1 of SS2. At this point, σ̂0 and the following
values are known:

∀i ∈ [n] \ J : γ, σi,0, (σj,1,i)j∈[n]\{r} , (3.6)

∀i ∈ J \ {r} : γ, σi,0, (σj,1,i)j∈[n] , (3.7)

i = r : γ, (σj,1,i)j∈[n] , (3.8)

and the following values are missing:

∀i ∈ [n] \ J : σr,1,i,

∀i ∈ J \ {r} :

i = r : σi,0.

• Run b∗← AR(1λ), simulating the oracles as follows.

– Leakage oracle: upon input ((B1,B2), (g1, g2)), construct the following
leakage functions.

∗ Let ĝ0 be the leakage function which takes as input the value σr,0,
plugs it in (3.8) and outputs Λi0 ← gi0

(
σ∗Bi0

)
. Recall that Bi0 ⊆ J ,

hence ĝ0 has all the necessary shares to compute the leakage function.
∗ Let ĝ1 be the leakage function which takes as input the value σr,1,

computes the values (σr,1,i)i∈[n]\J from σr,1 and (σr,1,i)i∈J and plugs
them in (3.6); then, once obtained the values in (σ∗i )i∈[n]\J , ap-
pends the values in (3.7) to obtain (σ∗i )i∈Bi1

and finally outputs

Λi1 ← gi1

(
σ∗Bi1

)
.

Then, query Λ1||Λ2←ONL((B1,B2), (ĝ1, ĝ2)) and return Λ1||Λ2.
– Tampering oracle: upon input (T , (B1,B2), (f1, f2)), construct the

following leakage functions.
∗ Let ĥ0 be the leakage function that computes σ∗Bi0

as in ĝ0, computes
σ̃∗Bi0

= fi0

(
σ∗Bi0

)
, checks whether all the tampered commitments γ̃i

within T ∩ Bi0 agree on a single value γ̃0 (and output ⊥ otherwise)
and finally outputs the values γ̃0, (σ̃j,1,i)i∈Bi0 ,j∈T .

∗ Let ĥ1 be the leakage function that computes σ∗Bi1
as in ĝ1, computes

σ̃∗Bi1
= fi1

(
σ∗Bi1

)
, checks whether all the tampered commitments γ̃i

within T ∩ Bi1 agree on a single value γ̃1 (and output ⊥ otherwise)
and finally outputs γ̃1.

Then, query γ̃0, (σ̃j,1,i)i∈Bi0 ,j∈T , γ̃1←ONL
(
(B1,B2), (ĥ1, ĥ2)

)
. Return ⊥

if γ̃0 ̸= γ̃1 or some of the received values is⊥ and otherwise let γ̃ := γ̃0 = γ̃1.
After that, construct the following tampering functions.

∗ For all i ∈ T , let f̂i,0 be the function that computes σ∗Bi0
as in

ĝ0, computes σ̃∗Bi0
= fi0

(
σ∗Bi0

)
and outputs σ̃i,0 if i ∈ Bi0 and σ̂0

otherwise.
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∗ For all i ∈ T , let f̂i,1 be the function that computes σ∗Bi1
as in

ĝ1, computes σ̃∗Bi1
= fi1

(
σ∗Bi1

)
and uses them, along with the pre-

viously leaked values, to reconstruct σ̃i,1 and finally outputs σ̃i,1
if i ∈ Bi1 and a share σ̂1 such that SS2.Reconstruct([2], (σ̂0, σ̂1)) =
SS2.Reconstruct([2], (σ̃i,0, σ̃i,1)) otherwise.

Then, query σ̃i←O1
T

(
f̂i,0, f̂i,1

)
for all i ∈ T , and:

∗ replace σ̃i with σr if σ̃i = ♡;
∗ replace σ̃i with σj if there exists j ∈ [n] such that σ̃i = σ′j ;
∗ return ⊥ if there exist distinct i1, i2 ∈ T such that Party(σi1) =

Party(σi2).
Finally, reconstruct µ̃||ρ̃← SS1.Reconstruct(T , σ̃T ), check that
γ̃ = Com.Commit(µ̃; ρ̃) (and return ⊥ otherwise), replace µ̃←♡ if µ̃ ∈
{µ0, µ1} and return µ̃.

• Output b∗.

For the analysis, call Badi the event that one tampering query modifies the shares
so that the tampered value (σ̃i,0, σ̃i,1) is a valid encoding of σ′r. Since σ′r is uniformly
random, the probability of Badi in Hybr−1 is O(2−λ). Furthermore, R perfectly
simulates Hybr−1 if the target codeword encodes σr and Bad =

⋃
i Badi does not

happen. On the other hand, the reduction perfectly simulates Hybr if the target
codeword encodes σ′r. Indeed, the auxiliary information leaked by the functions ĥ0, ĥ1
allows R to correctly compute the tampering query, yielding a perfect simulation.

To conclude the proof, it only remains to show that the constraints on the
leakage hold. The reduction performs the same leakage performed by A, plus the
one performed by the functions ĥ0, ĥ1, obtaining two commitments γ̃0, γ̃1 and the
tampered shares (σ̃j,1,i)i∈Bi0 ,j∈T . The overall amout of leakage is thus

ℓ∗ + #Bi0 ·#T · s1 + |γ̃| ≤ ℓ∗ + (t− 1) · t · s1 ≤ ℓ0

bits from the left side, where s1 = log #S1, and

ℓ∗ + |γ̃| ≤ ℓ1

bits from the right side. The lemma follows.

The lemma below constitutes the inductive step.

Lemma 3.15. For p′ ∈ N, all r ∈ [n], all µ0, µ1 ∈ M and all b ∈ {0, 1}, assume
that

Hybr−1[λ, p, µ0, µ1, b] ≈∆ Hybr[λ, p, µ0, µ1, b] .

Then,
Hybr−1[λ, p + 1, µ0, µ1, b] ≈∆ Hybr[λ, p + 1, µ0, µ1, b] .

Proof. Again, he difference between the two hybrid experiments lies in the distribu-
tion to which is sampled the share σ′r. Namely, σ′r is uniformly random in Hybr and
it comes from the real share σr in Hybr−1. For j ∈ [n], let β(j) ∈ {1, 2} be the index
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such that j ∈ Bβ(j). The proof proceeds by reduction to leakage-resilient t-time
non-malleability of SS2. Assume that there exists an adversary A which is able to
cause a non-negligible difference between the experiments Hybr and Hybr−1.

Let σr and σ′r be the challenge messages for SS2 as sampled in Hybr, and let
γ←$ Com.Commit(µb). Consider the reduction R defined as follows.

• Shared randomness. Everything as in Lemma 3.14. For every i ∈ [n] \ {r},
sample σi,0, (σi,1,j)j∈[n] as in Hybr. Then, let i0 = β(r) and i1 = 3 − i0 (i.e.
r ∈ Bi0 and the other subset is Bi1 ). Let J be any set of at least t− 1 indices
such that Bi0 ⊆ J ⊆ [n]. For all j ∈ J , sample the shares σr,1,j uniformly at
random. Finally, sample the left share σ̂0 given by property 1 of SS2. At this
point, σ̂0 and the following values are known:

∀i ∈ [n] \ J : γ, σi,0, (σj,1,i)j∈[n]\{r} , (3.9)

∀i ∈ J \ {r} : γ, σi,0, (σj,1,i)j∈[n] , (3.10)

i = r : γ, (σj,1,i)j∈[n] , (3.11)

and the following values are missing:

∀i ∈ [n] \ J : σr,1,i,

∀i ∈ J \ {r} :

i = r : σi,0.

• Run b∗← AR(1λ), simulating the oracles as follows.

– Leakage oracle: as in the proof of Lemma 3.14. Call Λ the final
transcript corresponding to all leakage queries.

– Tampering oracle, query q < p′: upon input (T (q), (B1,B2), (f (q)
1 ,

f
(q)
2 )), construct the following leakage functions.

∗ For all i ∈ T , let ĝ
(q)
i,0 be the function that computes σ∗Bi0

as in
Lemma 3.14, function ĝ0, computes σ̃∗Bi0

= fi0

(
σ∗Bi0

)
and outputs γ̃.

