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Abstract

Residual deep neural networks (ResNets) are mathematically described as interacting particle sys-
tems. In the case of infinitely many layers the ResNet leads to a system of coupled system of ordinary
differential equations known as neural differential equations. For large scale input data we derive a
mean–field limit and show well–posedness of the resulting description. Further, we analyze the existence
of solutions to the training process by using both a controllability and an optimal control point of view.
Numerical investigations based on the solution of a formal optimality system illustrate the theoretical
findings.
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1. Introduction

In the last years, there has been a growing interest in machine learning and data sci-
ence applications [1–3], e.g. in the fields of recognition of human speech [4], competition
at the highest level in strategic game systems [5], intelligent routing in content delivery
networks [6], and autonomously operating cars [7]. The intersection between mathemat-
ics and artificial intelligence has been mainly based on using machine learning tools to
resolve bottlenecks in existing numerical methods, e.g. to replace parameter optimiza-
tion, parameter–identification and data assimilation methods, or shock–detection tech-
niques for non–oscillatory reconstructions, or to model physics–based operators through
experimental data and uncertainty quantification. We refer to [8–15] for additional ref-
erences on these topics. Here, we contribute to a framework for a particular class of
learning–based methods, the deep residual neural networks (ResNets), using a descrip-
tion based on partial differential equations, more precisely, linear kinetic equations. This
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formulation allows to apply different techniques to analyze theoretical properties of the
underlying neural network.

First, we briefly recall the residual neural networks (ResNet), see also equation (1).
Given a set of input data or measurements x0i , i = 1, . . . ,M , the ResNet propagates
those through discrete entities, the layers κ = 0, . . . , L+1, to provide a state prediction
xi(L + 1). The dynamics depends on (a large set of) parameters, called weights w(κ)
and bias b(κ). Their values are chosen in an optimization procedure called training to
predict given reference data yi. This training procedure is performed by minimizing a
given distance ℓ between predictions of the network and the given reference values.

Neural networks, and in general machine learning models, are typically processed
on very large data sets, formally M → ∞, making both the forward and the training
processes computationally costly. An attempt to provide a more synthetic, and statistical,
description of the neural network dynamics has been investigated in [16], where a kinetic
formulation of neural differential equations is proposed. However, neither the training nor
the well–posedness have been analyzed so far. Using a mean–field or kinetic description
of large–scale neural networks has so far only be discussed for particular examples in
a few recent manuscripts [17–22]. A general investigation in particular in view of large
input data is to the best of our knowledge still open.

In this work we contribute towards the mean–field description of neural networks
by discussing well–posedness of the mean–field residual neural network using results
obtained in the context of pedestrian dynamics [23]. The arising equation is similar to
the mean–field model formally proposed in [16]. However, therein the training process
has not been discussed. Here, we follow two directions. Training is formulated as a
controllability problem for the mean–field equation. This problem allows for solutions
for very particular initial and reference data. In the general case, the training process
is considered as an optimal control problem with constraints given by the mean–field
equation. Here, the derived continuous dependence on the parameters is used to show
existence of optimal weights and bias. A numerical method for computing those based
on the mean–field equation is implemented and computational results are presented.

The structure of the paper is shortly summarized here. In Section 2 we introduce
deep residual neural networks and discuss formally the equations resulting in time and
in the mean–field continuous limits. Section 3 is the main part of this work since we
provide a rigorous analysis of the mean–field equation. In Section 4 we discuss a com-
putational technique for the training of the mean–field neural network and numerical
experiments are performed. Finally, we conclude the paper in Section 5 proposing also
research perspectives.

2. Continuous limits of residual neural networks

Let us consider a set of M ∈ N, M ≫ 1, input data characterized by d measurements.
In terms of neural networks, each measurement represents a feature of the given input.
Without loss of generality it is possible to assume that the value of each feature is
one–dimensional so that each input data can be described by x0i ∈ Rd, i = 1, . . . ,M .

As starting point we consider deep Residual Neural Networks (ResNets). Their struc-
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ture is given by L hidden layers, with labels {1, . . . , L}, and in each layer the number of
neurons is given by Nκ, ∀κ = 1, . . . , L. We use the indices κ = 0 and κ = L+1 to denote
the input layer and the output layer, respectively. The state of the i–th input signal at
the κ–th layer is xi(κ) ∈ RNκ and N0 = d. The final state xi(L + 1) ∈ RNL+1 is called
output or prediction of the network.

Each input signal x0i propagates according to the deterministic dynamics [24]:

(1)

{
xi(κ+ 1) = A(κ)xi(κ) + ∆t σ

(
w(κ)xi(κ) + b(κ)

)
, κ = 0, . . . , L

xi(0) = x0i .

Here, w(κ) ∈ RNκ+1×Nκ are the weights and b(κ) ∈ RNκ+1 the bias and ∆t > 0 indicates
a (pseudo) time step. The vectors (w, b) define the parameters of the network. The
matrix A(κ) ∈ RNκ+1×Nκ is a deterministic matrix which can be reduced to an identity
matrix under Assumption 2.1, cf. the next section, and therefore we do not provide a
rigorous definition. The function σ : R → R is called activation function of the neurons
and it is applied component wise in (1). Examples of activation functions include the
identity function σ(x) = x, the rectified linear unit (ReLU) function σ(x) = max{0, x},
the sigmoid function σ(x) = 1

1+exp(−x) , the hyperbolic tangent function σ(x) = tanh(x)

and the growing cosine unit (GCU) function σ(x) = x cos(x).
The parameters w and b are chosen in a training process in order to have ResNet solve

a given learning problem. In supervised training we have that desired outputs, the targets
or reference values, are provided along with the input data. The network processes the
input data and then compares the predictions against the targets {yi}Mi=1. The error is
then propagated back through the network with the aim of optimizing the parameters.
This process occurs many times on a set of data which is typically named as training
data set and several approaches are known, as e.g. stochastic gradient descent [25] or
ensemble Kalman filter [26–28], and they are related to the choice of the loss functions.
Typical loss functions [29], for instance such as Mean Squared Error, the Mean Absolute
Error and the Categorical Cross–Entropy, can be all written as

(2)
1

M

M∑
i=1

ℓ(xi(L+ 1)− yi),

for suitable choices of a (differentiable) function ℓ : RNL+1 → R+
0 .

