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A B S T R A C T

Mechanical joints play a critical role in many engineering structures, but identifying their
characteristics can be challenging, particularly when the joint interface (coupling DoFs) cannot
be directly measured. In these cases, an existing iterative procedure based on the use of the
System Equivalent Model Mixing (SEMM) expansion technique and substructure decoupling
can be used to identify the joint properties by taking measurement on other accessible DoFs
(internal DoFs). Despite the potential of this procedure, it is prone to large error propagation.
In addition, in the SEMM expansion a weighted pseudo-inverse operation is needed to ensure
the convergence of the iterative procedure when both coupling and internal DoFs (extended
interface) are involved in the decoupling.

This paper focuses on the detection of the error sources in the process and on the definition
of some strategies to limit error propagation. The use of internal DoFs only (pseudo-interface)
in the decoupling is proposed. This avoids the use of coupling DoFs affected by the expansion
error. Furthermore, two strategies are proposed to improve the conditioning of the procedure
when using the extended interface. Both strategies are based on the Truncated Singular Values
Decomposition (TSVD). It is shown that the weights clearly indicate the number of singular
values to be retained in the matrices to be inverted.

The proposed improvements are validated on a laboratory benchmark. Measurements on
the benchmark are performed to validate the strategies with experimental data. In addition, the
Monte Carlo method is applied using noise-polluted numerical data to evaluate the potential of
the proposed strategies to mitigate the error propagation in the SEMM-based joint identification
procedure.

. Introduction

Most mechanical systems are composed of different substructures connected through joints that can significantly affect the
ynamic behavior of the assembled system. In most cases, the characteristics of the joint are unknown, so it is necessary to identify
he dynamic behavior of the joint starting from measurements on the assembly. This process, which is known in the literature as
oint identification [1–4], can be approached in the framework of dynamic substructuring, in which a complex mechanical system
an be divided into several components. Each component can then be modeled separately in the physical, modal, or frequency
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List of the main symbols

FRF Frequency response function matrix
IFM Interface flexibility matrix
𝑈 Unknown subsystem
𝑅 Known residual subsystem
𝑅𝑈 Known assembled system
𝐽 Joint subsystem
𝑐 Coupling DoFs (also subscript in matrix notation)
𝑟 Internal DoFs of 𝑅 (also subscript in matrix notation)
𝑢 Internal DoFs of 𝑈 (also subscript in matrix notation)
𝑚, 𝑣 Measured and validation DoFs in SEMM (also subscript in matrix notation)
𝒖 Response vector
𝒇 , 𝒈 Vectors of external and disconnection forces between subsystems
𝐁 Signed Boolean matrix
𝝀 Vector of disconnection force intensities
𝐘,𝐙 Accelerance FRF and dynamic stiffness matrices
(∙)par, ov, hyb Concerning the parent, overlay, hybrid models
(∙)+ Moore–Penrose pseudo-inverse operator
(∙)𝑊 ,+ Weighted pseudo-inverse operator
(∙)𝐻 Hermitian (complex conjugate) operator
𝐖 Weighting matrix
𝐌 Square root of the weighting matrix
𝑤m, 𝑤v, 𝑤c Scalar weights on the measured, validation and coupling DoFs
𝜎𝑖 𝑖th singular value
𝜎 Standard deviation

domain [5]. In this way, the joint can be identified as a standalone substructure. Based on this approach, several joint identification
techniques have been proposed in the literature [6–9].

Dynamic substructuring also allows for predicting the joints’ dynamic effect on the assembled system. Working in the frequency
omain is particularly appealing when dealing with experimental data. In the classical FRF-based substructuring (FBS) [10]
ntroduced by Jetmundsen, each component is modeled by its frequency response function (FRF) matrix. The most straightforward
pplication of FBS is coupling, where the dynamic behavior of the assembled system is obtained by coupling the models of the
ubsystems. In the Lagrange multiplier FBS (LM FBS) formulation [11], this is done by imposing compatibility and equilibrium
onditions on some degrees of freedom (DoFs) that are shared between the subsystems, i.e. at the connecting (coupling) DoFs.
imilarly, LM FBS allows performing decoupling [12–14], where the dynamic behavior of an unknown subsystem is identified based
n the known dynamics of the assembled system and those of the other (remaining) subsystems. The decoupling can be performed by
dding a fictitious substructure with an FRF matrix opposite in sign to that of the residual subsystems. In this case, the DoFs shared
etween the residual substructures and the assembled system, where compatibility and equilibrium can be imposed, constitute the
o-called decoupling interface. However, in decoupling, the internal DoFs (not belonging to the couplings) of the residual subsystems
an also be used as interface DoFs. In [15], the advantages and disadvantages of including internal DoFs in the decoupling interface
re investigated in detail. In particular, the standard (coupling DoFs only) and extended (coupling and internal DoFs) interfaces
re discussed. Other articles [16,17] propose the possibility of using only internal DoFs (pseudo-interface). However, measuring the
RFs of the assembled system that correspond to the coupling DoFs is still necessary.

In joint identification, the joint substructure usually has only coupling DoFs. Therefore, depending on the decoupling interface
sed, measurements at the coupling DoFs are required, at least for the assembled system. In applications where the joint has
otational DoFs, or when the joint interface is inaccessible for measurements, the coupling DoFs cannot be measured directly.
dditional techniques are required to obtain this information. One useful technique is the Virtual Point Transformation (VPT) [18],
hich reduces the dynamics of the interface region to that of some virtual points, having both translational and rotational DoFs, using

ocal rigid Interface Deformation Modes (IDMs). When the interface is deformable, one option is to extend the VPT reduction basis
ith flexible interface deformation modes [19]. Another possibility is using expansion techniques, defined in both the modal [20,21]
nd frequency domain [22]. The System Equivalent Model Mixing (SEMM) expansion technique was first formulated in the FBS
ramework [22], and then in the modal domain [23]. It combines numerical and experimental models of a component to obtain
he FRFs at unmeasured DoFs, starting from the FRFs measured at accessible DoFs. In [24], the SEMM expansion technique is
mplemented in an iterative coupling–decoupling procedure useful for joint identification in applications where the joint interface
annot be measured. The procedure is validated by identifying the joint in a numerical truss structure. In [25], a similar iterative
rocedure is adopted to identify the inaccessible dove-tail joint in a bladed disk structure using experimental measurements. In this
2
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application, the SEMM is combined with the VPT to obtain information at the joint interface. In the decoupling step, an extended
interface is used. Weighted pseudo-inversion is used to perform matrix inversions in the SEMM expansion of the assembled system.
In this process, the coupling DoFs 𝑐 are given a significantly larger weight than the others. This weighting is needed to achieve
onvergence in a small number of iterations. However, the results obtained are highly affected by spurious peaks, as the weights
ssigned in this way affect the conditioning of the SEMM matrices to be inverted and consequently that of the IFM. An approach to
mprove the results is proposed in [26]. In particular, different combinations of the experimental FRFs are used to generate many
pdated models of the subsystems component. The Frequency Response Assurance Criteria (FRAC) is then used to evaluate the
nfluence of different measurements on the result of the expansion, and the lowest correlated measuring channels, which exhibit a
alue of the FRAC under a given threshold, are filtered out. Even though this approach is able to improve the results of the joint
dentification, it does not limit the error propagation in the procedure.

This work highlights the sources of error propagation in the iterative joint identification procedure used in [25]. These sources
re hidden in the matrix inversion in the SEMM expansion, which provides information at the unmeasured coupling DoFs, and in
he decoupling step which separates the dynamics of the joint. The use of a pseudo-interface in the decoupling step is proposed.
his avoids the propagation of the expansion error, which is not present in the internal DoFs. In addition, the possible advantages
f using a pseudo interface are discussed by comparing the pseudo and extended interfaces when unitary weights are assigned
o all DoFs in the weighted pseudo-inversions employed in the SEMM expansion of the assembled system. A technique based on
itting the identified joint’s dynamic stiffness is proposed to filter out the spurious peaks in the solution. Moreover, the effects
n the conditioning of the weighting procedure in SEMM expansion introduced in [25] are investigated in detail. Two strategies,
ased on the use of the Truncated Singular Values Decomposition (TSVD), are proposed to improve the results of this solution.
n both strategies, the exact number of singular values to be truncated is related to the number of coupling DoFs of the system.
he joint connecting two beams in a benchmark structure is identified using the proposed joint identification improvements. The

oint is designed to be tested separately for validation purposes. The identification is carried out using both numerical data and
xperimental measurements. Measurements on the benchmark structure are performed to assess the effectiveness and robustness
f the proposed strategies to the noise present in the experimental data. Furthermore, the Monte Carlo method is applied using
oise-polluted numerical data to evaluate the uncertainty propagation of the iterative SEMM-based joint identification procedure,
hen employing the proposed strategies to improve quality of the solution.

The paper is organized as follows. Section 2 introduces the theoretical background, including substructure decoupling and SEMM,
ogether with the joint identification procedure. In Section 3, the sources of error propagation in the solution, when using pseudo or
xtended interfaces, are highlighted and discussed in detail. Two methods are suggested in Section 4 to reduce the error propagation
n the procedure. In Section 5, the effects of the weighting in the SEMM on the conditioning of the procedure are analyzed, and
wo strategies are proposed to improve the results. Section 6 presents the results, with different strategies, obtained with noise-free
umerical data of the benchmark. In Section 7, the results obtained using experimental measurements are presented. Finally, in
ection 8 the results of the Monte Carlo simulations are presented and discussed.

. Theoretical background

In this Section, the methods used to obtain the Frequency Response Functions (FRFs) of the joint are described. In particular, the
heory of substructure decoupling (Section 2.1) and the SEMM method (Sections 2.2) are recalled and fitted to the joint identification
rocedure, which is outlined in Section 2.3.

.1. Substructure decoupling

Substructure decoupling [16,17] allows for the identification of the dynamic behavior of an unknown substructure 𝑈 (𝑁𝑈 DoFs)
tarting from the known assembled system 𝑅𝑈 and from the known information about the residual substructure 𝑅 (𝑁𝑅 DoFs).