∗ For all i ∈ T , let ĝ
(q)
i,1 be the function that computes σ∗Bi1

as in
Lemma 3.14, function ĝ1, computes σ̃∗Bi1

= fi1

(
σ∗Bi1

)
and outputs γ̃.

Then, query γ̃
(q)
0 , γ̃

(q)
1 ←ONL

(
(B1,B2), (ĝ(q)

1 , ĝ
(q)
2 )

)
, return ⊥ and trigger

self-destruct if γ̃
(q)
0 ̸= γ̃

(q)
1 or one of the commitment equals bottom,

and otherwise find by brute force the correct opening µ̃(q) to the above
commitment as in Lemma 3.11, replace µ̃(q)←♡ if µ̃(q) ∈ {µ0, µ1} and
finally return µ̃(q) (or ⊥ if no opening is found).

– Tampering oracle, query q = p′ + 1: upon input (T (q), (B1,B2), (f (q)
1 ,

f (q))2), check that the simulation up to the first p′ queries did not cause
any inconsistency due to the fact that the outcome of the q′-th query
should have been ⊥ because the result σ̃T (q) of the tampering was not a
valid secret sharing. This step is very similar to the corresponding one in
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the proof of Lemma 3.11, with the only difference that the consistency
check is run for the scheme SS2.
After the consistency check sets a bit b̃ = 1 if the simulation results to be
consistent and b̃ = 0 otherwise, query the same leakage functions ĥ0, ĥ1
and tampering function f̂i,0, f̂i,1 and compute the same tampered message
µ̃ as in the proof of Lemma 3.14.

• Output b∗ if b̃ = 1 and output 0 otherwise.

The reduction runs in exponential time. An analysis identical to the one in the
proof of Lemma 3.15 shows that the simulation is perfect except with negligible
probability and that R retains essentially the same advantage of A.

In order to conclude the proof, it remains to show that R is (ℓ0, ℓ1)-leakage
admissible for ℓ0, ℓ1 as in the statement of the theorem. The reduction R makes
leakage queries in the following cases:

1. by forwarding the leakage queries of A, for a total of ℓ∗ bits;

2. when obtaining the tampered commitments γ̃
(q)
0 , γ̃

(q)
1 , for a total of |γ̃i| bits

from each share and for each query;

3. when obtaining the same auxiliary information as in Lemma 3.14 to answer
the last tampering query, for a total of at most t · (t− 1) · s1 + 1 bits;

4. for running the consistency check, for a total of 1 bit.

The d-conditional independence property (i.e. property 2) of SS2 allows to minimize
the cost of the leakage performed in Item 2. Let q∗ ∈ N be the index of the tampering
query, if any, where either γ̃

(q∗)
0 ̸= γ̃

(q∗)
1 or at least one of the two commitments

equals ⊥, and set q∗ = p′+ 1 in case that never happens. Notice that q∗ is a random
variable, which we denote by q∗. Clearly, such leakage queries are executed exactly
min{q∗, p′} times. For each i ∈ {0, 1}, let Λ′i be the random variable corresponding
to the leakage performed by R on the share σr,i of the target secret sharing Σr,0, Σr,1,
and let Λi be the random variable corresponding to the leakage performed by A on
the same share. We can write:

H̃∞
(
Σr,0

∣∣Λ′0)
≥ H̃∞

(
Σr,0

∣∣Σr,1, Λ′0
)

(3.12)

≥ H̃∞
(

Σr,0

∣∣∣∣Σr,1,
(
ĥ

(i)
0 (Σr,0)

)
i∈[q∗]∪{p′+1}

, ĥcheck(Σr,0), Λ0

)
(3.13)

≥ H̃∞
(

Σr,0

∣∣∣∣Σr,1,
(
ĥ

(i)
0 (Σr,0)

)
i∈[q∗]∪{p′+1}

)
− ℓ∗ − 1 (3.14)

≥ H̃∞
(
Σr,0

∣∣∣Σr,1, q∗, ĥ
(q)
0 (Σr,0), ĥ

(p′+1)
0 (Σr,0)

)
− ℓ∗ − 1 (3.15)

≥ H̃∞ (Σr,0|Σr,1, q∗)− |γ̃| − t · (t− 1) · s1 − ℓ∗ − 1 (3.16)
≥ H̃∞ (Σr,0|Σr,1)−O(log(λ))− |γ̃| − t · (t− 1) · s1 − ℓ∗ − 1 (3.17)
≥ H̃∞ (Σr,0)− d−O(log(λ))− |γ̃| − t · (t− 1) · s1 − ℓ∗ − 1, (3.18)

where, in the above derivation:
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• (3.12) follows by the fact that further conditioning on another random variable
can only reduce the conditional average min-entropy;

• (3.13) follows by how the leakage Λ′i is constructed;

• (3.14) follows from the chain rule (i.e. Lemma 2.1) as Λi is the leakage
perfomed by an ℓ∗-admissible adversary and ĥcheck only leaks 1 bit;

• (3.15) holds because, for each q < q∗, γ̃
(q)
0 = γ̃

(q)
1 and therefore γ̃

(q)
0 can be

computed as a deterministic function of rvΣr,1 and q∗;

• (3.16) and (3.17) follow again from the chain rule, since |q∗| = O(log(λ))
and either q∗ = p′ + 1, in which case the reduction leaks all the necessary
information to construct the last tampering query for up to |γ̃|+ t · (t− 1) · s1,
or q∗ ≤ p′, in which case only the commitment of length |γ̃| is leaked;

• finally, (3.18) follows by d-conditional independence.

An almost identical analysis holds for the leakage from the right share, with the only
difference that we do not leak any auxiliary information from Σr,1 and therefore the
min-entropy drop only amounts to d + O(log(λ)) + |γ̃| + ℓ∗ + 1 bits. The lemma
follows.

Finally, we can conclude the proof of the main theorem of this section.

Proof of Theorem 3.13. By applying Lemma 3.14 and Lemma 3.15, we proved that
for all r ∈ [n], all µ0, µ1 ∈M and all b ∈ {0, 1},

Hybr−1[λ,∞, µ0, µ1, b] ≈∆ Hybr[λ,∞, µ0, µ1, b] ,

ultimately proving that

TamperNL[λ,∞, µ0, µ1, b] ≈∆ Hybn[λ,∞, µ0, µ1, b] .

A proof identical to the one in Theorem 3.9 shows that for all µ0, µ1 ∈M,

Hybn[λ,∞, µ0, µ1, 0] ≈C Hybn[λ,∞, µ0, µ1, 1] .

The theorem then follows by repeatedly applying the triangular inequality.

3.3.4 Instantiation

By instantiating Theorem 3.13, we obtain the following.

Corollary 3.16. Assuming the existence of one-to-one one-way functions, for all
n, t, ℓ ∈ N with t > 2n/3, there is a construction of a t-out-of-n secret sharing
scheme satisfying noisy-leakage resilient continuous non-malleability under selective
k-joint leakage and tampering attacks, where k = t− 1.

Proof. The existence of the inner non-malleable code is given by Corollary A.4,
whose proof can be found in Appendix A. Furthermore, perfectly binding and
computationally hiding commitment schemes can be instantiated from one-to-one
one-way functions [GMW87].
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Chapter 4

Space efficiency

In this chapter, we discuss about the space efficiency of non-malleable secret sharing
schemes.

In Section 4.1, we show two lower bounds on the size of the shares of a non-
malleable secret sharing scheme. Our first result shows that every (one-time)
non-malleable secret sharing scheme is indeed a leakage-resilient non-malleable secret
sharing scheme. The proof of this fact is quite simple: we construct a reduction from
leakage-resilient non-malleability to non-malleability, which tries to guess in advance
the answer to the leakage queries and then uses the tampering query to check whether
the answer was correct or wrong. However, this fact allows to extend a known bound
on the size of the shares of leakage-resilient secret sharing schemes [NS20] to the
case of non-malleable secret sharing scheme. Our second result is an upper bound
on the maximal achievable rate1 of any continuously non-malleable secret sharing
scheme against joint tampering with many shares.