2.1. Neural differential equations and mean–field limit

In (1) the layers define a discrete structure within the ResNet. In order to compute
the time continuous limit of (1) we interpret the layers as discrete times where the
propagation of the input signal is evaluated. To this end we need to introduce the
following assumption.

Assumption 2.1. The number of neurons in each layer is fixed and determined by the
dimension of the input data. Namely, Nκ = N = d, ∀κ = 1, . . . , L + 1. In addition,
A(κ) = IN , where IN ∈ RN×N is the identity matrix.
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This assumption typically underlies the derivation of neural differential equations,
see also [30]. Note that even the choice d = 1 is possible and, in addition, that networks
of this type have been already proved to satisfy different formulations of the universal
approximation theorem [31–33]. Further, they have been also applied to several (real–
world) training problems [34,35].

Under Assumption 2.1 and interpreting ∆t as the size of a time step, (1) is an explicit
Euler discretization of an underlying differential equation. Namely, in the limit ∆t → 0+

and L → ∞ such that ∆t(L+ 2) → T , (1) formally leads to

(3)


d

dt
xi(t) = σ

(
w(t)xi(t) + b(t)

)
, t ∈ [0, T ]

xi(0) = x0i ,

for each i = 1, . . . ,M . The system of differential equations (3) describes the time propa-
gation of each measurement xi(t) ∈ Rd, starting from the initial condition x0i ∈ Rd fixed
by the input data. It is known as neural differential equation [30].

The parameters of the network are given by the time dependent weights w(t) ∈ Rd×d

and by the time dependent bias b(t) ∈ Rd, ∀ t ≥ 0. By the Picard–Lindelöf Theorem,
existence and uniqueness of a solution to (3) is guaranteed as long as the activation
function σ satisfies the Lipschitz condition and t 7→ w(t), t 7→ b(t) are continuous.
Notice that the loss functional (2) reads

(4)
1

M

M∑
i=1

ℓ(xi(T )− yi),

where xi(T ) represents the state at time T > 0 obtained with (3).
It is clear from (3) that the computational and memory cost of the neural network

still increases with the dimension of the data set, i.e. M . A way to overcome this problem
is introducing a statistical interpretation of the neural network by computing the mean–
field limit of the neural differential equations (3) for M → ∞. In the limit of infinitely
many data we formally obtain the linear equation

(5)

{
∂tf(t, x) +∇x ·

(
σ
(
w(t)x+ b(t)

)
f(t, x)

)
= 0, t > 0

f(0, x) = f0(x),

which describes the evolution of the distribution f : R≥0 × Rd → Rd
≥0 of the data. The

initial condition f0(x) is obtained as limit of the input data. Since (5) preserves the mass,
f(t, x) is a probability distribution ∀ t > 0 provided that f0 is. We point out that in the
mean–field limit any information on the network output of a precise measurement is lost.
In fact, (5) provides only a statistical information on the neural network propagation and,
thus, of the learning problem. The well–posedness of equation (5) and the convergence
of (3) to (5) as M → ∞ is proven in 1–Wasserstein distance, see Section 3.1.
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Microscopic Mean–field

Trajectories of (3) xi(t) ∈ Rd Weak solution of (5) ft ∈ P1(Rd)
Augmented trajectories of (6) (xi(t), τi(t)) ∈ Rd+1 Weak solution of (9) Ft ∈ P1(Rd+1)

Target data yi ∈ Rd Target measure g ∈ P1(Rd)

Loss function (4) ℓ : Rd → R Loss function (15) ℓ̃ : Rd → R

3. Analysis of the mean–field limit

In this section, we discuss the mean–field limit of the system (3) and related mini-
mization problems following results of [23, Section 6 and 7]. We start with recalling some
preliminary notation and refer to [36,37] for more details.

Let P(Rd) the set of real–valued probability measures defined on Rd and, for p ≥ 1,
we denote by Pp(Rd) ⊂ P(Rd) the set of probability measures with finite p–th moment,
i.e.

Pp(Rd) =

{
µ ∈ P(Rd) :

∫
Rd

|x|pdµ(x) < +∞
}
.

Throughout the paper we denote by µt a time dependent probability measure for t ∈ R+
0 .

Given a map γ : Rd → Rd, the push–forward of µ ∈ P(Rd) through γ is defined for
every Borel set A ⊂ Rd as the unique probability measure γ#µ such that γ#µ(A) : =
µ(γ−1(A)). Given two probability measures µ, ν ∈ P(Rd), a probability measure π on
the product space Rd ×Rd is said to be an admissible transport plan from µ to ν if the
following properties hold:∫

y∈Rd

dπ(x, y) = dµ(x),

∫
x∈Rd

dπ(x, y) = dν(y).

We denote the set of admissible transport plans from µ to ν by Π(µ, ν). Note that the set
Π(µ, ν) is always nonempty, since the product µν ∈ Π(µ, ν). The cost of each admissible
transport plan π from µ to ν can be defined as follows:

J [π] : =

∫
R2d

|x− y|pdπ(x, y),

where | · | represents the Euclidean norm on Rd. A minimizer of J in Π(µ, ν) always
exists. Thus for any two measures µ, ν ∈ Pp(Rd), one can define the following metric

Wp(µ, ν) : =

(
min

π∈Π(µ,ν)
J [π]

) 1
p

,

which is called the p–Wasserstein distance. The set of transport plans π ∈ Π(µ, ν)
achieving this optimal value is denoted by Π0(π, ν) and is referred to as the set of
optimal transport plans between µ and ν. The space of probability measures Pp(Rd)
endowed with the p–Wasserstein distance is called the Wasserstein space of order p.

Finally, in order to help the reader, we report in Table 1 a list of the microscopic
and mean–field objects used in the analysis performed in the subsequent sections.
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3.1. Well–posedness of weak solutions

We notice that the microscopic system (3) describing a neural differential equation
can be recast as an autonomous system using the auxiliary variables τi = τi(t) ∈ R for
i = 1, . . . ,M :

(6)


d

dt
xi(t) = σ

(
w(τi(t))xi(t) + b(τi(t))

)
, xi(0) = x0i

d

dt
τi(t) = 1, τi(0) = 0.