The unknown substructure 𝑈 and the residual substructure 𝑅 are connected through a set of coupling DoFs that are located on
the common boundary at each side of the interface. The DoFs of the assembled system 𝑅𝑈 can be partitioned into coupling DoFs
(𝑐), internal DoFs (𝑢) of substructure 𝑈 , internal DoFs (𝑟) of substructure 𝑅. In direct decoupling, the unknown substructure 𝑈
is identified by adding to the assembled system 𝑅𝑈 a fictitious substructure with an FRF opposite in sign to that of the residual
subsystem 𝑅. The equations of motion of the assembled substructure 𝑅𝑈 and of the negative substructure can be written as:

𝒖 = 𝐘(𝒇 + 𝒈) (1)

with

𝐘 =
[

𝐘RU

−𝐘R

]

, 𝒖 =
{

𝒖RU

𝒖R

}

, 𝒇 =
{

𝒇RU

𝒇R

}

, 𝒈 =
{

𝒈RU

𝒈R

}

(2)

where 𝒖 is the response vector, 𝒇 is the external force vector, 𝒈 is the vector of connecting forces between subsystems and 𝐘 is the
FRF matrix.

To decouple the substructures, compatibility and equilibrium conditions must be satisfied at the interface between the assembled
structure 𝑅𝑈 and the negative residual substructure. The interface can include both the coupling DoFs between substructures 𝑈
and 𝑅 and all the internal DoFs of substructure 𝑅. Note that the number of interface DoFs must be greater than or equal to the
3

number of coupling DoFs 𝑐. As explained in [15], four possible types of interfaces can be used:
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Fig. 1. Joint identification through direct decoupling. The unknown subsystem 𝐽 has only coupling DoFs 𝑐.

• standard interface, including only the coupling DoFs (𝑐) between subsystems 𝑈 and 𝑅;
• extended interface, also including a subset of internal DoFs (𝑖 ⊆ 𝑟) of subsystem 𝑅;
• mixed interface, including subsets of coupling DoFs (𝑑 ⊂ 𝑐) and internal DoFs (𝑖 ⊂ 𝑟);
• pseudo-interface, including only internal DoFs (𝑖 ⊆ 𝑟) of subsystem 𝑅.

The compatibility condition at the interface DoFs implies that any pair of matching DoFs 𝑢𝑅𝑈𝑙 and 𝑢𝑅𝑛 , i.e., DoF 𝑙 on substructure 𝑅𝑈
and DoF 𝑛 on substructure 𝑅, have the same displacement, that is 𝑢𝑅𝑈𝑙 − 𝑢𝑅𝑛 = 0. This condition can be generally expressed by
introducing the signed boolean matrix 𝐁:

𝐁𝒖 = 𝟎 (3)

The equilibrium condition states that for any pair of interface DoFs, the interface forces must be equal and opposite in sign,
i.e., 𝑔𝑅𝑈𝑙 +𝑔𝑅𝑛 = 0. Using the dual assembly, equilibrium is satisfied exactly by defining a unique set of disconnection force intensities
𝝀 [12,13]:

𝐁𝑇 𝝀 = −𝒈 (4)

By substituting the interface forces 𝒈 from Eq. (4) into Eq. (1), the following system of equations is obtained:
{

𝒖 = 𝐘(𝒇 − 𝐁𝑇 𝝀)
𝐁𝒖 = 𝟎

(5)

By premultiplying 𝐁 the first line of Eq. (5), it is possible to eliminate 𝝀 and obtain the single line equation:

𝒖 = �̄�𝒇 (6)

in which �̄� (or better, a submatrix of �̄�) is the frequency response function of the unknown subsystem:

�̄� = 𝐘 − 𝐘𝐁𝑇 (𝐁𝐘𝐁𝑇 )−1𝐁𝐘 (7)

It is important to note that the identified FRF matrix �̄�, has the same dimensions of 𝐘 and some rows and columns are redundant.
It is common practice to consider only those elements in the upper left block that are associated with the assembled system in the
matrix 𝐘 (defined in Eq. (2)). Moreover, the identified FRF matrix �̄�, contains some meaningless rows and columns, those associated
with the internal DoFs 𝑟, which obviously does not belong to 𝑈 . Therefore, only the elements of �̄� that correspond to the DoFs 𝑢
and 𝑐 should be retained. The term 𝐁𝐘𝐁𝑇 in Eq. (7) is the Interface Flexibility Matrix (IFM) that depends on the selected interface.
Since this matrix has to be inverted, care must be taken if it is ill-conditioned to limit the error propagation in the solution. Note
that to find the FRFs of subsystem 𝑈 at a subset of coupling DoFs 𝑐 and/or internal DoFs 𝑢, it is necessary to measure these DoFs
in the whole system 𝑅𝑈 .

Direct decoupling can be used for joint identification. In this case, the joint 𝐽 is considered as the independent unknown
subsystem 𝑈 with given mass and stiffness properties that connects two subsystems 𝐴 and 𝐵. The residual subsystem 𝑅 becomes:

𝐘R =
[

𝐘A

𝐘B

]

(8)

The dynamic behavior of the joint 𝐽 can be obtained by removing the dynamics of substructures 𝐴 and 𝐵 from the dynamic
behavior of the assembled structure 𝐴𝐽𝐵, as shown in Fig. 1. It can be noted that the unknown subsystem 𝐽 is defined only on
the set of coupling DoFs 𝑐. When these coupling DoFs are not accessible for measurements in the whole system 𝐴𝐽𝐵, expansion
techniques [20–23] allows obtaining the corresponding FRFs from information contained in the internal DoFs of the system 𝐴𝐽𝐵.
4
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Fig. 2. The Extended SEMM expansion results from two successive decouplings that use different models of the same component. In the first decoupling, the
experimental overlay model is decoupled from the numerical removed model. The resulting model is then decoupled from the numerical parent model.

2.2. System equivalent model mixing

SEMM [22] is a technique developed in the frequency-based substructuring frame to expand the information measured at a set
of accessible DoFs 𝑚 of a component on a set of inaccessible DoFs, in this case the coupling DoFs 𝑐, only appearing in the associate
numerical model. The expansion is also performed on a set of accessible DoFs 𝑣 to validate the effectiveness of the process. For
this purpose, the expanded dynamics at DoFs 𝑣 are compared with the corresponding experimental ones. In the end, the considered
component is described by a hybrid model in which the FRFs of inaccessible DoFs are available.

The different models involved in the expansion process are described below:

• parent model 𝐘par: the numerical model of the component defined on the global set of DoFs 𝑔 = 𝑚 ∪ 𝑣 ∪ 𝑐;
• overlay model 𝐘ov: the experimental model of the component obtained by measuring and exciting on the measurement DoFs 𝑚

𝐘ov = 𝐘ov
mm (9)

• removed model 𝐘rem: a numerical condensed form of the parent model to the measured DoFs. In the so-called ‘‘Extended
SEMM’’ [22] used in this work,1 the removed model is defined on the global set of DoFs 𝑔 and coincides with the parent
model:

𝐘rem = 𝐘rem
gg = 𝐘par

gg (10)

• hybrid model 𝐘hyb: the resulting model. This is defined on the same DoFs of the parent model. For the Extended SEMM equation,
specified for the global set of DoFs 𝑔 [25], it is:

𝐘hyb = 𝐘par
gg − 𝐘par

gg (𝐘par
mg )

+𝐘par
mm(𝐘par

gm )+𝐘par
gg + 𝐘par

gg (𝐘par
mg )

+𝐘ov
mm(𝐘par

gm )+𝐘par
gg (11)

The Extended SEMM single line equation (Eq. (11)) is obtained from two successive decouplings (see the Appendix of [22]), as
depicted in Fig. 2.

Note that in Eq. (11), the matrix product (𝐘gm)+𝐘gg condenses the dynamics of the global set of DoFs 𝑔 to the set of DoFs 𝑚. In
particular, the FRFs 𝐘gm relates the response 𝒖g at the global set of DoFs 𝑔 of the parent model, to a set of forces �̃�m applied to the
set of DoFs 𝑚:

�̃�m = (𝐘gm)+𝒖g (12)

The matrix product 𝐘gg(𝐘mg)
+ expands the dynamics of the set of DoFs 𝑚 to the global set of DoFs 𝑔. In particular, the FRF 𝐘mg

relates the response 𝒖m at the set of DoFs 𝑚, with the forces �̃�g at the global set of DoFs 𝑔:

�̃�g = (𝐘mg)+𝒖m (13)

The two matrix products applied to the FRFs 𝐘par
mm of the parent model at DoFs 𝑚 give the removed model, while when they are

applied to the overlay model 𝐘ov, add the measured dynamics to the parent model. Eq. (11) can be written in a different form as:

𝐘hyb =

⎡

⎢

⎢

⎢

⎣

𝐘par
mm 𝐘par

mv 𝐘par
mc

𝐘par
vm 𝐘par

vv 𝐘par
vc

𝐘par
cm 𝐘par

cv 𝐘par
cc

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

𝐘par
mg (𝐘

par
mg )+

𝐘par
vg (𝐘par

mg )+

𝐘par
cg (𝐘par

mg )+

⎤

⎥

⎥

⎥

⎦

(𝐘par
mm − 𝐘ov

mm)
[

(𝐘par
gm )+𝐘par

gm (𝐘par
gm )+𝐘par

gv (𝐘par
gm )+𝐘par

gc
]

(14)

1 The Extended SEMM is chosen for this study instead of the Standard/Basic SEMM, as the latter can cause the appearance of spurious peaks in the expanded
model.
5
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Fig. 3. Workflow of the iterative identification procedure.

For the properties of the left and right pseudo-inverses, one has:

𝐘par
mg (𝐘

par
mg )

+ = 𝐈mm; (𝐘par
gm )+𝐘par

gm = 𝐈mm (15)

It is clear from Eq. (14) that in correspondence with the measured DoFs 𝑚, SEMM simply replaces the dynamics of the parent model
with the measured dynamics of the overlay model, i.e.:

𝐘hyb
mm = 𝐘ov

mm (16)

Instead, at the other DoFs, the overlay dynamics are expanded on the numerical ones.