In Section 4.2, we show a compiler that transforms any continuously non-malleable
secret sharing scheme with poor rate into a continuously non-malleable secret sharing
scheme with good rate. Our construction is the same as Krawczyk’s in [Kra94],
except for two small differences. First, the reconstruction threshold of the information
dispersal scheme is smaller than the reconstruction threshold of the secret sharing
scheme. This means that we achieve smaller rate as well, but this modification is
necessary in order to prove our result. Second, we additionally check that all the
information dispersal shares in the selected reconstruction set are consistent with
the shared information. Again, this is needed for the security proof to go through.

4.1 Upper and lower bounds
We start by showing the following result that allows to trade off non-malleability for
leakage resilience.

Theorem 4.1. Let λ, ℓ = ℓ(λ) ∈ N, ε = ε(λ) ∈ [0, 1] be parameters such that
ℓ ≤ − log(ε). Let SS be a statistical one-time non-malleable secret sharing scheme
against selective partitioning with statistical security ε. Then, SS is also a statistical

1Which, in turn, is a lower bound on the size of the shares which depends on the size of the
shared secret.
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ℓ-bounded leakage-resilient one-time non-malleable secret sharing scheme against
selective partitioning with statistical security 2ℓε.

Proof. By reduction to non-malleability. Suppose towards contradiction that there
exist messages µ0, µ1 and an adversary A = (A1, A2) which is able to cause a statistical
difference between the experiment TamperBL

A [λ, 1, µ0, µ1, 0] and the experiment
TamperBL

A [λ, 1, µ0, µ1, 1] of more than 2ℓε. The adversary A partitions, internally,
the set of the shares into m subsets B1, . . . ,Bm. Furthermore, A has access to a
leakage oracle accepting queries of the form (B, g), where B = (B1, . . . ,Bm) and
g = (g1, . . . , gm).

Consider the following reduction R = (R1, R2). We just describe the algorithm
R1, letting R2 = A2.

1. Construct the (stateful) oracle O′BL(·, ·) which, upon input a leakage query
(B, g), where, for all i ∈ [m], gi is of the form gi : SBi → {0, 1}ℓ′

i for some
ℓ′i ∈ N, outputs a randomly sampled Λ′i ⊆ {0, 1}ℓ′

i . The state (Λ,G) of the
oracle is an initially empty string. After the output, the string Λ′1|| . . . ||Λ′m is
appended to Λ and (a description of) the function g is appended to G.

2. Run (α; T ,B, f)←$ AO
′
BL(·,·)

1 (1λ).

3. Extract the state (Λ,G) from the oracle, writing G = (g(1), . . . , g(N)) and
Λ = (Λ(1), . . . , Λ(N)), where N ∈ N is the number of leakage queries performed
by A1.

4. For all i ∈ [m], construct the tampering function f̂i as follows.

Function: f̂i

Input: σBi

∀ j ∈ [N ] :
IF g

(j)
i (σBi) ̸= Λ(j)

i : RETURN ⊥
σ̃Bi ← fi (σBi)

Output: σ̃Bi

5. Output (α; T ,B, f̂), where f̂ = (f̂1, . . . , f̂m).

For the analysis, we now compute the distinguishing advantage of R. For
b ∈ {0, 1}, let Hitb be the event that the guess on the leakage was correct in
TamperBL

A [λ, 1, µ0, µ1, b] and let Missb be the event that the guess on the leakage
was wrong.

First, we notice that, for all b ∈ {0, 1},

P [Hitb] =
∑

Λ∈{0,1}ℓ

P
[
Uℓ = Λ ∧ g

(
Σ(b)

)
= Λ

]
= 2−ℓ

∑
Λ∈{0,1}ℓ

P
[
g
(
Σ(b)

)
= Λ

]
= 2−ℓ,
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where Uℓ is the uniform random variable over {0, 1}ℓ, Σ(b) = SS.Share(µb) is the
random variable for a secret sharing of message µb, and g(σ) denotes the overall
leakage performed over σ. The above holds because the random variables Uℓ and
Σ(b) are indepenent, hence the events Uℓ = Λ and Σ(b) = Λ are independent as well.
Since P [Hitb] does not depend on b, this means that P [Hit0] = P [Hit1].

Now, we proceed by studying the distinguishing advantage. In order to make
notation shorter, for b ∈ {0, 1}|, let T [b] := TamperR[λ, 1, µ0, µ1, b] and let T BL[b] :=
TamperBL

A [λ, 1, µ0, µ1, b]. We have:

∆ (T [0], T [1]) = |P [Hit0]P [T [0] = 1|Hit0]− P [Hit1]P [T [1] = 1|Hit1] (4.1)
+P [Miss0]P [T [0] = 1|Miss0]− P [Miss1]P [T [1] = 1|Miss1]|

= |P [Hit0]P [T [0] = 1|Hit0]− P [Hit1]P [T [1] = 1|Hit1]| (4.2)
= 2−ℓ |P [T [0] = 1|Hit0]− P [T [1] = 1|Hit1]| (4.3)

= 2−ℓ
∣∣∣P [T BL[0] = 1

]
− P

[
T BL[1] = 1

]∣∣∣ (4.4)

≥ 2−ℓ2ℓε = ε

In the above derivation, (4.1) follows from the law of total probability; (4.2) comes
from the fact that, when Missb happens, the view of A (i.e. the leakage Λ and the
output ⊥ of the tampering query) is independent of the target secret sharing, and
thus its distinguishing advantage is 0; (4.3) follows from P [Hitb] = 2−ℓ; finally, (4.4)
holds because, when Hitb happens, the reduction perfectly simulates the experiment
and thus R retains the same distinguishing advantage of A, that is at least 2ℓε. This
implies that R is able to break non-malleability with advantage at least ε, against
the hypothesis of security. The proof follows.

An immediate corollary of the above theorem is a lower bound for the size of the
shares. Nielsen and Simkin proved in [NS20] the following result.

Theorem 4.2 ([NS20], Theorem 2). Let n, t, t̂, s, ℓ ∈ N be parameters. Let SS be a
t-out-of-n secret sharing scheme with statistical security against ℓ bits of bounded
leakage from each share2. Let t̂ be the minimum number such that, for all µ ∈M,
SS.Share(µ) is uniquely determined by (SS.Share(µ))T for any T such that #T ≥ t̂.
Finally, for the share space S1 × . . .× Sn, let, for all i ∈ [n], s = log #Si. Then,

s ≥ ℓ(n− t)
t̂

.

By applying the above theorem to Theorem 4.1, we achieve the following.

Corollary 4.3. Let n, t, t̂, s ∈ N, ε ∈ [0, 1] be parameters. Let SS be a t-out-of-n sta-
tistical one-time non-malleable secret sharing scheme. Let t̂ be the minimum number
such that, for all µ ∈M, SS.Share(µ) is uniquely determined by (SS.Share(µ))T for
any T such that #T ≥ t̂. Finally, for the share space S1 × . . . × Sn, let, for all
i ∈ [n], s = log #Si. Then,

s ≥ (log(1/ε)− 1)(1− t/n)
t̂

.

2Notice that leakage-resilience against nℓ bits of overall bounded leakage implies leakage-resilience
against ℓ bits of leakage from each share; however, the converse is necessarily true.
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Notice that t̂ is a simplified notion of entropy. If t = t̂, then any authorized set
is able to reconstruct all the remaining shares, meaning that those shares have no
entropy left. An example of a scheme with t = t̂ is Shamir’s secret sharing, which
has been proved to have a small degree of leakage resilience in [BDIR18].

Remark 4.4. We stated Theorem 4.1 in the information-theoretic setting. Taking
a closer look, Theorem 4.1 also works in the computational setting; in this case,
however, we are able to prove resilience only against ℓ = O(log(λ)) bits. Nonetheless,
Theorem 4.2 only works in the information-theoretic setting. Indeed, Nielsen and
Simkin showed in [NS20] a construction in the computational setting (and under the
random oracle assumption) that breaks such bound.

Finally, we prove the following upper bound.

Theorem 4.5. Let n, t, k, ρ ∈ N be parameters. Let SS be a t-out-of-n continuously
non-malleable secret sharing with security against selective k-sized partitioning and
rate ρ. If k > t/2, then ρ ≤ t− k.