In the following, the right hand side of (6) will be compactly denoted using the function

(7)
G : Rd+1 → Rd+1

(x, τ) 7→
(
σ
(
w(τ)x+ b(τ)

)
, 1
)⊤

.

Definition 3.1. Let T > 0 be fixed. Assume that F0 ∈ P1(Rd+1). We say that the
time dependent measure Ft ∈ C([0, T ];P1(Rd+1)) is a weak solution to the mean–field
equation

(8) ∂tFt +∇x ·
(
σ
(
w(τ)x+ b(τ)

)
Ft

)
+ ∂τFt = 0

with initial condition F0 if for all ϕ = ϕ(x, τ) ∈ C∞
0 (Rd+1) and for all t ∈ [0, T ] the

following equality holds:

(9)

∫
Rd+1

ϕ(x, τ)dFt(x, τ) =

∫
Rd+1

ϕ(x, τ)dF0(x, τ)

+

∫ t

0

∫
Rd+1

∇(x,τ)ϕ(x, τ) ·G(x, τ)dFs(x, τ)ds.

Existence and uniqueness of a weak solution Ft of the mean–field equation (5) is
obtained under the following assumptions, see [23, Section 6.1 and Section 6.2] and
Proposition 3.1 below:

(A1) σ ∈ C0,1(Rd), Â w, b ∈ C0,1(R);
(A2) |σ(x)| ≤ C0, ∀x ∈ Rd.

Remark 3.1. We observe that Assumption (A2) requires that the activation function σ
is bounded. This property is verified for some choices of the activation function, e.g. if σ
is the hyperbolic tangent function or the sigmoid function, but not in general. However,
the results of this section are true if the kinetic measure F0 has compact support, which
implies that any σ is bounded on the support of Ft for all t ≥ 0.

Definition 3.2. We define the flow associated to the mean–field equation (8) as the
map Φt : (x, τ) ∈ Rd+1 7→ Φt(x, τ) ∈ Rd+1 such that

(10)

{
∂tΦt(x, τ) = G(Φt(x, τ))

Φ0(x, τ) = (x, τ).
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Proposition 3.1. Let F0 ∈ P1(Rd+1) be given and let T > 0. Then, under the as-
sumptions (A1) and (A2), there exists a unique solution Ft ∈ C([0, T ];P1(Rd+1)) of the
mean–field equation (8), in particular Ft = Φt#F0 and Ft is continuously dependent on
the initial data F0 with respect to the 1−Wasserstein distance.Furthermore, the solution
of the dynamical system (6)–(7) converges to Ft in 1−Wasserstein for M → ∞.

Proof. Under the assumptions (A1) and (A2) we have that G defined by equation (7)
is also Lipschitz and uniformly bounded for all (x, τ) ∈ Rd+1. Hence, due to [23, Lemma
6.1], the flow Φt introduced in Definition 3.2 is well–defined and Lipschitz in (x, τ) and
Ft = Φt#F0 for F0 ∈ P1(Rd+1) is the unique weak solution of equation (8) in the
sense of (9). Furthermore, under the assumptions (A1) and (A2), any two weak solu-

tions F
(1)
t , F

(2)
t in the sense of equation (9), obtained from initial conditions F

(1)
0 , F

(2)
0 ,

respectively, fulfill the Dobrushin’s stability estimate in 1−Wasserstein distance. The
Dobrushin’s inequality allows us to prove the convergence of the solutions of the dy-
namical system (6)–(7) to Ft. In fact, we first observe that if we consider the initial
condition

(11) dFM
0 (x, τ) =

1

M

M∑
i=1

δ(x− x0i )δ(τ)

with x0i prescribed by (6), then the following empirical measure

dFM
t (x, τ) =

1

M

M∑
i=1

δ(x− xi(t))δ(τ − τi(t))

is a weak solution of (8) in the sense of (9), where (xi(t), τi(t)) are the trajectories given
by the dynamical system (6) for any i = 1, . . . ,M . The previous consideration follows
from a classical derivation, see e.g. [38]. Hence, if the initial empirical measure (11)
converges in 1−Wasserstein distance W1 to some F̄0 ∈ P1(Rd+1) for M → ∞, using the
Dobrushin’s estimate

W1

(
F̄t, F

M
t

)
≤ C W1

(
F̄0, F

M
0

)
,

with C being a constant and F̄t = Φt#F̄0, we obtain that (8) is the mean–field limit of
the particle dynamics (6) for M → ∞.

The previous proposition shows that the mean–field limit can be obtained provided
that the controls w, b ∈ C0,1(R). As further result we establish the dependence on the
functions (w, b).

Proposition 3.2. Let F0 ∈ P1(Rd+1) be given and let T > 0. Then, under the assump-
tions (A1) and (A2), the unique solution Ft ∈ C([0, T ];P1(Rd+1)) of the mean–field
equation (8) is continuously dependent on (w, b).
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Proof. Denote by Φ(w,b) the flow defined by equation (10) with given (w, b). Then, for
any (w, b) fulfilling (A1) and σ fulfilling (A2) the assumptions of [23, Proposition 7.2]
are satisfied and we obtain for F0 ∈ P1(Rd+1)

W1(Φ
(w,b)#F0,Φ

(w̄,b̄)#F0) ≤
exp(Lt− 1)

L
∥(w, b)− (w̄, b̄)∥C0(0,T ),(12)

where L = max{LG(w,b), LG(w̄,b̄)} is the maximum of the Lipschitz constants of G defined
by equation (7).

Proposition 3.3. If a weak solution Ft ∈ C([0, T ];P1(Rd+1)) of (8) fulfills

(13) dFt(x, τ) = dft(x)δ(τ − t)

with ft ∈ C([0, T ];P1(Rd)), and if dF0(x, τ) = df0(x)δ(τ) with f0 ∈ P1(Rd), then, under
the assumptions (A1) and (A2), ft is a weak solution of the mean–field equation (5) with
initial condition f0.