2.3. Joint identification procedure

The joint identification procedure, summarized in Fig. 3, is developed considering that the coupling DoFs are not accessible
for measurements. To perform decoupling, FRFs of the assembled system 𝐴𝐽𝐵 at the coupling DoFs 𝑐 are necessary; thus, SEMM
expansion technique can be used. In this way, the dynamic behavior of the joint 𝐽 is identified through the decoupling procedure,
using the hybrid model of the whole system 𝐴𝐽𝐵 containing the coupling DoFs 𝑐 and the hybrid models of subsystems 𝐴 and 𝐵.
However, to obtain the hybrid model of the whole system 𝐴𝐽𝐵, a parent model is needed. This can be obtained by coupling the
hybrid models of the subsystems 𝐴 and 𝐵 with an initial guess model of the joint 𝐽 , as described in Appendix. Since the real model
of the joint 𝐽 is unknown, the joint identification procedure is iterative. At the first iteration, a guess model 𝐘J

0 of the joint must
be provided. By performing a SEMM expansion on the parent model 𝐘AJB,par

i+1 , using the experimental overlay model 𝐘AJB,ov, the
hybrid model 𝐘AJB,hyb

i+1 is obtained. At this point, the decoupling can be performed to find a model for the joint 𝐘J
i+1. This model is

used in Eq. (56) at the following iterative step to reach convergence. The iterative algorithm stops when the following convergence
criterion is satisfied:

|

|

|

(𝐘AJB,par
mm )i+1 − 𝐘AJB,ov|

|

|2
|

|

|

𝐘AJB,ov|
|

|2

< 𝜀 (17)

i.e., when the parent model at iteration i+1 and the overlay model are very close on the set of measurement DoFs 𝑚. By looking at
Eq. (11), this means that the SEMM expansion cannot further update the parent model. The FRFs matrix of the identified joint 𝐘J

shows the dynamic behavior of the joint and, in particular, its natural frequencies. Also, by inverting this matrix, it is possible to
obtain the corresponding dynamic stiffness matrix 𝐙J useful to identify the physical properties of the joint.

In [25], it was noted that when using an extended interface, the procedure does not converge even in a large number of iterations,
because the measured dynamics are expanded equally on all the DoFs. To achieve convergence in a smaller number of iterations, the
authors of [25] proposed to use weighted pseudo-inversion to perform matrix inversions in the SEMM expansion of the assembled
system. In this process, the coupling DoFs 𝑐 are given a significantly larger weight than the others. A more mathematical discussion
of the role of weights is given in Section 5.1. However, the results obtained are highly affected by spurious peaks, as the weights
assigned in this way affect the conditioning of the SEMM matrices to be inverted and consequently that of the IFM. In this paper, the
use of a pseudo-interface in the decoupling step, rather than an extended interface, is proposed to improve the solution. Moreover,
a discussion is made about using the extended interface, and strategies to improve its solution are suggested.

3. Sources of error in the identification procedure

The described identification procedure can be ill-conditioned, i.e., small errors in the data can be largely amplified in the solution.
The sources of error propagation can be found in matrix inversions. In this procedure, two main steps can be a source of error
propagation: the decoupling and the SEMM expansion on the assembled system 𝑅𝑈 .
6
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3.1. Interface flexibility matrix inversion

As remarked in Section 2.3, the FRF matrix of the unknown joint 𝐽 is identified by decoupling the hybrid model of the residual
ubsystem 𝑅 from the hybrid model of the assembled system 𝑅𝑈 .2 In Eq. (7), the inversion of the IFM plays a crucial role in the

obtained solution. The conditioning of the IFM depends on the choice of the decoupling interface. Here, the expression of the IFM
for two types of interfaces (the extended and the pseudo-interface) are obtained and compared, highlighting the differences in terms
of error propagation. With the partitioning of DoFs into measurement 𝑚, validation 𝑣 and coupling 𝑐 DoFs introduced in Section 2.2,
the response vector 𝒖 and the uncoupled FRF matrix 𝐘 in Eq. (2), have the following expression:

𝒖 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝒖RU
m

𝒖RU
v

𝒖RU
c

𝒖R
m

𝒖R
v

𝒖R
c

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

, 𝐘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐘RU,hyb
mm 𝐘RU,hyb

mv 𝐘RU,hyb
mc

𝐘RU,hyb
vm 𝐘RU,hyb

vv 𝐘RU,hyb
vc

𝐘RU,hyb
cm 𝐘RU,hyb

cv 𝐘RU,hyb
cc

−𝐘R,hyb
mm −𝐘R,hyb

mv −𝐘R,hyb
mc

−𝐘R,hyb
vm −𝐘R,hyb

vv −𝐘R,hyb
vc

−𝐘R,hyb
cm −𝐘R,hyb

cv −𝐘R,hyb
cc

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(18)

The boolean matrix 𝐁 can be written as:

𝑩 =
[

𝐁RU 𝐁R] (19)

sing Eq. (19), the IFM can be written as:

𝐁𝐘𝐁𝑇 = 𝐁RU𝐘RU,hyb𝐁RU𝑇 − 𝐁R𝐘R,hyb𝐁R𝑇 (20)

he boolean matrix 𝐁 and the IFM matrix defined in Eq. (20) can be specified for the particular type of interface.

.1.1. Extended interface
In the extended interface, the coupling DoFs 𝑐 and a subset of the internal DoFs (𝑖 ⊆ 𝑟) of subsystems 𝑅 are considered. In

articular, when the internal DoFs 𝑖 are the measured DoFs 𝑚, the compatibility conditions are:
{

𝒖RU
c − 𝒖R

c = 0
𝒖RU

m − 𝒖R
m = 0

(21)

hese conditions can be written using the signed boolean matrix 𝐁:

𝐁 =
[

𝟎 𝟎 𝐈 𝟎 𝟎 −𝐈
𝐈 𝟎 𝟎 −𝐈 𝟎 𝟎

]

(22)

According to Eq. (20), the IFM matrix can be written as follows:

𝐁𝐘𝐁𝑇 =

[

𝐘RU,hyb
cc 𝐘RU,hyb

cm

𝐘RU,hyb
mc 𝐘RU,hyb

mm

]

−

[

𝐘R,hyb
cc 𝐘R,hyb

cm

𝐘R,hyb
mc 𝐘R,hyb

mm

]

(23)

Information of the hybrid models of both 𝑅 and 𝑅𝑈 at the coupling DoFs 𝑐 and at the measured DoFs 𝑚 appear in the expression
of the IFM. The term in Eq. (23) related to the hybrid model of the assembled system 𝑅𝑈 , can be written using Eqs. (14) and (56):

𝐁𝐘𝐁𝑇 =

[

𝐘R,hyb
cc 𝐘R,hyb

cm

𝐘R,hyb
mc 𝐘R,hyb

cc

]

−

[

𝐘R,hyb
cc

𝐘R,hyb
mc

]

(𝐘R,hyb
cc + 𝐘J

cc)
−1 [

𝐘R,hyb
cc 𝐘R,hyb

cm

]

+

[

𝐘RU,par
cg (𝐘RU,par

mg )+

𝐘RU,par
mg (𝐘RU,par

mg )+

]

(𝐘RU,ov
mm − 𝐘RU,par

mm )
[

(𝐘RU,par
gm )+𝐘RU,par

gc (𝐘RU,par
gm )+𝐘RU,par

gm

]

−

[

𝐘R,hyb
cc 𝐘R,hyb

cm

𝐘R,hyb
mc 𝐘R,hyb

cc

]
(24)

Note that in Eq. (24), the contribution of the hybrid model of the residual substructure 𝑅 cancels out. Moreover, the term 𝐘RU,par
mm

can be substituted using part of Eq. (56):

𝐘RU,par
mm = 𝐘R,hyb

mm − 𝐘R,hyb
mc (𝐘R,hyb

cc + 𝐘J
cc)

−1
𝐘R,hyb

cm (25)

2 Although in joint identification through decoupling both symbols 𝑈 and 𝐽 denote the unknown joint subsystem, in the rest of the paper 𝑈 is used only
hen the joint is within the assembled system 𝑅𝑈 such that the decoupling notation introduced in Section 2.1 is followed. Instead, 𝐽 is used when the joint is
7

intended as a standalone subsystem.
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obtaining:

𝐁𝐘𝐁𝑇 = −

[

𝐘R,hyb
cc

𝐘R,hyb
mc

]

(𝐘R,hyb
cc + 𝐘J

cc)
−1 [

𝐘R,hyb
cc 𝐘R,hyb

cm

]

+

[

𝐘RU,par
cg (𝐘RU,par

mg )+

𝐘RU,par
mg (𝐘RU,par

mg )+

]

(𝐘RU,ov
mm − 𝐘R,hyb

mm )
[

(𝐘RU,par
gm )+𝐘RU,par

gc (𝐘RU,par
gm )+𝐘RU,par

gm

]

+

[

𝐘RU,par
cg (𝐘RU,par

mg )+

𝐘RU,par
mg (𝐘RU,par

mg )+

]

𝐘R,hyb
mc (𝐘R,hyb

cc + 𝐘J
cc)

−1
𝐘R,hyb

cm

[

(𝐘RU,par
gm )+𝐘RU,par

gc (𝐘RU,par
gm )+𝐘RU,par

gm

]

(26)

In this case, the IFM can be split into three matrices. The second one depends on the difference (𝐘RU,ov
mm − 𝐘R,ov

mm ) between the
measured dynamics of the assembled system 𝑅𝑈 and of the residual substructure 𝑅. Since these dynamics come from experimental
measurements, they can be affected by noise and measurement errors. Instead, the dynamics of the first and third terms of Eq. (26)
come from an expansion process. Thus, they are also affected by expansion errors. As a consequence, both measurement errors and
expansion errors can propagate in the solution because of the inversion of the IFM matrix.