Proof. For simplicity, we assume that the attacker always uses the same reconstruc-
tion set T across all the tampering queries. Notice that this allows to prove a
slightly stronger statement, since the upper bound holds even with this restriction.
Furthermore, we also assume that SS.ShareSpace = S1 × . . .× Sn with #Si = #Sj

for all i, j ∈ [n]; a generalization of this is immediate.
Consier the following commitment scheme Com.

Algorithm: Com.Commit
Input: (µ; ρ) ∈M×R

(σ1, . . . , σn)←$ SS.Share(µ; ρ)
γ← (σ1, . . . , σt−k)

Output: γ

In a moment we prove that the above commitment scheme is perfectly binding; first,
we show why this implies the stated lower bound. Indeed, the fact that Com is a
perfectly binding commitment implies that Com.Commit is an injective function,
hence |µ| ≤ |γ|. By letting s = log #S1, the rate satisfies

ρ = |µ|
s
≤ |γ|

s
= |(σ1, . . . , σt−k)|

s
≤ t− k.

Com is perfectly binding. Assume, towards a contradiction, that Com is
not perfectly binding. Namely, there exist a commitment γ and two openings
(µ(0), ρ0) and (µ(1), ρ1) such that µ(0) ≠ µ(1) and γ = Com.Commit

(
µ(0); ρ0

)
=

Com.Commit
(
µ(1); ρ1

)
.

Let µ∗0, µ∗1 ∈M be any two distinct messages, and denote by σ = (σ1, . . . , σn) the
target secret sharing of µ∗b in the experiment TamperR[λ,∞, µ∗0, µ∗1, b], where λ is the
security parameter. Furthermore, for better readability, let ℓ = |σt−k+1|+ . . . + |σt|.
Consider the following PPT adversary A against continuous non-malleablilty of SS.

1. Compute, for b′ ∈ {0, 1}, (σ(b′)
0 , . . . , σ

(b′)
n )←$ SS.Share

(
µ(b′); ρb′

)
.
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2. By hypothesis, we have that, for all i ∈ [t− k], σ
(0)
i = σ

(1)
i .

3. Set T := [t], B1 := [t− k], B2 := [t] \ [t− k], B = (B1,B2).

4. Let f1 be the tampering function that always outputs (σ(0)
j )j∈[t−k].

5. Let, for j ∈ [ℓ], f
(j)
2 be the tampering function that outputs (σ(b′)

j )j∈B2 whenever
the j-th bit of the string (σi)i∈B2 is b′ ∈ {0, 1}.

6. For j ∈ [ℓ], query µ̃←O∞T
(
σ, T ,B, f (j)

)
, where f (j) = (f1, f

(j)
2 ).

7. For j ∈ [ℓ], let αj = b′ if µ̃ = µ(b′); notice that, by how the queries are
constructed, the tampering function always outputs either a secret sharing of
µ(0) or a secret sharing of µ(1).

8. Parse the string α1|| . . . ||αℓ as (σt−k+1, . . . , σt).

9. Construct the tampering query (T , (f ′1, f ′2)) where f ′2 is the identity function
and f ′1 either acts as the identity or outputs invalid values depending on
whether the reconstructed message is µ∗0 or µ∗1. Notice that f ′1 takes as input
the values (σi)i∈B1 and can hard-wire the values (σi)i∈B2 , hence it is able to
reconstruct the message.

10. Query µ̃←O∞T (σ, T ,B, (f ′1, f ′2)).

11. Output 0 if µ̃ = ♡ (i.e. f ′1 acted as the identity) and 1 otherwise.

Notice that, since k > t/2, t− k < k, therefore B = (B1,B2) is a k-sized partition
of T . Furthermore, the reduction obtains the missing shares and is able to run the
full reconstruction algorithm inside one of the tampering functions, thus breaking
continuous non-malleability with overwhelming probability. This concludes the
proof.

4.2 Achieving optimal rate
The following construction needs a t-out-of-n continuously non-malleable secret
sharing scheme SS0, a t∗-out-of-n information dispersal scheme ID and a secret-key
encryption scheme SKE. The formal algorithms of the resulting scheme SS is depicted
in Fig. 4.1. Informally, the algorithm works as follows. The secret message is initially
encrypted using the encryption scheme SKE. Then, the secret key is shared via the
poor-rate continuously non-malleable secret sharing scheme, while the ciphertext is
shared via the information dispersal scheme. The final share is then the share of the
secret sharing along with one share of the information dispersal.

Proof overview. The security proof proceeds by a hybrid argument. In particular,
we show that the original TamperL

A is close to an hybrid experiment Hyb1
A in which

we replace the secret sharing of the key with a secret sharing of another unrelated
key. Intuitively, this follows by a reduction to the security of the underlying secret
sharing scheme; however, we need to take care of a few challenges.
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Algorithm: SS.Share
Input: µ ∈M

κ←$K
γ←$ SKE.Encrypt(κ, µ)
(γ1, . . . , γn)←$ ID.Share(γ)
(κ1, . . . , κn)←$ SS0.Share(κ)
∀ i ∈ [n] : σi := (κi, γi)

Output: (σ1, . . . , σn)
Algorithm: SS.Reconstruct

Input: (I, σI) ∈ A× S
∀ i ∈ I : (κi, γi) := σi

κ← SS0.Reconstruct(I, κI)
γ← ID.Reconstruct(I, γI)
IF (ID.Share(γ))I ̸= γI : RETURN ⊥
µ← SKE.Decrypt(κ, γ)

Output: µ

Figure 4.1. The Share and Reconstruct algorithms of our construction.

Namely, the reduction to convert a query which tampers with the values (κi, γi)
into a query which just tampers with κi. A common solution is to hard-wire the
values γi, which are known to the reduction, into the tampering function; however,
in this way we cannot retrieve the tampered ciphertext γ̃. Our solution is to let
t∗ < t and then reconstruct and leak, somehow, the tampered ciphertext from the
shares γi. This solution has the small drawback of requiring that, in each tampering
query, either zero or at least t∗ shares from the same subset of the partition B are in
the reconstruction set T . However, we want to stress that this is still a reasonable
assumption because it captures, for instance, the case in which the attacker selects a
tampering set T and splits it into two subsets B1 and B2 of equal size greater than
t∗.

There is another problem: how exactly do we retrieve the tampered ciphertext?
One solution could be by using leakage queries; however, this is infeasible in that,
even leaking one bit per tampering query, we could still end up leaking too many
bits. Instead, we observe that the reconstructed ciphertext should be the same in
each subset of the partition. This, along with the fact that SS0 is continuously
non-malleable, allows to use tampering queries to leak information from the shares.
More in detail, by pre-computing a secret sharing of messages µ(0), µ(1), we can leak
the j-th bit of the ciphertext by reconstructing the ciphertext in each subset of the
partition and then replacing all the shares with shares of µ(b) depending on the
value b of the bit. This technique allows to retrieve the tampered ciphertext γ̃ and,
in turns, allows the reduction to compute the tampering query without requiring
additional leakage or complex leakage models.

Security analysis. Before proceeding with the security analysis of the scheme
in Fig. 4.1, we prove a general fact of continuously non-malleable secret sharing
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schemes. Basically, the following lemma shows that if some information is common
to all the groups of shares of a certain size, then such information can be given to
the adversary for free.

Lemma 4.6. Let n, k, t, t∗, ℓ ∈ N be parameters and let SS be a t-out-of-n continu-
ously non-malleable secret sharing scheme with security against k-sized partitioning.
Consider an oracle O∗(σ, ·, ·, ·) defined as follows. The oracle takes as input the tuple
(T ,B, g), where

• T ⊆ [n] is a set with at least t elements;

• B = (B1, . . . ,Bm) is a k-sized partition;

• g = (gi)i∈I is a tuple of functions such that gi : Bi ∩ T → {0, 1}ℓ.

The oracle outputs ⊥ if a self-destruct has already been triggered; otherwise, it
computes, for all i ∈ I, gi(σBi∩T ), where σBi∩T is the tuple of shares within Bi ∩ T ,
and outputs a value Λ if Λ = gi(σBi∩T ) for all i ∈ I, and outputs ⊥, triggering
self-destruct, if there exist i1, i2 ∈ I such that gi1(σBi1∩T ) ̸= gi2(σBi2∩T ). Then, SS
retains the same security, including leakage and tampering parameters, even against
adversaries that, additionally, have free access to O∗(σ, ·, ·, ·).