Proof. Using the assumptions on Ft and F0 in (9) we find for all ϕ = ϕ(x) ∈ C∞
0 (Rd):∫

Rd

ϕ(x)dft(x) =

∫
Rd

ϕ(x)df0(x)

+

∫ t

0

∫
Rd

∇xϕ(x) · σ
(
w(t)x+ b(t))dfs(x)ds,

which is exactly the weak form of the mean–field equation (5) with initial condition f0.

Provided that the initial data has the decomposition given in the previous Proposition,
the above computation shows that then there exists a solution dFt fulfilling (13) and ft
being a solution to equation (5).

3.2. Mean–field controllability problems

In the continuous formulation of the neural network, the training step can be seen
as controllability problem in the sense of the following definition, see also [39,40].

Definition 3.3. Let f0, g ∈ P1(Rd) be given. Let T > 0 be fixed. We say that the
mean–field equation (5) is controllable if there exist w ∈ C0,1([0, T ];Rd×d) and b ∈
C0,1([0, T ];Rd) such that (ΦT#f0) = g where Φt : Rd → Rd is the Lipschitz continuous
characteristic flow of (5).

In this section we focus on the controllability problem at the mean–field level. We
show that for simple problems it is possible to recover explicit results on the solution of
the controllability problem. However, so far, a general theory is not available.

Proposition 3.4. Let T > 0, β > 0 be fixed constants such that β/T belongs to the
image of σ. Further, denote by B = (β, . . . , β)t ∈ Rd and f0, g ∈ P1(Rd) be given such
that dg(x) = df0(x−B). Then, the mean–field equation (5) is controllable in the sense
of Definition 3.3.
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Proof. According to Definition 3.3 we only need to show that there exist w ∈
C0,1([0, T ];Rd×d) and b ∈ C0,1([0, T ];Rd) such that g is the push–forward of f0 under
the flow of (5). Taking w(t) ≡ 0, the flow Φt : Rd → Rd defined by

∂tΦt(x) = σ(b(t)), Φ0(x) = x,

yields the desired result provided that b fulfills
∫ T
0 σ(b(t))dt = B. There is at least one

b(t) = b0 such that the later equality holds.

Clearly, Proposition 3.4 does not guarantee uniqueness of the choice of the pair (w, b).
Consider, e.g., d = 1 and the identity activation function σ(x) = x. Then for any β > 0
the training process can be solved with b(t) = t2 + 1. Namely, there exists a time T at
which fT = g. However, for the same time T , the training process is also solved with
b(t) = β/T .

The next proposition is recalled from [16, Proposition 1] and it characterizes steady
states of the mean–field equation that are not necessarily unique. The proposition illus-
trates that if initial and terminal states are a sum of weighted Dirac measures the system
is trivially controllable with parameters (w, b) given below. However, as the proposition
shows, this only possible if the activation function has sufficiently many zeros.

Proposition 3.5. Let ft ∈ P1(Rd) be a compactly supported weak solution of the mean–
field equation (5). Assume that the activation function σ : R → R have n zeros zi,
i.e. σ(zi) = 0 for i = 1, . . . , n. Let b(t) = b̄ ∈ Rd and w(t) = w̄ ∈ Rd×d for all t ≥ 0.
Moreover, assume that w̄ has maximum rank. Then,

f∞ =
nd∑
i=1

ρiδyi

is a steady state solution of (5) in the sense of measures provided that y is the solution
to the system w̄y + b̄ = z, where z is any disposition with repetition of the n zeros, and

where ρi ∈ [0, 1], ∀ i = 1, . . . , n, with
∑nd

i=1 ρi = 1.

The next lemma shows that for particular choices of σ,w, b the mean of ft is preserved.

Lemma 3.1. Let f0 ∈ P1(Rd) and let ft ∈ P1(Rd) be a solution of the mean–field
equation (5) where m(t) =

∫
Rd xdft(x), ∀t ∈ [0, T ]. Assume that σ(x) = x and b(t) =

−w(t)m(t), ∀t ∈ [0, T ]. Then, m(t) = m(0), ∀t ∈ [0, T ].

Proof. Using equation (5) the first moment m(t) of the probability density ft satisfies
the evolution equation

d

dt
m(t) = w(t)m(t) + b(t).

Taking b(t) = −w(t)m(t) the right–hand side vanishes and the assertion follows.
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This lemma can be used to obtain a further controllability result in Proposition 3.6
below. However, we restrict the case to d = 1 since for d > 1 one has to assume addi-
tional assumptions on the matrix w(t) in order to write the solution formula of the flow
explicitly.

Proposition 3.6. Let T > 0, α ∈ R be fixed constants. Let f0, g ∈ P1(R) be given
such that g = (F−1#f0) where F : x ∈ R 7→ F (x) = xeα + (1 − eα)m0 ∈ R and
m0 =

∫
R xdf0(x). Assume that σ(x) = x. Then the mean–field equation (5) is controllable

in the sense of Definition 3.3.

Proof. Observe that with the definition of g we have∫
R
xdg(x) =

∫
R
eαxd(F−1#f0)(x) =

∫
R
F−1(x)|detJF−1 |df0(x) = m0.

In order to have m(t) = m0 for all times we set b(t) = −w(t)m0 and σ(x) = x. Further,

we choose w ∈ C0,1([0, T ];Rd×d) such that
∫ T
0 w(t)dt = −α. The flow Φt : R → R is

defined by
∂tΦt(x) = w(t) (Φt(x)−m0) , Φ0(x) = x,

which yields Φt(x) = e
∫ t
0 w(s)dsx + m0

∫ t
0 −e−

∫ ξ
0 w(s)dsw(ξ)dξ and Φ−1

T (y) = xeα −
m0

∫ T
0 −e−

∫ ξ
0 w(s)dsw(ξ)dξ. Hence,

dfT (x) = d(ΦT#f0)(x) = df0 (xe
α + (1− eα)m0) .

and the system is controllable, i.e. fT = g.

Proposition 3.6 shows that the sign of α influences the behavior of the second moment∫
x2dft(x) of ft. In particular, for α > 0 it is possible to show that the second moment

of ft decreases and ft concentrates at the first moment, whereas for α < 0 the second
moment increases. In fact, without loss of generality, assume that m0 = 0 and let g
defined as in Proposition 3.6, then

∫
x2dg(x) = e−3α

∫
x2df0(x).