3.1.2. Pseudo interface
The use of a pseudo-interface (defined in Section 2.1) is proposed in this paper to improve the results of the identification

procedure. In the pseudo-interface, only internal DoFs (𝑖 ⊆ 𝑟) of subsystem 𝑅 are considered. Here, in particular, compatibility and
equilibrium are imposed on the measured DoFs 𝑚. The compatibility conditions become:

𝒖RU
m − 𝒖R

m = 0 (27)

Eq. (27) can be written in the compact form of Eq. (3) using the boolean matrix 𝐁:

𝐁 =
[

𝐈 𝟎 𝟎 −𝐈 𝟎 𝟎
]

(28)

The corresponding expression of the IFM matrix is:

𝐁𝐘𝐁𝑇 = 𝐘RU,hyb
mm − 𝐘R,hyb

mm = 𝐘RU,ov
mm − 𝐘R,ov

mm (29)

When a pseudo-interface is used, only the measured dynamics 𝐘RU,ov
mm of the assembled structure 𝑅𝑈 and 𝐘R,ov

mm of the residual
subsystem 𝑅 appear in the expression of the IFM matrix. These dynamics can be affected by measurement errors and noise, but they
do not contain any expansion error.

3.2. SEMM interface matrices inversion

The second source of error in the procedure can be found in the inversion of the two non-square matrices 𝐘AJB,par
mg and 𝐘AJB,par

gm
n the SEMM expansion performed on the assembled system 𝐴𝐽𝐵 (see Eq. (11)). In principle, these two matrices belong to a parent
umerical model and should not be affected by noise. However, in the present iterative procedure, the parent model is generated by
oupling the hybrid models of the subsystems 𝐴 and 𝐵 and the joint model identified at the previous iteration. The hybrid models
f the subsystems 𝐴 and 𝐵 are affected by measurement noise and expansion error, while the identified joint model can be affected
y the ill-conditioning of the IFM as discussed in Section 3.1. For this reason, particular care must be taken when computing the
seudo-inverse of the two matrices 𝐘AJB,par

mg and 𝐘AJB,par
gm .

. Improving the conditioning of the identification procedure

In this Section, two ways are proposed to improve the solution of the procedure. The first one (Section 4.1) aims at filtering out
he spurious peaks that are present in the identified joint FRFs. The second one (Section 4.2) aims to reduce the procedure’s error
ropagation by selecting an advantageous decoupling interface.

.1. Estimation of the mass, damping, and stiffness matrices of the identified joint

When spurious peaks are present in the identified joint FRF matrix, the corresponding dynamic stiffness matrix 𝐙J, obtained
hrough the inversion of the FRF matrix 𝐘J is also affected by error propagation, but it maintains important physical information.
herefore, at the end of the iterative procedure, it can be convenient to fit the real and the imaginary part of every single term 𝑍𝐽

ℎ𝑘
f the identified dynamic stiffness matrix with three parameters 𝑚𝐽

ℎ𝑘, 𝑐J
ℎ𝑘 and 𝑘J

ℎ𝑘 that represent, respectively, the mass, damping,
and stiffness coefficients associated to the pair of DoFs ℎ and 𝑘. A least squares fitting is performed on a proper frequency band
where the identified dynamic stiffness shows a smooth and regular behavior, thus minimizing the possible influence of measurement
errors or spurious peaks on the accuracy of the process. The estimated matrices of mass 𝐌J,est, damping 𝐂J,est and stiffness 𝐊J,est

an be used to express the dynamic stiffness matrix 𝐙J,est in the whole frequency range considered:

𝐙J,est = −𝜔2𝐌J,est + 𝑗𝜔𝐂J,est +𝐊J,est (30)
8
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and through its inversion, the accelerance FRF matrix 𝐘J,est of the joint model:

𝐘J,est = −𝜔2(𝐙J,est)−1 (31)

The FRF matrix in Eq. (31) represents a filtered solution for the joint model and can be used to predict the dynamic behavior of
the assembled system 𝐘AJB,est. In this way, it is possible to obtain a better estimation of the FRFs and the physical properties of the
joint.

4.2. Selection of the decoupling interface to improve conditioning and fasten convergence

In Section 3.1, the expressions of the IFM matrix using an extended or a pseudo-interface within the iterative identification
procedure are presented. Firstly, as it is shown in the following Section 7.2, the conditioning of the IFM improves if a pseudo-
interface is used in the decoupling rather than an extended interface. This implies less error propagation in the inversion of the
IFM, with the benefit of getting a better solution. Secondly, the pseudo-interface is defined only on the measured DoFs 𝑚 (Eq. (29)),
and consequently, the propagation of the expansion error due to the coupling DoFs 𝑐 is avoided. Finally, to reach convergence when
using an extended interface, a weighting process in the SEMM expansion procedure of the assembled system is needed. In particular,
a much higher weight should be assigned to the coupling DoFs 𝑐 rather than to the other DoFs. However, this weighting worsens
the conditioning of the procedure, giving a solution strongly affected by error propagation. Strategies to improve this solution are
proposed in the following Section.

5. Improving the solution with the extended interface through TSVD

Here, the weighting procedure in the SEMM equation proposed in [25] and described in Section 2.3, is introduced. The equations
for the weighted pseudo inverses are discussed, together with the consequences in terms of force identifications (Section 5.1).
Furthermore, the effects on the procedure of the weights introduced in the SEMM expansion of the assembled system when using
the extended interface are analyzed. Particular attention is given to the conditioning of the SEMM matrices and on the IFM matrix.
Two different strategies are proposed to improve this solution. Both strategies are based on the use of the Truncated Singular
Value Decomposition (TSVD), because the introduced weights clearly indicate the number of singular values to be retained (this is
true under the assumption that observability and controllability are sufficient, i.e. that all significant singular values are related to
relevant dynamic behavior). In the first strategy (strategy A in Section 5.1.1), the TSVD is applied only on the IFM, while in the
second one (strategy B in Section 5.1.2), the TSVD is applied in both the SEMM interface matrices and in the IFM.

5.1. Weighted extended-SEMM expansion

When performing SEMM, it is possible to focus the expansion on a subset of DoFs. This is done by computing the two
pseudo-inverses (𝐘par

mg )+ and (𝐘par
gm )+ through weighted pseudo-inverses [27] (the superscripts AJB and par are omitted for clarity):

(𝐘mg)𝑊 ,+ = 𝐖𝐘𝐻
mg(𝐘mg𝐖𝐘𝐻

mg)
−1 = 𝐌(𝐘mg𝐌)+ (32)

(𝐘gm)𝑊 ,+ = (𝐘𝐻
gm𝐖𝐘gm)−1𝐘𝐻

gm𝐖 = (𝐌𝐘gm)+𝐌 (33)

where 𝐖 = 𝐌𝐻𝐌 is a weighting matrix that assign a different weight to the different sets of DoFs:

𝐖 =
⎡

⎢

⎢

⎣

𝑤m𝐈mm
𝑤v𝐈vv

𝑤c𝐈cc

⎤

⎥

⎥

⎦

; 𝐌 =
⎡

⎢

⎢

⎣

√

𝑤m𝐈mm
√

𝑤v𝐈vv
√

𝑤c𝐈cc

⎤

⎥

⎥

⎦

(34)

A physical interpretation of the weighting is given in the following for the two pseudo-inverses.
The right weighted pseudo-inverse defined in Eq. (33) solves the problem in Eq. (12) for the interface forces �̃�m in a least-square

ense by minimizing the error ‖𝝁g‖
2
M = 𝝁g

𝐻𝐖𝝁g, with 𝝁g = 𝒖g − 𝐘gm�̃�m:

‖𝝁g‖
2
M = (𝒖m − 𝐘mm�̃�m)𝐻𝑤m(𝒖m − 𝐘mm�̃�m) + (𝒖v − 𝐘vm�̃�m)𝐻𝑤v(𝒖v − 𝐘vm�̃�m)

+ (𝒖c − 𝐘cm�̃�m)𝐻𝑤c(𝒖c − 𝐘cm�̃�m)
(35)

When a higher weight is assigned to a particular set of DoFs, the pseudo-forces �̃�m mostly minimize the error on the response of
hat set of DoFs. The expression of the pseudo-forces �̃�m can be obtained by rewriting Eq. (33) as:

(𝐘gm)𝑊 ,+ = ∆̂−1
mm𝐘𝐻

gm𝐖 =
[

𝑤m∆̂−1
mm𝐘𝐻

mm 𝑤v∆̂
−1
mm𝐘𝐻

vm 𝑤c∆̂
−1
mm𝐘𝐻

cm
]

(36)

here

∆̂mm = 𝐘𝐻
gm𝐖𝐘gm = 𝑤m𝐘𝐻

mm𝐘mm +𝑤v𝐘𝐻
vm𝐘vm +𝑤c𝐘𝐻

cm𝐘cm (37)

y substituting Eq. (36) into Eq. (12) one has:

̂ −1 𝐻 ̂ −1 𝐻 ̂ −1 𝐻
9

𝒈m = 𝑤m∆mm𝐘mm𝒖m +𝑤v∆mm𝐘vm𝒖v +𝑤c∆mm𝐘cm𝒖c (38)
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When the weight assigned to a particular set of DoFs is much higher than the others, the forces 𝒈m are mainly determined by the
responses of the parent model at that set of DoFs.