Proof. It suffices to show that the access to O∗ can be simulated for free through a
series of tampering queries. Let µ0, µ1, µ(0), µ(1) ∈M be messages such that µ(0), µ(1)

are different each other and different from µ0, µ1, let σ = (σ1, . . . , σn)←$ SS.Share(µb)
be the target secret sharing, let O∞T ((µ0, µ1), σ, ·, ·, ·) be the tampering oracle and
let (T ,B, g), I, ℓ be as in the statement of the lemma. Finally, let, for b ∈ {0, 1},
(σ(b)

1 , . . . , σ
(b)
n )←$ SS.Share

(
µ(b)

)
be precomputed shares. For all i ∈ I and all j ∈ [ℓ],

consider the following functions.

Function: f
(j)
i

Input: σBi ∈ SBi

Λi← gi(σBi∩T )
b

(1)
i || . . . ||b(ℓ)

i := Λi // Parse Λi as a binary string.

Output: σ
(b(j)

i )
Bi

Function: f̂i

Input: (Λ, σBi) ∈ {0, 1}ℓ × SBi

Λi← gi(σBi∩T )
IF Λ ̸= Λi : σ̃Bi := ⊥
ELSE : σ̃Bi := σ

(0)
Bi

Output: σ̃Bi

Finally, let f
(j)
i and f̂i be the identity function for all i /∈ I and let f (j) = (f (j)

i )i∈I
and f̂ = (f̂i)i∈I . The oracle O∗ can be simulated as follows.

1. Query, for all j ∈ [ℓ], µ̃(j)←O∞T
(
(µ0, µ1), σ, T ,B, f (j)

)
; if, at some time,

µ̃(j) = ⊥, stop and output ⊥.
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2. For all j ∈ [ℓ], let b(j) be such that µ̃(j) = µ(b(j)); if µ̃(j) happens to be a
different value, stop, trigger self-destruct (e.g. by sending a query which always
outputs invalid shares) and output ⊥.

3. Let Λ := b(1)|| . . . ||b(ℓ).

4. Query µ̃←O∞T
(
(µ0, µ1), σ, T ,B, f̂i(Λ, ·)

)
.

5. If µ̃ = µ(0), output Λ; otherwise, trigger self-destruct and output ⊥.

It is easy to show that, if there exists Λ ∈ {0, 1}ℓ such that Λ = gi(σBi∩T ) for all
i ∈ I, the oracle always outputs the correct value Λ. Indeed, the function f

(j)
i has

access to the shares σBi and therefore is able to compute gi(σBi∩T ) and output a
set of shares which identifies the j-th bit of Λ. Furthermore, function f̂i is able to
compute again gi(σBi∩T ) and output a valid set of shares only in case the equality
with Λ holds, outputting an invalid set of shares otherwise.

Finally, O∗ can be computed in polynomial time and the only resources used by
O∗ are tampering queries, which, in the context of continuous non-malleability, are
free.

Now we are ready to prove the main result of this section.

Theorem 4.7. Let n, t, t∗, k, ℓ ∈ N be parameters. In the construction depicted
in Fig. 4.1, assume that

• ID is a t∗-out-of-n information dispersal scheme ;

• SKE is a secret-key encryption scheme secure against chosen ciphertext attacks;

• SS0 is a t-out-of-n leakage-resilient continuously non-malleable secret sharing
scheme against k joint leakage and tampering attacks.

Then, SS is a t-out-of-n leakage-resilient continuously non-malleable secret sharing
scheme for n parties against k joint leakage and tampering attacks, with the same
leakage model as SS0, under the following restriction: each tampering query (T ,B, f)
output by the attacker is such that, for all subsets Bi of the partition B, either
B1 ∩ T = ∅ or #B1 ∩ T ≥ t∗. Furthermore, SS.AsymptoticRate = t∗.

The proof proceeds by hybrid argument. In particular, we argue that the original
experiment is computationally close to an hybrid experiment in which we replace
the secret sharing of the key κ with a secret sharing of an unrelated key κ̂. This
experiment is depicted in Fig. 4.2 along with the original experiment TamperL, in
which we expanded the algorithms related to SS. The lemma below states that the
two experiments are computationally indistinguishable.

Lemma 4.8. For all λ ∈ N, µ0, µ1 ∈M and all b ∈ {0, 1}, it holds that

TamperL
A[λ,∞, µ0, µ1, b] ≈C HybA[λ, µ0, µ1, b] .
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Differences: TamperL
A[λ,∞, µ0, µ1, b] HybA[λ, µ0, µ1, b]

κ←$K
(κ1, . . . , κn)←$ SS0.Share(κ)
κ̂←$K
(κ1, . . . , κn)←$ SS0.Share(κ)
γ←$ SKE.Encrypt(κ, µb)
(γ1, . . . , γn)←$ ID.Share(γ)
∀ i ∈ [n] : σi := (κi, γi)
σ := (σ1, . . . , σn)
b∗←$ AOL(σ,·,·),OT(κ,(µ0,µ1),σ,·,·,·),O∗(σ,·,·,·)

b∗←$ AOL(σ,·,·),O⋆
T((κ̂,κ),(µ0,µ1),σ,·,·,·),O∗(σ,·,·,·)

Output: b∗

Differences: OT((µ0, µ1), σ, T ,B, f) O⋆
T((κ̂, κ), (µ0, µ1), σ, T ,B, f)

Initial
state:

SD := 0

IF sd = 1 : RETURN ⊥
(σ1, . . . , σn) := σ
(B1, . . . ,Bm) := B
(f1, . . . , fm) := f
∀ i ∈ [m] : σ̃Bi ← fi(σBi)
∀ i ∈ [n] : (κ̃i, γ̃i) := σ̃i

κ̃← SS0.Reconstruct(κ̃T )
γ̃← ID.Reconstruct(γ̃T )
IF (ID.Share(γ))T ̸= γ̃T : SD← 1, RETURN ⊥
IF κ̃ = ⊥ : SD← 1, RETURN ⊥
IF κ̃ = κ̂ : κ̃← κ
µ̃← SKE.Decrypt(κ̃, γ̃)
IF µ̃ = ⊥ : SD← 1, RETURN ⊥
IF µ̃ ∈ {µ0, µ1} : RETURN ♡

Output: µ̃

Figure 4.2. The differences between the original experiment TamperL and the hybrid
experiment Hyb1.
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Proof. By reduction to leakage-resilient continuous non-malleability of SS0. Suppose
towards contradiction that there exist messages µ0, µ1, a bit b ∈ {0, 1} and an
admissible PPT adversary A which is able to cause a non-negligible difference
between the two experiments TamperL

A[λ,∞, µ0, µ1, b] and HybA[λ, µ0, µ1, b].
Consider the following reduction R trying to cause a non-negligible difference

between the two experiments TamperL
R[λ,∞, κ, κ̂, b∗] for b∗ ∈ {0, 1}, where κ, κ̂ ∈ K.

The reduction R simulates the oracles OT and OL by itself; furthermore, R has free
access to O∗ thanks to Lemma 4.6.

1. Compute γ←$ SKE.Encrypt(κ, µb).

2. Compute (γ1, . . . , γn)←$ ID.Share(γ).

3. Run b∗←$ AR(1λ), simulating the oracles as follows.

• Leakage oracle: upon input (B, g):
(a) Query Λ←OL(B, g).
(b) Return Λ.

• Tampering oracle: upon input (T ,B, f):
(a) Parse (B1, . . . ,Bm) = B and (f1, . . . , fm) = f .
(b) Let I ⊆ [m] be such that i ∈ I if and only if Bi ∩ T ̸= ∅.
(c) For all i ∈ I, consider the following function with hard-wired values

(γ1, . . . , γn).
Function: ĥi

Input: κBi

IF Bi ∩ T = ∅ : RETURN γ
(κ̃j , γ̃j)j∈Bi ← fi ((κj , γj)j∈Bi)
γ̃← ID.Reconstruct(Bi ∩ T , γ̃Bi∩T )

Output: γ̃

Notice that, because of the additional restriction, #Bi∩T ≥ t∗, hence
the value γ̃ can be reconstructed.