Proposition 3.4 and Proposition 3.6 of this section discuss some prototype situations
in which the problem of recovering the target distribution g through the mean–field
equation (5) with initial condition f0 is explicitly possible. In general, we follow an
alternative method introduced in the subsequent sections to compute the parameters.

3.3. Existence of solutions to the mean–field minimization problem

As presented in Section 2 the training procedure of a neural network aims to find
optimal weights and bias in order to minimize a given distance, e.g. (4). The mean–field
interpretation of this training procedure requires first to derive the mean–field limit of
the loss function which is given by the following proposition. Note that we have enforced
a possibly strong condition on the independence of the data. If this assumption does
not hold true, we still obtain a mean field limit of the cost functional. Then, we need to
expand the phase space of the mean field equation by an additional dimension y that
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links to the distribution gM in the space of the target values. However, in the following
we consider the simpler case, where the data is actually independent.

Proposition 3.7. Let {xi(t), τi(t)}Mi=1 be the trajectories given by the dynamical sys-
tem (6)-(7) with initial conditions {x0i , 0}Mi=1 and let {yi}Mi=1 be the given target values
which are assumed to be obtained as statistically independent. Let FM

0 ∈ P1(Rd+1) and
gM ∈ P1(Rd) be the empirical measures associated to the initial conditions and the tar-
get values, respectively. Furthermore, let F0 ∈ P1(Rd+1) and g ∈ P1(Rd) be such that
W1(F0, F

M
0 ) → 0, W1(g, g

M ) → 0, as M → ∞. Then, under the assumptions (A1) and
(A2), the mean–field limit of the loss function (4) is∫

(x,τ)∈Rd+1

ℓ̃(x)dFT (x, τ)

where ℓ̃(x) =
∫
Rd ℓ(x − y)dg(y) and Ft is the weak solution of (8) obtained with initial

condition F0 ∈ P1(Rd+1).

Proof. We notice that the loss function (4) can be written as

1

M

M∑
i=1

ℓ(xi(T )− yi) =

∫
R2d+1

ℓ(x− y)dµM
T (x, y, τ)

where µM
t ∈ P1(R2d+1) is the time dependent empirical measure

(14) dµM
t (x, y, τ) =

1

M

M∑
i=1

δ(x− xi(t))δ(y − yi)δ(τ − t)

We observe that µM
T has marginals

∫
(x,τ)∈Rd+1

dµM
T (x, y, τ) =

1

M

M∑
i=1

δ(y − yi) = dgM (y),

∫
y∈Rd

dµM
T (x, y, τ) =

1

M

M∑
i=1

δ(x− xi(T ))δ(τ − t) = dFM
T (x, τ).

The prediction and target values are assumed to be statistically independent and there-
fore xi(T ) solely depends on xi(0) which yields

dµM
T (x, y, τ) = dFM

T (x, τ)dgM (y).

By the Glivenko–Cantelli’s theorem, see e.g. [41,42], we have that there exists g ∈
P(Rd) and a time dependent measure µt ∈ P(R2d+1) such that W1(g

M , g) → 0 and
W1(µ

M
t , µt) → 0, as M → ∞. In addition, under the assumptions (A1) and (A2), the

mean–field convergence result of Section 3.1 implies W1(F
M
t , Ft) → 0, ∀t ∈ [0, T ] as
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M → ∞, with Ft ∈ P1(Rd+1) weak solution of (8) obtained with initial condition
F0 ∈ P1(Rd+1) such that W1(F0, F

M
0 ) → 0, as M → ∞. Then, noticing that

W1(µ
M
T , FT g) ≤ W1(F

M
T gM , FM

T g) +W1(F
M
T g, FT g) → 0 as M → ∞,

we conclude that the mean–field limit of the loss function (4) is
(15)∫
(x,y,τ)∈R2d+1

ℓ(x−y)dµT (x, y, τ) =

∫
(x,τ)∈Rd+1

ℓ̃(x)dFT (x, τ), ℓ̃(x) =

∫
Rd

ℓ(x−y)dg(y).

Consider now the cost functional J : P1(Rd+1) → R given by

J(µ) =

∫
Rd+1

ℓ̃(x)dµ(x, τ),(16)

cf. the definition of the cost of the transport plan at the beginning of Section 3. In the
following we discuss the existence of solutions to the mean–field minimization problem

(w, b) 7→ min J(FT )

on a suitable subset X of controls (w, b), where FT is the unique weak solution to
equation (8) for fixed initial datum F0 ∈ P1(Rd+1). We observe that the mean–field
cost functional ℓ̃ derived in (15) is bounded and Lipschitz continuous provided that
ℓ ∈ C0,1(Rd) is bounded from below. In fact:

∥ℓ̃(x)−ℓ̃(z)∥ ≤
∫
Rd

∥ℓ(x−y)−ℓ(z−y)∥dg(y) ≤ L

∫
Rd

∥x−z∥dg(y) = L∥x−z∥, ∀x, z ∈ Rd,

with L Lipschitz constant of ℓ. In order to simplify the notation we denote by

u := (w, b) ∈ C0,1([0, T ];Rd×d × Rd),

µu := FT ∈ P1(Rd+1).

For fixed T > 0 and F0 ∈ P1(Rd+1) the reduced cost functional is then defined by

j(u) = J(µu) =

∫
Rd+1

ℓ̃(x)dµu(x, τ).

Since ℓ̃ is bounded from below, we obtain that j is bounded from below. Since ℓ̃ is
Lipschitz with constant L we obtain the following estimate for u, v ∈ C0,1([0, T ];Rd×d ×
Rd) constrained to u(0) = v(0) = 0:

|j(u)− j(v)| = L

∥∥∥∥∥
∫
Rd+1

ℓ̃(x)

L
d(µu − µv)

∥∥∥∥∥
≤ L sup

{∫
Rd+1

ϕ(x)d(µu − µv) : ϕ 1–Lipschitz

}
= LW1(µu, µv) ≤ C(Lu, Lv)∥u− v∥C0 ,
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where the last inequality follows by (12) and the constant C depends on the Lipschitz
constants of u and v. Thus, the loss function j is continuous with respect to the C0−norm.
The previous results can be used to establish existence of minimizers using the direct
method of variation.