The left weighted pseudo-inverse defined in Eq. (32) gives the solution for the problem in Eq. (13) for the interface forces �̃�g
that has the minimum norm ‖�̃�RU,par

g ‖

2
M and satisfies the constraint 𝐘mg�̃�g −𝒖m = 𝟎. To understand the role of the weights, (𝐘mg)𝑊 ,+

can be rewritten as:

(𝐘mg)𝑊 ,+ = 𝐖𝐘𝐻
mg∆̃

−1
mm =

⎡

⎢

⎢

⎢

⎣

𝑤m𝐘𝐻
mm∆̃−1

mm

𝑤v𝐘𝐻
mv∆̃

−1
mm

𝑤c𝐘𝐻
mc∆̃

−1
mm

⎤

⎥

⎥

⎥

⎦

(39)

where

∆̃mm = 𝑤m𝐘mm𝐘𝐻
mm +𝑤v𝐘mv𝐘𝐻

mv +𝑤c𝐘mc𝐘𝐻
mc (40)

Consequently, the forces �̃�g defined in Eq. (13) are determined as:

�̃�g =

⎡

⎢

⎢

⎢

⎣

𝑤m𝐘𝐻
mm∆̃−1

mm𝒖m

𝑤v𝐘𝐻
mv∆̃

−1
mm𝒖m

𝑤c𝐘𝐻
mc∆̃

−1
mm𝒖m

⎤

⎥

⎥

⎥

⎦

(41)

When a much higher weight is assigned to a particular set of DoFs, the responses 𝒖m mainly determine the forces applied to that
particular set of DoFs. The overall effect is that the expansion is focused on the weighted set of DoFs. However, by assigning
the weights in this way, the matrix 𝐌 and consequently the matrices 𝐘mg𝐌 and 𝐌𝐘gm to be inverted in Eqs. (32) and (33), are
ill-conditioned.

5.1.1. Strategy A: TSVD in the IFM
In the first strategy to improve the solution that uses the extended interface, the TSVD is applied on the IFM matrix. In fact, the

weights applied on the coupling DoFs 𝑐 in the SEMM expansion of the assembled system affect the IFM. In particular, it has been
noted that in this case, the following relations hold:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎣

𝐘RU,par
cg (𝐘RU,par

mg )𝑊 ,+

𝐘RU,par
mg (𝐘RU,par

mg )𝑊 ,+

⎤

⎥

⎥

⎦

𝐘R,hyb
mc =

⎡

⎢

⎢

⎣

𝐘R,hyb
cc

𝐘R,hyb
mc

⎤

⎥

⎥

⎦

𝐘R,hyb
cm

[

(𝐘RU,par
gm )𝑊 ,+𝐘RU,par

gc (𝐘RU,par
gm )𝑊 ,+𝐘RU,par

gm

]

=
[

𝐘R,hyb
cc 𝐘R,hyb

cm

]

(42)

By substituting these two relations in Eq. (26), the first and third term cancels out. It can be easily seen that the rank of the second
term is driven by the number 𝑁𝑚 of measured DoFs 𝑚. As a consequence, the matrix IFM with dimension (𝑁𝑐 +𝑁𝑚) × (𝑁𝑐 +𝑁𝑚) has
rank 𝑁𝑚. Consequently, in TSVD, the last 𝑁𝑐 singular values are negligible with respect to the first 𝑁𝑚 singular values, and thus
they have to be discarded. Note that the highest weight is assigned to the 𝑁𝑐 coupling DoFs.

5.1.2. Strategy B: TSVD in both SEMM and IFM
In the second strategy to improve the solution, the TSVD is applied in both the SEMM matrices 𝐘RU,par

mg and 𝐘RU,par
gm and in the

IFM matrix. In this case, the effect of the introduced weights is that a number 𝑁𝑐 of singular values, associated to 𝐘cm, become
dominant in the SEMM matrices. Retaining only these 𝑁𝑐 singular values, when computing the weighted pseudo-inverse, corresponds
to considering only the transfer path from the measured DoFs 𝑚 to the coupling DoFs 𝑐 [28] to compute the interface forces 𝒈m.
This is the same as solving the following under-determined problem:

𝒖RU,par
c = 𝐘RU,par

cm �̃�RU,par
m (43)

Among the infinite possible solution of Eq. (43), the one that has the minimum norm ‖�̃�RU,par
m ‖

2
M and satisfies the constraint

𝒖RU,par
c − 𝐘RU,par

cm �̃�RU,par
m = 𝟎 is given by the right Moore–Penrose pseudo inverse:

(𝐘cm)+ = 𝐘𝐻
cm(𝐘cm𝐘𝐻

cm)−1 (44)

Similarly, when weights are assigned to the coupling DoFs 𝑐, in the computation of the weighted pseudo-inverse (𝐘RU,par
mg )

+
in

Eq. (32), the first 𝑁𝑐 singular values are dominant. The truncation of the remaining singular values corresponds to considering
only the transfer path from the coupling DoFs 𝑐 to the measured DoFs 𝑚 [28] in the estimation of interface forces 𝒈c, while the
forces on the measured DoFs 𝑚 and on the validation DoFs 𝑣 are zero (�̃�m = �̃�v = 𝟎). This is equivalent to solving the following
over-determined problem:

𝒖RU,par
m = 𝐘RU,par

mc �̃�RU,par
c (45)

The least-square solution of this problem that minimizes the error ‖�̃�RU,par
m ‖

2
M with 𝝁m = 𝒖RU,par

m −𝐘RU,par
mc �̃�RU,par

c is given by the left
Moore–Penrose pseudo-inverse:

+ 𝐻 −1 𝐻
10

(𝐘mc) = (𝐘mc𝐘mc) 𝐘mc (46)
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Fig. 4. The joint used in the numerical identification is composed of two steel parts (C-element and Q-element) connected together through a 0.2mm spring
steel sheet (S-element). The top and bottom views are both shown for clarity. The dynamic behavior of the joint interfaces is modeled using two remote points.

Fig. 5. First three modes of vibration of the joint.

The truncation performed in the SEMM matrices also affects the singular values distribution of the IFM matrix. In this case, each
term in Eq. (26), with dimension (𝑁𝑐 + 𝑁𝑚) × (𝑁𝑐 + 𝑁𝑚) have rank 𝑁𝑐 . Consequently, in TSVD, the last 𝑁𝑚 singular values are
negligible with respect to the first 𝑁𝑐 , and thus they must be discarded.

6. Numerical application

The differences in the solution obtained using an extended or a pseudo interface in the decoupling step are first analyzed
using numerically generated data. This study is carried out using noise-free data with the aim of demonstrating that, under
certain circumstances, the procedure is inherently ill-conditioned and the results are affected by scattering even in the absence
of measurement errors. A particular joint that connects two subsystems is used for this investigation. The joint is designed to be
tested separately from the other subsystems and to obtain a reference model of the joint useful to validate the identification results.

6.1. Modeling of the joint

The joint considered in this study is the connecting element proposed in [29] and shown in Fig. 4(a), where its top and bottom
views are displayed together to highlight the interface surfaces (in red) at which it can be connected to other subsystems. Note that
even though the joint can exhibit a nonlinear behavior, in the present work the interest is only on its linear behavior. The joint is
composed of two steel parts (C-element and Q-element) connected together through a 0.2mm spring steel sheet (S-element). The
FE model of the joint is developed in ANSYS (Fig. 4(b)), with the only aim of obtaining the reference model needed for validation.
The dynamics at the interface surfaces are reduced to that of two remote points RP1 and RP2 located in the middle of the surfaces
(as displayed in Fig. 4(b)), using Multi-Point Constraint equations [30,31]. A linear modal analysis is performed to obtain the first
100 modes of vibration of the joint. The FRFs at the remote point DoFs are then generated using the mode superposition method
implemented in the pyFBS Python package [32]. This FRFs matrix is the reference model to validate the results. However, only
three DoFs are used for each remote point: the translational DoF along the 𝑧 axis and the two rotational DoFs around the 𝑥 and
𝑦 axis. These three DoFs are sufficient to describe the dynamics of the joint, as one can see by looking at the first three modes of
vibration of the joint displayed in Fig. 5.
11
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Fig. 6. FE Model of the assembled system. The blue arrows represent the measured DoFs 𝑚; the orange arrows represent the validation DoFs 𝑣.

Fig. 7. Generation of parent model of the assembled.

6.2. Benchmark structure

The joint described in Fig. 4(a) is used to couple two steel beams 𝐴 and 𝐵 that have length of 1m and cross-section of 40 × 5mm
and 30 × 3mm respectively. The joint element is connected to the beams at a distance of 0.2m from one of their ends. As seen in 2.3,
the parent 𝐘AJB,par

0 and overlay 𝐘AJB,ov models of the assembled structure are needed to perform the identification.
To obtain the overlay model 𝐘AJB,ov, the FE model of the assembled structure is developed in ANSYS (Fig. 6), and a linear modal

analysis is performed to obtain its first 100 modes of vibration of the system. A set of measurement DoFs 𝑚 (blue arrows) and
validation DoFs 𝑣 (orange arrows) are selected on the structure. For each DoF, both response and excitation are evaluated. The FRFs
corresponding to these sets of DoFs are generated using the mode superposition method implemented in pyFBS. In this application,
the measured DoF set 𝑚 for each beam is composed of 2 DoFs in the 𝑥 direction, 2 DoFs in the 𝑦 direction, and 9 DoFs in the 𝑧
direction; globally for the assembled system, a total of 26 measurement DoFs 𝑚 are required. The validation DoF set 𝑣 includes 2
DoFs, one on each beam.

As outlined in Fig. 3, to obtain the parent model 𝐘AJB,par
0 of the assembled structure, first the hybrid models 𝐘A,hyb and 𝐘B,hyb

of the two beams need to be generated. To do so, the two beams are modeled in ANSYS separately, as shown in Figs. 7(a) and
7(b), and linear modal analysis is used to obtain their first 100 modes of vibration. For each beam, the dynamics at the interface
surface with the joint are reduced to that of a remote point having three DoFs: the translational DoF along the 𝑧 axis, and the two
rotational DoFs around the 𝑥 and 𝑦 axis. The same set of measurement DoFs 𝑚 and validation DoFs 𝑣 used for the complete structure
are used for the two beams. The set of coupling DoFs 𝑐 for each beam is composed of the corresponding remote point DoFs. For
both beams, the parent model FRFs (𝐘A,par and 𝐘B,par) and the overlay model FRFs (𝐘A,ov and 𝐘B,ov) are then obtained using the
mode superposition method implemented in pyFBS. Successively, the SEMM expansion is performed to obtain the hybrid model of
the separate beams (𝐘A,hyb and 𝐘B,hyb). Note that since the parent and overlay models of each beam come from the same FE model,
in which no noise is added, the hybrid and the parent models coincide. Secondly, the hybrid models of the two beams are coupled
to a guess model of the joint, as shown in Fig. 7(c) (the remote points are biased from the surfaces of the beams for displaying
purposes). The joint is modeled using 6 DoFs (two translational DoF along the 𝑧 axis, two rotational DoFs around the 𝑥 axis, and
two rotational DoFs around the 𝑦 axis), which can be considered as three pairs of uncoupled 2-DoFs systems composed of masses
connected through a spring element. The mass and stiffness matrices of the initial guess model of the joint are used to compute the
12



Mechanical Systems and Signal Processing 208 (2024) 111063M. Di Manno et al.