(d) Query γ̃←O∗(B, T , f).
(e) Let f̂ be the function f with hard-wired values γ1, . . . , γn which only

outputs the first component of each share, i.e. (κ̃1, . . . , κ̃n).
(f) Query κ̃←OT

(
B, T , f̂

)
.

(g) If γ̃ = ⊥ or κ̃ = ⊥, return ⊥.
(h) If κ̃ = ♡, set κ̃← κ.
(i) Compute µ̃ = SKE.Decrypt(κ̃, γ̃).
(j) Return µ̃.

4. Output b∗.

We now proceed with the analysis of the reduction. Let Bad be the event,
defined over the probability space of the original experiment, that happens whenever
a query to the tampering oracle triggers the condition κ̃ = κ̂. It is easy to see that,
if Bad does not happen, the reduction is perfect: R perfectly emulates the view of A
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in both experiments and outputs the same as A, thus retaining the same advantage.
On the other side, since κ̂ is random and independent of κ, a union bound shows
that P [Bad] ≤ Poly(λ) · 2−λ. The lemma follows.

The lemma below allows to conclude the proof of Theorem 4.7.

Lemma 4.9. For all λ ∈ N and all µ0, µ1 ∈M it holds that

HybA[λ, µ0, µ1, 0] ≈C HybA[λ, µ0, µ1, 1] .

Proof. By reduction to the security of SKE against chosen ciphertext attacks. Sup-
pose towards contradiction that there exist messages µ0, µ1, a bit b ∈ {0, 1} and
an admissible PPT adversary A which is able to cause a non-negligible difference
between the two experiments HybA[λ, µ0, µ1, 0] and HybA[λ, µ0, µ1, 1].

Consider the following reduction R = (R1, R2) trying to cause a non-negligible
difference between the two experiments IndCCA2

R [λ, b] for b ∈ {0, 1}. The algorithm
R1 simply outputs the two messages µ0, µ1 The algorithm R2 receives the challenge
ciphertext γ̃ and proceeds as follows.

1. Sample κ̂←$K.

2. Compute (γ1, . . . , γn)←$ ID.Share(γ).

3. Compute (κ1, . . . , κn)←$ SS0.Share(κ̂).

4. Run b∗←$ AR(1λ), simulating the oracles as follows.

• Leakage oracle: answer as in HybA.
• Tampering oracle: upon input (T ,B, f):

(a) Compute, for all i ∈ [m], (κ̃j , γ̃j)j∈Bi ← fi ((κj , γj)j∈Bi).
(b) Compute γ̃← ID.Reconstruct(T , γ̃T ).
(c) Check that (ID.Share(γ̃))T = γ̃T , and return ⊥ otherwise.
(d) Compute κ̃← SS0.Reconstruct(T , κ̃T ), and return ⊥ if κ̃ = ⊥.
(e) If κ̃ ≠ κ̂, compute µ̃← SKE.Decrypt(κ̃, γ̃); otherwise, query µ̃←
ODec(γ̃).

(f) If µ̃ ∈ {µ0, µ1}, set µ̃←♡.
(g) Return µ̃.

5. Output b∗.

For the analysis, notice that the reduction is perfect: R perfectly simulates the
experiment HybA and outputs the same as A, thus retaining the same advantege.
The lemma follows.

Proof of Theorem 4.7. The security proof follows from the chain

TamperL
A[λ,∞, µ0, µ1, 0] ≈C HybA[λ, µ0, µ1, 0]

≈C HybA[λ, µ0, µ1, 1]
≈C TamperL

A[λ,∞, µ0, µ1, 1] .
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As for the rate, the length of the key κ of the encryption scheme SKE only
depends on the security parameter λ and, therefore, size of the shares of SS only
depends on λ, on the number n of parties and on the tolerated leakage ℓ. Let
s0(λ, n, ℓ) be the size of one share of SS0. For the ciphertext, it is possible to obtain
|γ| = |µ|+ O(λ), hence

|γi| =
|γ|
t∗

= |µ|+ O(λ)
t∗

.

Putting everything together, we obtain

s(λ, n, ℓ, |µ|) = s0(λ, n, ℓ) + |µ|+ O(λ)
t∗

,

where s(λ, n, ℓ, |µ|) is the size of one share of SS. This means that the asymptotic
rate of SS is

inf
λ∈N

lim
|µ|→∞

|µ|
s(λ, n, ℓ, |µ|) = inf

λ∈N
lim
|µ|→∞

|µ|
s0(λ, n, ℓ) + |µ|+O(λ)

t∗

= inf
λ∈N

lim
|µ|→∞

t∗ · |µ|
t∗ · Poly(λ, n, ℓ) + |µ|+ O(λ)

= t∗.

This completes the proof.

Rate optimality. We stress that, when k = t − 1, Theorem 4.5 says that the
rate of a continuously non-malleable secret sharing scheme against joint tampering
with at most k shares is 1. This is not in contrast with the fact that our compiler
in Theorem 4.7 achieves rate larger than 1, as the latter only holds under the
additional restriction on the way the attacker can manipluate the shares. Nevertheless,
it is possible to adapt the proof of Theorem 4.5 so that it captures this settings, thus
showing that our rate compiler achieves the best possible rate whenever t∗ < t/2.

More in detail, we change the definition of Com.Commit so that it now outputs
the value γ = (σ1, . . . , σt∗), and we adjust the opening procedure accordingly. The
proof that Com is perfectly binding is identical to the one in Theorem 4.5, except
that now we define ℓ := |(σt∗+1, . . . , σt) and, moreover, the adversary attacking
continuous non-malleability sets B1 = [t∗] and B2 = [t] \ [t∗] and parses the string
α1|| . . . ||αℓ as (σt∗+1, . . . , σt). Now #B1 = t∗ and #B2 = t− t∗ ≥ 2t∗− t∗ = t∗, being
t∗ < t/2 by hypothesis. Finally, since t∗ ≤ t− 1, the adversary is admissible, which
concludes the updated proof of Theorem 4.5.

Instantiation. By instantiating Theorem 4.7 with t∗ = 1, we obtain the following.

Corollary 4.10. Assuming the existence of one-to-one one-way functions, for all
n, t, ℓ ∈ N with t > 2n/3, there is a construction of a t-out-of-n secret sharing
scheme satisfying noisy leakage-resilient continuous non-malleability under selective
k-joint leakage and tampering attacks. Furthermore, the scheme achieves asymptotic
rate 1, which is optimal.
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Proof. It is well known that IND-CCA secure secret-key encryption schemes can be
constructed in a black-box way from any one-way function, whereas the information
dispersal can be instantiated using linear algebra over finite fields [Rab89]. As for
the continuously non-malleable secret sharing scheme, we can take the one given
by Corollary 3.16. Finally, when applying Theorem 4.7 with t∗ = 1, the restriction
on the tampering queries disappears3 and we obtain the standard definition of
continuous non-malleability against (t− 1)-joint tampering attacks. Since t∗ = 1,
the asymptotic rate of the construction is 1, which, by Theorem 4.5, is optimal.

3Indeed, any subset either contains at least t∗ = 1 shares in T or does not contain any share in
T .
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Chapter 5

Conclusions and problems

In Chapter 3 we achieved the following two constructions:

• A non-malleable code that is secure in a slightly stronger model than selective
partitioning, in Section 3.1 and Section 3.2.

• The first continuously non-malleable secret sharing scheme against joint leakage
and tampering, in Section 3.3.

An interesting open problem would be to get the best of both worlds and, at the
same time, remove the restrictions on the adaptivity of the adversary, thus achieving
the first continuously non-malleable secret sharing scheme against joint adaptive
partitioning. Unfortunately, this is not an easy task, since a fully adaptive adversary
is able to, intuitively, create correlation between possibly all the shares. Even if a
construction is secure, fact this makes the security proof way harder.