Proposition 3.8. Assume that the assumptions (A1) and (A2) are fulfilled. Let ℓ̃ ∈
C0,1(Rd) and bounded from below. Assume T > 0, L > 0 and F0 ∈ P1(Rd+1) are given.
Then, there exists a solution to the minimization problem

min
(w,b)∈X

∫
Rd+1

ℓ̃(x)dFT (x, τ),

where Ft ∈ C([0, T ];P1(Rd+1)) is the weak solution to equation (8) and where

(17) X = {(w, b) ∈ C0,1([0, T ];Rd×d × Rd) : Lw + Lb ≤ L, w(0) = b(0) = 0}

with Lw, Lb Lipschitz constants of w, b, respectively.

Proof. For the proof of the previous proposition we proceed as follows. Since the cost
functional is bounded from below, there exists a minimizing sequence (un)n≥0 ⊂ X.
According to the definition of X we have that ∥un∥C0 ≤ L for all n. Further, we have
that un is uniformly Lipschitz continuous due to definition of X. Hence, the assertion
of the Arzela–Ascoli are fulfilled and un converges in C0 to u ∈ C0([0, T ];Rd×d × Rd).
Furthermore, it holds that u ∈ C0,1([0, T ];Rd×d × Rd) with Lipschitz constant bounded
by L. Finally, the continuity of j shown above yields that u is the minimizer, i.e., j(u) =
lim
n→∞

Â j(un). This finishes the proof.

4. Computational approach to the mean–field training procedure

In this section we explicitly formulate the training processes for the mean–field
limit (5) of the neural differential equation (3) in terms of an optimal control problem.
While Section 3.3 discusses existence of minimizers to the mean–field control problem,
here, we formally derive a first–order optimality system in order to design a numerical
method for the optimization of the parameters w(t) and b(t) of the neural network. Note
that the previous theorem does not allow for a characterization due to a lack of regularity
of the solution in terms of the parameters.

4.1. Formulation of the computational approach

Our computational approach is based on the minimization problem of a general
functional of equation (16) for (w, b) ∈ X, cf. (17):

min
(w,b)∈X

∫
Rd+1

ℓ̃(x)dFT (x, τ) +
γ

2

∫ T

0
∥w∥2 + ∥b∥2dt, Â subject to

FT Â being the solution at time T of equation (8) and initial condition F0.
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We assume the initial F0 and solution FT are of the type (13) ∀(t, x, τ). Furthermore,
we use a Tikhonov regularization for the controls with a parameter γ > 0 but the pro-
posed computational approach below works also in the case γ = 0. Under the structural
assumption (13) the previous problem reduces to a constrained optimal control problem

min
(w,b)∈X

∫
Rd

ℓ̃(x)dfT (x) +
γ

2

∫ T

0
∥w∥2 + ∥b∥2dtÂ

subject to

{
∂tft(x) +∇x ·

(
σ
(
w(t)x+ b(t)

)
ft(x)

)
= 0,

ft=0(x) = f0(x).

Only formally, a first–order optimality system in strong form is derived

∂tft(x) +∇x ·
(
σ
(
w(t)x+ b(t)

)
ft(x)

)
= 0, ft=0(x) = f0(x),(18a)

∂tΛt(x) +∇xΛt(x) · σ
(
w(t)x+ b(t)

)
= 0, Λt=T (x) = ℓ̃(x),(18b)

γbj(t) +

∫
Rd

∂xjΛt(x)σ
′
j

(
w(t)x+ b(t)

)
ft(x)dx = 0, j = 1, . . . , d,(18c)

γwj,k(t) +

∫
Rd

∂xjΛt(x)σ
′
j

(
w(t)x+ b(t)

)
xkft(x)dx = 0, j, k = 1, . . . , d,(18d)

where bj represents the j–th component of the bias vector b, wj,k is the entry (j, k) of
the weight matrix w and, finally, σ′

j represents the derivative of the activation function
σ computed on the j–th component of its argument. Note that the constraint w(0) =
0 ∈ Rd×d and b(0) = 0 ∈ Rd are enforced in the numerical method. We further formally
differentiate the equation for Λt with respect to xj for j = 1, . . . , d. This also yields a
conservative formulation for each ∂xjΛt. Furthermore, we transform time t 7→ T − t in
equation (18b) in order to obtain an initial value problem. Since we implement numerical
results in the case d = 1 we state the resulting system where λt(x) = ∂xΛT−t(x)

∂tft(x) + ∂x

(
σ
(
w(t)x+ b(t)

)
ft(x)

)
= 0, ft=0(x) = f0(x),(19a)

∂tλt(x)− ∂x

(
σ
(
w(T − t)x+ b(T − t)

)
λt(x)

)
= 0, λt=0(x) = ∂xℓ̃(x),(19b)

γb(t) +

∫
R
λT−t(x)σ

′(w(t)x+ b(t)
)
ft(x)dx = 0,(19c)

γw(t) +

∫
R
λT−t(x)σ

′(w(t)x+ b(t)
)
xft(x)dx = 0.(19d)

Observe that (19a) and (19b) are decoupled due to the definition of the loss function,
namely the initial state of (19b) does not depend on the final state of (19a). This is due
to the fact that the mean–field loss function is linear in the state.

4.1.1. Numerical discretization scheme

The optimality system is solved in a block Gauss–Seidel fashion, i.e., at the k–th
iteration t 7→ (w, b)k(t) we compute fk

t and λk
t as numerical solution to equation (19a)
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and (19b), respectively. Details on the numerical scheme will be presented below. The
new iterates (w, b)k+1 are found through iteration on equations (19c)–(19d), namely for
t > 0 we define

b∗(t; ρ) = bk(t)− ρ∗
(
γbk(t) +

∫
R
λT−t(x)σ

′(wk(t)x+ bk(t)
)
ft(x)dx

)
,

b∗(0) = 0, and similarly w∗. Here, ρ∗ > 0 is a stepsize parameter chosen using backtrack-
ing line search, e.g. the Armijo rule, in order to minimize the reduced cost functional

ρ∗ = argmin
ρ>0

(∫
R
ℓ̃(x)dfT (x; ρ) +

γ

2

∫ T

0
∥w∗(t; ρ)∥2 + ∥b∗(t; ρ)∥2dt

)
where fT (x; ρ) is the solution to (19a) for (w, b) = (w∗(t; ρ), b∗(t; ρ)). The new iterates
are then obtained by

(w, b)k+1(t) := (w∗, b∗)(t; ρ∗), ∀t ≥ 0.