T
p

6

i

b
i
n
d
d
D
b
a
e
i
9
r

t
v
s
𝑤
t
c
a
s
l

i
o
i

Fig. 8. Results of the numerical joint identification using an extended interface in the decoupling: (a) drive point FRF 𝐘J at DoF 𝑞2𝑧; (b) dynamic stiffness 𝐙J

at DoF 𝑞2𝑧.

accelerance FRFs 𝐘J
0, are:

𝐌J
0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚0
𝐼𝑥,0

𝐼𝑦,0
𝑚0

𝐼𝑥,0
𝐼𝑦,0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

; 𝐊J
0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐾𝑧,0(1 + 𝜀) −𝐾𝑧,0
𝐾𝜃𝑥 ,0(1 + 𝜀) −𝐾𝜃𝑥 ,0

𝐾𝜃𝑦 ,0(1 + 𝜀) −𝐾𝜃𝑦 ,0
−𝐾𝑧,0 𝐾𝑧,0

−𝐾𝜃𝑥 ,0 𝐾𝜃𝑥 ,0
−𝐾𝜃𝑦 ,0 𝐾𝜃𝑦 ,0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(47)

he parameters used are 𝑚0 =0.6 kg, 𝐼𝑥,0 = 𝐼𝑦,0 = 0.001 kgm2, 𝐾𝑧,0 =150Nm−1, 𝐾𝜃𝑥 ,0 = 𝐾𝜃𝑦 ,0 =150Nm rad−1, 𝜀 = 0.000001 (𝜀 is a
erturbation parameter to avoid singularity). Note that the joint FRF matrix has dimension 6 × 6.

.3. Results

This section discusses some results of the numerical joint identification procedure. No perturbations in the data are introduced
n this study, as remarked at the beginning of Section 6.

Firstly, it is verified if the SEMM expansion procedure, necessary when the coupling DoFs cannot be measured directly, is affected
y error. To this aim, two identifications through substructure decoupling are performed and the results are compared in Fig. 8:
n the first one (dashed black line), the SEMM expansion is used to reconstruct the dynamics at the coupling DoFs 𝑐 starting from
umerical FRFs generated at the internal DoFs 𝑚; in the second one (solid green line), the FRFs at the coupling DoFs are generated
irectly by introducing the remote points in the numerical model of the assembled system (see Fig. 6). In both cases an extended
ecoupling interface is employed (compatibility and equilibrium conditions are imposed on both the measured DoFs 𝑚 and coupling
oFs 𝑐). The reference and initial guess models of the joint are also reported in Fig. 8 by the red and gray lines, respectively. It can
e noted that in the second case, where the SEMM expansion is avoided, the joint FRF (Fig. 8(a)) and dynamic stiffness (Fig. 8(b))
ssociated to the DoF 𝑞2𝑧, are correctly identified, even though some scattering effects are present in the results. Instead, when the
xpansion is employed, the solution coincides with the initial guess model of the joint. In other words, the iterative procedure used
n this case does not converge. Comparing the normalized singular values distribution of the IFM in the two cases (Figs. 9(b) and
(a)), it can be noted that the expansion causes a jump in the distribution in the last 𝑁𝑐 singular values. This suggests that the
econstruction of the coupling DoFs 𝑐 through the expansion does not add independent information in the decoupling step.

To achieve convergence with an extended interface, it is necessary to assign a much higher weight to the coupling DoFs 𝑐 than
o the other DoFs in the SEMM expansion of the assembled system. As a consequence, a clear jump appear the normalized singular
alues distribution of the IFM (Fig. 9(c)), indicating that the last 𝑁𝑐 singular values are insignificant. The FRF and the dynamic
tiffness matrices of the joint at DoF 𝑞2𝑧, obtained in this case, are shown in Fig. 10 (solid green line). The assigned weights are
m = 𝑤v = 1e−8 and 𝑤c = 1. However, the results obtained are strongly affected by scattering. Since no perturbations were added

o the numerically simulated FRFs, this shows that the iterative identification procedure is inherently ill-conditioned. This solution
an be improved by using strategy A as shown in Fig. 10 by the solid blue line. In this case, only the first 𝑁𝑚 = 18 singular values
re retained when inverting the IFM, which ensures convergence and a correct identification of the joint FRFs while eliminating the
cattering in the solution. Similar results are obtained using a pseudo-interface in the decoupling step, as shown by the solid yellow
ine in Fig. 10. Note that in both cases the joint is correctly identified.

The numerical study also allows analyzing the effect of the choice of the measured DoFs 𝑚 on the solution, in particular, on the
dentification of the FRFs at rotational DoFs of the joint. For this purpose, two identifications are performed using two different sets
f measured DoFs 𝑚, and the solutions are compared in Fig. 11. In the first set, measured DoFs in all directions are used (solution
n solid blue line), while in the second one, only measured DoFs in the 𝑧 direction are used (green solid line). Both solutions in
13
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Fig. 9. Normalized singular values distribution 𝜎𝑖∕𝜎1 of the IFM using an extended interface in the decoupling step.

Fig. 10. Results of the numerical joint identification: (a) drive point FRF 𝐘J at DoF 𝑞2𝑧; (b) dynamic stiffness 𝐙J at DoF 𝑞2𝑧.

Fig. 11. Effect of the measured DoFs 𝑚 on the solution. A pseudo-interface is used in the decoupling.

Fig. 11 are obtained using a pseudo-interface in the decoupling step. It can be noticed that when using the first set of measured
DoFs, the natural frequencies of the joint at 11Hz and 20Hz, corresponding to its second and third modes of vibration in free–free
onditions, are correctly estimated. Instead, when the second set of measured DoFs is used, the natural frequencies are not correctly
stimated. In Table 1, the estimated physical parameters of the joint, obtained from these solutions as described in Section 4.1, are
ompared. The order of magnitude of the stiffness parameters of the joint is correctly estimated, whilst the moments of inertia of
he joint are largely overestimated (more than one hundred times) when only measurements in the 𝑧 direction are used. The reason

is that measurements in the 𝑥 and 𝑦 directions carry information about the corresponding rigid body modes, which are needed to
correctly identify the moments of inertia of the joint. However, it is important to note that performing measurements in the 𝑥 and 𝑦
14

directions for experimental identification is problematic due to the small thickness of the beams.
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Table 1
Estimated mass and stiffness parameters of the joint at 𝑞2. A pseudo-interface is used in the decoupling.

Solutions 𝑚 (kg) 𝐼𝜃𝑥 (kg m2) 𝐼𝜃𝑦 (kg m2) 𝐾𝑧 (N m−1) 𝐾𝜃𝑥 (N m rad−1) 𝐾𝜃𝑦 (N m rad−1)

Reference 0.12 1.49 × 10−5 1.48 × 10−5 139.03 0.219 0.05
Measurements in 𝑥, 𝑦, 𝑧 0.12 1.43 × 10−5 1.42 × 10−5 139.03 0.216 0.05
Measurements in 𝑧 0.12 2.00 × 10−3 1.50 × 10−3 138.95 0.290 0.05

Fig. 12. Experimental testing campaign: (a) residual substructure 𝐴; (b) assembled system 𝐴𝐽𝐵; (c) joint substructure 𝐽 .

7. Experimental application

In this Section, the identification procedure is performed using experimental measurements of the benchmark structure
introduced in Section 6.

The identification procedure requires the parent model of each beam to build its hybrid model, which is also used when
generating the parent model of the assembled structure at each iteration. The parent models are generated as described in Section 6.
The interface surfaces of each beam are modeled using two remote points with three DoFs, representing the coupling DoF set 𝑐:
the translational DoF along the 𝑧 axis and the two rotational DoFs around the 𝑥 and 𝑦 axis. The total number of coupling DoFs is
𝑁𝑐 = 6. The same set of measured DoFs 𝑚 and validation DoFs 𝑣 used in the numerical application are selected on the structure.
However, only DoFs in the 𝑧 direction are considered because it is difficult to measure in the 𝑥 and 𝑦 directions due to the small
thickness of the beams. Here, the number of measured DoFs 𝑚 in the 𝑧 direction is 𝑁𝑚 = 18 (9 DoFs for each beam). One validation
DoF 𝑣 is selected on each beam. The mode superposition method is used to obtain the parent model FRFs of each beam on its global
set of DoFs 𝑔 (𝑔 = 𝑚 ∪ 𝑣 ∪ 𝑐).

7.1. Experimental setup

Here, the procedure to obtain the experimental model of the two beams and of the assembled system is described. Special care
is taken during the measurements to apply low levels of excitation to the structures. This ensures that nonlinearities, which can
be observed mainly in the joint, remain unexcited. The overlay models are defined on the set of measured DoFs 𝑚. Measurements
are also performed to acquire the FRFs at the validation DoFs 𝑣. The single beams and the assembled structure are suspended
through soft bungees to simulate free-floating conditions (Figs. 12(a) and 12(b)). Single-axis accelerometers (KISTLER 8776B250A)
are used to measure accelerations. Impact excitations at each DoF are applied using a modal hammer (PCB 086C03). To obtain
the FRF matrices, force and acceleration signals are acquired using the data acquisition system (SIRIUSi-DEWESOFT), based on
DualCoreADC® technology with dual 24-bit delta-sigma analog to digital converter (ADC).

To validate the results of the experimental identification, the joint is also tested to obtain an experimental model (Fig. 12(c)).
For this purpose, the joint is suspended with soft bungees to simulate free-free conditions. Only translational DoFs along the 𝑧 axis
are measured.