Another interesting direction is towards the efficiency of non-malleable secret
sharing schemes. In Chapter 4, we show some limitations given by the requirement of
continuous non-malleability, and then we show how to construct a scheme with a good
asymptotic rate. However, our construction has a limitation on the capabilities of the
adversary. We leave open to discover how to remove such limitation. Furthermore,
we leave also open to find a scheme with a good concrete rate. One disadvantage of
the asymptotic rate is that it measures the space efficiency of the secret sharing for
large secrets; however, our construction is not able to retain such space efficiency
even for small secrets.
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Appendix A

Instantiating the non-malleable
code

Here, we explain how to obtain the noisy-leakage resilient p-time non-malleable
asymmetric split-state code (a.k.a. 2-out-of-2 secret sharing scheme) with the
additional properties 1 and 2 needed to instantiate the scheme in Section 3.3.
Our construction exploits leakage-resilient asymmetric split-state codes, as recently
introduced by Ball, Guo and Wichs [BGW19] and generalized to the noisy-leakage
setting by Brian, Faonio and Venturi [BFV19].

In what follows, we refer to the schemes as (split-state) codes instead of 2-out-of-2
secret sharing schemes. Furthermore, the reconstruction algorithms implicitly take
[2] as the first argument, as this is the only possible reconstruction set, and we
assume the existence of an algorithm Share∗b , for b ∈ {0, 1}, which computes the
share σb from µ and the share σ1−b. We will later prove that this algorithm indeed
exists. The construction uses three split-state codes SS, SS0, SS1 and it is depicted
in Fig. A.1. The theorem below shows that the resulting SS∗ is the non-malleable
code that we are searching for.

Theorem A.1. For all i, j ∈ {0, 1}, let p, si, si,j , ℓi, ℓi,j ∈ N and ε, εi ∈ [0, 1] be
parameters such that

• s1 < s0;

• s0,1 < s0,0, ℓ0,0 ≥ ℓ0 + p · s1,1 and ℓ0,1 ≥ ℓ1;

• s1,1 < s1,0, ℓ1,0 ≥ ℓ1 + p · s0,1 and ℓ1,1 ≥ ℓ0.

Assume that:

• SS is an asymmetric p-time non-malleable code with security ε and share space
S0 × S1 such that log #S0 = s0 and log #S1 = s1;

• SS0 is an asymmetric (ℓ0,0, ℓ0,1)-noisy leakage resilient code with security ε0
and share space S0,0 × S0,1 such that log #S0,0 = s0,0 and log #S0,1 = s0,1.

• SS1 is an asymmetric (ℓ1,0, ℓ1,1)-noisy leakage resilient code with security ε1
and share space S1,0 × S1,1 such that log #S1,0 = s1,0 and log #S1,1 = s1,1.
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Algorithm: SS∗.Share
Input: µ ∈M

(σ0, σ1)←$ SS(µ)
(σ0,0, σ0,1)←$ SS0(σ0)
(σ1,0, σ1,1)←$ SS1(σ1)
σ∗0 ← (σ0,0, σ1,1)
σ∗1 ← (σ1,0, σ0,1)

Output: (σ∗0, σ∗1)
Algorithm: SS∗.Reconstruct

Input: ([2], (σ∗0, σ∗1)) ∈ A× S
(σ0,0, σ1,1) := σ∗0
(σ1,0, σ0,1) := σ∗1
σ0← SS0.Reconstruct(σ0,0, σ0,1)
σ1← SS1.Reconstruct(σ1,0, σ1,1)
µ← SS.Reconstruct(σ0, σ1)

Output: µ

Figure A.1. The Share and Reconstruct algorithms of our construction.

Then, SS∗ is an asymmetric (ℓ0, ℓ1)-noisy leakage resilient p-times non-malleable
code with security ε + 2(ε0 + ε1) and share space S∗0 × S∗1 such that S∗0 = S0,0 × S1,1
and S∗1 = S0,1 × S1,0.

The proof of the above theorem uses a hybrid strategy similar to the one
in Theorem 3.1 and goes along the same lines of the proof of Theorem 7 in [BFV19]
for the case of 2-out-of-2 secret sharing, the only difference being that, this time,
SS is p-time non-malleable instead of one-time non-malleable, and we use different
parameters for SS0, SS1. More in detail, the hybrid experiments are the same as
in [BFV19] with the only difference that we have to leak 2p tampered values (namely,
σ̃

(j)
1,1, σ̃

(j)
0,1 for j ∈ [p] ) instead of only two. However, our choice of parameters allows

to do so since
ℓ0,0 ≥ ℓ0 + p · s1,1 and ℓ1,0 ≥ ℓ1 + p · s0,1.

For the above similarities with [BFV19], we will just state the relevant details.

Proof. Let µ0, µ1 ∈M, let λ ∈ N and let b ∈ {0, 1}. Consider the following hybrid
experiments.

• Let Hyb1
A[λ, µ0, µ1, b] be the same as TamperNL[λ, p, µ0, µ1, b], except that,

before applying the tampering queries, we re-sample the share σ′0,0 (resp. σ1,0
) in such a way that:

1. the reconstruction with σ′0,0, σ0,1 (resp. σ′1,0, σ1,1 ) leads to the value σ0
(resp. σ1 );

2. it is consisted with the leakage performed;
3. for all the tampering queries j ∈ [p], f

(j)
0

(
σ′0,0, σ1,1

)
= f

(j)
0 (σ0,0, σ1,1)

(resp. f
(j)
0

(
σ′1,0, σ0,1

)
= f

(j)
1 (σ1,0, σ0,1) )
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We argue that Hyb1
A[λ, µ0, µ1, b] and TamperNL[λ, p, µ0, µ1, b] are identically

distributed since, the values σ′0,0 an σ′1,0 are sampled from the same distribution
where the original values are defined.

• Let Hyb2
A[λ, µ0, µ1, b] be the same as Hyb1

A[λ, µ0, µ1, b] except that all the
leakage queries are applied to the shares (σ̂0,0, σ1,1) and (σ̂1,0, σ0,1), where
(σ̂0,0, σ0,1) and (σ̂1,0, σ1,1) are valid shares of dummy messages. Here, we can
reduce by two consecutive steps to the noisy-leakage resilience of SS0 and SS1.

Notice that the above hybrids, and therefore the indistinguishability proofs, closely
resemble the ones in Theorem 3.1. Now assume that there exists an adversary A able
to cause non-negligible difference between Hyb2

A[λ, µ0, µ1, 0] and Hyb2
A[λ, µ0, µ1, 1]

and consider the following reduction R.

1. Sample σ0,1←$ S0,1, σ1,1←$ S1,1.

2. Sample σ̂0,0←$ SS0.Share∗0(0s0 , σ0,1) and σ̂1,0←$ SS1.Share∗1(0s1 , σ1,1), where,
for i ∈ {0, 1}, SSi.Share∗i is a special procedure that takes as input the message
and one share and samples the remaining share so that the result is a valid
encoding of the input message.

3. Sample random coins ρ0, ρ1.

4. Run b∗←$ AR(1λ), simulating the oracles as follows.

• Leakage oracle: answer by computing the leakage queries on (σ̂0,0, σ1,1)
and (σ̂1,0, σ0,1).

• Tampering oracle, query q ∈ [p]: upon input (f (q)
0 , f

(q)
1 ), compute

(σ̃(q)
0,0, σ̃

(q)
1,1) = f

(q)
0 (σ̂0,0, σ̂1,1) and (σ̃(q)

1,0, σ̃
(q)
2,1) = f

(q)
1 (σ̂1,0, σ̂0,1).

• Tampering oracle, answer to q ∈ [p]: Construct the tampering query
f̂ (q) = (f̂ (q)

0 , f̂
(q)
1 ) where f̂

(q)
0 , upon input σ0 (resp. σ1 ), proceeds as

follows:
(a) Using randomness ρ0 (resp. ρ1 ), sample the share σ′0,0 (resp. σ′1,0 )

such that SS0.Reconstruct
(
σ′0,0, σ0,1

)
= σ0 (resp.

SS1.Reconstruct
(
σ′1,0, σ1,1

)
= σ1 ) and σ′0,0 (resp. σ′1,0) is consis-

tent with all the leakage done by A and with the tampered values
σ̃

(1)
1,1, . . . , σ̃

(p)
1,1 (resp. σ̃

(1)
0,1, . . . , σ̃

(p)
0,1 ).