The procedure is repeated k = 0, 1, . . . until the error e(k) is below a given tolerance
TOL:

e(k+1) :=
∥(w, b)k+1 − (w, b)k∥C0(0,T )

∥(w, b)k+1∥C0(0,T )
≤ TOL.

For more details on the iterative scheme described above we refer, e.g., to [43].

Remark 4.1. In the case σ(x) = x further simplifications are possible. In fact, we may
derive explicit equations for the evolution of the k–th moment of λ f given by

∂t

∫
R
xkλT−t(x)ft(x)dx = −(k + 1)w(t)

∫
R
xkλT−t(x)ft(x)dx.

This allows to obtain (w, b) in closed form

b(t) =
1

γ
exp(w(t))

∫
R
λT (x)f0(x)dx,(20)

w(t) exp(−2w(t)) =
1

γ

∫
R
xλT (x)f0(x)dx.(21)

In this case it is sufficient to iterate equations (19b) and equations (20)–(21) removing
the need to solve equation (19a).

The numerical solution of the PDEs (19a) and (19b) is computed with a third–order
finite volume scheme [44], which is briefly described below. Both equations are recast in
the following compact formulation:

(22) ∂tu(t, x) + ∂xL(u(t, x), t, x) = 0,
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with L linear operator with respect to u. Since the two PDEs are decoupled, they can
be solved simultaneously. Application of the method of lines to (22) on discrete cells Ωj ,
defining a discretization of the physical domain Ω, leads to the coupled system of ODEs

(23)
d

dt
U j(t) = − 1

∆x

[
Fj+ 1

2
(t)−Fj− 1

2
(t)

]
,

where U j(t) is the approximation of the cell average of the exact solution u in the cell
Ωj at time t. Here, Fj+ 1

2
(t) approximates L(u(t, xj+ 1

2
), t, xj+ 1

2
) with suitable accuracy

and is computed as a function of the boundary extrapolated data U±
j+ 1

2

(t), i.e.

Fj+ 1
2
(t) = F(U+

j+ 1
2

(t), U−
j+ 1

2

(t))

and F is a consistent and monotone numerical flux, evaluated on two estimates of the
solution at the cell interface. We focus on the class of central schemes, in particular we
consider F as a local Lax–Friedrichs flux. In order to construct a third–order scheme
the values U±

j+1/2(t) at the cell boundaries are computed with the third–order CWENO

reconstruction [44].
System (22) is finally solved by the classical third–order (strong stability preserving)

SSP Runge–Kutta with three stages [45]. At each Runge–Kutta stage, the cell averages
are used to compute the reconstructions via the CWENO procedure and the boundary
extrapolated data are fed into the Lax–Friedrichs numerical flux. The initial data are
computed with the three point Gaussian quadrature. The time step ∆t is chosen fixed
in order to have a fixed grid in time and to avoid a reconstruction in time of the control
functions w(t) and b(t) between different iterates of the Gauss–Seidel approach. All the
simulations are run with a CFL of 0.45. The other parameters of the simulations are
specified in each numerical example separately.

4.2. Computational results

We present three numerical experiments in order to illustrate the numerical solu-
tion of the training of the mean–field neural network and to numerically observe the
theoretical findings on the controllability approach presented in Section 3.2.

As loss function we use

(24) ℓ(x− y) = |x− y|2

and the initial condition of equation (19b) is then given by

λ0(x) = 2x

∫
R
dg(y)− 2

∫
R
ydg(y) = 2x− 2mg

where mg denotes the expected value of the target g.

Remark 4.2. The initial condition of the equation for λ depends only on the expected
value of the target. Hence, if we consider two different targets g1 and g2 such that
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Figure 1. Final states fT (black dashed lines) at time T = 1 obtained with the optimal controls w(t)
and b(t) computed by the block Gauss–Seidel approach with tolerance TOL = 10−4. Three different
activation functions are considered and specified in the panel titles. The blue dotted lines represent the
initial state f0, whereas the red solid lines represent the target g.

mg1 ̸= mg2 , we expect to be able to recover correctly the expected value only. Similarly,
if we consider two different targets g1 and g2 such that mg1 = mg2 , we expect not to
learn, e.g., g2 from g1. For example, an L2

x distance between the final state fT and the
target g would also lead to a dependence on the full state. However, the formal mean–
field of the discrete loss function does not include this choice as shown in the previous
section.

Test 1. In the first example we provide a numerical evidence of the controllability
problem proposed in Proposition 3.4. We choose the initial condition

f0(x) = χ[− 1
2
, 1
2
](x)

on the physical domain x ∈ Ω = [−2, 3], and the target is

g(x) = f0(x− β)

with β = 1. The time at which we aim to recover the target g is T = 1. We consider
a fixed time step ∆t = 10−2 and the space domain is discretized with 200 cells. The
regularization parameter is γ = 10−3 and the tolerance for the stopping criterion is
TOL = 10−4. The maximum number of iteration of the Armijo–stepsize rule is 10.
Three different activation functions are considered, σ(x) = x, σ(x) = tanh(x) and σ(x) =

1
1+exp(−x) . The initial guess of the controls is w0(t) = 0 and b0(t) = 0, ∀ t ∈ [0, 1].