7.2. Results

In the following, the results of the experimental identification are analyzed. As discussed in Section 4.2, the conditioning of the
IFM matrix improves if a pseudo-interface is used rather than an extended interface. The distribution of the normalized singular
values 𝜎𝑖∕𝜎1 of the IFM gives an indication of its conditioning: low values of this ratio suggest that the matrix is ill-conditioned. In
Fig. 13, the normalized singular values distribution for the IFM at four frequencies is shown at the first iteration. It can be seen that
15
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Fig. 13. Normalized singular values distribution 𝜎𝑖∕𝜎1 of the IFM at the first iteration when using an extended or pseudo-interface in the decoupling step.

the conditioning of the pseudo-interface (Fig. 13(a)) is better than the conditioning of the extended interface (Fig. 13(b)). Moreover,
as seen in the numerical identification (Section 6), when an extended interface is used, a much higher weight should be assigned
to the coupling DoFs 𝑐 when performing the SEMM expansion on the assembled system to reach convergence. However, the used
weights (𝑤m = 𝑤v = 1e−8 and 𝑤c = 1) cause a jump in the distribution of the normalized singular values of the IFM, shown
in Fig. 13(c), since the last 𝑁𝑐 singular values become negligible. Consequently, experimental error present in the data highly
ropagates in the solution. In this case, the strategy A proposed in Section 5.1.1 that truncates the last 𝑁𝑐 singular values when
nverting the IFM matrix, can be used to improve the solution. The three solutions’ results are compared in Fig. 14. In particular,
igs. 14(a) and 14(b) show the driving point FRF and the dynamic stiffness of the joint at DoF 𝑞2𝑧, respectively. The red line
epresents the joint reference model obtained through experimental tests described in Section 7.1. The green line is obtained using
he pseudo-interface in the decoupling step. The blue line is obtained using an extended interface and weights on the coupling DoFs
n the SEMM expansion of 𝑅𝑈 (𝑤m = 𝑤v = 1e–8 and 𝑤c = 1). The orange line is obtained similarly to the blue line, but TSVD
runcates the smallest 𝑁𝑐 singular values in the inversion of the IFM matrix (strategy A). Note that the solution using the extended
nterface with no weights is not shown because it does not converge (as in the numerical case). It can be noticed from Fig. 14 that
ll these three solutions are affected by error propagation. However, the solution obtained using the extended interface and the
eights in SEMM expansion (solid blue line) present spurious peaks higher than in the other solutions. Using the TSVD in the IFM

orange line) or the pseudo-interface (green line), the solution improves, particularly in the dynamic stiffness plot. Note that the
range and green solutions are overlapped. The coincidence between these two solutions can be explained by looking at Fig. 15,
hich shows the distribution of the singular values 𝜎𝑖 of the terms in Eqs. (29) and (26) at 25Hz (the same behavior is observed
t each frequency). The green curve refers to the 𝑁𝑚 = 18 singular values of the IFM matrix for a pseudo-interface (no weights
pplied). The blue and yellow curves represent the 𝑁𝑚 + 𝑁𝑐 = 24 singular values of the whole IFM and of the second term in
q. (26), respectively, for the extended interface and weights 𝑤m = 𝑤v = 1e–8 and 𝑤c = 1 in the SEMM expansion of the assembled

system. It can be noticed that the first 18 singular values of the blue and yellow curves coincide, and the last six are very small and
similar. This confirms that when using the extended interface and weights, the sum of the first and third terms in Eq. (26) gives a
negligible contribution to the IFM. As a consequence, since the rank of the second term of Eq. (26) is equal to 𝑁𝑚, also the IFM
matrix has rank 𝑁𝑚. The truncation of the last 𝑁𝑐 singular values correspond to consider only the difference (𝐘RU,ov

mm − 𝐘R,ov
mm ) that

is for instance the expression of the IFM when using a pseudo-interface.
Since the reference model of the joint is generally not known, to validate the results, a comparison between the experimental

FRFs of the assembled system and the FRFs of the system obtained by coupling the identified joint 𝐽 with the model of the residual
system 𝑅, can be performed at one of the validation DoFs 𝑣. In Fig. 16, this comparison is made for the validation DoF 𝑣1𝑧 that
belongs to beam 𝐴. It can be seen that the reconstructed FRFs obtained from results using the pseudo-interface and from results
using the extended interface with strategy A, are in good agreement with the reference FRF up to 100Hz, even though they are still
16

prone to error propagation.
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Fig. 14. Results of the experimental joint identification from different solutions; the reference models are obtained experimentally.

Fig. 15. Singular values distribution 𝜎𝑖 of the terms that give the interface flexibility matrix for the case of a pseudo-interface and for an extended interface
(with weights in SEMM expansion of 𝑅𝑈).

Fig. 16. Drive point FRF of assembled system at the DoF 𝑣1𝑧 on beam 𝐴 reconstructed with the identified joint.

To further improve the results, the fitting procedure proposed in Section 4.1 can be performed. The estimated joint FRFs 𝐘J,est

nd the dynamic stiffness 𝐙J,est obtained by the fitting procedure are compared in Fig. 17 with the reference model of the joint. In
articular, the blue line refers to the joint model fitted from a solution in which weights are used, while the orange line is obtained
y fitting the solution obtained using strategy A. It can be noticed that the use of the TSVD in the solution gives better results in terms
f the estimated model of the joint. In fact, the TSVD reduces the spurious peaks in the identified dynamic stiffness, thus allowing
ore precise estimation of the joint parameters. The estimated model can be used also to reconstruct the dynamic behavior of the

ssembled system, as shown in Fig. 18. In this case, these reconstructed models are very similar, even though the corresponding
17
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Fig. 17. Results of the fitting on the solution: (a) drive point FRF 𝐘J at DoF 𝑞2𝑧; (b) dynamic stiffness 𝐙J at DoF 𝑞2𝑧. Weights 𝑤𝑚 = 𝑤𝑣 = 1e–8 and 𝑤𝑐 = 1 are
used in SEMM expansion.

Fig. 18. Drive point FRF of the assembled system at DoF 𝑣1𝑧 on beam 𝐴 reconstructed with the joint FRF matrices 𝐘J,est: using the extended decoupling interface
nd weights in the SEMM expansion of the assembled system (blue curve); using strategy A (orange curve).

stimated joint models are considerably different. This may be due to the fact that the FRF of the assembly selected for validation is
ittle sensitive to variation of the joint parameters in the selected frequency range. Thus the comparison of the reconstructed model
s not so reliable in validating the results of the identification.

As suggested in Section 5.1.2, a different strategy can be adopted to improve the conditioning of the solution with the extended
nterface when weights are used. In this second strategy B, the TSVD is applied in the inversion of both the SEMM interface matrices
n the expansion process on the assembled system and in the inversion of the IFM matrix. In all these three matrix inversions, only
he first 𝑁𝑐 singular values are retained. Fig. 19, shows the normalized singular values distribution at some frequencies for the
atrices to be inverted in the SEMM expansion of 𝑅𝑈 , according to Eqs. (32) and (33). It can be noticed that a clear jump in the
istribution of the normalized singular values arises at all frequencies. In particular, the first 𝑁𝑐 singular values are more relevant
han the other ones. Thus, the TSVD can be used when inverting these two matrices by retaining only the first 𝑁𝑐 singular values.

Consequently, this truncation also affects the normalized singular values distribution of the IFM matrix, shown in Fig. 20. In this
case, in the IFM, only the first 𝑁𝑐 singular values are relevant, while the remaining 𝑁𝑚 must be truncated in the matrix inversion.
The joint FRF 𝐘J and dynamic stiffness 𝐙J (blue lines) obtained by using strategy B are compared in Fig. 21 with the reference
model of the joint (red curve). The green curves refer to the estimated joint accelerance 𝐘J,est and dynamic stiffness 𝐙J,est, obtained
by fitting the dynamic stiffness matrix 𝐙𝐽 from the solution using strategy B. It can be noticed that both the dynamics stiffnesses
𝐙J and 𝐙J,est are in good agreement with the reference joint model, and the spurious peaks are significantly reduced. Nonetheless,
the identified joint FRF obtained using strategy B is less affected by error propagation, but it is not able to show the characteristics
of its dynamic behavior. Instead, in the joint FRF 𝐘J,est the resonance frequency at 36 Hz is well estimated, and the resonance
frequency at 2.3 Hz is better estimated than the corresponding curve in Fig. 17. The reconstructed models of the assembled system
obtained using the joint accelerances 𝐘J and 𝐘J,est are compared in Fig. 22 with the corresponding reference dynamic behavior,
at the validation DoF 𝑣1𝑧. Compared to strategy A, strategy B avoids large error propagation in the solution, and the results are in
really good agreement with the reference curve, up to 110Hz.
18
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Fig. 19. Normalized singular values distribution 𝜎𝑖∕𝜎1 at the first iteration, for the matrices to be inverted in the SEMM expansion of the assembled system
when weights are used (𝑤m = 𝑤v = 1e–8 and 𝑤c = 1).

Fig. 20. Normalized singular values distribution 𝜎𝑖∕𝜎1 of the IFM when strategy B is used.

Fig. 21. Results of the experimental joint identification using strategy B. The reference model is obtained experimentally.

. Assessment of the different strategies using Monte Carlo simulation

This section aims to evaluate the effectiveness and robustness of the three strategies proposed in Sections 4.2 and 5 to improve
he results of the SEMM-based identification procedure. As summarized in Table 2, the proposed strategies differ in several aspects,
ncluding the type of decoupling interface, the use of weighted pseudo-inverses in the SEMM expansion of the assembly, the use of
SVD in the inversions within SEMM, and the use of TSVD in the inversion within decoupling. The methodology used in [25] is also
eported in Table 2, where no remedial actions are taken to reduce scatter in the solution. Due to the complexity of the problem,
his study is carried out using the Monte Carlo approach [33], that can be used to analyze the propagation of uncertainties in the
nput variables of complex simulation-based models [34].