(b) Compute values (σ̃′0,0, σ̃
(j)
1,1)← f

(q)
0 (σ′0,0, σ1,1) (resp. (σ̃′1,0, σ̃

(j)
0,1)

← f
(q)
1 (σ′1,0, σ0,1) ).

(c) Output σ̃0← SS0.Reconstruct
(
σ̃′0,0, σ̃

(q)
1,1

)
(resp. σ̃1← SS1.Reconstruct

(
σ̃′1,0, σ̃

(q)
0,1

)
).

Then query µ̃(q)←Op
T

(
f̂ (q)

)
and return µ̃(q).

For the analysis, note that the reuction is perfect and, in particular, samples a new
valid codeword that is consistent with the view of the adversary A and encoes the
message µb as in the real experiment. This conclues the proof.



81

Finally, we need to show that the scheme SS∗ is able to achieve the properties 1
and 2 needed to instantiate Theorem 3.13. The lemma below states that if the
underlying non-malleable code SS satisfies the additional property 1, so does the
scheme SS∗.

Lemma A.2. Suppose that there exists σ0 such that, for all µ ∈ M, there exists
σ1 such that SS.Reconstruct(σ0, σ1) = µ. Then, there exists σ∗0 such that, for all
µ ∈M, there exists σ∗1 such that SS.Reconstruct(σ∗0, σ∗1) = µ.

Proof. Let σ0 be such that, for all µ ∈M, there exists σ1 such that
SS.Reconstruct(σ0, σ1) = µ. Then, it is possible to fix σ1,1 and σ0,1 and compute
σ0,0←$ SS.Share∗0(σ0, σ0,1). The new shares will be

• σ∗0 = (σ0,0, σ1,1)

and, once fixed σ∗0 and µ ∈M and computed σ1,0←$ SS.Share∗1(σ1, σ1,1),

• σ∗1 = (σ1,0, σ0,1).

The property 2 is a bit more delicate because, even if SS0 and SS1 achieve it,
the random variables (Σ0,0, Σ1,1) and (Σ1,0, Σ0,1) are defined by sharing Σ0 and
Σ1, which are related distributions. Instead, here we use a non-blackbox approach
and prove that the asymmetric code given by Appendix A of [BFV19], which we
describe below, allows SS∗ to achieve the aforementioned property.

Let Ext be a seeded extractor with d bits of source, r bits of seed an m bits
of output, and let 2Ext be a two-source extractor with s2 bits from each source
and r bits of output. The construction of the leakage-resilient code SS⋆ is depicted
in Fig. A.2. This construction has already been proven to be an asymmetric (ℓ1, ℓ2)-
leakage resilient code with security ε for an appropriate choice of the parameters
d and r; for more details, see [BGW19, BFV19]. Furthermore, in Fig. A.2 we also
give the definition for the alternate sharing procedure Share∗1.

The following lemma proves that this construction also satisfies conditional
independence.

Lemma A.3. Let SS0 and SS1 be two instances of SS⋆ with appropriate parameters.
Then, it holds that, for all µ ∈M, the construction depicted in Fig. A.1,

H̃∞ (Σ∗0|Σ∗1) ≥ H∞ (Σ∗0)− d and H̃∞ (Σ∗1|Σ∗0) ≥ H∞ (Σ∗1)− d,

where d = s0 + s1 and (Σ∗0, Σ∗1) = SS∗.Share(µ) is the random variable of the shares
of µ.

Proof. For all messages µ ∈M, let (Σ∗0, Σ∗1) = SS∗.Share(µ) be the random variable
relative to a non-malleable encoding of µ, and let

• (Σ0,0, Σ0,1) = SS0.Share(Σ0),

• (Σ1,0, Σ1,1) = SS1.Share(Σ1)
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Algorithm: SS⋆.Share
Input: µ ∈M

σ2←$ {0, 1}s1

x←$ {0, 1}d
y←$ {0, 1}s2

ρ← 2Ext(σ2, y)
z← 2Ext(x, ρ)⊕ µ
σ1← (x, y, z)

Output: (σ1, σ2)
Algorithm: SS⋆.Share∗1

Input: (µ, σ2) ∈M× S2
x←$ {0, 1}d
y←$ {0, 1}s2

ρ← 2Ext(σ2, y)
z← Ext(x, ρ)⊕ µ
σ1← (x, y, z)

Output: σ1

Algorithm: SS⋆.Reconstruct
Input: (σ1, σ2) ∈ {0, 1}s1 × {0, 1}s2

(x, y, z) := σ1
µ← z ⊕ Ext(x, 2Ext(σ1, y))

Output: µ

Figure A.2. The Share and Reconstruct algorithms of SS⋆.
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be the respective random variables relative to the underlying leakage-resilient encod-
ings. In particular, let, for i ∈ {0, 1}, (Xi, Yi, Zi) = Σi,0 be the random variables
relative to the values x, y, z in the two instantiations of the scheme in Fig. A.2.
Finally, let d0, d1 be the parameter d in SS0 and SS1 respectively. Then,

H̃∞ (Σ∗0|Σ∗1) = H̃∞ ((X0, Y0, Z0), Σ1,1|(X1, Y1, Z1), Σ0,1)
≥ H̃∞ (X0, Y0, Z0, Σ1,1|X1, Y1Σ0,1)− |Z1| (A.1)
≥ H̃∞ (X0, Y0, Σ1,1|X1, Y1Σ0,1)− |Z1| (A.2)
≥ H̃∞ (X0, Y0, Σ1,1)− |Z1| (A.3)
= s0,0 − s0 + s1,1 − s1 (A.4)
= H∞ (Σ∗0)− s0 − s1. (A.5)

In the above derivation,

• (A.1) follows from the application of the chain lemma;

• in (A.2) we simply removed the random variable Z0;

• (A.3) holds because now the random variables X0, Y0, Σ1,1 are independent of
X1, Y1, Σ0,1;

• (A.4) follows from the fact that x0, y0, σ0,0 are randomly sampled ant that
|(x0, y0)| = s0,0 − |z0|, where |z0| = s0;

• finally, (A.5) follows from the fact that Σ∗0 = (Σ0,0, Σ1,1) is uniformly dis-
tributed over {0, 1}s0,0 × {0, 1}s1,1 .

A similar analysis shows that

H̃∞ (Σ∗1|Σ∗0) = H̃∞ ((X1, Y1, Z1), Σ0,1|(X0, Y0, Z0), Σ1,1)
≥ H̃∞ (X1, Y1, Z1, Σ0,1|X0, Y0Σ1,1)− |Z0|
≥ H̃∞ (X1, Y1, Σ0,1|X0, Y0Σ1,1)− |Z0|
≥ H̃∞ (X1, Y1, Σ0,1)− |Z0|
= s1,0 − s1 + s0,1 − s0

= H∞ (Σ∗1)− s1 − s0.

Corollary A.4. For all s0, s1, ℓ0, ℓ1, p ∈ N and all ε ∈ [0, 1], there exists a con-
struction of an asymmetric (ℓ0, ℓ1)-noisy leakage-resilient p-time non-malleable code
with statistica security ε and with share space S0 × S1 such that log #S0 = s0 and
log #S1 = s1. Furthermore, such construction satisfies both property 1 and property 2
required for Theorem 3.13.

Proof. Corollary 5.7 of [GSZ20] shows that, for all n1, n2 ∈ N and all polynomials p′

there exists a two-source p-time ε-non-malleable extractor for sources of full-entropy
of size n1, n2, where p = n

Ω(1)
2 , n1 = 4n2 + p′(n2) and ε = 2−n

Ω(1)
2 . This scheme
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has efficient pre-image sampleability and further satisfies the additional property
described in the hypothesis of Lemma A.2. By the known connection between
(leakage-resilient) non-malleable extractors with efficient pre-image sampleability
and (leakage-resilient) non-malleable codes, we obtain a p-time non-malleable code
with statistical security of ε · 2p|µ|+1.

Additionally, we note that by our setting of parameters in Theorem A.1 we can
have ℓ0 ≥ s∗1 so long as the underlying schemes SS0 and SS1 allow to arbitrarily set
the parameters of hte leakage and of the codeword size, which is the case thanks to
Theorem 6 of [BFV19].

The proof follows by applying Lemma A.2 and Lemma A.3.
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