In Figure 1 we compare the final states fT (black dashed lines) obtained with the
three different activation functions and the optimal controls w(t), b(t) which are shown
in the bottom panels of Figure 2. We observe that using the identity activation function
provides a better approximation of the target g, whereas for the other two activation
functions additional iterations of the optimization procedure are required. In fact, the
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Figure 2. Top left panel: behavior of the relative errors between two consecutive iterations of the
controls. Top right panel: value of the cost functionals at each iteration. Bottom panels: optimal controls
w(t) (left) and b(t) (right). In all plots, the solid line represent the case of the identity activation function,
the dashed line the hyperbolic tangent, and the dotted line the sigmoid.

top panels of Figure 2 shows that, while the relative error between two iterates of the
controls reaches the given tolerance TOL for all the activation functions, the values of
the cost functional for the case of the hyperbolic tangent and of the sigmoid are larger
than the value of the cost functional obtained with the identity and are still decreasing
towards a minimum value. Furthermore, we observe that the initial guess of the controls
is a better choice for the sigmoid activation. The optimal controls are depicted in the
bottom panels of Figure 2 and they are w(t) ≈ 0 and b(t) = C with C positive constant
which depends on the choice of the activation function. Observe, in particular, that
C ≈ 1 for the identity activation, which means that equation (19a) reduces

∂tft(x) + C∂xft(x) = 0

whose solution at T = 1 is fT (x) = f0(x−C) ≈ g(x) = f0(x−1). This result is consistent
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with Proposition 3.4.

Test 2. In the second example we provide a numerical evidence of the controllability
problem proposed in Proposition 3.6. We choose the initial condition

f0(x) =
1√
2πs2

e−
(x−µ)2

2s2

on the physical domain x ∈ Ω = [−2, 3] with s = 0.1 and µ = 1. The target is

g(x) = f0(xe
α + (1− eα)µ)eα

with α = 0.25. The time at which we aim to recover the target g is T = 1. We consider
a fixed time step ∆t = 10−2 and the space domain is discretized with 400 cells. The
regularization parameter is γ = 10−3 and the tolerance for the stopping criterion is
TOL = 10−4. The maximum number of iteration of the Armijo–stepsize rule is 10. Due
to Lemma 3.1 and Proposition 3.6 we take the identity activation functions σ(x) = x.
The initial guess of the controls is w(t) = 0 and b(t) = 0, ∀ t ∈ [0, 1].

In the top left panel of Figure 3 we observe that the final state fT (black dashed line)
recovers the target g. The optimal controls w(t) and b(t) are shown in the top right panel
and chosen when the stopping criterion is met, see the bottom left panel. According to
Lemma 3.1 and Proposition 3.6 we expect to have w(t) = −b(t)µ and, since µ = 1, we
notice that indeed w(t) + b(t) ≈ 0. The relative error between cost functional, see the
bottom right panel of Figure 3, is monotone decreasing.

Test 3. In the last numerical example we build an artificial test and consider exact
controls

we(t) = et − 1, be(t) = −5t2 + t

to evolve the PDE (19a) up to time T = 1 starting from a Beta distribution as initial
condition:

f0(x) =
xa1−1(1− x)a2−1

B(a1, a2)

where B is the Beta function, and a1 = 2, a2 = 5. We obtain a numerical final state
that we use as target to initialize the adjoint equation (19b). Finally, the optimality
system is solved with the block Gauss–Seidel approach in order to recover the exact
controls w(t) and b(t). The physical domain is again x ∈ Ω = [−2, 3]. We consider a
fixed time step ∆t = 10−2 and the spatial domain is discretized with 400 cells. The
regularization parameter is considered different for the two controls, precisely we set
γw = 1 and γb = 10−4. The tolerance for the stopping criterion is TOL = 10−4. The
maximum number of iteration of the Armijo–stepsize rule is 10. For this numerical test
we choose the sigmoid activation function, i.e. σ(x) = 1

1+exp(−x) .
In Figure 4 we show the results of the numerical experiment obtained with two

different initial controls. In particular, the top row panels refer to w0(t) = b0(t) = t,
∀ t ∈ [0, 1], whereas the bottom row panels refer to the case w0(t) = b0(t) = 0, ∀ t ∈ [0, 1].
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Figure 3. Top left: initial state f0 (blue dotted line), target g (solid red line) and final state fT (black
dashed line) at final time T = 1. Top right: optimal controls w(t) and b(t), and their sum on the time
interval [0, 1]. Bottom left: relative error of two consecutive iterations of the controls. Bottom right:
behavior of the cost functional over the iterations.

We notice that in both cases the final state fT , black dashed line in the top left panel,
reproduces the expected value of the target, but the method is failing in estimating the
variance and the height of the extremal point. This is a consequence of the particular
choice of the loss function, as already pointed out in Remark 4.2. The optimal controls
computed at the end of the optimization procedure are shown in the center column
panels and compared with the exact controls we(t) and be(t). In both cases, the method
provides a constant weight, precisely w(t) ≈ 10−3, whereas b(t) differs, depending on the
choice of the initial guess. This result show the possible existence of multiple optimal
controls solving the same task of recovering the target g.
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Figure 4. Top row: initial guess for the controls is w(t) = b(t) = t, ∀ t ∈ [0, 1]. Bottom row: initial guess
for the controls is w(t) = b(t) = 0, ∀ t ∈ [0, 1]. Left column: initial state f0 (blue dotted line), target g
(solid red line) and final state fT (black dashed line) at time T = 1. Center column: optimal controls
w(t) and b(t), and the exact controls we(t) and be(t) on the time interval [0, 1]. Right column: behavior
of the cost functional over the iterations.

5. Conclusion and Future Work

In this work we have proposed and analyzed a mean–field description of residual
neural networks. The limit is performed on the number of data, and the well–posedness of
the resulting Vlasov–type equation is discussed. We have proved existence and uniqueness
of weak solutions, continuous dependence on the initial condition and on the parameters,
and the convergence of the solution of the discrete system to the solution of the PDE.

Furthermore, we have tackled the problem of the training of the mean–field neural
network using a controllability and an optimal control point of view. We have shown
existence of the minimizers and proposed a computational approach based on first–
order optimality conditions to numerically optimize the unknown parameters. Finally,
we have performed numerical experiments on the derived equations.

We expect that further analysis of the mathematical formulations of machine learn-
ing models at different scales is a useful tool to break the complexity of the methods
on discrete level and to provide theoretical foundations, in–depth understanding, anal-
ysis and improvements of existing approaches. In particular, the present work opens
several research perspectives, as for instance the study of the convergence of the opti-
mal solutions of the discrete training process to the solutions of the mean–field optimal
control problem via Gamma–convergence, or the definition of different loss functions at
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the mean–field level and the computational comparison between the discrete and the
mean–field training.
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