The uncertainty propagation of the iterative SEMM-based joint identification procedure is studied on the benchmark structure
escribed in Fig. 6. The numerical models of the structure required for the Monte Carlo simulation are generated as described in
ection 6.2. In this application, the inputs of the MC simulation are the overlay models 𝐘A,ov, 𝐘B,ov and 𝐘AJB,ov of the beam 𝐴,

beam 𝐵 and the assembled system 𝐴𝐽𝐵, respectively. The uncertainties are represented by the random noise that affects the
FRF measurements of the overlay models. To simulate the presence of noise in the overlay model of a generic system 𝑠 (with
19
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Fig. 22. Drive point FRF of assembled system at the DoF 𝑣1𝑧 on beam 𝐴 using strategy B.

Table 2
Possible strategies to improve the results of the SEMM-based joint identification procedure.

Strategy name Decoupling interface Weighs TSVD in SEMM TSVD in decoupling

Ref. [25] Extended Coupling DoFs – –
Pseudo Pseudo – – –
A Extended Coupling DoFs – 𝑁𝑚 SVs retained
B Extended Coupling DoFs 𝑁𝑐 SVs retained 𝑁𝑐 SVs retained

𝑠 = 𝐴, 𝐵, 𝐴𝐽𝐵), a random perturbation is added to the numerically [16] simulated overlay FRF3 �̂�s,ov:

𝑌 𝑠,ov
𝑖𝑗 (𝜔𝑘) = 𝑌 𝑠,ov

𝑖𝑗 (𝜔𝑘) +𝑁𝑖𝑗 (𝜔𝑘)𝐸𝑖𝑗𝑝 (48)

where:

• 𝑁𝑖𝑗 (𝜔𝑘) is the Fourier transform of a band-limited white noise 𝑛𝑖𝑗 (𝑡) with zero mean and unit standard deviation, given by
low-pass filtering a broad band white noise 𝑤𝑖𝑗 (𝑡), in the frequency band of interest;

• 𝐸𝑖𝑗 is the energy of the acceleration at DoF 𝑖 to a unit excitation at DoF 𝑗, i.e. (𝑌 𝑠,𝑜𝑣
𝑖𝑗 ):

𝐸𝑖𝑗 =
𝑁𝜔
∑

𝑛=1
|𝑌 𝑠,ov

𝑖𝑗 (𝜔𝑛)|
2 𝛥𝜔
2𝜋

(49)

where 𝑁𝜔 is the number of the considered spectral lines and 𝛥𝜔∕2𝜋 is the frequency resolution;
• 𝑝 represents the noise level, in this case selected as 𝑝 = 0.05. This corresponds to 5% noise.

At the end of the Monte Carlo simulation, the statistical properties of the output joint accelerance FRF matrix are computed, in
particular its mean value 𝐘

J
and standard deviation 𝜎(𝐘J(𝜔)). A useful quantity to evaluate the effects of uncertainty propagation,

is the confidence interval. For the FRF matrix of the joint, the confidence interval 𝛥(𝐘J(𝜔)) can be expressed as:

𝛥(𝐘J(𝜔)) = 1.96
𝜎(𝐘J(𝜔))
√

𝑁
(50)

According to Eq. (50), there is a 95% probability that a realization of the output FRF matrix of the joint lies between [𝐘
J
(𝜔) −

𝛥(𝐘J(𝜔)),𝐘
J
(𝜔) + 𝛥(𝐘J(𝜔))].

Four different Monte Carlo simulations are performed according to the strategies defined in the Table 2. In each simulation, a
umber 𝑁 = 5000 realizations4 of 𝐘A,ov, 𝐘B,ov, and 𝐘AJB,ov with different uncorrelated random errors are considered. These FRFs are
omputed at 𝑁𝜔 = 500 frequency points. The results of the four Monte Carlo simulations are shown in Fig. 23 for the output joint
ccelerance FRF 𝑞2𝑧 − 𝑞2𝑧. In particular, Fig. 23(a) shows the mean value of the joint accelerance obtained from each simulation.
he reference FRF of the joint, obtained as described in Section 6.1, is also reported. It can be seen that when no strategy is used to

3 The simulated noise-free FRFs are obtained using the mode superposition method.
4 This number is selected such that the convergency of the Monte Carlo simulation is ensured.
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Fig. 23. Statistical properties of the joint accelerance FRF 𝑞2𝑧 − 𝑞2𝑧, obtained from four Monte Carlo simulations for the iterative SEMM-based joint identification
rocedure. In each simulation, except the blue curve, a different strategy is used to improve the results of the solution: (——) original solution from [25]; (——)
seudo-interface; (- - - -) strategy A; (——) strategy B; (- - - -) reference.

mprove the solution (blue curve), additional spurious peaks appear in the joint FRF at 3.3Hz, 66.3Hz, 123.9Hz and 129.6Hz. Instead,
all proposed strategies are able to correctly identify the joint FRF. More interesting is the plot of the relative confidence intervals
for the joint FRF obtained from the Monte Carlo simulations, shown in Fig. 23(b). It is evident that the three proposed strategies are
more robust to the presence of errors in the data, since these are less amplified by the iterative identification procedure. However, it
is interesting to note that, apart from the spurious peaks at 3.3Hz, the strategy using the decoupling pseudo-interface (red line) and
trategy A (orange line) show the same performance in terms of error propagation in the case where no further action is taken (blue
ine), up to 40Hz. At higher frequencies, however, the advantages of using these two techniques are significant. Moreover, Fig. 23(b)
roves that the solution using the pseudo-interface in decoupling and strategy A coincide, as noted in Section 7.2. However, as shown
n Fig. 23(b), strategy B gives the best performance in terms of error propagation. The FRF of the joint are predicted in this case
ith a relative confidence interval that, apart from the resonance of the joint, is lower than 1%.

. Conclusions

In this paper, some improvements for an existing iterative joint identification technique, suitable for applications in which the
oint interface is not measurable, are proposed. The focus is on the limitation of the error propagation in the procedure. The main
ources of error propagation are localized in the matrix inversion present in the SEMM expansion (SEMM interface matrices) of the
ssembled system and in the decoupling step (Interface Flexibility Matrix). Two methods are proposed to improve the results of the
dentification:

• A fitting technique based on the identified joint dynamic stiffness matrix to smooth out spuriosity in the solution
• The use of a pseudo-interface (that only uses internal DoFs) in the decoupling step that avoids the propagation of the expansion

error present on the coupling DoFs

he effectiveness of using a pseudo-interface is demonstrated with both numerical and experimental data.
Moreover, two strategies are proposed to improve the conditioning of the procedure when an extended interface is used since the

eighting needed in the SEMM expansion of the assembled system to reach convergence makes the procedure ill-conditioned. Both
trategies use the Truncated Singular Values Decomposition to perform matrix inversions in the SEMM expansion of the assembly
nd in the IFM. It is shown that the number of singular values to be retained depends on the number of coupling DoFs that are
eighted. In the first strategy, the number of singular values neglected in inverting the IFM equals the number of coupling DoFs. In

he second one, the number of singular values retained in inverting the SEMM interface matrices and the IFM is lower and equals
he number of coupling DoFs. The effectiveness of the proposed strategies to reduce the error propagation in the procedure are
xperimentally verified on a benchmark structure and are also demonstrated using noisy polluted numerical data within a Monte
arlo approach.
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Appendix. Generation of the parent model of the assembled system

The parent model of the assembled system 𝑅𝑈 can be generated by coupling the hybrid model 𝐘R,hyb of the residual system 𝑅
with the model 𝐘J of the joint 𝐽 obtained from the previous iteration. The coupling is performed using Eq. (7), in which:

𝒖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝒖R
m

𝒖R
v

𝒖R
c

𝒖J
c

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, 𝐘 =
[

𝐘R,hyb

𝐘J

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐘R,hyb
mm 𝐘R,hyb

mv 𝐘R,hyb
mc

𝐘R,hyb
vm 𝐘R,hyb

vv 𝐘R,hyb
vc

𝐘R,hyb
cm 𝐘R,hyb

cv 𝐘R,hyb
cc

𝐘J
cc

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(51)

ifferently from decoupling to couple two substructures, the compatibility and equilibrium conditions must be imposed at the
oupling DoFs:

𝒖R
c − 𝒖J

c = 0 (52)

q. (52) can be written using the boolean matrix 𝐁:

𝐁 =
[

𝟎 𝟎 𝐈 −𝐈
]

(53)

ote that the result of the dual assembly in Eq. (7) has redundant DoFs since the coupling DoFs 𝑐 appear twice. To remove this
edundancy, one can use the localization matrix 𝐋 that is the null space of 𝐁:

𝐘 = 𝐋+�̄�(𝐋+)𝑇 = 𝐋+𝐘(𝐋+)𝑇 − 𝐋+𝐘𝐁𝑇 (𝐁𝐘𝐁𝑇 )−1𝐁𝐘(𝐋+)𝑇 (54)

With:

𝐋 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐈 𝟎 𝟎
𝟎 𝐈 𝟎
𝟎 𝟎 𝐈
𝟎 𝟎 𝐈

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐋+ =
⎡

⎢

⎢

⎣

𝐈 𝟎 𝟎 𝟎
𝟎 𝐈 𝟎 𝟎
𝟎 𝟎 𝐈 𝟎

⎤

⎥

⎥

⎦

(55)

By substituting Eqs. (51), (53) and (55) in Eq. (54), the expression for the parent model of the assembled system is obtained:

𝐘RU,par =

⎡

⎢

⎢

⎢

⎣

𝐘R,hyb
mm 𝐘R,hyb

mv 𝐘R,hyb
mc

𝐘R,hyb
vm 𝐘R,hyb

vv 𝐘R,hyb
vc

𝐘R,hyb
cm 𝐘R,hyb

cv 𝐘R,hyb
cc

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

𝐘R,hyb
mc

𝐘R,hyb
vc

𝐘R,hyb
cc

⎤

⎥

⎥

⎥

⎦

(𝐘R,hyb
cc + 𝐘J

cc)
−1 [

𝐘R,hyb
cm 𝐘R,hyb

cv 𝐘R,hyb
cc

]

(56)
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